## Errata as of June 26th, 2007 *p*-Adic Automorphic Forms on Shimura Varieties Springer Monographs in Mathematics

Here is a table of misprints in the above book, and "P.3 L.5b" indicates fifth line from the bottom of the page three. The latest version of the correction table can be downloaded from www.math.ucla.edu/~hida. Addenda (and comments) to the text follow the misprint table. Since some people indicated me that the proofs of the irreducibility theorems of the Igusa tower are difficult, I added more comments (see Addenda).

| page and line | Read                                                                                            | Should Read                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|               |                                                                                                 | automorphy factor or                                                                                   |
|               |                                                                                                 | factor of automorphy                                                                                   |
| P.6 L.2b      | automorphic factor                                                                              | (the words: "automorphic factor"                                                                       |
|               |                                                                                                 | may not be a correct mathematical                                                                      |
|               |                                                                                                 | usage).                                                                                                |
| P.40 L.15b    | $\mathcal{V}_P$                                                                                 | $\mathcal{V}_P \mod \mathfrak{m}_P^n$ for each $n$                                                     |
| P.41 L.16b    | in $R$ .                                                                                        | in $R$ if $P$ is unramified in $R$ .                                                                   |
| P.41 L.9b     | $P = (x - \alpha) \in \mathbf{P}(K)$                                                            | $P = (x - \alpha) \in \mathbf{P}(K)$                                                                   |
| P.42 L.3      | of the valuation ring.                                                                          | of the valuation ring over $\mathcal{V}_P \cap K[x]$ .                                                 |
| P.47 L.7b     | $\mathfrak{K}_P = K[[t]]$                                                                       | $R_P = K[[t]]$                                                                                         |
| P.48 L.4      | $\operatorname{Res}_P(fdt_P)$                                                                   | $\operatorname{Res}_P(fdt_p)$                                                                          |
| P.48 L.16     | $\operatorname{div}(\phi)$                                                                      | $\deg(\operatorname{div}(\phi))$                                                                       |
| P.48 L.9b     | [K(P):K]                                                                                        | d = [K(P):K]                                                                                           |
| P.48 L.8b     | for points $P_1, \ldots, P_g \ldots$ in $\overline{V}(\overline{K})$ ,                          | there are points $P_1, \ldots, P_g$ in $\overline{V}(\overline{K})$ with                               |
| P.48 L.7b     | $v_{P_j} _{\mathfrak{K}} = v_P$                                                                 | $\mathcal{V}_{P_j}\cap\mathfrak{K}=\mathcal{V}_P$                                                      |
| P.48 L.3b     | (trace of $P_j$ )                                                                               | (trace of P)                                                                                           |
| P.50 L.11b    | Ŗ                                                                                               | K                                                                                                      |
| P.59 L.4      | by coordinates                                                                                  | by all coordinates                                                                                     |
| P.59 (div)    | $\sum_{i} c_i = 0$ for integers $c_i$                                                           | integers $c_i$ with $\sum_i c_i = 0$                                                                   |
| P.62 L.4      | $(cu+d, \alpha(z))$                                                                             | $((cz+d)u, \alpha(z))$                                                                                 |
| P.63 L.13b    | $g^2/g^3 - 27g^2$                                                                               | $g^2/(g^3 - 27g^2)$                                                                                    |
| P.63 L.1b     | $\sum_{n=1}^{\infty} \frac{(\zeta_{N}^{bn} q^{an} + \zeta_{N}^{-bn} q^{-an})nq^{n}}{1 - q^{n}}$ | $\sum_{n=1}^{\infty} \frac{(\zeta_{N}^{bn} q^{anN} + \zeta_{N}^{-bn} q^{-anN}) n q^{nN}}{1 - q^{nN}}.$ |
| P.65 L.8      | $\Gamma_S = S \cap SL_2(\mathbb{Q})$                                                            | $\Gamma_S = S \cap PSL_2(\mathbb{Q})$                                                                  |
| P.68 L.15b    | three conditions:                                                                               | three conditions (cf. [GME] 2.2):                                                                      |
| P.69 L.3      | 0#                                                                                              | 0*                                                                                                     |
| P.72 L.9      | $\langle P, \phi^*(Q) \rangle;$                                                                 | $\langle P, \phi^*(Q) \rangle$ for $\phi \in \operatorname{End}(E_{/S})$ ;                             |
| P.75 L.16b    | fields with                                                                                     | fields $k$ with                                                                                        |
| P.76 (G2)     | $f((E,\phi_N,\omega)_{/R}\times_R R')$                                                          | $f((E,\phi_N,\omega)_{/R}\times_{R,\rho}R')$                                                           |
| P.80 L.5      | $\operatorname{Gal}(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}$                                          | $GL_2(\mathbb{Z}/N\mathbb{Z})/\{\pm 1\}$                                                               |
| P.81 L.17b    | the cusps)                                                                                      | the cusps; see $[GME] 2.5)$                                                                            |
| P.84 L.6b     | (see Theorem $2.40$ )                                                                           | (see Theorem $2.43$ )                                                                                  |
| P.87 L.5      | on $f(E, \phi_p, \phi_N)$                                                                       | of $(E, \phi_p, \phi_N)$                                                                               |
| P.88 L.4b     | induced                                                                                         | obtained                                                                                               |
| P.89 L.5,9    | inducing                                                                                        | which restrict to                                                                                      |
| P.89 L.11b    |                                                                                                 | insert: for a filed of fractions $K$ of $W$                                                            |
| P.89 (F')     | independently                                                                                   | uniformly                                                                                              |

