EXTENSIONS AND THE EXCEPTIONAL ZERO
OF THE ADJOINT SQUARE L-FUNCTIONS

HARUZO HIDA

Take a totally real field F with integer ring O as a base field. We fix an identification $\iota : \Q_p \cong C \supset \Q$. Fix a prime $p > 2$, and write Σ for the set of prime factors of p in F. Start with a holomorphic automorphic representation π of $GL_2(F_A)$ (a Hilbert modular Hecke eigenform) which is spherical and nearly p-ordinary at Σ. Then we have the compatible system of λ-adic representations $\rho = \{\rho_\lambda\}_\lambda$ of π, and if $\lambda \nmid p$, $\rho_\lambda(Frob_p)$ is unramified and has two eigenvalues a p-adic unit eigenvalue α (with respect to ι) and a p-adic nonunit β. When we consider a p-adic member of ρ, it is supposed to be associated to $i_p = \iota^{-1} : \Q \hookrightarrow \Q_p$. We consider the Galois stable subspace $Ad(\rho) \subset \rho \otimes ^t \rho^{-1} = \text{End}(\rho)$ with zero trace (whose Galois action is given by conjugation). The Euler factor at p of $L(s, Ad(\rho))$ is then given by

$$[(1 - \alpha \beta^{-1}p^{-s})(1 - p^{-s})(1 - \alpha^{-1} \beta p^{-s})]^{-1}.$$

The p-adic L-function $L_p(s, Ad(\rho))$, whose value at 1 is a constant multiple of $(1 - pp^{-1})(1 - \alpha^{-1} \beta p^{-1})(1 - p\alpha \beta^{-1}p^{-1})L(1, Ad(\rho))$, has an exceptional 0 at $s = 1$ (corresponding to the Frobenius eigenvalue = 1 at $p|\rho$) whose order is the number of such Euler factors $r = |\Sigma|$ if the L-invariant $L(Ad(\rho))$ of $Ad(p_\rho)$ does not vanish. The L-invariant $L(Ad(\rho))$ is defined by the following (hypothetical) formula:

$$\frac{d^r L_p(s, Ad(\rho))}{ds^r} \bigg|_{s=1} = L(Ad(\rho)) \frac{L(1, Ad(\rho))}{\text{a period}}.$$

The appearance of the trivial zero is always true without assuming unramifiedness of π or ρ at p for the adjoint square L-functions, and this is a peculiar point when we study the L-invariant of the adjoint square L. Indeed, by the near ordinarity, $\rho_{p_\rho}|_{D_{p_\rho}} \cong \left(\begin{array}{cc} \delta_\rho & * \\ 0 & \delta_\rho \end{array} \right)$, and hence, the semisimplified $Ad(\rho)|_{D_{p_\rho}}$ has eigenvalue 1 for $Frob_{p_\rho}$. Since Greenberg has given a Galois cohomological definition of the L-invariant without recourse to the analytic p-adic L-function, we can discuss the adjoint square L-invariant using his definition, and we would like to relate it to differential calculus of p-adic analytic families lifting π.
For simplicity, we assume that \(p \) totally splits in \(F/\mathbb{Q} \) and \(\pi \) has level 1, which allows us to avoid some technicality. Let \((\kappa_{1,p} \leq \kappa_{2,p}) \) be the \(p \)-adic Hodge-Tate type of \(\rho_p \) at the place \(\mathfrak{p}|p \). Defining \(\kappa = (\kappa_1, \kappa_2) \) with \(\kappa_j = \sum \kappa_{j,p}\mathfrak{p} \in \mathbb{Z}[\Sigma] \), we call \(\kappa \) the weight of \(\pi \). We suppose \(k_p = \kappa_{2,p} - \kappa_{1,p} + 1 \geq 2 \) (the weight “\(\geq 2 \)” condition). Write the central character of \(\pi \) as \(\varepsilon \); so, \(\det(\rho) = \varepsilon N \) for the cyclotomic character \(N \). The representation \(\pi \) has a \(p \)-normalized vector \(f \in \pi \). The form \(f \) is normalized so that the archimedean Fourier coefficients \(a_{\infty}(y,f) \) gives the Hecke eigenvalue of the Hecke operator \(T(y) \) and \(U(y) (y \in \widehat{O} \cap F_\kappa^\times) \) corresponding to \(\Gamma_0(p) (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}) \widehat{\Gamma}(p) \) for the adelic open compact subgroup \(\widehat{\Gamma}(p) \) of \(\Gamma_0 \)-type. It is better to introduce \(a_p(y,f) = y^{-\kappa_2}a_{\infty}(y,f) \) which we call the \(q \)-expansion coefficients of \(f \), is the eigenvalue of \(T_p(y) = y^{-\kappa_1}T(y) \) and is \(p \)-integral with \(f|U_p(y) = \delta_p([y,F_p])f \) if \(0 \neq y \in O_\kappa^\times \). Here \(y^{-\kappa_1} = \prod_{p \mid \mathfrak{p}} N_{F_p/q_p}(y_p)^{-\kappa_1,p} \).

