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1 Review of Algebraic Geometry

We recall here definitions and result necessary to read Weil’s paper [We2], which
is the purpose of this series of lectures. All rings A we consider have the identity
element 1A, and we denote by 0A the zero element of A.

1.1 Affine schemes

Let A be a base ring, which is always assumed to be noetherian. Let B be a
noetherian A–algebra. The affine scheme S = SB associated to B is a function
of A–algebras R given by S(R) = HomA-alg(B,R). The ring B is called the
affine ring of the scheme S. The set SB(R) is called the set of R–rational
points (or R–integral points) of SB . An A–morphism (or a morphism defined
over A) φ : SB → SC is given by φ(P ) = P ◦ φ for an underlying A–algebra
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homomorphism φ : C → B; in other words, we have the following commutative
diagram:

B
P−−−−→ R

φ

x
xP◦φ

C C

By definition, we have the following properties of the function SB :

(F1) If R
f−→ R′ g−→ R′′ are A–algebra homomorphisms, then we have maps

f∗ : SB(R) → SB(R′) and g∗ : SB(R′) → SB(R′′) by f∗(P ) = f ◦ P and
g∗(Q) = g ◦Q and (g ◦ f)∗ = g∗ ◦ f∗.

(F2) If R′ = R′′ and g as above is the identity map iR′ : R′ → R′, we have
iR′,∗ ◦ f∗ = f∗. If R = R′ and f as above is the identity map iR : R→ R,
we have g∗ ◦ iR,∗ = g∗.

(F3) For the identity map iR : R → R, iR,∗ : SB(R) → SB(R) is the identity
map of the set SB(R).

Thus R 7→ SB(R) is a covariant functor of A–algebras into sets (see [GME] 1.4
for functors and categories). For two affine schemes S and T over A, a morphism
φ : S → T is a family of maps φR : S(R) → T (R) indexed by A–algebras R
such that for any A–algebra homomorphism α : R → R′, the following diagram
commutes:

S(R)
φR−−−−→ T (R)

α∗

y
yα∗

S(R′) −−−−→
φR′

T (R′).

We write HomA(S, T ) for the set of all morphisms from S into T .
The following fact is trivial but useful:

(U1) By definition, if R =
⋃
iRi for A–algebras Ri, we have

SB(R) =
⋃

i

SB(Ri),

because B 7→ HomA-alg(B,R) satisfies this property. This is applied in the
following way. The adele ring A can be written as:

A =
⋃

Σ

AΣ ⊂ R ×
∏

p

Qp for AΣ = Ẑ(Σ) + (R ×
∏

p∈Σ

Qp) ⊂ R ×
∏

p

Qp,

where Σ runs over all finite set of primes of Q containing a given finite set Σ0.
Here Ẑ =

∏
p Zp and Ẑ(Σ) = {(xp) ∈ Ẑ|xp = 0 for p ∈ Σ}. If an affine scheme is

therefore defined over

Z(Σ0) =
{a
b

∣∣a ∈ Z and b is a product of primes in Σ0

}
,
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we have S(A) =
⋃

Σ S(AΣ). Since AΣ is made of ideles integral outside a finite
set Σ, we have

(U2) S(A) is a union of points almost everywhere integral, if an affine scheme
S is defined over the Σ0–integer ring Z(Σ0).

(U3) S(AΣ) = (
∏
p∈Σ S(Qp)) × (

∏
p6∈Σ S(Zp)) × S(R).

If we have a measure dωp on the p–adic space S(Qp) and dω∞ on the archimedean
space S(R) and if

∫
S(bZ(Σ))

dω given by
∏
p6∈Σ

∫
S(Zp)

dωp is finite, we can think

of the product measure dω on S(A) whose integral of φ : S(A) → C with
φ((xv)) = φ∞(x∞)

∏
p φp(xp) for functions φv : S(Qv) → C is given by the

product:
∏
v

∫
S(Qv) φv(xv)dωv.

By definition, we also have the following properties of affine schemes:

(cf1) If B
φ
−→ C

ψ
−→ D are A–algebra homomorphisms, then we have morphisms

of schemes SD
ψ−→ SC

φ−→ SB such that φ ◦ ψ is associated to ψ ◦ φ.

(cf2) If B = C and φ in (cf1) is the identity map iB of B, we have iB ◦ ψ = ψ.
If C = D and ψ in (cf1) is the identity map iC of C, we have φ ◦ iC = φ.

(cf3) For the identity map iB : B → B, iB : SB(R) → SB(R) is the identity
map for all A–algebras R.

Thus the function B 7→ SB is a contravariant functor from A–algebras into
affine schemes. One of the most basic fact in functorial algebraic geometry is
(e.g. [GME] 1.4.3):

HomA-alg(B
′, B) ∼= HomA(SB , SB′) via α ↔ α. (1.1)

Here are some examples of affine schemes:

Example 1.1. Take f(X, Y, Z) = Xp + Y p − Zp for a prime p, and let A = Z.
Then consider B = Z[X, Y, Z]/(f(X, Y, Z)). For each algebra R, we claim

SB(R) ∼= {(x, y, z) ∈ R3|xp + yp = zp}.

Indeed, for each solution P = (x, y, z) of the Fermat’s equation inR, we define an
algebra homomorphism φ : A[X, Y, Z] → R by sending polynomials Φ(X, Y, Z)
to its value Φ(x, y, z) = φ(Φ) ∈ R. Since Φ ∈ (f(X, Y, Z)) ⇔ Φ = Ψf , we find
that φ(Φf) = Ψ(x, y, z)f(x, y, z) = 0; so, φ factors through getting φ ∈ SB(R).
In this way, we get an injection from the right-hand-side to SB(R). If we start
from φ : B → R in SB(R), we find

0 = φ(0) = φ(Xp + Y p − Zp) = φ(X)p + φ(Y )p − φ(Z)p.

Thus (x, y, z) = (φ(X), φ(Y ), φ(Z)) is an element in the right-hand-side, getting
the isomorphism. By Fermat’s last theorem, we have

SB(Z) ∼= {(a, 0, a), (0, b, b), (c,−c, 0)|a, b, c∈ Z} if p is a prime > 3.
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There is a simpler example: We have

SZ[X1 ,...,Xn](R) = Rn via φ 7→ (φ(X1), . . . , φ(Xn)).

Thus often SZ[X1 ,...,Xn] is written as Gn
a and is called the affine space of di-

mension n. We have an algebra homomorphism A[X, Y, Z] → B for B in
Example 1.1 sending Φ to (Φ mod f(X)). This in turn induces a morphism
i : SB → G3

a, which is visibly injective.

When we have a morphism of affine schemes φ : SB → SC , and if φ : C → B
is a surjective ring homomorphism, we call φ a closed immersion. Then φ is
injective and we can identify SB ⊂ SC all the time. In this case, SB regarded
as a subfunctor of SC is called A–closed in SC . As we will see in Exercise 2,
if Si ⊂ SC is closed for finite number of affine schemes Si, the intersection
R 7→ ⋂

i Si(R) is again closed. Thus we can give a topology on SC (R) for each
R so that closed set is given by the empty set ∅ and those of SB(R) for closed
immersion SB ↪→ SC . This topology is called the Zariski topology of SC .

If A′ is an A–algebra, we may regard B′ = A′ ⊗A B as an A′–algebra by
a′ 7→ a ⊗ 1. Then we get a new scheme SB′ over the ring A′, which sometimes
written as SA′ ×A SB and is called the fiber product of SB and SA′ over A. If
we have a point φ : SB(R) for an A′–algebra R, we can extend φ : B → R to
φ′ : B′ = A′⊗AB → R by φ′(a⊗b) = aφ(b). Thus φ 7→ φ′ gives the natural map
SB(R) → SB′ (R) for all A′–algebras R. This map is an isomorphism, because
for any given φ′ ∈ SB′ (R), φ(b) = φ(1 ⊗ b) gives a point φ ∈ SB(R) as long as
R is an A′–algebra (Exercise 3). However an A′–closed subset of SB′ may not
be A–closed; so, the Zariski topology depends on the base ring A.

Exercises

1. Prove that a closed immersion i : SB (R) ↪→ SC(R) is an injection for any
A–algebras R.

2. If i : SB ⊂ SC and j : SD ⊂ SC are closed, then R 7→ SB(R) ∩ SD(R) is
closed and is isomorphic to SE for E = B⊗CD, where the tensor product
is taken with respect to the associated algebra homomorphisms i : C → B
and j : C → D.

3. Prove SB(R) ∼= SB′ (R) if B′ = A′ ⊗A B and R is an A′–algebra, where
A′ is another A–algebra.

4. For two A–algebras B and C, show that SB⊗AC(R) = SB(R) × SC(R)
for any A–algebra R. Hint: φ ∈ SB(R) and ψ ∈ SC(R), we associate
φ ⊗ ψ ∈ SB⊗AC(R) given by (φ ⊗ ψ)(b ⊗ c) = φ(b)ψ(c). Thus a product
of affine scheme is again an affine scheme.

1.2 Affine algebraic groups

Let G be an affine scheme over a ring A. Thus G is a covariant functor from
A–algebras to sets. If the values G(R) for all A–algebras are groups and φ∗ :
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G(R) → G(R′) for any A–algebra homomorphism φ : R → R′ is a group
homomorphism, G is called an affine group scheme or an affine algebraic group.