|                                |                                                                                                                                                                          | 2                                                                                                                                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| page and line                  | Read                                                                                                                                                                     | Should Read                                                                                                                                                                           |
|                                |                                                                                                                                                                          | Hilbert AVRM Moduli                                                                                                                                                                   |
| D 00 4 1                       |                                                                                                                                                                          | (It would have been better                                                                                                                                                            |
| P.98 4.1                       | Hilbert–Blumenthal Moduli                                                                                                                                                | to call this section as<br>"Hilbort AVBM Moduli"                                                                                                                                      |
|                                |                                                                                                                                                                          | for some reason).                                                                                                                                                                     |
|                                |                                                                                                                                                                          | $\langle (a \otimes \zeta, b \otimes m), (a' \otimes \zeta', b' \otimes m') \rangle_N$                                                                                                |
| P.103 L.3-4                    | $(a \otimes \zeta, b \otimes m) \mapsto \mathbf{e}(\mathrm{Tr}_{F/\mathbb{Q}}(ab))\zeta^m$                                                                               | $\mapsto \mathbf{e}(\mathrm{Tr}_{F/\mathbb{Q}}(ab'-a'b))\zeta^{m'-m}$                                                                                                                 |
| P.134 L.10                     | $e_{\lambda}: V \wedge_F V \cong F$                                                                                                                                      | $e_{\lambda}: H_1(A, \mathbb{Q}) \wedge_F H_1(F, \mathbb{Q}) \cong F$                                                                                                                 |
| P.139 L.17                     | $Sh_K(G,X)_{/\mathbb{Q}}$                                                                                                                                                | $Sh_K^{(\Sigma)}(G,X)_{/\mathbb{Q}}$                                                                                                                                                  |
| P.149 L.14b                    | $G(\mathbb{Q}_{\Sigma}) = B(\mathbb{Z}_{\Sigma})G(\mathbb{Z}_{\Sigma})$                                                                                                  | $G(\mathbb{Q}_{\Sigma}) = B(\mathbb{Q}_{\Sigma})G(\mathbb{Z}_{\Sigma})$                                                                                                               |
| P.161 L.15b, 12b, 20b          | $G(\mathbb{A}^{(p\infty)})$                                                                                                                                              | $G_1(\mathbb{A}^{(p\infty)})$                                                                                                                                                         |
| P.185 L.3                      | $S = \mathfrak{M}(\mathfrak{c}, \Gamma_0(\mathfrak{I}))$ (for a lift F of the Hasse invariant)                                                                           | $T_{\infty,\infty}$                                                                                                                                                                   |
| P.185 L.4                      | (for a fift <i>E</i> of the flasse invariant)<br>$S_1$                                                                                                                   | $T_{1} \sim$                                                                                                                                                                          |
| P.191 L.17b                    | $\sqrt{\chi}$                                                                                                                                                            | $\sqrt{\chi}$ with $\sqrt{\chi} \equiv 1 \mod \mathfrak{m}_W$                                                                                                                         |
|                                | • • •                                                                                                                                                                    | It may be better to add                                                                                                                                                               |
| P 196 (4 76)                   | <b>₽</b> ▲                                                                                                                                                               | the definition of $\mathbf{e}_{\mathbb{A}}$ as                                                                                                                                        |
| 1.100 (1.10)                   |                                                                                                                                                                          | the additive character of $F \setminus F_{\mathbb{A}}$                                                                                                                                |
| D 106 I 5b                     | 11                                                                                                                                                                       | with $\mathbf{e}_{\mathbb{A}}(x_{\infty}) = \mathbf{e}_{F}(x_{\infty}).$                                                                                                              |
| 1.130 1.50                     | $\Box u \in O_{\mathfrak{q}}/\mathfrak{q}$                                                                                                                               | $ \begin{array}{c} \Box_{u \in \mathfrak{d}_{\mathfrak{q}}^{-1}}/\mathfrak{q}\mathfrak{d}_{\mathfrak{q}}^{-1} \\ A dd  \text{``if } \kappa_{u} = 0 \text{'' in } (4.77) \end{array} $ |
| P.196 (4.77)                   | An assumption is missing.                                                                                                                                                | as an assumption of the formula.                                                                                                                                                      |
| P.197 L.3                      | $G_{\kappa}(\mathfrak{N},arepsilon;\mathbb{C})$                                                                                                                          | $S_\kappa(\mathfrak{N},arepsilon;\mathbb{C})$                                                                                                                                         |
