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1 Review of Algebraic Geometry

We recall here definitions and result necessary to read Weil’s paper [We2], which
is the purpose of this series of lectures. All rings A we consider have the identity
element 14, and we denote by 04 the zero element of A.

1.1 Affine schemes

Let A be a base ring, which is always assumed to be noetherian. Let B be a
noetherian A-algebra. The affine scheme S = Sp associated to B is a function
of A-algebras R given by S(R) = Homg aig(B, R). The ring B is called the
affine ring of the scheme S. The set Sp(R) is called the set of R-rational
points (or R-integral points) of Sg. An A-morphism (or a morphism defined
over A) ¢ : Sp — Sc¢ is given by ¢(P) = P o ¢ for an underlying A-algebra
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homomorphism ¢ : €' — B; in other words, we have the following commutative
diagram:

B -2 R

S

C C
By definition, we have the following properties of the function Sp:

(F1) If R LR % R are A-algebra homomorphisms, then we have maps
fv : SB(R) — Sp(R’) and g, : Sg(R') — Sg(R") by f«(P) = fo P and
9+(Q) =goQ and (go f). =gs 0 fu.

(F2) If R" = R"” and g as above is the identity map i : ' — R/, we have
ig' 0 fx = fo. f R =R’ and f as above is the identity map i : R — R,
we have g, 0 iR « = Gx.

(F3) For the identity map ig : R — R, ir« : Sp(R) — Sp(R) is the identity
map of the set Sp(R).

Thus R — Sp(R) is a covariant functor of A-algebras into sets (see [GME] 1.4
for functors and categories). For two affine schemes S and T over A, a morphism
¢ S — T is a family of maps ¢r : S(R) — T(R) indexed by A-algebras R
such that for any A—algebra homomorphism « : R — R/, the following diagram

commutes:

S(R) —2% . T(R)

o | [

S(R') —— T(R).

We write Hom4 (S, T') for the set of all morphisms from S into 7.
The following fact is trivial but useful:

(Ul) By definition, if R = J; R; for A-algebras R;, we have

Sp(R) = Ss(R),

because B +— Homa.aig(B, R) satisfies this property. This is applied in the
following way. The adele ring A can be written as:

A=Jas cRxJ]Q, for Ax=Z® + Rx [[ Q) cRx[]Q,
3 P peEX P

where 3 runs over all finite set of primes of Q containing a given finite set Y.
Here Z =[], Zy and Z®) = {(x,) € Z|z, = 0 for p € B}. If an affine scheme is
therefore defined over

Lisy) = {% ’a € Z and b is a product of primes in ZO} ,



we have S(A) = Uy, S(Ax). Since Ay is made of ideles integral outside a finite
set X, we have

(U2) S(A) is a union of points almost everywhere integral, if an affine scheme
S is defined over the Yg—integer ring Z(s,).

(U3) S(As) = (ILex S(@p) x (TIpgsn S(Zp)) x S(R).

If we have a measure dw,, on the p-adic space S(Qp) and dw on the archimedean
space S(R) and if [ 75, dw given by [[, g5 [gz, ) dwp is finite, we can think
of the product measure dw on S(A) whose integral of ¢ : S(A) — C with
?((z0)) = doo(To0) [, #p(wp) for functions ¢, : S(Qy) — C is given by the
product: [[, fS(Qv) Do (Ty)dwy.

By definition, we also have the following properties of affine schemes:

(cfl) If B % C £ D are A-algebra homomorphisms, then we have morphisms
of schemes Sp 9, Sc 2, Sp such that ¢ o1 is associated to 1 o ¢.

(cf2) If B = C and ¢ in (cfl) is the identity map iz of B, we have ip 09 = 1.
If C = D and ¢ in (cfl) is the identity map i of C', we have ¢ oic = ¢.

(cf3) For the identity map ip : B — B, ip : Sp(R) — Sp(R) is the identity
map for all A-algebras R.

Thus the function B +— Sp is a contravariant functor from A-algebras into

affine schemes. One of the most basic fact in functorial algebraic geometry is
(e.g. [GME] 1.4.3):

Homa_a1¢(B’, B) 2 Homa(Sp, Spr) viaa < a. (1.1)

Here are some examples of affine schemes:

Ezample 1.1. Take f(X,Y,Z) = XP +YP — ZP for a prime p, and let A = Z.
Then consider B =Z[X,Y, Z]/(f(X,Y, Z)). For each algebra R, we claim

Sp(R) = {(z,y,2) € R°Ja” +y" = 2"},

Indeed, for each solution P = (z,y, z) of the Fermat’s equation in R, we define an
algebra homomorphism ¢ : A[X,Y, Z] — R by sending polynomials ®(X,Y, Z)
to its value ®(z,y, z) = ¢(®) € R. Since ® € (f(X,Y,Z)) & & = Uf, we find
that ¢(@f) = U(x,y, 2)f(z,y,z) = 0; so, ¢ factors through getting ¢ € Sg(R).
In this way, we get an injection from the right-hand-side to Sg(R). If we start
from ¢ : B — R in Sp(R), we find

0=¢(0) = ¢(XP +Y? = 27) = ¢(X)" + ¢(Y)" — (Z)".

Thus (z,y, 2) = (¢(X), d(Y), ¢(Z)) is an element in the right-hand-side, getting
the isomorphism. By Fermat’s last theorem, we have

Sp(Z) = {(a,0,a),(0,b,b), (¢, —c,0)|a,b,c€ Z} if pis a prime > 3.



There is a simpler example: We have

..... Xn](R) =R" via (b = ((b(Xl)a RS (b(Xn))

Thus often Szx,,.. x,] is written as Gy and is called the affine space of di-
mension n. We have an algebra homomorphism A[X,Y,Z] — B for B in
Example 1.1 sending ® to (& mod f(X)). This in turn induces a morphism
i:Sp — G3, which is visibly injective.

a’

When we have a morphism of affine schemes ¢ : Sp — S¢, andif¢p: C — B
is a surjective ring homomorphism, we call ¢ a closed immersion. ‘Then ¢ is
injective and we can identify Sp C Sc¢ all the time. In this case, Sp regarded
as a subfunctor of S¢ is called A—closed in S¢. As we will see in Exercise 2,
if S; C Sc¢ is closed for finite number of affine schemes S;, the intersection
R — N); Si(R) is again closed. Thus we can give a topology on Sc(R) for each
R so that closed set is given by the empty set () and those of Sp(R) for closed
immersion Sp < Sc. This topology is called the Zariski topology of Sc.

If A’ is an A-algebra, we may regard B’ = A’ ® 4 B as an A’—algebra by
a’ — a® 1. Then we get a new scheme Sp/ over the ring A’, which sometimes
written as S4 X4 Sp and is called the fiber product of Sg and S4: over A. If
we have a point ¢ : Sg(R) for an A'—algebra R, we can extend ¢ : B — R to
¢ B'=A®4B — Rby ¢'(a®b) = ap(b). Thus ¢ — ¢’ gives the natural map
Sp(R) — Sp/(R) for all A’-algebras R. This map is an isomorphism, because
for any given ¢’ € Sp/(R), ¢(b) = ¢(1 ® b) gives a point ¢ € Sp(R) as long as
R is an A’-algebra (Exercise 3). However an A’—closed subset of Sp: may not
be A-closed; so, the Zariski topology depends on the base ring A.

Exercises

1. Prove that a closed immersion i : Sp(R) < Sc(R) is an injection for any
A-algebras R.

2. Ifi: Sp C S¢ and j : Sp C Sc¢ are closed, then R — Sg(R) N Sp(R) is
closed and is isomorphic to Sg for E = B®¢ D, where the tensor product
is taken with respect to the associated algebra homomorphismsi : C — B
and j: C — D.

3. Prove Sp(R) = Sp/(R) if B = A’ ®4 B and R is an A’-algebra, where
A’ is another A-algebra.

4. For two A-algebras B and C, show that Spg,c(R) = Sg(R) x Sc(R)
for any A-algebra R. Hint: ¢ € Sp(R) and ¢ € Sc(R), we associate
PR Y € Spe.c(R) given by (¢ ® ¥)(b® ¢) = ¢(b)1p(c). Thus a product

of affine scheme is again an affine scheme.
1.2 Affine algebraic groups

Let G be an affine scheme over a ring A. Thus G is a covariant functor from
A-algebras to sets. If the values G(R) for all A—algebras are groups and ¢, :



G(R) — G(R) for any A-algebra homomorphism ¢ : R — R’ is a group
homomorphism, G is called an affine group scheme or an affine algebraic group.

FEzample 1.2. 1. Let B = Z[X1,...,X,]. Then Sp(R) = R™ (as already
remarked), which is an additive group. Since

(25*(7"1, KR Tﬂ) = ((]5(7”1), R ¢(TH))

for each algebra homomorphism ¢ : R — R/, ¢, is a homomorphism of
additive groups. Thus G is an additive group scheme.