Example 1.2. 1. Let B = Z[X1, . . . , Xn]. Then SB(R) = Rn (as already
remarked), which is an additive group. Since

φ∗(r1, . . . , rn) = (φ(r1), . . . , φ(rn))

for each algebra homomorphism φ : R → R′, φ∗ is a homomorphism of
additive groups. Thus Gn

a is an additive group scheme.

2. More generally, we can think of C = Z[Xij] for n2 variables. Then
SC (R) = Mn(R) and SC is not just a group scheme but is a ring scheme.
This scheme is written often as Mn. As additive group schemes (ignoring

ring structure), we have Mn
∼= Gn2

a .

3. Consider the ring D = Z[Xij,
1

det(X)
] for n2 variables Xij and the variable

matrix X = (Xij). Then SD(R) = GLn(R) and SD is a multiplicative
group scheme, which is a subscheme of SC because GLn(R) ⊂Mn(R) for
all R. This scheme SD is written as GL(n). In particular, SZ[t,t−1] =
GL(1) is called the multiplicative group and written as Gm.

More generally, for a given A–module X free of rank n, we define XR =
X ⊗A R (which is R–free of the same rank n) and

GLX(R) =
{
α ∈ EndR(XR)

∣∣∃α−1 ∈ EndR(XR)
}
.

Then GLX is isomorphic to GL(n)/A by choosing a coordinate system of
X; so, GLX is an affine group scheme defined over a ring A. We can
generalize this to a locally free A–module X, but in such a case, it is a bit
more difficult to prove that GLX is an affine scheme.

4. We can then think of E = C/(det(X) − 1). Then

SE(R) = {x ∈ GLn(R)| det(x) = 1}.

This closed subscheme of Mn and also of GL(n) is written as SL(n) and
is a multiplicative group scheme defined over Z.

5. LetX is a free A–module of finite rank. We fix a bilinear form S : X×X →
A. Then we consider

G(R) = {α ∈ GLX(R)|SR(xα, yα) = SR(x, y) for all x, y ∈ XR} ,

where SR(r ⊗ x, s⊗ y) = rsS(x, y) for r, s ∈ R and x, y ∈ X.

To see that this G is an affine algebraic group defined over A, we fix a base
x1, . . . , xn of X over A and define a matrix S by S = (S(xi, xj)) ∈ Mn(A).
Then every (ij) entry sij(X) of the matrix XStX − S (X = (Xij)) is
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a quadratic polynomial with coefficients in A. Then we consider L =
A[Xij, det(X)−1]/(sij(X)). By definition,

SL(R) =
{
α ∈ GLX(R)

∣∣αStα = S
} ∼= G(R).

We find αStα = S ⇒ S = α−1Stα−1; so, G is an affine algebraic group.

If X = An and S(x, y) = xSty for a non-degenerate symmetric matrix S,
G = OS/A is called the orthogonal group of S. If X = Y × Y and S is
non-degenerate skew symmetric of the form S((y, y′), (z, z′)) = T (y, z′) −
T (z, y′) for a symmetric bilinear form T : Y ×Y → A, we writeG = SpT/A.

In particular, if S(x, y) = x
(

0 −1n

1n 0

)
ty, the group G = Spn/A is called

the symplectic group of genus n.

6. We consider a quadratic polynomial f(T ) = T 2 + aT + b ∈ Z[T ]. Then
define Sf (R) = Ga(R)[T ]/(f(T )). As a scheme Sf ∼= G2

a but its value is a
ring all the time. If φ : R→ R′ is an algebra homomorphism, φ∗(r+sT ) =
φ(r)+ φ(s)T ; so, it is a ring homomorphism of Sf (R) = R[T ]/(f(T )) into
Sf (R

′) = R′[T ]/(f(T )). Thus Sf is a ring scheme, and writing O for the
order of the quadratic field Q[

√
a2 − 4b] generated by the root of f(T ), we

have Sf (R) ∼= R⊗Z O.

7. Since any given number field F is generated by one element, we know
F = Q[T ]/(f(T )) for an irreducible monic polynomial f(T ). For any Q–
algebra R, define Sf (R) = R[T ]/(f(T )). Then in the same way as above,
Sf is a ring scheme defined over Q such that Sf (R) = F ⊗Q R.

8. Let G be an affine algebraic group defined over a number field F . Thus for
an algebra B, G(R) = HomF -alg(B, R). Then we define a new functor G′

defined over Q–algebras R by G′(R) = G(Sf (R)) = G(F ⊗Q R). We can
prove that G′ is an affine group scheme defined over Q, which we write
G′ = ResF/QG (see Exercise 4 and [AAG] 1.3).

9. Assume that f is a quadratic polynomial in Q[T ]. Then we have Sf (Q) =
F is a quadratic extension with Gal(F/Q) = {1, σ}. Let X be a finite
dimensional vector space over Q and let Gal(F/Q) act on XF = F ⊗Q X
through F . We suppose to have a hermitian form H : XF ×XF → F such
that H(x, y) = σ(H(y, x)). Then for Q–algebra R

UH(R) =
{
α ∈ GLX(Sf (R))

∣∣HSf (R)(xα, yα) = HSf (R)(x, y)
}

is an affine algebraic group, which is called the unitary group of H . Note
that UH is defined over Q (not over F ).

For two affine algebraic group G,G′ defined over A, we write

HomA-alg gp(G,G
′)

=
{
φ ∈ HomA(G,G′)

∣∣φR is a group homomorphism for all R
}
. (1.2)
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Exercises

1. Let F be a number field with the integer ring O. Is there any affine ring
scheme S defined over Z such that S(R) = O ⊗Z R?

2. Give a detailed proof of the construction of the algebraic group ResF/Q(G).

3. Let S : X×X → A is a bilinear form for an A–free moduleX, and suppose
that X ∼= HomA(X,A) by S. Then the matrix of S is in GLn(A) for any
choice of a base of X over A.

4. For an affine algebraic group G over a number field F (that is, a finite
extension of Q), prove that ResF/QG is an affine algebraic group defined
over Q.

5. Show that the unitary group UH as above is an affine algebraic group.

1.3 Gauge forms

Let G be an affine algebraic group over Q. We write its affine ring as B; so,
we have G(A) = HomQ-alg(B,A). We suppose that B is noetherian, does not
have non-trivial nilpotents (so, B is reduced), and Q is integrally closed in B

(so G is defined over Q in the sense of Weil). If we decompose B =
⊕h

j=0 Bj
as an algebra direct sum for integral domains Bj , we have G(A) =

⊔
j Sj(A)

for Sj(A) = HomQ-alg(Bj , A). Since G is a group, the action of G permutes Sj ,
and hence all the Bj ’s are isomorphic. In particular, the one G0 = S0 of the
components among Sj in which 1G sits is a normal subgroup. We call G0 the
connected component of G.

Assume that G is of dimension m over Q. Thus the field of fractions of B0

is algebraic over Q(x1, . . . , xm) for variables xj, and the Krull dimension of B0

is m.
We may thus assume that B0 ⊃ Q[x1, . . . , xm]. We can think of b ∈ B as

the algebraic function on G by b(P ) = P (b) for P ∈ G(A). If φ : G → G is
any automorphism, φ : B → B is a Q–algebra homomorphism. In other words,
φ(xj) = xj ◦ φ, and φ(x) = (φ

j
(x)).

For example, if G = GL(n), we take Xij to be the coordinate xj. Thus
B = Z[Xij, det(X)−1] and any algebra homomorphism φ : B → B corresponds
to φ : GL(n) → GL(n) given by φ(X) = (φ(Xij)).

Formally, we write

dxj ◦ φ :=
∑

i

∂φ(x)

∂xi
dxi.

Thus we can think of the transport

φ∗ω = f(φ(x))dx1 ◦ φ ∧ · · · ∧ dxm ◦ φ

of differential form ω = f(x)dx1 ∧ · · · ∧ dxm by φ.
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Since G is a group, any g ∈ G(A) induces multiplication g : G → G; so, we
can think of g∗ω. A non-zero differential firm ω of degree m = dimQ X is called
a gauge form if g∗ω = ω for all g ∈ G. If two gauge form exists, the ratio ω/ω′

are invariant under G; so, constant.

Example 1.3. 1. Suppose G = GL(n). Then we find, by linear algebra,

g∗(dx1 ∧ · · · ∧ dxn) = det(g)(dx1 ∧ · · · ∧ dxn)

for a column vector x = t(x1, . . . , xn) ∈ An and g ∈ GLn(A). Thus for
ω′ =

∧
ij dXij is the wedge product of n such ωi = dx1i ∧ · · · ∧ dxni,

and hence g∗ω′ = det(g)nω′. Thus ω = det(Xij)
−nω′ is a gauge form for

GL(n).

2. Let S be a n× n non-degenerate symmetric or skew symmetric matrix in
Mn(Q). Then we define xι = StxS−1, which is an involution of Mn. Then
OS(A) = {x ∈ GLn(A)|xxι = 1}. We consider s± = {x ∈ Mn|xι = ∓x}
(s+ is the Lie algebra of OS). We have Mn = s+ ⊕ s−. Since ω′ as above
satisfies ω′(axb) = det(a)n det(b)nω′(x) for a, b ∈ GL(n), we can split
ω′ = ω+ ∧ ω− according to the linear splitting Mn = s+ ⊕ s−. Then ω+

restricted to OS ⊂Mn gives a gauge form on the connected component of
OS .

