EXTENSIONS AND THE EXCEPTIONAL ZERO
OF THE ADJOINT SQUARE L-FUNCTIONS

HARUZO HIDA

Take a totally real field F' with integer ring O as a base field. We
fix an identification ¢ : @p ~ C > Q. Fix a prime p > 2, and write
Y for the set of prime factors of p in F'. Start with a holomorphic
automorphic representation m of GLy(Fy) (a Hilbert modular Hecke
eigenform) which is spherical and nearly p-ordinary at . Then we
have the compatible system of A-adic representations p = {py} of 7,
and if X\ { p, pa(F'roby) is unramified and has two eigenvalues a p-adic
unit eigenvalue v (with respect to ¢) and a p-adic nonunit 5. When
we consider a p-adic member of p, it is supposed to be associated to
ip=1"':Q — Q,. We consider the Galois stable subspace Ad(p) C
p®tp~t = End(p) with zero trace (whose Galois action is given by
conjugation). The Euler factor at p of L(s, Ad(p)) is then given by

(1= ap ™)1 —p )1 —a ' p)]
The p-adic L-function L,(s, Ad(p)), whose value at 1 is a constant
multiple of (1—pp™)(1 —a 'Bp~ ) (1 — paf~'p~')L(1, Ad(p)), has an
exceptional 0 at s = 1 (corresponding to the Frobenius eigenvalue = 1
at p|p) whose order is the number of such Euler factors r = |X] if
the L-invariant £(Ad(p)) of Ad(p;,) does not vanish. The L-invariant
L(Ad(p)) is defined by the following (hypothetical) formula:

L, (5. Adp), L(1, Ad(p)
ds” s=1 a period

= L(Ad(p))

The appearance of the trivial zero is always true without assuming
unramifiedness of 7 or p at p for the adjoint square L-functions, and this
is a peculiar point when we study the L-invariant of the adjoint square
8L *
0 5
semisimplified Ad(p)|p, has eigenvalue 1 for F'rob,. Since Greenberg
has given a Galois cohomological definition of the L-invariant without
recourse to the analytic p-adic L-function, we can discuss the adjoint
square L-invariant using his definition, and we would like to relate it
to differential calculus of p-adic analytic families lifting .

L. Indeed, by the near ordinarity, p;,|p, = ( ), and hence, the
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For simplicity, we assume that p totally splits in F//Q and = has
level 1, which allows us to avoid some technicality. Let (k1, < Koyp)
be the p-adic Hodge-Tate type of p;, at the place p|p. Defining x =
(K1, k2) With k; = 37 Kjpp € Z[X], we call £ the weight of 7. We
suppose ky = kg p — k1, + 1 > 2 (the weight “> 2”7 condition). Write
the central character of 7 as ¢; so, det(p) = eN for the cyclotomic
character /. The representation 7 has a p-normalized vector f € .
The form f is normalized so that the archimedean Fourier coefficients
a(y, f) gives the Hecke eigenvalue of the Hecke operator T'(y) and
Uy) (y € ON FY) corresponding to To(p) (49) To(p) for the adelic

open compact subgroup fo(p) of T'p-type. It is better to introduce
a,(y, f) = y, "ax(y, f) which we call the g-expansion coefficients of f,
is the eigenvalue of T),(y) = y, ™7 (y) and is p-integral with f|U,(y) =

0p(ly, F5)) it 0 #y € OF. Here y, ™ =[]y, N, jq, (yp) -

1. ANALYTIC FAMILIES OF AUTOMORPHIC REPRESENTATIONS

A philosophical interpretation of the zero of L,(s, Ad(p)) at s =0, 1
as a factor of L,(s,End(p)) = L,(s, End(7)) is

an order r zero of L,(s, Ad(p)) = L,y(s, Ad(m)) at s =1

1
Gal(Q/Q)

1

L) rank Ext (p> p) ; rank EXtautomorphic rep (7T7 7T) =T

1
. Gal@/Q . |
nearly ordinary p-adic representations unramified outside p and co. To

explore this question, it is essential to lift 7 (or f) to A-adic automor-
phic representations. Let us describe this point first. Fix a discrete
valuation ring W C Q, = C (sufficiently large) finite flat over Z, as a
base ring. Take an open subgroup S of G® .= GLQ(Fépm)). p-Adic
modular forms on S over a p-adic W-algebra R = @R/ p" R classify
triples (X, X, ¢)/4 for p-adic R-algebras A. Here X is an AVRM by O
(so, O — End(X/4) with Qx/4 = O ®z A locally), ) is a polarization
class up to prime-to-p O-linear isogenies, and ¢ = (¢,, ) is a pair of
level structures ¢, : e ® O* — X[p™®] (O* is the Z-dual of O) and
o) (F)? = V(X)) = (lim X[N]) ® AP modulo S. A p-adic
modular form A is a functorial rule satisfying