| P.200 L.10                     | $-S^D_0(\mathfrak{N})lpha_\mathfrak{l}S^D_0(\mathfrak{N})$                                                                                                               | $S_0^D(\mathfrak{N}) \alpha_{\mathfrak{l}} S_0^D(\mathfrak{N})$                                                                                                                       |
| P.201 (SB1)                    | $u \in S_0^D(\mathfrak{N})C_{\mathbf{i}}$                                                                                                                                | $u \in S_0^D(\mathfrak{N})C_{\mathbf{i}}^D$                                                                                                                                           |
| P.205 (4.95)<br>P.206 Thm 4.26 | $H^0$                                                                                                                                                                    | $H^1$                                                                                                                                                                                 |
| P 206 L 8                      | $\varepsilon_{+}(z^{(p)})$                                                                                                                                               | $\varepsilon_{+}(\gamma^{(\infty)})$                                                                                                                                                  |
| P.216 L.16b                    | geometric fiber                                                                                                                                                          | geometric point                                                                                                                                                                       |
| P.277 (A3)                     | locally                                                                                                                                                                  | étale locally                                                                                                                                                                         |
|                                |                                                                                                                                                                          | It is better to regard $\overline{\eta}$                                                                                                                                              |
|                                |                                                                                                                                                                          | as a section of the sheaf quotient of                                                                                                                                                 |
| P.292 L.16                     | $\eta:V_{\mathbb{A}^{(\infty)}}\cong V(A)$                                                                                                                               | $S' \mapsto \operatorname{Isom}(V_{\mathbb{A}^{(\infty)}/S'}, V(A/S'))$                                                                                                               |
|                                |                                                                                                                                                                          | by K over S, where S runs over the small étale site over $S$                                                                                                                          |
| P.299 L.14b                    | $T^{\circ}_{-r}/S^{\circ}$                                                                                                                                               | $T_{-}^{\circ}/S^{\circ}$                                                                                                                                                             |
| D 201 L 4                      | $\operatorname{Hom}_{S}^{\infty/2}(A_{\xi}[p^{\infty}]^{et},\mathbb{Q}_{p}/\mathbb{Z}_{p})$                                                                              | $\operatorname{Hom}_{S}^{\infty/4}(A[p^{\infty}]^{et}, \mathbb{Q}_{p}/\mathbb{Z}_{p})$                                                                                                |
| P.301 L.4                      | $\cong \operatorname{Hom}_{S}(A_{\xi}[p^{\infty}]^{et}, \mathbb{Q}_{p}/\mathbb{Z}_{p})$                                                                                  | $\cong \operatorname{Hom}_{S}(A_{\xi}[p^{\infty}]^{et}, \mathbb{Q}_{p}/\mathbb{Z}_{p})$                                                                                               |
| P.301 L.5                      | $\operatorname{Hom}_{S}(A[p^{\infty}]^{\circ}, \mu_{p^{\infty}})$                                                                                                        | $\operatorname{Hom}_{S}(A[p^{\infty}]^{\circ}, \mu_{p^{\infty}})$                                                                                                                     |
| D 201 I 12                     | $\cong \operatorname{Hom}_{S}(A_{\xi}[p^{\infty}]^{e_{\ell}}, \mu_{p^{\infty}})$ $[DAV] V 4 2$                                                                           | $\cong \operatorname{Hom}_{S}(A_{\xi}[p^{\infty}]^{\circ}, \mu_{p^{\infty}})$                                                                                                         |
| F.301 L.13                     | $\begin{bmatrix} DAV \end{bmatrix} V.4.3$                                                                                                                                | $\begin{bmatrix} DAV \end{bmatrix} V \Pi 4.3$<br>$\begin{pmatrix} 1_n & 0 \\ \end{pmatrix}$ and $V = V$                                                                               |
| P.301 L.80                     | $\begin{array}{c} \alpha_m = \left( \begin{array}{cc} 0 & p^m 1_n \end{array} \right) \\ \alpha_n = \left( \begin{array}{c} 0 & p^m 1_n \end{array} \right) \end{array}$ | $\alpha_m = \begin{pmatrix} 0 & p^m 1_n \end{pmatrix}$ and $\Lambda_m = \Lambda_{\alpha_m}$                                                                                           |
| P.317 L.13                     | $Sh_K^{(p)}$                                                                                                                                                             | $Sh_{K/\mathbb{F}}^{(P)}$                                                                                                                                                             |
| P.318 L.8b                     | $(V_A, \langle \cdot, \cdot \rangle_{\lambda})$ <sub>7ZU</sub>                                                                                                           | $(V_A \otimes_{\mathbb{Q}} k, \langle \cdot, \cdot \rangle_{\lambda})$                                                                                                                |
| г.этэ ц.12<br>Р 320 Ц 3        | $\Delta = \{ r \in C   rL - L \}$                                                                                                                                        | $ \bigcup_{C=1}^{L} \{ x \in C   xL \subset L \} $                                                                                                                                    |
| P.320 L.16                     | $h \in C$                                                                                                                                                                | $ \begin{matrix} c c \\ b' \in C \end{matrix} $                                                                                                                                       |