2. More generally, we can think of C = Z[X;;] for n? variables. Then
Sc(R) = M, (R) and S¢ is not just a group scheme but is a ring scheme.
This scheme is written often as M,,. As additive group schemes (ignoring
ring structure), we have M, = G"".

3. Consider the ring D = Z[X,;, ﬁ(x)] for n? variables X;; and the variable
matrix X = (X;;). Then Sp(R) = GL,(R) and Sp is a multiplicative
group scheme, which is a subscheme of S¢ because GL,,(R) C M, (R) for
all R. This scheme Sp is written as GL(n). In particular, Sz -1 =
GL(1) is called the multiplicative group and written as G,.

More generally, for a given A—module X free of rank n, we define Xp =
X ®a R (which is R—free of the same rank n) and
GLx(R) = {o € Endg(Xg)|3o~" € Endp(Xr)}.

Then G'Lx is isomorphic to GL(n),4 by choosing a coordinate system of
X; so, GLx is an affine group scheme defined over a ring A. We can
generalize this to a locally free A-module X, but in such a case, it is a bit
more difficult to prove that GLx is an affine scheme.

4. We can then think of F = C/(det(X) — 1). Then
Sg(R) ={zr € GL,(R)|det(z) = 1}.

This closed subscheme of M,, and also of GL(n) is written as SL(n) and
is a multiplicative group scheme defined over Z.

5. Let X is a free A—module of finite rank. We fix a bilinear form S : X x X —
A. Then we consider

G(R) ={a € GLx(R)|Sg(za,ya) = Sg(x,y) for all z,y € Xr},

where Sp(r® z,s®y) =rsS(z,y) for r,s € R and z,y € X.

To see that this G is an affine algebraic group defined over A, we fix a base
Z1,...,&, of X over A and define a matrix S by S = (S(z;, x;)) € M,(A).
Then every (ij) entry s;;(X) of the matrix XS*'X — S (X = (X;;)) is



a quadratic polynomial with coefficients in A. Then we consider L =
A[Xij, det(X)il]/(S”(X» By deﬁnition,

SL(R) ={ac€ GLX(R)’aSta =S} 2G(R).

We find aSta = S = S = a~'S*a!; so, G is an affine algebraic group.

If X = A™ and S(z,y) = xSy for a non-degenerate symmetric matrix S,
G = Ogy4 is called the orthogonal group of S. If X =Y x Y and S is
non-degenerate skew symmetric of the form S((y,v'), (z,2") = T(y, 2') —
T(z,y'") for a symmetric bilinear form T : Y XY — A, we write G = Sprp /4.
In particular, if S(z,y) = = (10n 73" ) by, the group G = Sp, 4 is called
the symplectic group of genus n.

6. We consider a quadratic polynomial f(T) = T? + aT + b € Z[T]. Then
define S¢(R) = G4(R)[T]/(f(T)). As a scheme Sy = G2 but its value is a
ring all the time. If ¢ : R — R’ is an algebra homomorphism, ¢, (r+sT) =
@(r) + ¢(s)T; so, it is a ring homomorphism of S¢(R) = R[T]/(f(T)) into
S¢(R') = R'[T)/(f(T)). Thus Sy is a ring scheme, and writing O for the
order of the quadratic field Q[va? — 4b] generated by the root of f(T'), we
have S§(R) =2 R®z O.

7. Since any given number field F' is generated by one element, we know
F =Q[T]/(f(T)) for an irreducible monic polynomial f(7T). For any Q-
algebra R, define S¢(R) = R[T]/(f(T)). Then in the same way as above,
Sy is a ring scheme defined over Q such that S;(R) = F Qg R.

8. Let G be an affine algebraic group defined over a number field F'. Thus for
an algebra B, G(R) = Homp_aig(B, R). Then we define a new functor G’
defined over Q-algebras R by G'(R) = G(Sf(R)) = G(F ®q R). We can
prove that G’ is an affine group scheme defined over Q, which we write
G" = Resp/G (see Exercise 4 and [AAG] 1.3).

9. Assume that f is a quadratic polynomial in Q[T]. Then we have S;(Q) =
F is a quadratic extension with Gal(F/Q) = {1,0}. Let X be a finite
dimensional vector space over Q and let Gal(F/Q) act on Xp = F ®g X
through F'. We suppose to have a hermitian form H : Xp x Xp — F such
that H(z,y) = o(H(y,z)). Then for Q-algebra R

Un(R) = {a € GLx(S¢(R))|Hs, r)(ze, ya) = Hg,(r)(z,y) }

is an affine algebraic group, which is called the unitary group of H. Note
that Up is defined over Q (not over F').

For two affine algebraic group G, G’ defined over A, we write

HomA—alg gp(G, G/)
= {¢ € Homa (G, G")|¢r is a group homomorphism for all R} . (1.2)



Exercises

1. Let F' be a number field with the integer ring O. Is there any affine ring
scheme S defined over Z such that S(R) = O ®z R?

2. Give a detailed proof of the construction of the algebraic group Resp/q(G).

3. Let S : X xX — Ais a bilinear form for an A—free module X, and suppose
that X = Homy (X, A) by S. Then the matrix of S is in GL,(A) for any
choice of a base of X over A.

4. For an affine algebraic group G over a number field F' (that is, a finite
extension of Q), prove that Resp G is an affine algebraic group defined
over Q.

5. Show that the unitary group Uy as above is an affine algebraic group.

1.3 Gauge forms

Let G be an affine algebraic group over Q. We write its affine ring as B; so,
we have G(A) = Homg.aig(B, A). We suppose that B is noetherian, does not
have non-trivial nilpotents (so, B is reduced), and Q is integrally closed in B
(so G is defined over Q in the sense of Weil). If we decompose B = @?:0 B;
as an algebra direct sum for integral domains Bj;, we have G(4) = | ]; S;(A)
for S;(A) = Homg.aig(Bj, A). Since G is a group, the action of G permutes Sj,
and hence all the B;’s are isomorphic. In particular, the one Gy = Sy of the
components among S; in which 14 sits is a normal subgroup. We call G the
connected component of G.

Assume that G is of dimension m over Q. Thus the field of fractions of By
is algebraic over Q(z1, ..., ;) for variables x;, and the Krull dimension of By
is m.

We may thus assume that By D Q[z1,...,z,]). We can think of b € B as
the algebraic function on G by b(P) = P(b) for P € G(A). If ¢ : G — G is
any automorphism, ¢ : B — B is a Q-algebra homomorphism. In other words,
6(w;) = @ 0 6, and §(a) = (¢ (x).

For example, if G = GL(n), we take X;; to be the coordinate x;. Thus
B = Z[X;;,det(X) '] and any algebra homomorphism ¢ : B — B corresponds
to ¢ : GL(n) — GL(n) given by ¢(X) = (¢(X55))- B

Formally, we write -

dxjo¢:= Z 8253) dx;.

Thus we can think of the transport

*'w = f(d(x))dri 0 A Ndxy 0 ¢

of differential form w = f(x)dxy A - A dzy, by ¢.



Since G is a group, any g € G(A) induces multiplication g : G — G; so, we
can think of g*w. A non-zero differential firm w of degree m = dimg X is called
a gauge form if g*w = w for all g € G. If two gauge form exists, the ratio w/w’
are invariant under G; so, constant.

Ezample 1.3. 1. Suppose G = GL(n). Then we find, by linear algebra,
g (dzy A+ ANdxy) = det(g)(day A - Adxy)

for a column vector z = *(z1,...,2,) € A" and g € GL,(A). Thus for
W = /\ij dX;; is the wedge product of n such w; = dxi; A -+ A dap,,
and hence g*w’ = det(g)"w’. Thus w = det(X;;) "’ is a gauge form for
GL(n).

2. Let S be a n x n non-degenerate symmetric or skew symmetric matrix in
M,,(Q). Then we define x* = S'zS~!, which is an involution of M,,. Then
Os(A) = {x € GL,(A)|zz* = 1}. We consider s+ = {z € M,|z* = Fz}
(s is the Lie algebra of Og). We have M,, = s @ s_. Since w’ as above
satisfies w’(axb) = det(a)™ det(b)"w'(z) for a,b € GL(n), we can split
w' = wt A w_ according to the linear splitting M,, = s4 @ s_. Then w;
restricted to Og C M, gives a gauge form on the connected component of
Os.

Let w be a differential m—form on a Q-scheme of dimension m. If S(R) # 0,
writing w = f(x)dx1 A -+ A dz, choosing a coordinates, we define a measure
|W |oo by

d(x)d|w|oo = / | f(x)|codrrdxs - - - dX sy
S(R) S(R)
for the Lebesgue measure dz;.