1. Analytic families of automorphic representations

A philosophical interpretation of the zero of \(L_p(s, Ad(\rho)) \) at \(s = 0,1 \) as a factor of \(L_p(s, \text{End}(\rho)) = L_p(s, \text{End}(\pi)) \) is

\[
\zeta \rightarrow \text{rank Ext}^1_{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(\rho, \rho) \rightarrow \text{rank Ext}^1_{\text{automorphic rep}}(\pi, \pi) = \text{r}.
\]

Here the extension group \(\text{Ext}^1_{\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} \) is computed in the category of nearly ordinary \(p \)-adic representations unramified outside \(p \) and \(\infty \). To explore this question, it is essential to lift \(\pi \) (or \(f \)) to \(\Lambda \)-adic automorphic representations. Let us describe this point first. Fix a discrete valuation ring \(W \subset \overline{\mathbb{Q}}_p = \mathbb{C} \) (sufficiently large) finite flat over \(\mathbb{Z}_p \) as a base ring. Take an open subgroup \(S \) of \(G^{(\rho)} := \text{GL}_2(F^{(p\infty)}_\Lambda) \). \(p \)-Adic modular forms on \(S \) over a \(p \)-adic \(W \)-algebra \(R = \text{lim} R/p^nR \) classify triples \((X, \overline{\lambda}, \phi)/A\) for \(p \)-adic \(R \)-algebras \(A \). Here \(X \) is an AVRM by \(O \) (so, \(O \leftarrow \text{End}(X/A) \) with \(\Omega_{X/A} \cong O \otimes_\mathbb{Z} A \) locally), \(\overline{\lambda} \) is a polarization class up to prime-to-\(p \) \(O \)-linear isogenies, and \(\phi = (\phi_p, \phi^{(p)}) \) is a pair of level structures \(\phi_p : \mu_{p\infty} \otimes O^* \rightarrow X[p^{\infty}] \) (\(O^* \) is the \(\mathbb{Z} \)-dual of \(O \)) and \(\phi^{(p)} : (F^{(p\infty)}_\Lambda)^2 \cong \text{V}(\rho)(X) = \lim_{\rightarrow} X[N] \otimes A^{(p\infty)} \) modulo \(S \). A \(p \)-adic modular form \(h \) is a functorial rule satisfying

1. \(h((X, \overline{\lambda}, \phi)/A) \in A \) depends only on the prime-to-\(p \) isogeny class of \((X, \overline{\lambda}, \phi)/A\).
2. If \(\varphi : A \rightarrow B \) is a \(p \)-adically continuous \(R \)-algebra homomorphism, then \(h((X, \overline{\lambda}, \phi) \otimes_{A, \varphi} B) = \varphi(h((X, \overline{\lambda}, \phi)/A)) \),
(3) If z is a central element in $G^{(p)}$, $h((X, \overline{\lambda}, \phi_p, \phi^{(p)} \circ z)_{/A}) = \varepsilon(z)h((X, \overline{\lambda}, \phi)_{/A})$.