Let ω be a differential m–form on a Q–scheme of dimension m. If S(R) 6= ∅,
writing ω = f(x)dx1 ∧ · · · ∧ dxn choosing a coordinates, we define a measure
|ω|∞ by ∫

S(R)

φ(x)d|ω|∞ =

∫

S(R)

φ|f(x)|∞dx1dx2 · · ·dxm

for the Lebesgue measure dxj.
Since we have a canonical measure dx on Qp, we can imitate the above

procedure to get a measure |ω|p on S(Qp):
∫

S(Qp)

φ(x)d|ω|∞ =

∫

S(Qp)

φ|f(x)|pdx1dx2 · · ·dxm

for the canonical measure dxj on Qp.
If S(A) 6= ∅, we can define the adelic measure |ω|A by

⊗
v |ω|v by Fubini’s

theorem (this is all right because S(A) =
⋃

Σ S(AΣ) as already seen). If φ :
S′ → S is an isomorphism, by definition,

∫

S(A)

fd|ω| =

∫

S′(A)

f ◦ φd|φ∗ω|.

Note that |ξω|A = |ξ|A|ω|A for a constant ξ ∈ Q. By the product formula, we
know that |ξ|A = 1; so, |ω|A depends only on ω mod Q×. In particular, for an
affine algebraic group G, if ω is a gauge form, |ω|A gives, if it exists, a canonical
Haar measure on G(A). This measure is called the Tamagawa measure of G(A).

Since GLn(Q) ⊂ GLn(A) is a discrete subgroup, by embedding G into
GL(n), we find that G(Q) is a discrete subgroup. Taking a fundamental domain
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Φ of G(Q)\G(A), we define the Tamagawa measure on G(Q)\G(A) just by the
integration on Φ. Of course this definition does not depends on the choice of Φ.
If

∫
G(Q)\G(A)

dg < ∞ for the Tamagawa measure on the quotient, this number

is called the Tamagawa number of G and written as τ (G).
For a closed subgroup H ⊂ G, if we have a differential form ω on H\G

right-invariant under G, in the same manner as in the case of the group, |ω|A
is a unique right invariant measure of H\G, which is also called the Tamagawa
measure of H\G. We can similarly define the Tamagawa measure on G/H .

If G acts on a scheme S so that its action induces G(A)/H(A) ∼= S(A), by
the above argument, we can think of the Tamagawa measure on S, which is
unique.

More details on Tamagawa measures, see [AAG].

Exercise

1. Find a gauge form on SL(n).

1.4 Noetherian schemes

A (noetherian) scheme defined over a ring A is a covariant functor T from
A–algebras into sets satisfying the following conditions:

1. There are finitely many noetherian affine schemes Si which are subfunc-
tors of S (so, Si(R) ⊂ T (R) for all A–algebras R, and the inclusion is
functorial).

2. If S is an affine scheme over A and if φ : S → T is a morphism of functors
(so it is a family of maps φR : S(R) → T (R) making the square diagram
between (F3) and (U1) commutative), for any x ∈ S(R) with an integral
domain R, we can find an open neighborhood U ⊂ S of x such that φ
induces a morphism U → Si for some i. In particular, if R is a field, then
T (R) =

⋃
i Si(R).

3. For any finite set J of indices,
⋂
j∈J Sj is open in Si for all i ∈ J under

the Zariski topology.

Example 1.4. 1. The n–dimensional projective space Pn
/A is given by

Pn(R) =

{
V ⊂ Rn+1

∣∣∣ V is an R–submodule locally free of rank 1
with locally free quotient Rn+1/V

}
.

If R is local (that is, having only one maximal ideal; so, a field is local),
all locally free modules are free; so, V ∈ Pn(R) is free of rank 1 having a
generator x = (x0, x1, . . . , xn), and Rn+1 = V ⊕ Y for a complementary
direct summand Y isomorphic to Rn+1/V . By tensoring F = R/mR for
the maximal ideal mR, we find that V/mV 6= 0; so, one of xi 6≡ 0 mod mR.
In other words, xi ∈ R×. Thus by dividing xi, we can normalize xi = 1.

In other words, defining Di(R) = {(x0, . . . ,
i
1, . . . , xn) ∈ Rn+1}, we find
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Di ∼= Gn
a and Pn(R) =

⋃
iDi(R). This is enough to prove that Pn is

a scheme, because for any point x of an affine scheme SB (R) with an
integral domain R, the localization U = SBx

is the intersection of all
open neighborhoods of x (see [GME] 1.2.2). In particular, for a local ring
(including a field) R,

Pn(R) ∼=
{
(x0, . . . , xn) ∈ Rn+1

∣∣∃i with xi ∈ R×}
/R×,

where R× acts by scalar multiplication. This scheme is called the projec-
tive scheme of dimension n.

Since Zp is p–adically compact, Gn
a (Zp) = Znp is p–adically compact.

Therefore Pn(Zp) is also p–adically compact. If x = (x0, . . . , xn) ∈
Pn(Qp), by multiplying a suitable scalar in Q×

p (taking off the denomina-
tors in the xi’s), we find x ∈ Pn(Zp); so, we find a funny fact: Pn(Qp) =
Pn(Zp). Thus Pn(Qp) is compact. It is well known that Pn(R) and Pn(C)
are also compact under archimedean topology (Exercise 1).

2. Let X be an A–free module of rank m. For an integer n with m > n > 0,
we write Gn

X(R) for the set of R–submodules V of X such that X/V is
locally free of rank m − n. Thus G1

Rn+1 = Pn. One can show that G is
again a scheme, which is called the Grassmannian of index (m, n).

3. Let X be as above. For a partition m : m1 + m2 + · · · + mr = m by
positive integers mi, a sequence of locally free R–submodules 0 = V0 ⊂
V1 ⊂ V2 ⊂ · · · ⊂ Vr−1 ⊂ Vr = XR is called an R–flag of index m if Vj/Vj−1

is locally free R–module of rank mj for all j = 1, 2, . . . , r. The functor
Fm
X (R) sending R to the set of all R–flags of XR of index m is known to

be a scheme. The scheme Fm
X is called the flag scheme of index m. When

m : n+ (m− n) = m, then Fm
X = Gn

X .
Since a scheme is a covariant functor from A–algebras into sets, each A–

algebra homomorphism α : R → R′ induces a map α∗ : S(R) → S(R′). More-
over (α◦β)∗ = α∗◦β∗. For two schemes S and T defined over A, φ ∈ HomA(S, T )
is a family of maps φR : S(R) → T (R) which makes the following diagram com-
mutative for any algebra homomorphism α : R → R′:

S(R)
φR−−−−→ T (R)

α∗

y
yα∗

S(R′) −−−−→
φR′

T (R′).

A scheme T/A is called a closed subscheme of S/A if the following two conditions
are satisfied:

(C1) We have an inclusion T ↪→ S, that is, T (R) ⊂ S(R) for all A–algebras R;

(C2) Covering S by affine schemes Si, Si ∩ T is a closed affine subscheme of Si
for all i.

10



A morphism φ : S → T is called a closed immersion if we have a closed sub-
scheme S′ ⊂ T such that φ induces an isomorphism: S ∼= S′. A scheme S over
A is called projective over A if we have a closed immersion of S into a projective
space Pn

/A.
Since a Zariski closed set is closed in p–adic or archimedean topology, if

S is projective over Q, S(Qp) under the p–adic topology and S(R) under the
archimedean topology are compact spaces.

If X is a vector space over Q of dimension m, we can define a duality pairing
S : X ×X → Q. For any Q–algebra R, the induced pairing SR : XR ×XR → R
induces XR ∼= HomR(XR, R). In particular, if V ∈ Gn

X(R), its orthogonal
complement V ⊥ gives an element in Gm−n

X (R). Thus Gn
X

∼= Gm−n
X over Q; so,

to study the Grassmannian, we may assume its index n is less than or equal to
m
2

for m = dimQ X. Then the exterior power X =
∧n

X is a Q–vector space of
dimension d =

(
m
n

)
and

∧n
V for V ∈ Gn

X(R) is an element of G1
X (R). Since

G1
X

∼= Pd−1, we have a morphism i : Gn
X/Q

→ Pd−1
/Q

given by V 7→ ∧n
V . This

map (called the Plücker coordinate) is a closed immersion; so, the Grassmannian
is projective. In particular, Pm

X ×Pn
Y can be embedded into G2

X⊕Y by sending
(V,W ) ∈ Pm

X(R)×Pm
Y (R) to V ⊕W , we find that a product of projective spaces

is projective; so, a finite (fiber) product of projective schemes is projective.

For each member Vj of an R–flag of index m is an element of G
emj

X for
m̃j = m1 + m2 + · · · + mj . In this way, we can embed Fm

X into the product∏
j G

emj

X , which is actually a closed immersion. Thus flag variety is projective.
Let B be the subgroup of GL(n) made of upper triangular matrices. Then

obviouslyB ⊂ GL(n) is a closed algebraic subgroup. We write 1 for the maximal

partition of n =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1. Since B is the stabilizer of the maximal flag:

O : R ⊂ R2 ⊂ R3 ⊂ · · · ⊂ Rn, regarding Rm ⊂ Rn taking x ∈ Rm to

t(x,

n−m︷ ︸︸ ︷
0, . . . , 0) ∈ Rn. Moreover any other maximal flag is of the form αO : αR ⊂

αR2 ⊂ · · · ⊂ αRn at least when R is a local ring (in particular a field), we

find GLn(R)/B(R) ∼= F1
Rn(R) if R is a local ring. Thus we define the quotient

variety GL(n)/B to be the flag variety F1
Rn . More generally, let G/Q be a

reduced affine closed subgroup of GLX/Q. For a closed subgroup P ⊂ G, we
call P parabolic if G/P is projective (but for this definition, we need to define
the quotient G/P for any closed subgroup (following Mumford); see for example
[GME] 1.8.3). If P is parabolic, then it is a stabilizer of a flag of some index n
(see [AGD] Chapter I).