Since we have a canonical measure dr on Q,, we can imitate the above

procedure to get a measure |w|, on S(Qp):

/ P(z)d|wloo = / o\ f(x)|pdrrdas - - dam,
S(Qp) S(Qp)

for the canonical measure dz; on Q,.

If S(A) # 0, we can define the adelic measure |w|s by @), |w|, by Fubini’s
theorem (this is all right because S(A) = Uy, S(Ax) as already seen). If ¢ :
S’ — S is an isomorphism, by definition,

flo] :/ £ o dd|p*wl.
S(A) 5(A)

Note that |fw|s = |¢|aw|s for a constant & € Q. By the product formula, we
know that |£]|a = 1; so, |w|a depends only on w mod Q*. In particular, for an
affine algebraic group G, if w is a gauge form, |w|a gives, if it exists, a canonical
Haar measure on G(A). This measure is called the Tamagawa measure of G(A).

Since GL,(Q) C GL,(A) is a discrete subgroup, by embedding G into
GL(n), we find that G(Q) is a discrete subgroup. Taking a fundamental domain



® of G(Q)\G(A), we define the Tamagawa measure on G(Q)\G(A) just by the
integration on ®. Of course this definition does not depends on the choice of ®.
If | GO\G(A) dg < oo for the Tamagawa measure on the quotient, this number
is called the Tamagawa number of G and written as 7(G).

For a closed subgroup H C G, if we have a differential form w on H\G
right-invariant under G, in the same manner as in the case of the group, |w|a
is a unique right invariant measure of H\G, which is also called the Tamagawa
measure of H\G. We can similarly define the Tamagawa measure on G/H.

If G acts on a scheme S so that its action induces G(A)/H(A) = S(A), by
the above argument, we can think of the Tamagawa measure on .S, which is
unique.

More details on Tamagawa measures, see [AAG].

Exercise

1. Find a gauge form on SL(n).

1.4 Noetherian schemes

A (noetherian) scheme defined over a ring A is a covariant functor 7' from
A-algebras into sets satisfying the following conditions:

1. There are finitely many noetherian affine schemes S; which are subfunc-
tors of S (so, S;(R) C T(R) for all A-algebras R, and the inclusion is
functorial).

2. If S is an affine scheme over A and if ¢ : S — T is a morphism of functors
(so it is a family of maps ¢r : S(R) — T(R) making the square diagram
between (F3) and (Ul) commutative), for any z € S(R) with an integral
domain R, we can find an open neighborhood U C S of x such that ¢
induces a morphism U — S; for some i. In particular, if R is a field, then

T(R) =, Si(R).

3. For any finite set J of indices, ﬂjeJ S; is open in S; for all 7 € J under
the Zariski topology.

Example 1.4. 1. The n—dimensional projective space P7 ', is given by
V is an R-submodule locally free of rank 1

n o n+1 y

P™(R) = {V CR with locally free quotient R"*1/V } '

If R is local (that is, having only one maximal ideal; so, a field is local),
all locally free modules are free; so, V- € P"(R) is free of rank 1 having a
generator * = (g, Z1,...,T,), and R""! =V @Y for a complementary
direct summand Y isomorphic to R"*1/V. By tensoring F = R/mp for
the maximal ideal mp, we find that V/mV # 0; so, one of z; Z 0 mod mp.
In other words, z; € R*. Thus by dividing x;, we can normalize z; = 1.

In other words, defining D;(R) = {(zo,...,1,...,2n) € R"1}, we find



D; = G} and P*"(R) = U, D;(R). This is enough to prove that P™ is
a scheme, because for any point x of an affine scheme Sp(R) with an
integral domain R, the localization U = Sp, is the intersection of all
open neighborhoods of = (see [GME] 1.2.2). In particular, for a local ring
(including a field) R,

P"(R) = {(xo, ..., x,) € R""|3i with z; € R*} /R*,

where R* acts by scalar multiplication. This scheme is called the projec-
tive scheme of dimension n.

Since Z, is p-adically compact, G, (Z,) = Z, is p-adically compact.
Therefore P™(Z,) is also p-adically compact. If z = (zo,...,zn) €
P"(Qy), by multiplying a suitable scalar in Q,; (taking off the denomina-
tors in the x;’s), we find € P"(Z,); so, we find a funny fact: P*(Q,) =
P"(Zp). Thus P"(Q)) is compact. It is well known that P™(R) and P"(C)
are also compact under archimedean topology (Exercise 1).

2. Let X be an A—free module of rank m. For an integer n with m >n > 0,
we write G’ (R) for the set of R—submodules V' of X such that X/V is
locally free of rank m — n. Thus G}%nﬂ = P™. One can show that G is
again a scheme, which is called the Grassmannian of index (m,n).

3. Let X be as above. For a partition m : my +mg + --- + m,, = m by
positive integers m;, a sequence of locally free R—submodules 0 = V C
VicVaC---C Vo1 CV, = Xpgiscalled an R-flag of index m if V; /V;_1
is locally free R-module of rank m; for all j = 1,2,...,r. The functor
F¥(R) sending R to the set of all R-flags of Xg of index m is known to
be a scheme. The scheme Fy- is called the flag scheme of index m. When
m:n+ (m—n) =m, then Fy- = G%.

Since a scheme is a covariant functor from A-algebras into sets, each A-
algebra homomorphism « : R — R’ induces a map o, : S(R) — S(R’'). More-
over (aof3), = a,0f,. For two schemes S and T defined over A, ¢ € Hom (S, T)
is a family of maps ¢p : S(R) — T(R) which makes the following diagram com-
mutative for any algebra homomorphism a : R — R':

S(R) " T(R)

a*l la*

S(R') —— T(R).

A scheme T 4 is called a closed subscheme of S/ 4 if the following two conditions
are satisfied:

(C1) We have an inclusion T'— S, that is, T(R) C S(R) for all A-algebras R;

(C2) Covering S by affine schemes S;, S; N T is a closed affine subscheme of S;
for all i.
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A morphism ¢ : S — T is called a closed immersion if we have a closed sub-
scheme S’ C T such that ¢ induces an isomorphism: S = S’. A scheme S over
A is called projective over A if we have a closed immersion of S into a projective
space P7 A

Since a Zariski closed set is closed in p-adic or archimedean topology, if
S is projective over Q, S(Q,) under the p-adic topology and S(R) under the
archimedean topology are compact spaces.

If X is a vector space over Q of dimension m, we can define a duality pairing
S: X xX — Q. For any Q-algebra R, the induced pairing Sg : Xp x Xp — R
induces Xrp & Homp(Xg, R). In particular, if V' € G%(R), its orthogonal
complement V+ gives an element in G~ "(R). Thus G% = G " over Q; so,
to study the Grassmannian, we may assume its index n is less than or equal to
2 for m = dimg X. Then the exterior power X = A" X is a Q-vector space of

2
dimension d = (") and A"V for V € G'%(R) is an element of G} (R). Since

Gy = P?"!, we have a morphism i : G o — P%l given by V +— A" V. This
map (called the Pliicker coordinate) is a closed immersion; so, the Grassmannian
is projective. In particular, P’ x PY. can be embedded into Gg(an by sending
(V,W) € PR(R) xPP(R) to VW, we find that a product of projective spaces
is projective; so, a finite (fiber) product of projective schemes is projective.
For each member V; of an R-flag of index m is an element of GNX” for
m; = my +ma + ---+ my. In this way, we can embed f% into the product

11 j Gi” , which is actually a closed immersion. Thus flag variety is projective.
Let B be the subgroup of GL(n) made of upper triangular matrices. Then
obviously B C GL(n) is a closed algebraic subgroup. We write 1 for the maximal

partition of n =141+ .-+ 1. Since B is the stabilizer of the maximal flag:
O:RCRCRC - C R" regarding R™ C R"™ taking + € R™ to
t(x,0,...,0) € R". Moreover any other maximal flag is of the form aO : aR C
aR? C --+ C aR™ at least when R is a local ring (in particular a field), we
find GL,(R)/B(R) = }%n (R) if R is a local ring. Thus we define the quotient
variety GL(n)/B to be the flag variety F=,. More generally, let G /o be a
reduced affine closed subgroup of GLx /. For a closed subgroup P C G, we
call P parabolic if G/P is projective (but for this definition, we need to define
the quotient G/ P for any closed subgroup (following Mumford); see for example
[GME] 1.8.3). If P is parabolic, then it is a stabilizer of a flag of some index n
(see [AGD] Chapter I).