Writing $\mathcal{V}(S; \varepsilon; R)$ for the space of p-adic modular forms on S over R, and taking the limit $\mathcal{V}(\varepsilon; R) = \varprojlim S \mathcal{V}(S; \varepsilon; R)$, $g \in G^{(p)}$ acts on $\mathcal{V}(\varepsilon; R)$ by $g \cdot h((X, \overline{\lambda}, \phi_p, \phi^{(p)}) = h((X, \overline{\lambda}, \phi_p, \phi^{(p)} \circ g)_{/A})$ (the p-adic automorphic representation). For $u \in O_p^\times$ and $h \in \mathcal{V}(\varepsilon; R)$, define $h|u(X, \overline{\lambda}, \phi_p, \phi^{(p)}) = h(X, \overline{\lambda}, \phi_p \circ u, \phi^{(p)})$, which is an element of $\mathcal{V}(\varepsilon; R)$. Let

$$\mathcal{V}_\kappa(\varepsilon; R) = \{ h \in \mathcal{V}(\varepsilon; R) \mid h|u = u^{-\kappa_1}h \text{ for all } u \in O_p^\times \}.$$

Also $U_p(y)$ for $0 \neq y \in O_p$ acts on $\mathcal{V}(\varepsilon; W)$ by

$$a_p(y, h|U_p(\varpi)) = a_p(\varpi y, h).$$

Similarly, $T_p(q)$ acts on $\mathcal{V}(GL_2(\mathcal{O}_q), \varepsilon; W)$ by

$$a_p(y, h|T_p(q)) = a_p(\varpi y, h) + N(q)\varepsilon(q)a_p(y_{\overline{\varpi}_q}, h)$$

for the uniformizer ϖ_q at a prime $q \mid p$. Define the ordinary projector $e = \lim_{n \to \infty} U_p(p)^{ni}$ on $\mathcal{V}(\varepsilon; R)$, and write the image as $\mathcal{V}^n.ord(\varepsilon; R)$. The prime-to-$p$ part $\pi^{(p)}$ of π appears as a subquotient of $\mathcal{V}^n.ord(\varepsilon; W)$ generated by translations $g \cdot f$ of $f \in \pi$ regarded as a p-adic modular form.

Theorem 1.1 (multiplicity 1). The automorphic representation of $G^{(p)} = GL_2(F^{(p\infty)}_A)$ on $\mathcal{V}^n.ord(\varepsilon; \overline{\mathbb{Q}_p}) = \mathcal{V}^n.ord(\varepsilon; W) \otimes_W \overline{\mathbb{Q}_p}$ is admissible and is a direct sum of admissible irreducible representations of $G^{(p)}$ with multiplicity at most 1.

Let Γ_F be the p-profinite part of O_p^\times; so, $\Gamma_F = (1 + p\mathbb{Z}_p)^\Sigma$. Let $\Lambda = \Lambda_F$ be the Iwasawa algebra $W[[\Gamma_F]] = \varprojlim_n W[\Gamma_F/\Gamma_F^n]$. Fix a generator $\gamma_p \in 1 + p\mathbb{Z}_p$ of the p-component of Γ_F, and identify $\Lambda = W[[x_p]]_{p \in \Sigma}$ by $\gamma_p \mapsto 1 + x_p$. We have the universal cyclotomic character $\kappa : O_p^\times \to \Lambda^\times$ sending $u \in O_p^\times$ to the projection $\langle u \rangle \in \Gamma_F \subset \Lambda^\times$. Define $V(S, \varepsilon; \Lambda) = V(S, \varepsilon; W) \otimes_W \Lambda = \varprojlim_n V(S, \varepsilon; \Lambda/m^n_\Lambda)$ and $V(\varepsilon; \Lambda) = \varprojlim_S V(S, \varepsilon; \Lambda)$. Again $G^{(p)}$, $U_p(y)$, $T_p(y)$, $u \in O_p^\times$ and the projector e act on $V(\varepsilon; \Lambda)$. Define $V^n.ord$ by the image of e and

$$V^n.ord(\varepsilon; \Lambda) = \{ h \in V^n.ord(\varepsilon; \Lambda) \mid h|u = u^{-\kappa_1}\kappa(u)h \text{ for all } u \in O_p^\times \}$$

on which $G^{(p)}$ and $U_p(y)$ acts. For each $v = \sum_p v_p\mathbb{Z}$, consider $\kappa_v = (\kappa_1 - v, \kappa_2 + v)$ and the algebra homomorphism $v : \Lambda \to W$ given by $v(u) = \prod_p u_{v_p}^p$ for $u = (u_p)_{p \mid p} \in \Gamma_F$.