For G = GL(n)/F and OS/F with anti-diagonal S with all anti-diagonal
entries equal to 1 over a field F of characteristic different from 2, any closed
connected subgroup containing B ∩ G is parabolic. For Sp(n)/F , the above
statement is correct if we replace B by

{(
b u
0 tb−1

)
∈ Sp(n)

∣∣b ∈ B ⊂ GL(n)
}
,

which we write B for Sp(n). The subgroup B is called the standard Borel
subgroup (Borel subgroup is any maximal connected soluble closed subgroup).
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Any other Borel subgroups in the above example are conjugate to the standard
one. If a parabolic subgroup contains the standard Borel subgroup, we call
it a standard parabolic subgroup. There are finitely many standard parabolic
subgroups, and all other parabolic subgroup are conjugate to standard ones (see
[AGD] Chapter I).

Exercises

1. Show that Pn(R) is a compact real manifold.

2. Show that a closed subscheme of an affine scheme is affine. (See [GME]
(Af1-2) and (Mf1) in Subsection 1.2.2-3).

3. Give an example of duality pairing S : X ×X → Q.

4. Prove that B is a closed algebraic subgroup of GL(n)/Q.

2 Theta series and Eisenstein series

In this section, we shall give a sketch of one of the two proofs (due to Weil) of
the Siegel-Weil formula, restricting ourselves to SL(2) over Q. At the end, we
shall discuss briefly more general cases.

2.1 Orthogonal groups and theta series

Let V be a vector space over Q of finite dimension n with a quadratic form
φ : V → Q. We define the associated symmetric bilinear form S : V × V → Q

by
S(x, y) = φ(x+ y) − φ(x) − φ(y).

Then for any Q–algebra A, S induces a bilinear pairing SA : VA × VA → A by
S(x ⊗ a, y ⊗ b) = abS(x, y) for a, b ∈ A and x, y ∈ V , where VA = V ⊗Q A (in
other words, A 7→ VA is the affine space of dimension d defined over Q).

Suppose that S is non-degenerate. Then the orthogonal group O = OS/Q of
S, as an algebraic group defined over Q, is given by

O(A) =
{
α ∈ GLV (A)

∣∣φ ◦ α = φ
}

=
{
α ∈ GLV (A)

∣∣S(xα, yα) = S(x, y) ∀x, y ∈ VA
}
.

(2.1)

We identify V with HomQ(V,Q) by S. Then by (x, y)? = e?(S?(x, y)), we have
V?

∼= V ∗
? for ? = ∞, p,A. If ? = ∞, for a lattice L ⊂ V , L⊥ is the dual lattice:

L⊥ = {` ∈ V |(L, `) = 1} = {` ∈ V |S(L, `) ⊂ Z}.

If ? = A, we take L = V ⊂ VA, and then

L⊥ = V ⊥ = V.

12



For a Schwartz-Bruhat function Φ on VA or V∞ = VR, we defined in [M] 2.6
a theta series on the metaplectic group Mp(V?) for ? = A or ∞:

Θ(Φ)(s) =

∫

L

(sΦ)(`) =
∑

`∈L
(sΦ)(`), (2.2)

where L ⊂ V? is a discrete subgroup as chosen above (in [M], the lattice L is
written as Γ). Let

ΓL =
{
σ ∈ Sp(V?)

∣∣(L× L⊥)σ = (L × L⊥)
}
,

which is a discrete subgroup of Sp(V?) written as SpΓ(G) in [M] (2.10). Thus
ΓL = SpS(Q) ∼= Spn(Q) for n = dimQ V if ? = A, where SpS is the symplectic
group with respect to the skew symmetric form:

S̃((x, x∗), (y, y∗)) = S(x, y∗) − S(y, x∗).

Using partial Fourier transform with respect to L, we defined the embedding
rL : ΓL ↪→ Mp(V?) in [M] (2.11) following [We1] no.18. We just identify ΓL
with a subgroup of Mp(V?) by this embedding. By [M] Theorem 2.3 (which is
a reformulation of [We1] Théorème 4), we have

Θ(Φ)(γs) = Θ(Φ)(s) for all γ ∈ ΓL.

Thus Θ(Φ) is a modular from on Sp(V?) in a wider sense. We made explicit the
theta series in [M] 2.6 when L = Zn and S(x, y) = x · ty, and the function was
found to be a classical theta function.

Since OS(A) acts on VA, we consider its diagonal action on VA × VA. Then
we define its commutant in Sp(VA):

ZO(A) =
{
σ ∈ Sp(VA)

∣∣σg = gσ for all g ∈ OS(A)
}
.

We here regard OS and A 7→ Sp(VA) as algebraic groups over Q. Obvi-
ously SL2(A) ⊂ ZO(A), where SL2(A) is embedded into Spn(A) by

(
a b
c d

)
7→(

a1V b1V

c1V d1V

)
for the identity map 1V of V . Note here that Weil’s metaplectic

group Mp(VA) is only defined for A = R, Qp or A; so, it is not an algebraic
group. Nevertheless, we write MpS(A) for Mp(VA) for A = R, Qp and A. We
have a canonical projection π : MpS(A) � SpS(A) with kernel T (see [M] 2.4).
Then we define

MpS,1(A) =
{
g ∈MpS(A)

∣∣π(g) ∈ SL2(A)
}
, (2.3)

regarding SL2(A) ⊂ SpS(A) as above.

We now show that the action of OS(A) on S(VA) given by Φ(x) 7→ Φ(xg)
commutes with the action of MpS,1(A). Let P ⊂ SpS be the parabolic subgroup
made of σ with cσ = 0, where we have written σ =

(
aσ bσ

cσ dσ

)
. Since MpS,1(A) is
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generated by elements in P1 = MpS,1 ∩ P and J =
(

0 −1n

1n 0

)
, we only need to

check this for r(σ) for σ = J or σ ∈ P1. We first note that for g ∈ OS(A)

〈xg, yg〉 = eA(S(xg, yg)) = eA(S(x, y)) = 〈x, y〉
For σ = ( 1 b

0 1 ), by [M] 2.4, we have

g(r(σ)Φ)(x) = 〈xg, 2−1xgb〉Φ(xg) = 〈xg, 2−1xbg〉Φ(xg) = r(σ)(gΦ)(x).

Now take σ =
(
a 0
0 a−∗

)
. By definition, 〈xa, y〉 = 〈x, ya∗〉. If we identify V with

An, then a∗ = StaS−1 writing S for the matrix of S. Thus we can write

OS(A) =
{
g ∈ EndA(VA)

∣∣gg∗ = 1VA

}
.

Again by [M] 2.4, we have

g(r(σ)Φ)(x) =
√

|a|Φ(xga) =
√

|a|Φ(xag) = r(σ)(gΦ)(x).

Finally for σ = J , we have

g(r(J)Φ)(x) = F(Φ)(−xg) =

∫

VA

Φ(y)〈y,−xg〉dy

=

∫

VA

Φ(y)〈yg−1 ,−x〉dy yg
−1 7→y
=

∫

VA

Φ(yg)〈y,−x〉dy = r(J)(gΦ)(x).

Here we have used the fact that |g| = 1 for g ∈ OS(A), because 1 = |gStgS−1 | =
| det(g)|2.

Thus out of the theta series Θ(Φ), we can create two variable modular forms
of (s, g) ∈MpS,1(A) ×OS(A) (A = R,A) in the following manner:

Θ(Φ)(s, g) =
∑

`∈L
sΦ(`g). (2.4)

As already seen, for γ ∈ ΓS,1 = ΓL ∩ MpS,1(A), we have Θ(Φ)(γs, g) =
Θ(Φ)(s, g). Since the above sum is averaging over all ` ∈ L, defining a dis-
crete subgroup

ΓL,O =
{
δ ∈ OS(A)

∣∣Lδ = L
}
,

we have
Θ(Φ)(s, δg) = Θ(Φ)(s, g).

When A = A, L = V and hence, ΓL,O = OS(Q). When A = R, ΓL,O is a
discrete subgroup of OS(R).

The Siegel-Weil formula in this setting is to write down the averaging integral∫
ΓL,O\OS (A)

Θ(Φ)(s, g)dg over the orthogonal group as an Eisenstein series E(Φ)

on MpS,1(VA) (associated to Φ):
∫

ΓL,O\OS(A)

Θ(Φ)(s, g)dg = E(Φ)(s).

Weil calls E(Φ) Siegel-Eisenstein series. This was first proven by Siegel, and in
this formulation, it was later proven by Weil [We2] Théorème 5 in a far more
general setting which we will revisit later. To guarantee the absolute convergence
of the Eisenstein series, we need to suppose n > 4 in the present setting.
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2.2 Siegel’s theta series

We study in more detail the theta series when A = R in this subsection. We will
have formulas involving e(1

2x) = exp(πix) in many places; so, to make things
simple, we write e(x) = exp(πix) (only in this and the following subsection).