| page and line     | Read                                                                          | Should Read                                                                             |
|-------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                   | In the heuristic argument                                                     |                                                                                         |
|                   | in the proof on the lift of                                                   |                                                                                         |
| P.348 Theorem 8.8 | a given CM abelian variety                                                    |                                                                                         |
|                   | over a finite field, add                                                      |                                                                                         |
|                   | the assumption that $A_0$ is ordinary                                         |                                                                                         |
| P.350 (8.16)      | Remove " $(R)$ " from each term                                               |                                                                                         |
| P.359 L.13b       | $\mathcal{O}_{\widehat{S}_\ell}\otimes_{\mathbb{Z}_p}\mathbf{A}[p^\ell]^{et}$ | $\mathcal{O}_{\widehat{S}_\ell}\otimes_{\mathbb{Z}_p}arepsilon \mathbf{A}[p^\ell]^{et}$ |
| P.364 L.13b       | see Theorem 6.27                                                              | see Theorem 6.28                                                                        |
| P.367 L.16b       | localization of                                                               | localization at                                                                         |
| P.372 L.19        | complete intersection                                                         | smooth complete intersection                                                            |
| P.377 [SFT]       | Breadon                                                                       | Bredon                                                                                  |

3

## Addenda and Comments

P.82 L.5–11: Strictly speaking,  $\varphi$  of  $(E, \varphi : \mu_{p^{\alpha}} \hookrightarrow E[p^{\alpha}], \phi_N) \in \mathcal{E}_{\alpha}^{ord}(R)$ induces by Cartier duality that  $(\varphi^*)^{-1} : \mathbb{Z}/p^{\alpha}\mathbb{Z} \cong E[p^{\alpha}]^{et}$  and hence a point  $(\varphi^*)^{-1}(1) \in (E[p^{\alpha}]^{et} - E[p^{\alpha-1}]^{et})(R)$ , which gives rise to the corresponding point  $\iota(\varphi) \in (\mathbf{E}[p^{\alpha}]^{et} - \mathbf{E}[p^{\alpha-1}]^{et})(R)$ . Thus we get  $\mathcal{E}_{\alpha}^{ord}(R) \cong (\mathbf{E}[p^{\alpha}]^{et} - \mathbf{E}[p^{\alpha-1}]^{et})(R)$ . As for  $(E, P, \phi_N) \in \mathcal{E}'_{\alpha}^{ord}(R)$ , we can associate to P the étale subgroup  $\langle P \rangle \subset E[p^{\alpha}](R)$  isomorphic to  $\mathbb{Z}/p^{\alpha}\mathbb{Z}$ . Then by Cartier duality, we get a canonical isomorphism  $\varphi' : \mu_{p^{\alpha}} \cong E[p^{\alpha}]/\langle P \rangle$ , which gives rise to  $(E/\langle P \rangle, \varphi', \phi_N) \in \mathcal{E}^{ord}(R)$ . In this way, we get  $\mathcal{E}'^{ord} \cong \mathcal{E}^{ord}$ .

P.85 L.14: For m > n, we have  $V_{m,\infty} \otimes_W W_n \cong V_{n,\infty}$  by the flatness of  $T_{m,\alpha}$  over  $S_m$ . In this way, we get the projective system  $\{V_{m,\infty}\}_m$ . Tensoring  $V_{m,\infty}$  with the inclusion  $W_n = p^{-n}W/W \hookrightarrow p^{-m}W/W \cong W_m$ , we get the inclusion  $V_{n,\infty} \hookrightarrow V_{m,\infty}$ . Out of these inclusions, we get the injective limit  $\mathcal{V}$ .

Corollary 3.5: The point here is that q is the parameter well defined over W of the geometrically irreducible (formal) scheme  $T = T_{\infty,\infty} = \operatorname{Spf}(V)$ . In other words, by the existence of Tate curve described in [AME] Chapter 8 (or [GME] 2.5), we can compactify T adding the cusp  $\infty$  into a smooth formal scheme  $\overline{T}$ , and  $T - \overline{T} \cong \operatorname{Spf}(W[[q]])$ . Since  $T_{/R} = T \widehat{\otimes}_W R$ , this gives rise the q-expansion principle.

P.87 (3.3): The first equality is the difficult one. Indeed  $H^0(S_{0/W}, \underline{\omega}^k)$  is of infinite rank (because  $S_0$  is affine of relative dimension 1 over W), while, for compactification  $X_1(N)$ ,  $H^0(X_1(N)_{0/W}, \underline{\omega}^k)$  is free of finite rank over W (since  $X_1(N)$  is projective over W). The second equality is just by the definition of  $G_L^{ord}$ .

Irreducibility theorems of the Igusa tower: In the proof given for the Hilbert modular irreducibility theorem: Theorem 4.21, to show the action of the derived group  $G_1(\mathbb{A}^{(p\infty)})$  preserves the valuation v, we only need the commutative diagram in the middle of page 161, since the set  $\pi_0(T_n^{\circ})$  of the connected components of  $T_n^{\circ}$  for finite n > 0 is a finite abelian group isomorphic to a quotient of  $(O/p^n O)^{\times}$  (where the identity of  $(O/p^n O)^{\times}$  is sent to  $C_{\infty}$ ). This point is mentioned in the paragraph just by two last lines, but they might be a bit difficult (for some people) to understand. Indeed, the action of  $G_1(\mathbb{A}^{(p\infty)})$  on  $\pi_0(T_n^{\circ})$  gives a homomorphism  $\varphi: G_1(\mathbb{A}^{(p\infty)}) \to \pi_0(T_n^{\circ})$ , but  $G_1(\mathbb{A}^{(p\infty)}) = SL_2(F_{\mathbb{A}}^{(p\infty)})$  does not have nontrivial abelian quotient; so,  $\varphi = 1$ , which means that  $C_{\infty}$  and the valuation v is kept by the action of  $G_1(\mathbb{A}^{(p\infty)})$ .