For G = GL(n);r and Og/p with anti-diagonal S with all anti-diagonal
entries equal to 1 over a field F' of characteristic different from 2, any closed
connected subgroup containing B N G is parabolic. For Sp(n),r, the above
statement is correct if we replace B by

{(b.) € Sp(n)|be BC GL(n)},

which we write B for Sp(n). The subgroup B is called the standard Borel
subgroup (Borel subgroup is any maximal connected soluble closed subgroup).

11



Any other Borel subgroups in the above example are conjugate to the standard
one. If a parabolic subgroup contains the standard Borel subgroup, we call
it a standard parabolic subgroup. There are finitely many standard parabolic
subgroups, and all other parabolic subgroup are conjugate to standard ones (see
[AGD] Chapter I).

Exercises

1. Show that P™(R) is a compact real manifold.

2. Show that a closed subscheme of an affine scheme is affine. (See [GME]
(Af1-2) and (Mf1) in Subsection 1.2.2-3).

3. Give an example of duality pairing S : X x X — Q.

4. Prove that B is a closed algebraic subgroup of GL(n) q.

2 Theta series and Eisenstein series

In this section, we shall give a sketch of one of the two proofs (due to Weil) of
the Siegel-Weil formula, restricting ourselves to SL(2) over Q. At the end, we
shall discuss briefly more general cases.

2.1 Orthogonal groups and theta series

Let V be a vector space over Q of finite dimension n with a quadratic form
¢V — Q. We define the associated symmetric bilinear form S :V xV — Q
by
S, y) = oz +y) — o(x) — o(y)-

Then for any Q-algebra A, S induces a bilinear pairing S4 : V4 x V4 — A by
S(x ®a,y®b) = abS(z,y) for a,b € A and z,y € V, where V4 =V ®q A (in
other words, A — V4 is the affine space of dimension d defined over Q).

Suppose that S is non-degenerate. Then the orthogonal group O = Og/q of
S, as an algebraic group defined over Q, is given by

O(A) = {a e GLy(A)|poa = ¢}

= {aEGLV(A)’S(xa,ya):S(x,y) Va,y € Va}. @1)

We identify V' with Homg(V, Q) by S. Then by (z,y), = e2(S7(x,y)), we have
Ve 2 V5 for 7 = oo, p, A. If 7 = oo, for a lattice L C V, Lt is the dual lattice:

Lt ={{ecV|(L{)=1}={tecV|S(L, ) CZ}.
If 7=A, we take L =V C Vj, and then

Lt=vt=v

12



For a Schwartz-Bruhat function ® on Vj or V., = Vi, we defined in [M] 2.6
a theta series on the metaplectic group Mp(V7) for 7 = A or oc:

O(2)(s) = / (s2)(0) = Y _(s9)(0), (2.2)

L ¢eL

where L C V; is a discrete subgroup as chosen above (in [M], the lattice L is
written as I'). Let

Iy = {0 € Sp(Va)|(L x L*)o = (L x L)},

which is a discrete subgroup of Sp(V») written as Spr(G) in [M] (2.10). Thus
'L = Sps(Q) = Spp(Q) for n = dimg V' if ? = A, where Spg is the symplectic
group with respect to the skew symmetric form:

S((@,2%), (y,y7)) = S(z,y") = Sy, z7).

Using partial Fourier transform with respect to L, we defined the embedding
ry : 'y — Mp(Vs) in [M] (2.11) following [Wel] no.18. We just identify I'f,
with a subgroup of Mp(V7) by this embedding. By [M] Theorem 2.3 (which is
a reformulation of [Wel] Théoreme 4), we have

O(P)(ys) = O(P)(s) forallyeTy.

Thus O(®) is a modular from on Sp(V7) in a wider sense. We made explicit the
theta series in [M] 2.6 when L = Z" and S(z,y) = z - 'y, and the function was
found to be a classical theta function.

Since Og(A) acts on V4, we consider its diagonal action on V4 x V4. Then
we define its commutant in Sp(Vy4):

Zo(A) = {0 € Sp(Va)|og =go forallge Os(A)}.

We here regard Og and A — Sp(V4) as algebraic groups over Q. Obvi-
ously SLy(A) C Zo(A), where SLy(A) is embedded into Spn(A) by (25) —
(a}‘/ Ziv) for the identity map 1y of V. Note here that Weil’s metaplectic
cly \%4

group Mp(V4) is only defined for A = R, Q, or A; so, it is not an algebraic
group. Nevertheless, we write Mpg(A) for Mp(V4) for A =R, Q, and A. We
have a canonical projection 7 : Mpg(A) — Sps(A) with kernel T (see [M] 2.4).
Then we define

Mps(A) = {g € Mps(A)|r(g) € SL2(A)}, (2.3)

regarding SL2(A) C Sps(A) as above.

We now show that the action of Og(A) on §(V4) given by ®(x) — P(xg)
commutes with the action of Mpg1(A). Let P C Spgs be the parabolic subgroup

made of o with ¢, = 0, where we have written o = (‘CZZ ZZ ). Since Mpg,1(A) is
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generated by elements in Py = Mps1 NP and J = (10 73" ), we only need to

check this for r(o) for o = J or o € P;. We first note that for g € Os(4)

(zg,y9) = ea(S(zg,yg)) = ea(S(z,y)) = (z,y)
For o = (%), by [M] 2.4, we have
)

9(x(0)®)(w) = (g, 27 2gb)®(xg) = (g, 2~ wbg)®(xg) = r(c)(9®)(2).
Now take o = (¢ °.). By definition, (za,y) = (z,ya*). If we identify V with

0a "
A", then a* = StaS~! writing S for the matrix of S. Thus we can write

Os(A) = {g € Enda(Va)|gg" = 1v, } .
Again by [M] 2.4, we have

g9(x(0)®)(x) = V/]a|®(zga) = v/|a|®(zag) = r(o)(9®)(z).

Finally for ¢ = J, we have

g(x(N)®@)(z) = F(®)(—zg) :/V D(y)(y, —zg)dy

- / B(y)(yg ", —a)dy "I = / B(yg) (y, —a)dy = r(J)(g®) (x).
Va Va

Here we have used the fact that |g| = 1 for g € Og(A), because 1 = |gStgS~—!| =
| det(g)|2.

Thus out of the theta series O(®), we can create two variable modular forms
of (s,g9) € Mps1(A) x Og(A) (A =R, A) in the following manner:

O(®)(s,g) = > _ s®(lg). (2.4)
el
As already seen, for v € T'sy = I' N Mpg1(A), we have O(®)(vs,g) =
O(P)(s,g). Since the above sum is averaging over all £ € L, defining a dis-
crete subgroup
I'no={6€0s(A)|Ls =L},

we have

O(®)(s,dg) = O(2)(s,9).
When A = A, L =V and hence, ' o = Os(Q). When A = R, I'p o is a
discrete subgroup of Og(R).

The Siegel-Weil formula in this setting is to write down the averaging integral

fFL,O\OS(A) O(®P)(s, g)dg over the orthogonal group as an Eisenstein series E(®)
on Mpg1(Va) (associated to ®):

/ O(@)(s. g)dg = B(®)(s).

I'z,0\Os(4)

Weil calls E(®) Siegel-Eisenstein series. This was first proven by Siegel, and in
this formulation, it was later proven by Weil [We2] Théoréme 5 in a far more

general setting which we will revisit later. To guarantee the absolute convergence
of the Eisenstein series, we need to suppose n > 4 in the present setting.
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2.2 Siegel’s theta series

We study in more detail the theta series when A = R in this subsection. We will
have formulas involving e(1z) = exp(miz) in many places; so, to make things
simple, we write e(z) = exp(miz) (only in this and the following subsection).
We fix a base {v;}; of a lattice L C V' and write S = (S(v;, v;)) which is an
n X n symmetric matrix. A positive definite symmetric matrix P € M, (R) (or
the symmetric bilinear form on Vi associated to P) is called a positive majorant
of S if
PSt=8P ' (&SP =P719). (2.5)

Here are some examples:

Ezample 2.1. 1. If S is diagonal: S = diaglaq,...,a,], then the diagonal

matrix P = diag[|ai], ..., |an|] is a positive majorant, although as we will
see, there are lots others. More generally, if S = Bdiaglay, ..., a,|'B for
B € GL,(R), then P = Bdiag[|ai],...,|as|]'B is a positive majorant.

2. Suppose that S is signature (A, p) (so n = XA + p). Then for any decom-
position Vg = W @ W+ for a subspace W with dimg W = X\ on which S
is positive definite, then Pw (z,y) = S(zw,yw) — S(z',y’) is a positive
majorant of S, where x = zw + 2’ and y = yw + ¢/ for zw,yw € W and
2’y € Wt. Here W+ is the orthogonal complement of W in V. By
Witt’s theorem (cf. [EPE] 1.2), if Ve = W’ & W'" is another decompo-
sition as above, then we find g € Og(R) such that W’ = Wg and hence
W't =wty.