We fix a base {vi}i of a lattice L ⊂ V and write S = (S(vi, vj)) which is an
n × n symmetric matrix. A positive definite symmetric matrix P ∈ Mn(R) (or
the symmetric bilinear form on VR associated to P ) is called a positive majorant
of S if

PS−1 = SP−1 (⇔ S−1P = P−1S). (2.5)

Here are some examples:

Example 2.1. 1. If S is diagonal: S = diag[a1, . . . , an], then the diagonal
matrix P = diag[|a1|, . . . , |an|] is a positive majorant, although as we will
see, there are lots others. More generally, if S = B diag[a1, . . . , an]

tB for
B ∈ GLn(R), then P = B diag[|a1|, . . . , |an|]tB is a positive majorant.

2. Suppose that S is signature (λ, µ) (so n = λ + µ). Then for any decom-
position VR = W ⊕W⊥ for a subspace W with dimR W = λ on which S
is positive definite, then PW (x, y) = S(xW , yW ) − S(x′, y′) is a positive
majorant of S, where x = xW + x′ and y = yW + y′ for xW , yW ∈W and
x′, y′ ∈ W⊥. Here W⊥ is the orthogonal complement of W in VR. By
Witt’s theorem (cf. [EPE] 1.2), if VR = W ′ ⊕W ′⊥ is another decompo-
sition as above, then we find g ∈ OS(R) such that W ′ = Wg and hence

W ′⊥ = W⊥g.

3. By (2.5), we find (P −S)(P−1 +S−1) = 0. Defining W = Ker(P −S), we
find that P is given by PW .

Define

Y =
{
W ∈ Gλ

V (R)
∣∣S|W > 0

} ∼=
{
P

∣∣P:positive majorants of S
}
,

where Gλ
V is the Grassmannian variety of index λ and the last isomorphism is

given by W 7→ PW . Then OS(R) acts on Y by W 7→Wg. By Example 2.1 (2-3),
OS(R) acts transitively on Y. It is easy to check that the action of g ∈ OS(R)
on positive majorants are P 7→ gP · tg. If we fix one positive majorant P0, we
find that for the maximal compact subgroup C = OS(R) ∩OP0(R),

Y ∼= C\OS(R).

So Y is the realization as a real manifold of the symmetric space of OS(R).
Then for z = x+ iy ∈ H = {z ∈ C|y = Im(z) > 0}, we consider ΦP (v; z) =

e(S[v]x + P [v]iy), where S[v] = S(v, v) and P [v] = P (v, v). Then as a function
of v ∈ VR, ΦP (v; z) is a Schwartz function on VR (Exercise 2). Thus for any
homogeneous polynomial Q(v) of degree k, we can think of the theta series:

Θ(QΦP )(s) =
∑

l∈L
s(QΦP )(`).
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Let α(x, y) = ( 1 x
0 1 )

(√
y 0

0
√
y−1

)
∈ SL2(R). Then α(x, y)(i) = x + iy = z. By

the formula of r(σ), we have

diag[
√
y,
√
y
−1

]Φ(v) = |y|n/4Φ(
√
yv) and ( 1 x

0 1 )Φ(v) = e(S[v]x)Φ(v).

Thus we see

α(x, y)(Q(v)ΦP (v; i)) = |y|(n+2k)/4Q(v)ΦP (v; z).

We also see that
ΦP (gv; z) = ΦgP (v; z),

where gP = gP ·tg Thus Θ(Q(v)ΦP (v; i))(α(x, y), g) = |y|(n+2k)/4θ(z, gP ;Q◦g),
where

θ(z, P ;Q) =
∑

`∈L
Q(`)ΦP (`; z).

Since we know that Θ(Φ)(s) is a modular form on MpS,1(R), we would like to
determine its level.

Actually, it is better to do it adelically. A Schwartz-Bruhat function Φ on
VA(∞) is a function vanishing outside L̂′ for a big lattice L′ and factoring through

L̂′/L̂ for a smaller lattice L, the adelic theta series Θ(Φ) restricted to MpS,1(R)
is a linear combination of

|y|(n+2k)/4θ(z, P ; v, Q, L) =
∑

`∈v+L
Q(`)ΦP (`; z).

That is, for Φg = Φ(∞)(Q ◦ g)ΦP defined on VA, we have Θ(Φ)(α(x, y), g) =
|y|(n+2k)/4θ(z, gP ; Φ), where

θ(z, P ; Φ) =
∑

v∈V
Φ(∞)(v)Q(v)e(S[v]x + P [v]iy)

=
∑

v∈L′/L

Φ(∞)(v)θ(z, gP ; v, Q ◦ g, L).

Thus we study the level of θ(z, P ; v, Q, L) carefully.

It is well known that any homogeneous polynomial can be written uniquely

as Q(v) =
∑[k/2]

j=0 S[v]jηk−2j(v) for a spherical polynomial ηj of degree j (see

[H1] Section 5). A function η is spherical if ∆η = 0 for ∆ =
∑

i,j sij
∂2

∂xi∂xj
,

where S−1 = (sij) and we write v = x1v1 + · · · + xnvn for the base vi of
L. By differentiation of θ with respect to the variable x, we get S[v]; so, we
forget about S[v]j . Thus we may assume that Q is a spherical function. Any
spherical function is a linear combination of the following type of functions Q:
Choose w± ∈ VC such that S(v, w±) = ±P (v, w±) for all v ∈ VC and S[w±] = 0
(Exercise 5). We note S(w+, w−) = 0, because

S(w+, w−) = P (w+, w−) = −P (w−, w+) = S(w+, w−).
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Then Q(v) = S(v, w+)`S(v, w−)m. When w+ does not exist, we just suppose
` = 0 and ignore the factor S(v, w+). We take this convention also for w−.

We thus fix Q(v) = S(v, w+)`S(v, w−)m for non-negative integers ` and m.
For simplicity, we write θ(z; v, L) for θ(z, P ; v, Q, L). Let L∗ = {v ∈ V |S(v, L) ⊂
Z} (the dual lattice). We assume that S(L, L) ⊂ Z (replacing L by a smaller
lattice if necessary); so, L∗ ⊃ L. Here is an easy lemma whose proof is left to
the reader (Exercise 4):

Lemma 2.1. Let 0 6= c ∈ Z. Then we have

1. If v ∈ L∗ and a ∈ c−1Z, θ(z + a; v, cL) = e(aS[v])θ(z; v, cL).

2. If v ∈ L∗, θ(z; v, L) =
∑

w∈(v+L)/cL θ(z;w, cL).

3. θ(c2z; v, L) = c−`−mθ(z; cv, c2L).

The Poisson summation formula yields:

Proposition 2.2. For 0 6= c ∈ Z, we have

θ

(
−1

z
;w, cL

)
= (−1)`+m(

√
−1)(µ−λ)/2|c|−n|D|−1/2

× z`+(λ/2)zm+(µ/2)
∑

v∈c−1L∗/cL

e(S(w, v))θ(z; v, cL), (2.6)

where zs = |z|s exp(iσs) writing z = |z| exp(iσ) with −π < σ < π and D =
det(S).

Writing ψQ(z; v) = Q(v)e(S[v]x + P [v]iy), the idea of the proof is classical
that we compute its Fourier transform and apply the Poisson summation formula
to θ. The computation follows Hecke’s technique in his Werke No.23 ([H] and
[Sh1] Proposition 2.1).

Proof. We start computing Fourier transform of ψQ. Here ψ1 indicates that we
take Q = 1. Here is a well known formula. For z ∈ H′ = {z ∈ C|Re(z) > 0}
and a ∈ R×:

∫ ∞

−∞
exp(−π|a|zv2)e(awv)dv =

√
|a|−1

z−1/2 exp(−π|a|w
2

z
). (2.7)

We can always find B ∈ GLn(R) such that BS · tB = diag[a1, . . . , an] and
BP · tB = diag[|a1|, . . . , |an|] (Exercise 7). We write wi =

∑
j bijvj (so, for the

real base, wi, S and P are diagonal). Then writing v = α1w1 + · · ·+αnwn (so,
α(v) = (α1, . . . , αn) is the coordinate of v with respect to the base {wi}). Then

ψ1(z; v) = exp(−π
∑

i

(α2
i |ai|y− α2

iai
√
−1x)).
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We write β for the coordinate with respect to {vi}; so, v =
∑

i βivi. Then we
write dv = dβ1 · · ·dβn (a Haar measure on VR). Then dv = Cdα1dα2 · · ·dαn for
C =

√
(|a1 · · ·an|D−1). Writing w =

∑
i γiwi (α(w) = γ), we find

ψ∗(z;w) = C

∫

VR

exp(−π
∑

i

(y|ai|α2
i−

√
−1xaiα

2
i ))e(

∑

i

aiαiγi)dα1dα2 · · ·dαn.

By applying (2.7)

ψ∗
1(z;w) = |D|−1/2(−

√
−1z)λ/2(

√
−1z)µ/2ψ1(−

1

z
;w). (2.8)

In order to compute ψ∗
Q, we write β(w+) = r = (r1, . . . , rn) and β(w−) = s and

define

∂+ =
∑

i

ri
∂

∂βi
and ∂− =

∑

i

si
∂

∂βi
.