As indicated at the bottom paragraph of page 161, one can also use the *p*-adic density of prime-to–*p* level cusp forms in [H02] and [H03a] in the space of *p*-adic modular forms of *p*-level  $p^{\infty}$  in order to show stability of  $C_{\infty}$  and *v* under  $G_1(\mathbb{A}^{(p\infty)})$ .

We can add a similar explanation to the proof of the irreducibility theorem in the Siegel modular case (Theorem 6.27). By the same commutative diagram in page

299, the action of  $G_1(\mathbb{A}^{(p\infty)})$  on the finite set  $\pi_0(\mathcal{T}^{\circ}_{\alpha})$  for an integer  $\alpha > 0$  gives rise to a group homomorphism  $\varphi : G_1(\mathbb{A}^{(p\infty)}) \to \operatorname{Aut}(\pi_0(\mathcal{T}^{\circ}_{\alpha}))$ . The permutation group  $\operatorname{Aut}(\pi_0(\mathcal{T}^{\circ}_{\alpha}))$  on the finite set  $\pi_0(\mathcal{T}^{\circ}_{\alpha})$  is a finite group. Note that the group  $G_1(\mathbb{A}^{(p\infty)}) = Sp_{2n}(\mathbb{A}^{(p\infty)})$  does not have non-trivial finite quotient group, because  $Sp_{2n}(k)$  for a field k of characteristic 0 is generated by unipotent subgroups (which are divisible; see, for example, [H03b] Propositions 3.1 and 3.4). Thus  $\varphi$  is trivial, and hence  $C^{\circ}_{\infty}$  is kept by the action of  $G_1(\mathbb{A}^{(p\infty)})$ .

The same proof applies to the (modulo p) Igusa tower over the Shimura variety for  $G = \operatorname{Res}_{F/\mathbb{Q}} GSp(2n)$  and  $G = \operatorname{Res}_{F/\mathbb{Q}} GU(n, n)$  for any totally real field F(unramified at p) as indicated in [H03a] Corollary 10.2 ([H03a] is now published in Astérisque 298 (2005), and [H03b] also in Documenta Math. 11 (2006)).

As in the proof of Theorem 4.21, we also referred in the proof of Theorem 6.27 to the density of prime-to-p level cusp forms of parallel weight  $\det(\underline{\omega})^{\otimes k}$  at line 6 in page 300 to show the stability of  $C_{\infty}^{\circ}$  under  $G_1(\mathbb{A}^{(p\infty)})$ , but (this is a slip of the pen, and) actually for this comment, all weights are necessary (parallel weight cusp forms only may not form a dense subspace in the space). On the other hand, the density theorem is proven in the book and in [H02] Corollary 3.4 for  $V_{cusp}^{N}$  but not for the entire  $V_{cusp}$ . We need a similar result for the entire  $V_{cusp}$  (whose proof is probably not published yet but of course is doable). Anyway, the proof was already complete (even before reaching this point) by the group theoretic argument (as indicated in the book and also supplemented as above).

A new preprint containing a direct proof of Theorem 8.16 and Corollary 8.17 via an argument similar to the one proving Theorems 4.21 and 6.27 is posted below in the preprint section:

H. Hida, Irreducibility of the Igusa tower, 2006

See also the lecture note of a Luminy talk posted just after the above paper: Irreducibility of the Siegel–Igusa tower.

P.348 Theorem 8.8: In the "heuristic" proof, we need to add the ordinarity assumption on the abelian variety  $A_0$ . Then we have a canonical lift of the CM abelian variety to the base  $\mathcal{B}$ . Otherwise, we could have trouble lifting  $A_0$  to a CM abelian variety. See recent paper by Chai–Conrad–Oort: "CM lifting of abelian varieties" posted in Conrad's web page (http://www.math.lsa.umich.edu/~bdconrad/).