3. By (2.5), we find (P —S)(P~'+S71) = 0. Defining W = Ker(P — 5), we
find that P is given by Py .

Define

y={We GQ(R)’SWW >0} {P’P:positive majorants of S},

where G, is the Grassmannian variety of index A and the last isomorphism is
given by W +— Py,. Then Og(R) acts on Y by W — Wg. By Example 2.1 (2-3),
Os(R) acts transitively on ). It is easy to check that the action of g € Og(R)
on positive majorants are P — gP - tg. If we fix one positive majorant Py, we
find that for the maximal compact subgroup C' = Og(R) N Op,(R),

Y = C\Os(R).

So Y is the realization as a real manifold of the symmetric space of Og(R).
Then for z =z + iy € H = {z € Cly = Im(z) > 0}, we consider ®p(v;z) =
e(S[v]z + P[v]iy), where S[v] = S(v,v) and P[v] = P(v,v). Then as a function
of v € Vg, ®p(v;2) is a Schwartz function on Vg (Exercise 2). Thus for any
homogeneous polynomial Q(v) of degree k, we can think of the theta series:

O(QPp)(s) =D s(QPp)(0).

leL
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Let a(z,y) ( ,1) € SLy(R). Then a(z,y)(i) = ¢ + iy = z. By

the formula of (a , we have

diagly/g. i 1@ (v) = [y @ (\/gv) and (§%) @ (v) = e(S[v]z)(v).

Thus we see

oz, y)(Qv)@p (v ) = |y " F2HQ(0) @ p (v 2).

We also see that

Qp(gv; 2) = Pgp(v; 2),
where gP = gP-'g Thus ©(Q(v)®p(v;4))(a(z, y), g) = |y|"+2)/46(z, gP; Qog),
where

0(z,P;Q) = > _ QODp(4; 2).

LeL

Since we know that O(®)(s) is a modular form on Mpg 1(R), we would like to
determine its level.

Actually, it is better to do it adelically. A Schwartz-Bruhat function ® on
Vi) is a function vanishing outside L' for a big lattice L’ and factoring through
r / L for a smaller lattice L, the adelic theta series O(®P) restricted to Mpg1(R)
is a linear combination of

|y|("+2k)/49(z,P;’U,Q,L): Z Q(é)(l)p(é,z)

Lev+L

That is, for &, = ®(*)(Q o g)®p defined on V,, we have O(®)(a(z,y),g) =
|y| (" T2R/49(z, g P; @), where

(2, P;®) = Y ) (0)Q(v)e(S[v]a + Pluliy)
veV

= > > )(z,9P;v,Qog, L).

veL!'/L
Thus we study the level of 0(z, P; v, Q, L) carefully.

It is well known that any homogeneous polynomial can be written uniquely
as Q(v) = ngz/g] S[v)nK—2;(v) for a spherical polynomial n; of degree j (see
[H1] Section 5). A function 7 is spherical if Anp =0 for A = 37, SUW{;/
where S™! = (s;;) and we write v = z1v1 + -+ + z,v, for the base v; of
L. By differentiation of 6 with respect to the variable x, we get S[v]; so, we
forget about S[v]’. Thus we may assume that @ is a spherical function. Any
spherical function is a linear combination of the following type of functions @:
Choose wy € V¢ such that S(v,ws) = +P(v,wy) for all v € V¢ and S[wy] =0
(Exercise 5). We note S(wy,w_) = 0, because

S(wy,w_) =Pwy,w_) = —P(w_,wy) = S(wy,w_).
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Then Q(v) = S(v,w;)*S(v,w_)™. When w, does not exist, we just suppose
¢ =0 and ignore the factor S(v, w4 ). We take this convention also for w_.

We thus fix Q(v) = S(v,wy)*S(v,w_)™ for non-negative integers ¢ and m.
For simplicity, we write 6(z; v, L) for 6(z, P;v, Q, L). Let L* = {v € V|S(v, L) C
Z} (the dual lattice). We assume that S(L, L) C Z (replacing L by a smaller
lattice if necessary); so, L* D L. Here is an easy lemma whose proof is left to
the reader (Exercise 4):

Lemma 2.1. Let 0 # ¢ € Z. Then we have
1. Ifve L* and a € c™Z, (2 + a;v,cL) = e(aS[v])0(z; v, cL).
2. Ifve L, 0(z;u,L) = Zwe(v+L)/cL 0(z;w, cL).
3. 0(c?zv, L) = c="™0(z; cv, 2L).
The Poisson summation formula yields:

Proposition 2.2. For 0 # ¢ € Z, we have

1
b ((~Lew.el) = (-1) /T2 Dl

x TRt/ N e(S(w,v))0(2;v, L), (2.6)
vEc~1L*/cL

where z° = |z|*exp(ios) writing z = |z|exp(io) with —7 < 0 < ® and D =

det(S).

Writing g (z;v) = Q(v)e(S[v]x + Plv]iy), the idea of the proof is classical
that we compute its Fourier transform and apply the Poisson summation formula
to 6. The computation follows Hecke’s technique in his Werke No.23 ([H] and
[Sh1] Proposition 2.1).

Proof. We start computing Fourier transform of ¢g. Here 9, indicates that we
take @ = 1. Here is a well known formula. For z € ) = {z € C|Re(z) > 0}
and a € R*:

oo _ 2
/ exp(—|alzv?)e(awv)dv = /|al e exp(—m). (2.7)
o z

We can always find B € GL,(R) such that BS - 'B = diagai,...,a,] and
BP -'B = diag[|a1], ..., |an|] (Exercise 7). We write w; = 3, bijv; (so, for the
real base, w;, S and P are diagonal). Then writing v = cywy + - - - + awy, (so,
a(v) = (ai,. .., ay) is the coordinate of v with respect to the base {w;}). Then

Un(:0) = exp(=r Y_(aFlady — afa,V/=Tr)).
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We write  for the coordinate with respect to {v;}; so, v = >, Biv;. Then we
write dv = df - - - df, (a Haar measure on Vg). Then dv = Cdazdas - - - day, for

=+/(la1---an|D~t). Writing w = Y, viw; (a(w) = ~), we find
V¥ (z;w) C/ exp( WZ y|al|a —v—1lza;« Zala[h Ydardag - - - do,

By applying (2.7)
Ui (zw) = DI AV TN AT A (). (28)

In order to compute g, we write Blwy)=r=(r1,...,r,) and B(w—) = s and

define 5 5
8+ :ijg:Tigzg and ag,iijg:sigiz.

Then by a simple computation, we get
9+ S[v] = 28(v, w4 ), 0+P[v] = 2P (v, wt) = £25(v, w1),
01 S(u,v) = S(u,wx). (2.9)
From this, we get
9+Q(v) =
S0, w ) S (wy, we)S(v, w )" +mS (v, w )" S (wo, we)S(v, wy )
Since S[w+] =0 and S(w+,ws) =0, we have
9+Q(v) = 0. (2.10)
From this, we have
L™ (z3w) = (2mi) T ahg (25 w) 2 F™

Then, using the fact: 9% 0™e(S(v,w)) = (2mi)*T™Q(v)e(S(v, w)), applying the
differential operator 9{.0™ to the formula (2.8), we get

1
vo(zw) = Comz™ NP2 g (— s w) (2.11)
for Cpm = (V=1)A#/2(=1)m+¢|D|=1/2. Then by the Poisson summation
formula:
S fw+l) =Y fr()e(S(—v, 1)),
leL €L
we get
0(z,w; L) = Y vo(ziw+v) = > vh(zv)e(S(—w,v))
veL veEL*
=Cymz —L=X/25—m—p/2 Z —w,v) ¢Q(_l v),

veEL*
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because e(S(—w,v)) only depends on v mod L if w € L*. Now we make a
variable change z — —L and use Lemma 2.1 (3), we get the desired formula for
¢ = 1. For general cL, we just replace L by cL and do the same argument. [

Applying Proposition 2.2 and Lemma 2.1 to:

az—|—bia 1

cz+d ¢ c(ez+d)

for v = (‘CI g) € SLo(Z) with ¢ # 0, we find

(=)0, 1) = Come™ /2l e+ )0/ 4 a1
X Z Z o(v,w)0(z;u, *L), (2.12)

wel*/c2L we(v+L)/L

where
sy = 3 e(> (@S] + 25w, u) + dS[u]))
we(v+L)/cL

for v € L* /L and u € L*/c2L. Since up to scalar, any element on v € SLy(F)
can be written as a product of an element in SLs(Z) and an upper-triangular
matrix in GLy(F'), we can compute the effect of z — 7(z) by using this formula
and Lemma 2.1. In particular, s®(0) = 0 for all s € Mpg1(R) if @ is not a
constant, because SL2(Q) is dense in SLy(R). The same is again true for & €
S(Va) and s € Mpgs1(A) if o involves non-trivial homogeneous @, because
the action of Mpg,1(A(>)) does not affect its action at co.