EXTENSIONS
Theorem 1.2. For an algebraic closure \(K \) of \(\text{Frac}(\Lambda) \), the automorphic representation of \(G^{(\nu)} \) on \(V_{\kappa,\text{ord}}(\varepsilon;K) = V_{\kappa,\text{ord}}(\varepsilon;\Lambda) \otimes_{\Lambda} K \) is admissible and is a direct sum of admissible irreducible representations with multiplicity at most 1. For a given \(\pi \) as above, there exists a unique irreducible admissible factor \(\Pi \) of \(V_{\kappa,\text{ord}}(\varepsilon;K) \) defined over a finite flat extension \(\mathcal{I} \) of \(\Lambda \) such that \(\Pi \otimes_{\mathcal{I},\mathbb{R}} W \cong \pi \) for an algebra homomorphism \(P : \mathcal{I} \to W \) extending \(0 \in \mathbb{Z}[\Sigma] \) on \(\Lambda \). Moreover for each \(v \in \mathbb{Z}[\Sigma] \) with \(k_p + 2v_p \geq 2 \) for all \(p \mid p \) and each \(W \)-algebra homomorphism \(Q : \mathcal{I} \to W \) extending \(v \), \(\pi_Q = \Pi \otimes_{\mathcal{I},Q} W \) is an automorphic representation of \(G^{(\nu)} \) coming from classical Hilbert modular form of weight \(\kappa \).

Thus we get a \(p \)-adic analytic family of automorphic representation \(\{\pi_Q\}_{Q \in \text{Spf}(\mathcal{I})/W} \). A naive question is

Question 1.3. When the minimal ring of definition of \(\Pi \) is not equal to \(\Lambda \)?

We have \(\mathcal{I} = \Lambda \) for almost all the time; however, there are limited examples of nonscalar extension \(\mathcal{I} \neq \Lambda \). Let \(a(q) \in \mathcal{I} \) be the Hecke eigenvalue of \(T_p(q) \) or \(U_p(q) \) (if \(q = p \)) of \(\Pi \). For simplicity, we assume \(\mathcal{I} = \Lambda \) and write \(\Sigma = \{p_1, \ldots, p_d\} \), \(\gamma_j = \gamma_{p_j} \) and \(x = x_{p_j} \in \Lambda \). Here is a naive transcendency questions

Question 1.4. Fix \(v(1 + x_j) = v(\gamma_j) \) for \(j \geq 2 \) and for \(v^{(1)} = \sum_{j \geq 2} v_j p_j \in \mathbb{Z}[\Sigma - \{p_1\}] \) with \(k_j + 2v_j \geq 2 \) \((j \geq 2)\). Regard \(a(q) \) as a function of \(x_1 \).

1. Fix a prime \(q \). Moving \(v = v_1 p_1 + v^{(1)} \) for integers \(v_1 \) with \(k + 2v_1 \geq 2 \), is the set \(\{v(a(q))|v_1 \geq 1 - \frac{k}{2}\} \) an infinite set?

2. Further suppose that \(\Pi \) does not have complex multiplication. Is the field \(\mathbb{Q}[v(a(q))]|v_1 \geq 1 - \frac{k}{2}| \subset \overline{\mathbb{Q}} \) an infinite extension?

As is well known, by Galois deformation theory, if \(\rho \mod \mathfrak{m}_W \) is absolutely irreducible, we have a modular Galois deformation \(\rho_\Pi : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{I}) \) unramified outside \(p \).

2. Extensions of \(\Pi \) and \(\rho_\Pi \)

Recall \(V(S, \varepsilon; \Lambda) = V(S, \varepsilon; W) \hat{\otimes}_W \Lambda \). Thus the \(W \)-derivations \(\partial \in \text{Der}_W(\Lambda, \Lambda) \) acts on \(V(\varepsilon; \Lambda) \). Let \(\partial_j = (1 + x_j) \frac{\partial}{\partial x_j} \in \text{Der}_W(\Lambda, \Lambda) \).