Here the extension group Ext ) is computed in the category of

(1) h((X, X, ®)/4) € A depends only on the prime-to-p isogeny class

of (X> X? ¢)/A>
(2) If ¢ : A — B is a p-adically continuous R-algebra homomor-
phism, then h((X, A, ¢)/4 ®a,, B) = ¢(h((X, A, ¢),4)),
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(3) If z is a central element in G, h((X, A, ¢p, ¢ 0 2)/4) =
e(2)h((X, A, 9))a)-
Writing V(S,e; R) for the space of p-adic modular forms on S over
R, and taking the limit V(e; R) = li_I)HS V(S,e;R), g € GP acts on
V(e; R) by g - h((X, X, ¢p, ¢P)) = h((X, X, ¢p, ¢') © g)/4) (the p-adic
automorphic representation). For v € O) and h € V(g; R), define
hlu(X, X, ¢p, 8P) = h(X, X, ¢,ou, ), which is an element of V(e; R).
Let
Ve(e; R) = {h € V(e; R)|h|lu = u™"h for allu € O,}.
Also Uy(y) for 0 # y € O, acts on V(e; W) by

ap(y, h|Up(w)) = ap(wy, h).
Similarly, T,,(q) acts on V(GL2(Oy),e; W) by

a,(y, h|T,(q)) = a,(wy, h) + N(q)e(q)ap%, h)

for the uniformizer w, at a prime q { p. Define the ordinary projector
e = lim, . U,(p)™ on V(e; R), and write the image as V*"(e; R).
The prime-to-p part 7(?) of m appears as a subquotient of Vr¢(g; W)

generated by translations g - f of f € 7 regarded as a p-adic modular
form.

Theorem 1.1 (multiplicity 1). The automorphic representation of
GP = GLg(Fépoo)) on Vord(e;Q,) = Veord(e; W) @w Q, is admis-
sible and is a direct sum of admissible irreducible representations of
G®) with multiplicity at most 1.

Let I'r be the p-profinite part of O, so, I'r = (1 + pZy)*. Let A =
A be the Iwasawa algebra W([[I'p]] = lim W[l's/T%"]. Fix a generator
Y € 1+pZ, of the p-component of I'p, and identify A = W[[zy]]pex by
Yp <> 1+, We have the universal cyclotomic character k : O — A*
sending u € O to the projection (u) € I'r C A*. Define V(S,&;A) =
V(S e;W)@wA = lim V(S,e;A/m}) and V(e;A) = lim  V/(S, e;
Again GP | U,(y), T,(y), u € O, and the projector e act on V/(¢;
Define V™" by the image of e and

Vs'ord(&/\) _ {h c Vn.ord(g;A)‘th = u_mfs',(u)h for all u € O;;}

A).
A).

on which G® and U,(y) acts. For each v = >, UpP € Z[X], consider
Ky = (K1 — v, Ko +v) and the algebra homomorphism v : A — W given
by v(u) = [T, uy" for u = (up)yp € T'r.
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Theorem 1.2. For an algebraic closure KC of Frac(A), the automor-
phic representation of G®) on V-ord(e: K) = Vord(g; A) @, K is admis-
sible and is a direct sum of admissible irreducible representations with
multiplicity at most 1. For a given m as above, there exists a unique
irreducible admissible factor I1 of V»"4(g; K) defined over a finite flat
extension I of A such that I1@y pW = 7 for an algebra homomorphism
P:1— W estending 0 € Z[X] on A. Moreover for each v € Z[3] with
ky+2v, > 2 for all p|p and each W -algebra homomorphism @ : 1 — W
extending v, 7o = Il @ o W is an automorphic representation of G®
coming from classical Hilbert modular form of weight k..

Thus we get a p-adic analytic family of automorphic representation
7o Yoesotm ). A naive question is
QI QEeSpi(I) (W)

Question 1.3. When the minimal ring of definition of 11 is not equal
to A?

We have I = A for almost all the time; however, there are limited
examples of nonscalar extension I # A. Let a(q) € I be the Hecke
eigenvalue of T),(q) or U,(q) (if g = p) of II. For simplicity, we assume
[ = A and write ¥ = {p1,...,pa}, 7j = Y, and v = x,, € A. Here is a
naive transcendency questions

Question 1.4. Fiz v(1 + x;) = v(y;) for j > 2 and for vV =
> jsa Uik € Z[X — {p1}] with kj + 2v; > 2 (j > 2). Regard a(q)
as a function of xy.

(1) Fiz a prime q. Moving v = vip; + vV for integers vy with
k+2v1 > 2, is the set {v(a(q))|vi > 1 — &} an infinite set?

(2) Further suppose that I1 does not have complex multiplication.
Is the field Q[v(a(q))|vi > 1 — £] € Q an infinite extension?

As is well known, by Galois deformation theory, if p mod my is
absolutely irreducible, we have a modular Galois deformation py :
Gal(Q/Q) — GLy(I) unramified outside p.