Lemma 2.3. Let the notation and the assumption be as above. Then
p(v,u) = e(=b(dS[u] + 25(v, u)))p(v + du, 0).
In particular, p(v,u) depends only on (u,v) € (L*/L)?.

Proof. We have

plotdu0)= Y e(SSu)= Y e(%S[w+du]),

(&
we(v+du+L)/cL wée(v+L)/cL

which is a Gauss sum. However,

aS[w + du] = aS[w] + 2adS(w, u) + ad*S[u]
WL (0S[w] + 2S(w, w) + dS[u]) + ¢(2bS(w, u) + dbS[u]),

where we used the fact: ad — bc = 1 to show the last equality. Since w € v+ L,
e(bS(w,u)) = e(bS(v,u)), we have

e(%S[w +du]) = e(%(aS[w] +2S(w, u) + dS[u]))e(2bS (v, u) + dbS[u)).

19



This shows:

1
o(v+du,0) = e(2bS(v, u) +dbS[u]) Z e(=(aS[w]+2S(w, u)+dS[u]))
wée(v+L)/cL ¢
= ¢(b(25(v, u) + dS[ul)) (v, ),
which shows the formula. O
Combining (2.12) and Lemma 2.3, we get
Proposition 2.4. Let v = (2Y) € SLy(Z). Then we have

1. If ¢ #0, then

0(y(2);v, L) = Cpmc™2(c/le|)* (cz + dFND (cz + d)mt /2
XY (v, u)b(zu, L),
uel* /L
2. Ifc=0, 0(y(z);v, L) = e(dbS[v])0(z;v, L).
Exercises

1. Prove all the statements in Example 2.1 in details.

2. Prove that v +— ®p(v;z) is a Schwartz function on Vg (that is, it is of
C*°—class and all its derivative multiplied by a polynomial on Vg decreases
when v — 00).

3. Prove that 6(z;v, L) is absolutely and locally uniformly convergent for
zeHand P e ).

4. Prove Lemma 2.1.

5. Find wy € V¢ such that S[wy] = 0 and S(v,wy) = £P(v,wy) for a
positive majorant P, and specify a necessary and sufficient condition for
the existence of non-zero w4.

6. Prove that if n is spherical with respect to P, nog is spherical with respect
to gP for g € Og(R).

7. Explain why we can find B € GL,(R) as in the proof of Proposition 2.2.

2.3 Transformation formula of theta series

Let M be the least integer such that MS[L*] C 2Z. If M = 1, then L* = L,
and by the theorem of Weil ([M] Theorem 2.3) applied to Vg, 0(z; L) is invariant
under SL(Z). Thus we assume that M > 1. We are going to show
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Theorem 2.5. Let v € (24) € T'g(M) with d > 0 (by changing v by —v if
necessary). Then we have, for v € L*,

0(v(2); v, L) = x(d)e(abS[v])(cz + d)”()‘/m(cf + d)m+(“/2)9(z; av, L),

where

(#) if n =2m with m € Z,
x(d) = oDy
G B) dn=rmirmer

Here if c =0, the Legendre symbol (%) is assumed to be equal to 1, and

1 ifd=1 mod 4,
Eqg =
TVVT ifd=3 mod 4.

We shall give a sketch of a proof of the theorem.

Proof. We start with v € SLy(Z). We may assume that ¢ # 0 (otherwise the
formula is obvious and follows from Proposition 2.4 (2)). We see easily that
ML* C L (Exercise 1). By replacing z by —1 in the formula of Proposition 2.4
(1) and then applying Proposition 2.2, we get

bz —
o (Tt L) = DI (s = 2 @z e
Z—C

x> > w(v,u)e(S(u,t)) | (=it L).

teL*/L \uelL*/L

In this computation, we assumed that ¢ < 0 when n is odd (which results at
the end the assumption that d > 0). Note that

p(v,u) = e(~b(dS[u] +25(v,w) Y e(%S[w]).
wée(v+du+L)/cL

We now suppose v = (Z %) €To(M); so, d=0 mod M. Since MS[L*] C 2Z,
we find $dS[u] € Z, and e(—bdS[u]) = 1. Since ML* C L, du € L and hence
v =v+ du mod L. Thus we have

p(v,u) =e(=bS(v,u)) > e(=S[w)).
we(v+L)/cL

We put ¢(v) = >, cwir)/er €(£5[w]) for the part of the Gauss sum. By this
maneuver, we reach the following expression:

bz —
0 (S0 L) = e DI pl0) s — iz - )
zZ—C

x> > e(S(u,t—bv)) | 0(z:t, L).

teL*/L \ueL*/L
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Now putting ¢ (u) = e(S(u,t — bv)) for u € L*/L, 1 is an additive character of
the additive group L*/L. By the orthogonality relation of characters, we have

3 ) = {[L* P L] =[D| if ¢ is trivial,

0 otherwise.
ueLl*/L

Thus the term which survives is those ¢t — bv € (L*)* = L. This yields

bz —
0 (St 0,L) = (ol s = O (dz - (it ).
zZ—C

Thus we need to compute the Gauss sum ¢(v).
Hereafter we rewrite v = (Z “%)asy= (%) € To(M). Thus the assump-

C
tion ¢ < 0 becomes d > 0. The above formula then states:

0 (1(2);v, L) = p(0)|d] 7% (cz + d) VD ez + d) "2 (z; av, L)

under d > 0 and ¢ = 0 mod M, where ¢(v) = >, c(ir)/ar e(3S[w]). We
modify ¢(v) slightly. Since ad —bc =1, ad =1 mod M and (ad — 1)v € L for
all v € L*; so, adv =v mod L. Thus w € (v+ L)/dL satisfies w = adv mod L
and hence w = adv + u with v € L/dL. Thus

OEEY e(gS[adv +u)) = e(ba”dS[v] + 2abS(v,u) + SS[U])

uw€L/dL u
bad=ab mod M b
= e(abS[v]) Y e(=S[u)).
u€L/dL

We write W (b, d) = |d|""/ 2, .1 /ar, €(4S[u]). Thus the formula we are dealing
with is:

0 (v(2);v, L) = e(abS[v))W (b, d)(cz + d) T (z + d)™+ /2 @(z; av, L).

Then it is standard from the time of Hecke that W (b, d) = x(d) (see [H] or the
proof of [Sh1] Proposition 2.1). O

Exercises

1. Prove ML* C L.
2. Prove W(b,d) = x(d).

2.4 Siegel-Eisenstein series

As before, we write ® for a Schwartz-Bruhat function in S(Vy) for A = A and
R. Let L=V C Vj if A=A and L C V is a lattice if A =R. For any algebraic
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subgroup H C Spg, we write H, = {h € Sps(A)|Lh = L}. Then by [M] 2.4
and Theorem 2.2, we have

“ 1
ry (0 ag* ) ®(v) = V/]a|P(va) and rp (} YYo(v) = eA(§S(v, b)) (v).
Since the above type of element generate P; 1, we have an exact description of
the metaplectic action of p € P; ;, on ®. If A = R and (8 ag*) € P, then

La = L; so, a is unimodular, that is, a = £1. Thus (r (¢ %) ®)(0) = ©(0).

0a ™

When A = A, we see Py 1, = B(Q) for the Borel subgroup B of SL(2). Thus if

(¢.2.) € PLp = B(Q), then a € Q* and by the product formula, |a |CL|X/2 =

1. Thus again we have (r ({ L2.) @)(0) = ®(0). By the above description of

the action, we immediately have (rp (%) ®)(0) = ®(0). Therefore, for every
p € Py 1, we have

Lemma 2.6. The function s — (s®)(0) defined on Mpgs1(A) for A=A and
R s left invariant under Py p,.

We then define the Eisenstein series, formally, by

E@)(s)= > (1s®)(0). (E)

YEP1, L \SpPs,1,L

To see the convergence, we first treat the case A = R. In this case, we may
assume that the Schwartz function is a linear combination of the functions of
the form: Q(v)er (5 (S[v]x + iyP[v])) for a polynomial Q : V — C, where P is
a positive majorant of S. We have already seen that if @) is non-trivial, s® has
polynomial part non-trivial; so, (s®)(0) = 0. Thus we may assume that Q =1
to compute (s®)(0). Then as we have already seen in the previous section that,
for a constant C' > 0,

[(s@)(0)] < Clh(s, 2)| 7",

writing according to Shimura, as in [M] Corollary 2.5
Mpsi(R) = {(s, h(s, z))’s € SLQ(R)} ,

where h(s, z) for the variable z on the upper half complex plane §) is the auto-
morphic factor of half integral weight: h(s, 2)? = t(cz +d) for t € T.
Note here that
Pp={(}%)|berz}

for a rational number r and Spg 1,1, is a conjugate of SL2(Z) in SL2(Q). Then
it is well known from the time of Hecke that the series

DI

YEP1, L \SpPs,1,L

is absolutely convergent if n > 4 (note that h(s, z) is the automorphic factor of
half integral weight).
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We put the topology on S(Vir) of local uniform convergence of all derivatives.
Then, as is easily seen, ® — E(®)(s) for a fixed s is a continuous linear map
from S(Vg) into C (a tempered measure).