Then by a simple computation, we get

∂±S[v] = 2S(v, w±), ∂±P [v] = 2P (v, w±) = ±2S(v, w±),

∂±S(u, v) = S(u, w±). (2.9)

From this, we get

∂±Q(v) =

`S(v, w+)`−1S(w+, w±)S(v, w−)m +mS(v, w−)m−1S(w−, w±)S(v, w+)`.

Since S[w±] = 0 and S(w±, w∓) = 0, we have

∂±Q(v) = 0. (2.10)

From this, we have

∂`+∂
m
−ψ1(z;w) = (2πi)`+mψQ(z;w)z`zm.

Then, using the fact: ∂`+∂
m
− e(S(v, w)) = (2πi)`+mQ(v)e(S(v, w)), applying the

differential operator ∂`+∂
m
− to the formula (2.8), we get

ψ∗
Q(z;w) = C`,mz

−`−λ/2z−m−µ/2ψQ(−1

z
;w) (2.11)

for C`,m = (
√
−1)(λ−µ)/2(−1)m+`|D|−1/2. Then by the Poisson summation

formula: ∑

l∈L
f(v + l) =

∑

l∗∈L∗

f∗(l∗)e(S(−v, l∗)),

we get

θ(z, w;L) =
∑

v∈L
ψQ(z;w + v) =

∑

v∈L∗

ψ∗
Q(z; v)e(S(−w, v))

= C`,mz
−`−λ/2z−m−µ/2

∑

v∈L∗

e(S(−w, v))ψQ(−1

z
; v),
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because e(S(−w, v)) only depends on v mod L if w ∈ L∗. Now we make a
variable change z 7→ −1

z
and use Lemma 2.1 (3), we get the desired formula for

c = 1. For general cL, we just replace L by cL and do the same argument.

Applying Proposition 2.2 and Lemma 2.1 to:

az + b

cz + d
=
a

c
− 1

c(cz + d)

for γ =
(
a b
c d

)
∈ SL2(Z) with c 6= 0, we find

θ(γ(z); v, L) = C`,mc
−(n/2)(c/|c|)λ(cz + d)`+(λ/2)(cz + d)m+(µ/2)

×
∑

u∈L∗/c2L

∑

w∈(v+L)/L

ϕ(v, u)θ(z; u, c2L), (2.12)

where

ϕ(v, u) =
∑

w∈(v+L)/cL

e(
1

c
(aS[w] + 2S(w, u) + dS[u]))

for v ∈ L∗/L and u ∈ L∗/c2L. Since up to scalar, any element on γ ∈ SL2(F )
can be written as a product of an element in SL2(Z) and an upper-triangular
matrix in GL2(F ), we can compute the effect of z 7→ γ(z) by using this formula
and Lemma 2.1. In particular, sΦ(0) = 0 for all s ∈ MpS,1(R) if Q is not a
constant, because SL2(Q) is dense in SL2(R). The same is again true for Φ ∈
S(VA) and s ∈ MpS,1(A) if Φ∞ involves non-trivial homogeneous Q, because
the action of MpS,1(A

(∞)) does not affect its action at ∞.

Lemma 2.3. Let the notation and the assumption be as above. Then

ϕ(v, u) = e(−b(dS[u] + 2S(v, u)))ϕ(v + du, 0).

In particular, ϕ(v, u) depends only on (u, v) ∈ (L∗/L)2.

Proof. We have

ϕ(v + du, 0) =
∑

w∈(v+du+L)/cL

e(
a

c
S[w]) =

∑

w∈(v+L)/cL

e(
a

c
S[w + du]),

which is a Gauss sum. However,

aS[w + du] = aS[w] + 2adS(w, u) + ad2S[u]

ad=1+bc
= (aS[w] + 2S(w, u) + dS[u]) + c(2bS(w, u) + dbS[u]),

where we used the fact: ad− bc = 1 to show the last equality. Since w ∈ v + L,
e(bS(w, u)) = e(bS(v, u)), we have

e(
a

c
S[w + du]) = e(

1

c
(aS[w] + 2S(w, u) + dS[u]))e(2bS(v, u) + dbS[u]).
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This shows:

ϕ(v+du, 0) = e(2bS(v, u)+dbS[u])
∑

w∈(v+L)/cL

e(
1

c
(aS[w]+2S(w, u)+dS[u]))

= e(b(2S(v, u) + dS[u]))ϕ(v, u),

which shows the formula.

Combining (2.12) and Lemma 2.3, we get

Proposition 2.4. Let γ =
(
a b
c d

)
∈ SL2(Z). Then we have

1. If c 6= 0, then

θ(γ(z); v, L) = C`,mc
−n/2(c/|c|)λ(cz + d`+(λ/2)(cz + d)m+(µ/2)

×
∑

u∈L∗/L

ϕ(v, u)θ(z; u, L),

2. If c = 0, θ(γ(z); v, L) = e(dbS[v])θ(z; v, L).

Exercises

1. Prove all the statements in Example 2.1 in details.

2. Prove that v 7→ ΦP (v; z) is a Schwartz function on VR (that is, it is of
C∞–class and all its derivative multiplied by a polynomial on VR decreases
when v → ∞).

3. Prove that θ(z; v, L) is absolutely and locally uniformly convergent for
z ∈ H and P ∈ Y.

4. Prove Lemma 2.1.

5. Find w± ∈ VC such that S[w±] = 0 and S(v, w±) = ±P (v, w±) for a
positive majorant P , and specify a necessary and sufficient condition for
the existence of non-zero w±.

6. Prove that if η is spherical with respect to P , η◦g is spherical with respect
to gP for g ∈ OS(R).

7. Explain why we can find B ∈ GLn(R) as in the proof of Proposition 2.2.

2.3 Transformation formula of theta series

Let M be the least integer such that MS[L∗] ⊂ 2Z. If M = 1, then L∗ = L,
and by the theorem of Weil ([M] Theorem 2.3) applied to VR, θ(z;L) is invariant
under SL2(Z). Thus we assume that M > 1. We are going to show
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Theorem 2.5. Let γ ∈
(
a b
c d

)
∈ Γ0(M) with d > 0 (by changing γ by −γ if

necessary). Then we have, for v ∈ L∗,

θ(γ(z); v, L) = χ(d)e(abS[v])(cz + d)`+(λ/2)(cz + d)m+(µ/2)θ(z; av, L),

where

χ(d) =

{(
(−1)mD

d

)
if n = 2m with m ∈ Z,

εnd
(−2c

d

) (
D
d

)
if n = 2m+ 1 for m ∈ Z.

Here if c = 0, the Legendre symbol
(−2c

d

)
is assumed to be equal to 1, and

εd =

{
1 if d ≡ 1 mod 4,√
−1 if d ≡ 3 mod 4.

We shall give a sketch of a proof of the theorem.

Proof. We start with γ ∈ SL2(Z). We may assume that c 6= 0 (otherwise the
formula is obvious and follows from Proposition 2.4 (2)). We see easily that
ML∗ ⊂ L (Exercise 1). By replacing z by −1

z
in the formula of Proposition 2.4

(1) and then applying Proposition 2.2, we get

θ

(
bz − a

dz − c
; v, L

)
= |c|−n/2|D|−1(dz − c)`+(λ/2)(dz − c)m+(µ/2)

×
∑

t∈L∗/L




∑

u∈L∗/L

ϕ(v, u)e(S(u, t))



 θ(z; t, L).

In this computation, we assumed that c < 0 when n is odd (which results at
the end the assumption that d > 0). Note that

ϕ(v, u) = e(−b(dS[u] + 2S(v, u))
∑

w∈(v+du+L)/cL

e(
a

c
S[w]).

We now suppose γ =
(
b −a
d −c

)
∈ Γ0(M); so, d ≡ 0 mod M . Since MS[L∗] ⊂ 2Z,

we find 1
2dS[u] ∈ Z, and e(−bdS[u]) = 1. Since ML∗ ⊂ L, du ∈ L and hence

v ≡ v + du mod L. Thus we have

ϕ(v, u) = e(−bS(v, u))
∑

w∈(v+L)/cL

e(
a

c
S[w]).

We put ϕ(v) =
∑

w∈(v+L)/cL e(
a
cS[w]) for the part of the Gauss sum. By this

maneuver, we reach the following expression:

θ

(
bz − a

dz − c
; v, L

)
= |c|−n/2|D|−1ϕ(v)(dz − c)`+(λ/2)(dz − c)m+(µ/2)

×
∑

t∈L∗/L




∑

u∈L∗/L

e(S(u, t − bv))



 θ(z; t, L).
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Now putting ψ(u) = e(S(u, t − bv)) for u ∈ L∗/L, ψ is an additive character of
the additive group L∗/L. By the orthogonality relation of characters, we have

∑

u∈L∗/L

ψ(u) =

{
[L∗ : L] = |D| if ψ is trivial,

0 otherwise.

Thus the term which survives is those t− bv ∈ (L∗)∗ = L. This yields

θ

(
bz − a

dz − c
; v, L

)
= ϕ(v)|c|−n/2(dz − c)`+(λ/2)(dz − c)m+(µ/2)θ(z; bv, L).