2. EXTENSIONS OF II AND pp

Recall V(S,e;A) = V(S,e;W)®wA. Thus the W-derivations 9 €
Derw (A, A) acts on V(e;A). Let 9; = (1 + :Ej)gTj € Derw (A N).
By the formula defining 7,(y) and U,(y), we see easily 0;(h|T,(y)) =
(0;h)|T,(y) and 0;(h|Uy(y)) = (0;h)|Up(y). However, this does not
mean that 9;(m) C m. Indeed, setting doh = *(Oih,...,0.h,h) €
V(e; A)"™ and da = *(dia,...,0,a) € A", if f is the p-normalized
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Hecke eigenform in II, £|7,(q) = a(q)f; so, applying 0y, we find
(06f) Ty(a) = (9 %) oot

a(q)

This tells us that the translations of components of Of under G®) span
a constituent I of V™°r4(g; K) fitting into the following exact sequence
of G)-representations

0—II" =1l — I — 0.

This extension is nontrivial because we can find a set of r primes ) =
{d1,...,9,} with v(det(d;a(q;)) # 0 for any given v € Z[X]. Thus
specializing the above exact sequence tensoring ®x ,W. we find

Theorem 2.1. We have rank Ext. (7@, 7 @) > |3,

automorphic rep

Here 7() is the prime to p-part of 7. Since the existence of the
exceptional zero of the adjoint square L-function is independent of 7,
to have r independent extension as in the theorem, we are forced to
have an infinitesimal deformation of 7 with at least r independent
variables. This explains the existence of a r-variable p-adic analytic
family containing 7 as a member. Obviously, we may ask

Question 2.2. rank Ext (7@, 7)) = || ?

automorphic rep

This question has an affirmative answer under the condition that
the local ring of the universal Hecke algebra acting nontrivially on the
Hecke eigenforms in 7(®) is isomorphic to an appropriate universal de-
formation ring (see Section 4.4 of a forthcoming book [HMI] from Ox-
ford University press with title: “Hilbert Modular Forms and Iwasawa
Theory”).

We can apply the same trick to the Galois representation pry. Let
gj be the class of y; in I[y;]/(y;)*>. Then pn = pn + 3-;0;pne;
Gal(Il[¢;]p,ex) gives rise to a nontrivial extension

0 — pp — pn — pn — 0.
We write p, = pn ®a,, W. The standard Selmer group Selp(Ad(p;,))
is a submodule of the Galois cohomology group H'(F,Ad(p;,)) C
Extéal@/ F) (pi,, pi,) spanned by cocycles unramified outside p and un-
ramified modulo upper-nilpotent matrices at p|p identifying p with a

% (;;). The little bigger “—”
Selmer group is generated by cocycles unramified outside p and un-
ramified modulo upper-triangular matrices at p|p. Then for each sub-

module X of p isomorphic to p"~!, the extension class [p mod X]| €
Sel.(Ad(p,,)).

matrix representation so that ,0| D, = <
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Theorem 2.3 (Greenberg). We have ranky Sel(Ad(p;,)) > |X|, and
the equality holds if Selp(Ad(p;,)) is finite.

By a work of Fujiwara, Selrp(Ad(p;,)) is finite if p := (p;, mod my)
is absolutely irreducible over F'[u,]. Thus the extension pn of pr is
highly nontrivial, because det(d;a(q;)) € I* for many sets of primes @)
with positive density in {primes}>.

The p-adic L-function L,(s, Ad(p)) is actually related to the Selmer
group Selr, (Ad(p;,)) over the cyclotomic Zy-extension F,/F. Then
the eigenvalue ay and Gy of the Frobenius F'roby, over a high layer
Fn/F is a high p-power of ap and fy; so, det(d;a(q;)) over Fy is no
longer a unit even if it is over F'. To guarantee the nontriviality of
the extension pp over Fi, we need to have det(d;a(p;)) # 0, which is
difficult to prove (but follows if Question 1.4 is affirmative for q € ¥).

Question 2.4. det(da(p;)) # 07

3. L-INVARIANT

Greenberg has given (in his paper in Contemporary Math. 165
149-174) a Galois cohomological definition of the L-invariant of p-
adic ordinary representations of Gal(Q/Q). Applying his definition
to Ind} Ad(p;,), we can compute L£(Ad(p)).

Theorem 3.1. If p is absolutely irreducible, we have

L(Ad(p,)) = v(det(a(p;) " dia(p;))) [[ 7 ™ log, ()-
plp

As conjectured by Greenberg, we should have L£(Ad(p,)) # 0, and if
it is the case, Question 2.4 will have an affirmative answer. Combining
these results with the computation by Greenberg—Stevens and Green-
berg of the L-invariant of elliptic curves with multiplicative reduction
at p, we get

Corollary 3.2. Suppose that m, is associated to an elliptic curve E;p
with split multiplicative reduction at all p|p. Then we have

B 17 log, (NR g, (a))
L(Ad(p,)) = L(E) = y o1y (N7, /0, (49))

where E(Fy,) = F) /qp.

In this case, L(FE) # 0 by the theorem of St. Etienne. The proof of
these results will appear in my forthcoming book [HMI] Section 3.4).