We now reduce the case when A = A to the case when A = R. Then
Py = B(Q) and Sps1, = SL2(Q). Thus we have:

E(®)(s) = Y. (1s®)(0).

YEB(Q\SL2(Q)

By the strong approximation theorem (e.g. [MFG] 3.1.2), we have
SLy(A) = SLy(Q)U - SL2(R)

~

for each open subgroup U of SL2(Z). Since we have seen in the previous section

that there exists an open subgroup U of SLg (Z) such that s¢ = ® forall s € U.
Thus E(®) is left invariant under SL2(Q) and right invariant under U. Thus
E(®) is determined by its restriction to SL2(R). Thus we may assume that
s = 1 to see the convergence. We write E(®) = E(®)(1). We consider the
function: s+ |(s®)(0)]. We know that

(2 ,20) s@)(0)] = |al}/?|(5@)(0)].

Since B(A)\SLy(A) = P(A) is compact (cf. Example 1.4) and SLy(A) =
B(A)SL, (2)5’02 (R) (the Iwasawa decomposition), defining € : SLa(A) — Ry
by e(s) = |CL|X/2 if s = (8 aél Ju for u € SLy(Z)SO,(R), we find a positive
constant C such that

[(s®)(0)] < Ce(s),

because s — (s®)(0)/e(s) factors through the compact set (B\SL(2))(A). Thus

we have
E@)(s)| <C Y elys).
YEB(Q\SL2(Q)
Write the right-hand-side for s = 1 of the above equations E(g). Fory = (; ) €
SLy(Q), we decompose v = bu for b € B(A) and u € SLy(Z)SO2(R). Since
Uoo € SO2(R) fixes i = /=1 € § and Im ((§ %1 ) (i) = |a|%,, we find

e(yee) = Im(y(8))™/* = |ei +d| "/,

If the lower right corner of b is a~!, we have ¢Z + dZ = a~'Z. We may assume

that o = a(>®) € Q*. Now regard o € Q C A, and changing v by diagla—!, o],
we may assume that ¢,d € Z and (¢, d) = 1. Thus we find

1
E(e) = = > |ci +d| /2,

(¢,d)€Z?,(c,d)=1

which is absolutely convergent if n > 4. This finishes the proof of absolute
convergence if n > 4.
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2.5 The formula

In this subsection, we always assume that A = A, because the case of A = R
follows from the adelic case. We compute s®(0) to relate the Siegel Eisenstein
series with the theta series.

As we have seen in [M] 2.4, if ¢ # 0

(e8)=(5e")(2g") (5e74)-
Thus SLy(Q) = B(Q) U B(Q)JB(Q) for J = (97!). In other words, noting
the fact:
B(A)NJ 'B(A)J = T(A) = {diag[a,a ']|ja € A*},
T(A\B(A) =U(A) = {(§})|be A},

we have

E(®) = o(0) + > (v®)(0)

Y€B(@\B(Q)JB(Q)

=2(0)+ Y (Jy®)(0).

veU(Q)

We know that
JP(v) :/V O (w)ep(S(w, —v))dw

J(3h)o(v) = /v D (w)ep(S(w, —v) + %S(w, wbd))dw.

This shows 1
(J(gh)@)(0) = /V fD(w)eA(§S(w,wb))dw. (2.13)
Thus we get, for ¢(v) = 3S[v],
)+ v)ea(ne(v))dv
T

We therefore consider the function ¢ : z +— fvp ®(v)ep(¢(v)x)dv. Identify
V = Q" and write the coordinates as (z1,...,z,). Thus V4 = G(A) is an
affine space of dimension n; in this way, we consider V' as an affine group
scheme sending A to V4. We then consider the Tamagawa measure |w|, on
V, given by w = day A dxa A -+ A dzy,. The quadratic form ¢(v) = 1S[v]
is a morphism ¢ : V. — G, of schemes over Q. Writing Va[z] = ¢~ () for
z € G4(A), we know from Witt’s theorem (cf. [EPE] 1.2), if z € G, (Qp),
Vplz] — {0} = O¢(Qp)\Os(Qp) for the stabilizer of & with ¢(¢§) = z. It is
known that if z = ¢(€),y = ¢(n) € Gn(Qp), we can find o € GLy(Qp) such

25



that S(va,wa) = ¢(&) " t(n)S(v,w) for all v,w € V(Q,). In other words,
a™'O¢ar = Ogq. Since ¢(£a) = ¢(n), we know that

Vp[x] = Oé(Qp)\OS(Qp) = Oéa(Qp)\OS(Qp) = Vp[y]

for y = ¢(n). Thus V, —V,[0] = V,[z] x G, and hence we can split w = w, Adz
for the variable x of G,, where w, is a gauge form on O,\Og (here one can of
course choose x € V; so, w, is Q-rational). Actually this can be done also for
Vp[0] — 0 since ¢ has singularity only at v = 0. Thus we find a measure |w,|
supported on V,[z] such that

/ dv_// (v)dlwa|da

If ¢(v) = 0 but v # 0, S restricted to Qpu is trivial. Since S is non-degenerate,
we find v" with S(v,v") = A # 0. We have S[v/ — zv] = S[v'] — 2z for z € Q.
Thus taking x = (2X)~1S[v' —2v] and replacing v' by v’ —zv, we may assume that
S[v'] = 0. By dividing v' by A\, we may assume that A = 1. Then taking a base

vj of W = (Quu+Qpv')*, the matrix form of S with respect to v, vy, ..., vy—2,0’
is of the form 001
(0 5’ 0) (2.14)
100
for a symmetric matrix S” of degree n—2. We can now write v/ with S[v"”] = 0 as
follows: Writing v = av+w+bv’ for a,b € Q, and w € W, we find S[v"] = 2ab+
S'[w] = 0. Thus ab = —35[w]. In other words, v” = —(2a) 15’ [w]v + w + av’

for a € Q, and for any w € W with S’[w] # 0 or v" € Qpv U Q,v’. This shows
that ¢ : (W —=W/[0]) x Gy, C V,,[0]—{0} sending (w, a) to —(2a) 1S [w]v+w+av’
brings W — W0] into a Zariski open dense subset of V,[0]. Since the Tamagawa
measure |wg| has measure 0 on a proper Zariski closed subset, it is determined by
its restriction to W’ = (W —-W{0]) XG,,. Since on W', i*wy is a constant multiple
of dey ANdxa N ANdxy_o A %" (because it is translation invariant by w’ € W

and multiplication invariant for a:Exercise 2), we find d|wo|(sv) = |s[1?d|wol
for s € Qp. Anyway d|wo| is supported by V,[0] — {0}.
Defining Fg(z fv ®d|w,|, we find that

<pp(3:):‘/v fI)p(v)ep((b(v)aj)dv:/ Fo(y)ep(yx)de,

p Qp
which is the Fourier transform Fj of Fp on Q, with respect to dr and (z,y) =

ep(zy).
We can carry out the same argument also for R and A. In other words, we
can find a measure |wy| on Vi[z] such that

/ dv—// (v)d|wy|dx
Va VA

for all ® € S(V}). We then define

Fy(z) = /v[ ]<I>d|wm|
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for ® € §(Vy). Then p(x) = fVA ®(v)ep(p(v)x)dv is the Fourier transform Fy
of Fg with respect to (x,y) = ex(zy).
By the Poisson summation formula, we find

IROEDHOEDS /V D (v)en(d(v)n)dv.

neQ neQ neQ

This is exactly E(®) — ®(0). Weil verified that the Poisson summation formula
is valid if F(®) converges absolutely (see [We2] Proposition 2).
On the other hand, we have

Fa(y) = / Bd|w, |,
2 Faln) =2 oy

neQ neQ” Vs

or more generally, the Fourier expansion of the Eisenstein series is:

E(®)(17) = Dd|w, e (nz). 2.15
(®)(59) %/VM{O} fenlen (o) (215)

We choose the Tamagawa measure dg on Og(A). Then dg induces the Tam-
agawa measure d|wy| on O¢(Q)\O¢(A) = Va[n] for £ € V with ¢(€) = n (by the
uniqueness of the Tamagawa measure). We now compute the Fourier expansion
of the theta series:

/ O(®) (s, 9)dy.
Os5(Q)\Os(A)

Thus writing a(z) = ({ ), we compute fOs(Q)\Os(A) O(®)(a(z), g)dg. By defi-
nition,

O(®)(a(x). ) = Y alz)®(ég) = Y 2(Eg)en(d(Eg)x).