By the formula defining \(T_p(y) \) and \(U_p(y) \), we see easily \(\partial_j(h|T_p(y)) = (\partial_j h)|T_p(y) \) and \(\partial_j(h|U_p(y)) = (\partial_j h)|U_p(y) \). However, this does not mean that \(\partial_j(\pi) \subset \pi \). Indeed, setting \(\partial h = \{\partial_1 h, \ldots, \partial_r h, h\} \in V(\varepsilon; \Lambda)^{r+1} \) and \(\partial a = \{\partial_1 a, \ldots, \partial_r a\} \in \Lambda^r \), if \(\mathbf{f} \) is the \(p \)-normalized
Hecke eigenform in Π, $f|T_p(q) = a(q)f$; so, applying ∂_0, we find
\[(\partial_0 f)|T_p(q) = \begin{pmatrix} a(q)^{-1} & \partial a(q) \\ 0 & a(q) \end{pmatrix} \partial_0 f.\]
This tells us that the translations of components of ∂f under G^p span a constituent $\tilde{\Pi}$ of $V_{n.ord}(\epsilon; K)$ fitting into the following exact sequence of G^p-representations
\[0 \rightarrow \Pi' \rightarrow \tilde{\Pi} \rightarrow \Pi \rightarrow 0.\]
This extension is nontrivial because we can find a set of r primes $Q = \{q_1, \ldots, q_r\}$ with $v(\det(\partial a(q_j))) \neq 0$ for any given $v \in \mathbb{Z}[\Sigma]$. Thus specializing the above exact sequence tensoring $\otimes_{\Lambda,v} W$, we find

Theorem 2.1. We have $\text{rank} \, \text{Ext}^1_{\text{automorphic rep}}(\pi^{(p)}, \pi^{(p)}) \geq |\Sigma|.$

Here $\pi^{(p)}$ is the prime to p-part of π. Since the existence of the exceptional zero of the adjoint square L-function is independent of π, to have r independent extension as in the theorem, we are forced to have an infinitesimal deformation of π with at least r independent variables. This explains the existence of a r-variable p-adic analytic family containing π as a member. Obviously, we may ask

Question 2.2. $\text{rank} \, \text{Ext}^1_{\text{automorphic rep}}(\pi^{(p)}, \pi^{(p)}) = |\Sigma|?$

This question has an affirmative answer under the condition that the local ring of the universal Hecke algebra acting nontrivially on the Hecke eigenforms in $\pi^{(p)}$ is isomorphic to an appropriate universal deformation ring (see Section 4.4 of a forthcoming book [HMI] from Oxford University press with title: “Hilbert Modular Forms and Iwasawa Theory”).

We can apply the same trick to the Galois representation ρ_{Π}. Let ϵ_j be the class of y_j in $\mathbb{I}[y_j]/(y_j)^2$. Then $\tilde{\rho}_{\Pi} = \rho_{\Pi} + \sum_j \partial_j \rho_{\Pi} \epsilon_j : \text{Gal}(\mathbb{I}[\epsilon_j]_{y_j \in \Sigma})$ gives rise to a nontrivial extension
\[0 \rightarrow \rho^r_{\Pi} \rightarrow \tilde{\rho}_{\Pi} \rightarrow \rho_{\Pi} \rightarrow 0.\]