Thus we need to compute the Gauss sum ϕ(v).
Hereafter we rewrite γ =

(
b −a
d −c

)
as γ =

(
a b
c d

)
∈ Γ0(M). Thus the assump-

tion c < 0 becomes d > 0. The above formula then states:

θ (γ(z); v, L) = ϕ(v)|d|−n/2(cz + d)`+(λ/2)(cz + d)m+(µ/2)θ(z; av, L)

under d > 0 and c ≡ 0 mod M , where ϕ(v) =
∑

w∈(v+L)/dL e(
b
dS[w]). We

modify ϕ(v) slightly. Since ad− bc = 1, ad ≡ 1 mod M and (ad− 1)v ∈ L for
all v ∈ L∗; so, adv ≡ v mod L. Thus w ∈ (v+L)/dL satisfies w ≡ adv mod L
and hence w = adv + u with u ∈ L/dL. Thus

ϕ(v) =
∑

u∈L/dL
e(
b

d
S[adv + u]) =

∑

u

e(ba2dS[v] + 2abS(v, u) +
b

d
S[u])

ba2d≡ab mod M
= e(abS[v])

∑

u∈L/dL
e(
b

d
S[u]).

We write W (b, d) = |d|−n/2 ∑
u∈L/dL e(

b
dS[u]). Thus the formula we are dealing

with is:

θ (γ(z); v, L) = e(abS[v])W (b, d)(cz + d)`+(λ/2)(cz + d)m+(µ/2)θ(z; av, L).

Then it is standard from the time of Hecke that W (b, d) = χ(d) (see [H] or the
proof of [Sh1] Proposition 2.1).

Exercises

1. Prove ML∗ ⊂ L.

2. Prove W (b, d) = χ(d).

2.4 Siegel-Eisenstein series

As before, we write Φ for a Schwartz-Bruhat function in S(VA) for A = A and
R. Let L = V ⊂ VA if A = A and L ⊂ V is a lattice if A = R. For any algebraic
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subgroup H ⊂ SpS , we write HL = {h ∈ SpS(A)|Lh = L}. Then by [M] 2.4
and Theorem 2.2, we have

rL
(
a 0
0 a−∗

)
Φ(v) =

√
|a|Φ(va) and rL ( 1 b

0 1 )Φ(v) = eA(
1

2
S(v, vb))Φ(v).

Since the above type of element generate P1,L, we have an exact description of
the metaplectic action of p ∈ P1,L on Φ. If A = R and

(
a 0
0 a−∗

)
∈ P1,L, then

La = L; so, a is unimodular, that is, a = ±1. Thus (r
(
a 0
0 a−∗

)
Φ)(0) = Φ(0).

When A = A, we see P1,L = B(Q) for the Borel subgroup B of SL(2). Thus if(
a 0
0 a−∗

)
∈ P1,L = B(Q), then a ∈ Q× and by the product formula, |a| = |a|n/2A =

1. Thus again we have (r
(
a 0
0 a−∗

)
Φ)(0) = Φ(0). By the above description of

the action, we immediately have (rL ( 1 b
0 1 )Φ)(0) = Φ(0). Therefore, for every

p ∈ P1,L, we have

Lemma 2.6. The function s 7→ (sΦ)(0) defined on MpS,1(A) for A = A and
R is left invariant under P1,L.

We then define the Eisenstein series, formally, by

E(Φ)(s) =
∑

γ∈P1,L\SpS,1,L

(γsΦ)(0). (E)

To see the convergence, we first treat the case A = R. In this case, we may
assume that the Schwartz function is a linear combination of the functions of
the form: Q(v)eR

(
1
2

(S[v]x+ iyP [v])
)

for a polynomial Q : V → C, where P is
a positive majorant of S. We have already seen that if Q is non-trivial, sΦ has
polynomial part non-trivial; so, (sΦ)(0) = 0. Thus we may assume that Q = 1
to compute (sΦ)(0). Then as we have already seen in the previous section that,
for a constant C > 0,

|(sΦ)(0)| ≤ C|h(s, z)|−n,
writing according to Shimura, as in [M] Corollary 2.5

MpS,1(R) =
{
(s, h(s, z))

∣∣s ∈ SL2(R)
}
,

where h(s, z) for the variable z on the upper half complex plane H is the auto-
morphic factor of half integral weight: h(s, z)2 = t(cz + d) for t ∈ T.

Note here that
P1,L =

{
( 1 b

0 1 )
∣∣b ∈ rZ

}

for a rational number r and SpS,1,L is a conjugate of SL2(Z) in SL2(Q). Then
it is well known from the time of Hecke that the series

∑

γ∈P1,L\SpS,1,L

|h(γ, z)|−n

is absolutely convergent if n > 4 (note that h(s, z) is the automorphic factor of
half integral weight).
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We put the topology on S(VR) of local uniform convergence of all derivatives.
Then, as is easily seen, Φ 7→ E(Φ)(s) for a fixed s is a continuous linear map
from S(VR) into C (a tempered measure).

We now reduce the case when A = A to the case when A = R. Then
P1,L = B(Q) and SpS,1,L = SL2(Q). Thus we have:

E(Φ)(s) =
∑

γ∈B(Q)\SL2(Q)

(γsΦ)(0).

By the strong approximation theorem (e.g. [MFG] 3.1.2), we have

SL2(A) = SL2(Q)U · SL2(R)

for each open subgroup U of SL2(Ẑ). Since we have seen in the previous section

that there exists an open subgroup U of SL2(Ẑ) such that sΦ = Φ for all s ∈ U .
Thus E(Φ) is left invariant under SL2(Q) and right invariant under U . Thus
E(Φ) is determined by its restriction to SL2(R). Thus we may assume that
s = 1 to see the convergence. We write E(Φ) = E(Φ)(1). We consider the
function: s 7→ |(sΦ)(0)|. We know that

|(
(
a b
0 a−1

)
sΦ)(0)| = |a|n/2

A
|(sΦ)(0)|.

Since B(A)\SL2(A) = P1(A) is compact (cf. Example 1.4) and SL2(A) =

B(A)SL2(Ẑ)SO2(R) (the Iwasawa decomposition), defining ε : SL2(A) → R+

by ε(s) = |a|n/2A if s =
(
a b
0 a−1

)
u for u ∈ SL2(Ẑ)SO2(R), we find a positive

constant C such that
|(sΦ)(0)| ≤ Cε(s),

because s 7→ (sΦ)(0)/ε(s) factors through the compact set (B\SL(2))(A). Thus
we have

|E(Φ)(s)| ≤ C
∑

γ∈B(Q)\SL2(Q)

ε(γs).

Write the right-hand-side for s = 1 of the above equations E(ε). For γ = ( ∗ ∗
c d ) ∈

SL2(Q), we decompose γ = bu for b ∈ B(A) and u ∈ SL2(Ẑ)SO2(R). Since
u∞ ∈ SO2(R) fixes i =

√
−1 ∈ H and Im (( a ∗

0 a−1 ) (i)) = |a|2∞, we find

ε(γ∞) = Im(γ(i))n/4 = |ci+ d|−n/2.

If the lower right corner of b is a−1, we have cZ + dZ = a−1Z. We may assume
that α = a(∞) ∈ Q×. Now regard α ∈ Q ⊂ A, and changing γ by diag[α−1, α]γ,
we may assume that c, d ∈ Z and (c, d) = 1. Thus we find

E(ε) =
1

2

∑

(c,d)∈Z2,(c,d)=1

|ci+ d|−n/2,

which is absolutely convergent if n > 4. This finishes the proof of absolute
convergence if n > 4.
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2.5 The formula

In this subsection, we always assume that A = A, because the case of A = R

follows from the adelic case. We compute sΦ(0) to relate the Siegel Eisenstein
series with the theta series.

As we have seen in [M] 2.4, if c 6= 0

(
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −c−1

c 0

) (
1 c−1d
0 1

)
.

Thus SL2(Q) = B(Q) t B(Q)JB(Q) for J =
(

0 −1
1 0

)
. In other words, noting

the fact:

B(A) ∩ J−1B(A)J = T (A) = {diag[a, a−1]|a ∈ A×},
T (A)\B(A) = U(A) =

{
( 1 b

0 1 )
∣∣b ∈ A

}
,

we have

E(Φ) = Φ(0) +
∑

γ∈B(Q)\B(Q)JB(Q)

(γΦ)(0)

= Φ(0) +
∑

γ∈U(Q)

(JγΦ)(0).

We know that

JΦ(v) =

∫

VA

Φ(w)eA(S(w,−v))dw

J ( 1 b
0 1 )Φ(v) =

∫

VA

Φ(w)eA(S(w,−v) +
1

2
S(w,wb))dw.

This shows

(J ( 1 b
0 1 )Φ) (0) =

∫

VA

Φ(w)eA(
1

2
S(w,wb))dw. (2.13)

Thus we get, for φ(v) = 1
2
S[v],

E(Φ) = Φ(0) +
∑

η∈Q

∫

VA

Φ(v)eA(ηφ(v))dv.