£ev Eev

Then we have

O(®)(a(x), g)dg =
tev

->

neQ &:¢(§)=n

D(Eg)en(d(Eg)r)dg

/Os(@)\Os(A) /Os(@)\OS(A)

/ ®(Eg)dgen(nz).
05(Q\Os(4)

Suppose that ¢(&) = 7. Then it is known by Witt’s theorem (e.g.[EPE] 1.2)
that for any Q-algebra A,

O¢(A)\Os(A) = Van] — {0} via g &g, (2.16)
where £ € V is chosen so that ¢(£) =n, Valn] = {v € Valé(v) = n} and

O¢(A) ={g € O0s(A)|¢g =&} .
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Now note that

/ ®(&g)ea(nz)dg
&:d(€)=n ’ Os(@\Os(A)

D({vg)en(nz)dg

7€0¢ (Q\Os(Q) /Os(@>\os(A)

®(¢g)ea(nr)dg

/Os (@\Os(A)
— 7(0¢) / B(0)dlwylen(nz),
Valn]

where 7(0O¢) = fOE(Q)\OE(A) dg, (the Tamagawa number of O¢). This shows,

if n # 0, writing ¢(n, f) for the Fourier coefficients of es(nz) of a function
f:A—C,

c(m; O(®)(a(x),g)dg) = 7(O ®(v)d|wy). 2.17
(n /OS(Q)\OS(A) () (a(z), g)dg) = 7( a/w dlwg.  (217)
Similarly, we get
;[ O(®)(alx).9)dg) = (G20 +7(09) [ a(u)dl
0s5(Q)\Os(A) Va[0]—{0} (2 18)

for £ # 0 with ¢(§) = 0. Thus, if 7(O¢) = 7 is independent of £ if ¢(§) # 0,
comparing the Fourier coefficients in (2.15) and (2.17), we get, for £ # 0 with

$(§) =0,
7®(0) + 7'/

B(v)d|wo| = 7(G)B(0) + 7(0¢) / B(v)d|w.
Va[0]—{0}

Va[0]—{0}

By replacing ®(z) by ®,(z) = ®(tx) for t € A, as we have seen already,
dlwo(tz)| = |t|}2d|wo(z)|; so, the second part of the above identity gets mul-
tiplied by [¢|3~" if we replace ® by ®, while the first term is intact. Therefore
we get

T(G)=7(0¢) =T

even if £ # 0 with ¢(&) = 0.

If $(§) = 1 # 0, O¢ is an orthogonal group O, for S¢ on a space of dimension
n — 1, because if a € Og, a preserves We = (Q€)* and hence S¢ = S|w,. Thus
O¢ = Og,, and Og¢ is an orthogonal group of S¢ which has dimension one less
than n = dim V. If we know 7 = 7(Os, ) is a constant independent of S¢ of n—1
variables, we get the desired identity plus an extra information that 7(Og) = 7
looking at the constant term. Thus by induction, we only need to prove the
constancy: 7 = 7(Og) when S has four variables.

Weil computed directly that 7(Og) = 2 if dim S = 3 and 4. When n = 4, to
show this, he uses the fact that Og is either isomorphic to (B* x B*)/{£(1,1)}
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for a quaternion algebra B/Q or to B* /{+£1} for a quaternion algebra B over
a quadratic field over Q (see [AAG] Theorem 3.7.1). Thus the formula is valid
for all S of dimension n > 4, and we get at the same time 7(Og) = 2, which
actually follows also from [AAG] Theorem 4.5.1. Thus we have

Theorem 2.7. Let dg be the invariant measure on Og(Q)\Og(A) with total
volume 1 (so the half of the Tamagawa measure). Then we have, if n > 4,

/ O(®)(s. g)dg = E(®)
Os5(Q)\Os(A)

for all ® € S(Vy).

The proof of this theorem given in [We2] VI is deeper than what we said,
using the full force of measure theory, without making use of the known fact on
the Tamagawa numbers; so, it gives another proof of the fact that 7(Og) = 2
(see Mars’s papers in [AGD] Chapter II for a simplified account of Weil’s second
proof). Therefore, the determination of the Tamagawa numbers is basically
equivalent to the identity as above. However the Siegel formula itself is deeper,
because it also involves the explicit determination of Fourier coefficients of E(®),
which contains more information than the Tamagawa number.

Exercises

1w —S'[w]/2
1. Write S asin (2.14). Then show that a(w) = (0 1 ,g,[/t]u{ ) is an element

00 1
of Og(A) if w e A2,

2. Writing V = Qv & W & Q,v" with the notation in (2.14) and identifying
W = Qp~? using the base {v;} there, show that i*wp is invariant under
translation: w — w +w" and a — Aa for A € Q) and w’ € W. Hint: use
the existence of a(w) and wo(gx) = wo(x) for g € O5(Qp).

2.6 General case

In this subsection, we briefly describe what Weil proved for more general sym-
plectic groups Spg.

We keep the notation of the previous section, but we consider V? for a
positive integer ¢ instead of V. Then we define S[v] = S(v;,v;) € My(Q)
writing v = (v1,...,vq) for v; € V. Then we have

Spqe(A) C Zo(A) = {o € Sp(V{)|og = go for all g € Os(A)},
where g € Og(A) acts on v diagonally as vg = (v1g,...,v4g9). We put
Mpy(A) = {g € Mp(V{)|n(g) € Spy(A)} (A=R,Qp,A)

and Py(A) = P(A) N Spy(A) inside Spva(A). Then we can prove in the exactly
the same way as in the case: ¢ = 1 that the action of Mp, commutes with the
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action of Og; so, we have well define O(®)(s, g). In this case, for ® € S(V,}),

E(®)(s) = Yo (1s®)(0) (s € Mpy(h))

YE€P(@)\Spq(Q)

converges absolutely if n > 2¢ 4+ 2 (the same proof as in the case of ¢ = 1
works well), and the Siegel-Weil formula is valid in the same way under this
assumption:

/ O(®)(s.9)dg = E(®)(s) (s € Spa(A)).
Os5(Q)\Os(A)

The computation itself is basically the same as in the case of SL(2), but in this
case, we need to take care of n € M,(Q) such that rankn < ¢. Modular forms
on SL(2) is determined by its Fourier coefficients of e4(nz) for n # 0; so, we
have deduced the identity of ¢(0; %) to those of ¢(n;*) for n # 0. However this
is no longer true in the general Siegel modular case; so, Weil used an induction
argument on ¢ a bit more technical.

In the above setting, the module V7 is considered to be a left module over
M, (A), and it is also considered to be A4 = End4(Va)-module. In particular,
A has involution a — S'aS™! and Og(A) = {z € Aalzz* = 1}. Thus we can
further generalize this situation as follows: Take a simple algebra A over a field Q
with involution z — z*. Take a simple A-module V, and put V = Hom AV, A).

We can identify \7155 with (Vi/)* by (z,y) = e(Tra/g(y(z))). By using these
pairing, we construct Sp(G4) for G4 = V{ x (\712) (A: any Q-algebra), Mp(G )
(A=R,Qp,A) and Og(A) = {z € Ag|lzz* = 1}. We then define

SpA,q(A) = {(‘CI g) IS Sp(GA)’a, b,c,d e EndA(VZ)}

(2.19)
Mpaq(A) = {x e Mp(GA)’w(x) e SpA,q(A)} .

We write P for the parabolic subgroup of Spg(A) with lower left corner element
¢ = 0. Then we can think of

E(®)(s) = > (75@)(0) (s € Mp.aq(A))
YEP(Q)\Spa,q(Q)

O(2)(s.9) = D s®(&g) (s € Mpay(A), g € Os(A)).
geva

(2.20)

Writing A = M,,, (D) for a division algebra D with center F', then we can always
write z* = S - tz*S™! for an involution z +— x* of D and S € A* with !S* = €S
(e = £1). We now define

§ =dimp D and ¢ =dimp{¢ € D|¢" = €}.

Then Weil proved that if m > 2¢ + 4(5/d’) — 2, then E(®) is absolutely con-
vergent. Under a splitting condition at one place (that is, a generalization of
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Witt’s theorem holds there), Weil also proved

/ O(s, g)dg = E()
Os5(Q)\Os(A)

for the measure dg on Og(Q)\Og(A) of total volume 1 (see [We2] Théoréme
5). The groups of type Og cover almost all classical groups (another result of
Siegel); so, the Siegel-Weil formula and the Tamagawa number are known for
almost all such groups.
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