We write $\tilde{\rho}_{\pi} = \tilde{\rho}_{\Pi} \otimes_{\Lambda,v} W$. The standard Selmer group $\text{Sel}_F(\text{Ad}(\rho_{\pi}))$ is a submodule of the Galois cohomology group $H^1(F, \text{Ad}(\rho_{\pi})) \subset \text{Ext}^1_{\text{Gal}(\mathbb{I}/F)}(\rho_{\pi}, \rho_{\pi})$ spanned by cocycles unramified outside p and unramified modulo upper-nilpotent matrices at $p|p$ identifying ρ with a matrix representation so that $\rho|_{D_p} = \begin{pmatrix} \delta_p & * \\ 0 & \delta_p \end{pmatrix}$. The little bigger “$-$” Selmer group is generated by cocycles unramified outside p and unramified modulo upper-triangular matrices at $p|p$. Then for each submodule X of $\tilde{\rho}$ isomorphic to ρ^{r-1}, the extension class $[\tilde{\rho} \mod X] \in \text{Sel}_F(\text{Ad}(\rho_{\pi})).$
Theorem 2.3 (Greenberg). We have \(\text{rank}_W \text{Sel}_F(\text{Ad}(\rho_{i_p})) \geq |\Sigma| \), and the equality holds if \(\text{Sel}_F(\text{Ad}(\rho_{i_p})) \) is finite.

By a work of Fujiwara, \(\text{Sel}_F(\text{Ad}(\rho_{i_p})) \) is finite if \(\overline{\rho} := (\rho_{i_p} \mod m_W) \) is absolutely irreducible over \(F[\mu_p] \). Thus the extension \(\widetilde{\rho}_\Pi \) of \(\rho_\Pi \) is highly nontrivial, because \(\det(\partial_i a(q_j)) \in \mathbb{I}^\times \) for many sets of primes \(Q \) with positive density in \(\{\text{primes}\}^\Sigma \).

The \(p \)-adic \(\mathcal{L} \)-function \(L_p(s, \text{Ad}(\rho)) \) is actually related to the Selmer group \(\text{Sel}_{F_\infty}(\text{Ad}(\rho_{i_p})) \) over the cyclotomic \(\mathbb{Z}_p \)-extension \(F_\infty/F \). Then the eigenvalue \(\alpha_N \) and \(\beta_N \) of the Frobenius \(\text{Frob}_{q_j} \) over a high layer \(F_N/F \) is a high \(p \)-power of \(\alpha_0 \) and \(\beta_0 \); so, \(\det(\partial_i a(q_j)) \) over \(F_N \) is no longer a unit even if it is over \(F \). To guarantee the nontriviality of the extension \(\widetilde{\rho}_\Pi \) over \(F_\infty \), we need to have \(\det(\partial_i a(p_j)) \neq 0 \), which is difficult to prove (but follows if Question 1.4 is affirmative for \(q \in \Sigma \)).

Question 2.4. \(\det(\partial_i a(p_j)) \neq 0? \)

3. \(\mathcal{L} \)-invariant

Greenberg has given (in his paper in Contemporary Math. 165 149–174) a Galois cohomological definition of the \(\mathcal{L} \)-invariant of \(p \)-adic ordinary representations of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \). Applying his definition to \(\text{Ind}_F^Q \text{Ad}(\rho_{i_p}) \), we can compute \(\mathcal{L}(\text{Ad}(\rho)) \).

Theorem 3.1. If \(\overline{\rho} \) is absolutely irreducible, we have

\[
\mathcal{L}(\text{Ad}(\rho_v)) = v(\det(a(p_i)^{-1}\partial_i a(p_j))) \prod_{p|p} \gamma_p^{-v_p} \log_p(\gamma_p).
\]

As conjectured by Greenberg, we should have \(\mathcal{L}(\text{Ad}(\rho_v)) \neq 0 \), and if it is the case, Question 2.4 will have an affirmative answer. Combining these results with the computation by Greenberg–Stevens and Greenberg of the \(\mathcal{L} \)-invariant of elliptic curves with multiplicative reduction at \(p \), we get

Corollary 3.2. Suppose that \(\pi_v \) is associated to an elliptic curve \(E/F \) with split multiplicative reduction at all \(p|p \). Then we have

\[
\mathcal{L}(\text{Ad}(\rho_v)) = \mathcal{L}(E) = \prod_{p|p} \log_p(N_{F_p/Q_p}(q_p)) / \text{ord}_p(N_{F_p/Q_p}(q_p)),
\]

where \(E(F_p) = F_p^\times / q_p^\mathbb{Z} \).

In this case, \(\mathcal{L}(E) \neq 0 \) by the theorem of St. Etienne. The proof of these results will appear in my forthcoming book [HMI] Section 3.4).