We therefore consider the function ϕ : x 7→
∫
Vp

Φ(v)ep(φ(v)x)dv. Identify

V = Qn and write the coordinates as (x1, . . . , xn). Thus VA = Gn
a (A) is an

affine space of dimension n; in this way, we consider V as an affine group
scheme sending A to VA. We then consider the Tamagawa measure |ω|p on
Vp given by ω = dx1 ∧ dx2 ∧ · · · ∧ dxn. The quadratic form φ(v) = 1

2S[v]
is a morphism φ : V → Ga of schemes over Q. Writing VA[x] = φ−1(x) for
x ∈ Ga(A), we know from Witt’s theorem (cf. [EPE] 1.2), if x ∈ Gm(Qp),
Vp[x] − {0} ∼= Oξ(Qp)\OS(Qp) for the stabilizer of ξ with φ(ξ) = x. It is
known that if x = φ(ξ), y = φ(η) ∈ Gm(Qp), we can find α ∈ GLV (Qp) such
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that S(vα, wα) = φ(ξ)−1φ(η)S(v, w) for all v, w ∈ V (Qp). In other words,
α−1Oξα = Oξα. Since φ(ξα) = φ(η), we know that

Vp[x] ∼= Oξ(Qp)\OS(Qp) ∼= Oξα(Qp)\OS(Qp) ∼= Vp[y]

for y = ψ(η). Thus Vp−Vp[0] ∼= Vp[x]×Gm and hence we can split ω = ωx∧dx
for the variable x of Ga, where ωx is a gauge form on Ox\OS (here one can of
course choose x ∈ V ; so, ωx is Q–rational). Actually this can be done also for
Vp[0] − 0 since φ has singularity only at v = 0. Thus we find a measure |ωx|
supported on Vp[x] such that

∫

Vp

Φ(v)dv =

∫

Qp

∫

Vp[x]

Φ(v)d|ωx|dx.

If φ(v) = 0 but v 6= 0, S restricted to Qpv is trivial. Since S is non-degenerate,
we find v′ with S(v, v′) = λ 6= 0. We have S[v′ − xv] = S[v′] − 2xλ for x ∈ Qp.
Thus taking x = (2λ)−1S[v′−xv] and replacing v′ by v′−xv, we may assume that
S[v′] = 0. By dividing v′ by λ, we may assume that λ = 1. Then taking a base
vj of W = (Qpv+Qpv

′)⊥, the matrix form of S with respect to v, v1, . . . , vn−2, v
′

is of the form (
0 0 1
0 S′ 0
1 0 0

)
(2.14)

for a symmetric matrix S′ of degree n−2. We can now write v′′ with S[v′′] = 0 as
follows: Writing v′′ = av+w+bv′ for a, b ∈ Qp and w ∈W , we find S[v′′] = 2ab+
S′[w] = 0. Thus ab = −1

2S
′[w]. In other words, v′′ = −(2a)−1S′[w]v + w + av′

for a ∈ Q×
p and for any w ∈W with S′[w] 6= 0 or v′′ ∈ Qpv ∪ Qpv

′. This shows
that i : (W−W [0])×Gm ⊂ Vp[0]−{0} sending (w, a) to −(2a)−1S′[w]v+w+av′

brings W −W [0] into a Zariski open dense subset of Vp[0]. Since the Tamagawa
measure |ω0| has measure 0 on a proper Zariski closed subset, it is determined by
its restriction toW ′ = (W−W [0])×Gm . Since onW ′, i∗ω0 is a constant multiple
of dx1 ∧ dx2 ∧ · · · ∧ dxn−2 ∧ da

a (because it is translation invariant by w′ ∈ W
and multiplication invariant for a:Exercise 2), we find d|ω0|(sv) = |s|n−2

p d|ω0|
for s ∈ Qp. Anyway d|ω0| is supported by Vp[0]− {0}.

Defining FΦ(x) =
∫
Vp[x]

Φd|ωx|, we find that

ϕp(x) =

∫

Vp

Φp(v)ep(φ(v)x)dv =

∫

Qp

FΦ(y)ep(yx)dx,

which is the Fourier transform F ∗
Φ of FΦ on Qp with respect to dx and 〈x, y〉 =

ep(xy).
We can carry out the same argument also for R and A. In other words, we

can find a measure |ωx| on VA[x] such that
∫

VA

Φ(v)dv =

∫

A

∫

VA[x]

Φ(v)d|ωx|dx

for all Φ ∈ S(VA). We then define

FΦ(x) =

∫

VA[x]

Φd|ωx|
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for Φ ∈ S(VA). Then ϕ(x) =
∫
VA

Φ(v)eA(φ(v)x)dv is the Fourier transform F ∗
Φ

of FΦ with respect to 〈x, y〉 = eA(xy).
By the Poisson summation formula, we find

∑

η∈Q

FΦ(η) =
∑

η∈Q

F ∗
Φ(η) =

∑

η∈Q

∫

VA

Φ(v)eA(φ(v)η)dv.

This is exactly E(Φ)−Φ(0). Weil verified that the Poisson summation formula
is valid if E(Φ) converges absolutely (see [We2] Proposition 2).

On the other hand, we have

∑

η∈Q

FΦ(η) =
∑

η∈Q

∫

VA[η]−{0}
Φd|ωη|,

or more generally, the Fourier expansion of the Eisenstein series is:

E(Φ) ( 1 x
0 1 ) =

∑

η∈Q

∫

VA[η]−{0}
Φd|ωη|eA(ηx). (2.15)

We choose the Tamagawa measure dg on OS(A). Then dg induces the Tam-
agawa measure d|ωη| on Oξ(Q)\Oξ(A) = VA[η] for ξ ∈ V with φ(ξ) = η (by the
uniqueness of the Tamagawa measure). We now compute the Fourier expansion
of the theta series: ∫

OS(Q)\OS(A)

Θ(Φ)(s, g)dg.

Thus writing α(x) = ( 1 x
0 1 ), we compute

∫
OS(Q)\OS(A)

Θ(Φ)(α(x), g)dg. By defi-
nition,

Θ(Φ)(α(x), g) =
∑

ξ∈V
α(x)Φ(ξg) =

∑

ξ∈V
Φ(ξg)eA(φ(ξg)x).

Then we have
∫

OS(Q)\OS(A)

Θ(Φ)(α(x), g)dg =
∑

ξ∈V

∫

OS(Q)\OS(A)

Φ(ξg)eA(φ(ξg)x)dg

=
∑

η∈Q

∑

ξ:φ(ξ)=η

∫

OS(Q)\OS(A)

Φ(ξg)dgeA(ηx).

Suppose that φ(ξ) = η. Then it is known by Witt’s theorem (e.g.[EPE] 1.2)
that for any Q–algebra A,

Oξ(A)\OS(A) ∼= VA[η]− {0} via g 7→ ξg, (2.16)

where ξ ∈ V is chosen so that φ(ξ) = η, VA[η] = {v ∈ VA|φ(v) = η} and

Oξ(A) =
{
g ∈ OS(A)

∣∣ξg = ξ
}
.
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Now note that

∑

ξ:φ(ξ)=η

∫

OS(Q)\OS(A)

Φ(ξg)eA(ηx)dg

=
∑

γ∈Oξ (Q)\OS(Q)

∫

OS(Q)\OS(A)

Φ(ξγg)eA(ηx)dg

=

∫

Oξ(Q)\OS(A)

Φ(ξg)eA(ηx)dg

= τ (Oξ)

∫

VA[η]

Φ(v)d|ωη|eA(ηx),

where τ (Oξ) =
∫
Oξ(Q)\Oξ(A) dgη (the Tamagawa number of Oξ). This shows,

if η 6= 0, writing c(η, f) for the Fourier coefficients of eA(ηx) of a function
f : A → C,

c(η;

∫

OS(Q)\OS(A)

Θ(Φ)(α(x), g)dg) = τ (Oξ)

∫

VA[η]

Φ(v)d|ωη|. (2.17)

Similarly, we get

c(0;

∫

OS (Q)\OS(A)

Θ(Φ)(α(x), g)dg) = τ (G)Φ(0) + τ (Oξ)

∫

VA[0]−{0}
Φ(v)d|ω0|

(2.18)
for ξ 6= 0 with φ(ξ) = 0. Thus, if τ (Oξ) = τ is independent of ξ if φ(ξ) 6= 0,
comparing the Fourier coefficients in (2.15) and (2.17), we get, for ξ 6= 0 with
φ(ξ) = 0,

τΦ(0) + τ

∫

VA[0]−{0}
Φ(v)d|ω0| = τ (G)Φ(0) + τ (Oξ)

∫

VA[0]−{0}
Φ(v)d|ω0|.

By replacing Φ(x) by Φt(x) = Φ(tx) for t ∈ A×, as we have seen already,
d|ω0(tx)| = |t|n−2

A d|ω0(x)|; so, the second part of the above identity gets mul-
tiplied by |t|2−nA if we replace Φ by Φt while the first term is intact. Therefore
we get

τ (G) = τ (Oξ) = τ

even if ξ 6= 0 with φ(ξ) = 0.

If φ(ξ) = η 6= 0, Oξ is an orthogonal group OSξ
for Sξ on a space of dimension

n − 1, because if α ∈ Oξ, α preserves Wξ = (Qξ)⊥ and hence Sξ = S|Wξ
. Thus

Oξ ∼= OSξ
, and Oξ is an orthogonal group of Sξ which has dimension one less

than n = dimV . If we know τ = τ (OSξ
) is a constant independent of Sξ of n−1

variables, we get the desired identity plus an extra information that τ (OS) = τ
looking at the constant term. Thus by induction, we only need to prove the
constancy: τ = τ (OS) when S has four variables.

Weil computed directly that τ (OS) = 2 if dimS = 3 and 4. When n = 4, to
show this, he uses the fact that OS is either isomorphic to (B××B×)/{±(1, 1)}
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for a quaternion algebra B/Q or to B×/{±1} for a quaternion algebra B over
a quadratic field over Q (see [AAG] Theorem 3.7.1). Thus the formula is valid
for all S of dimension n > 4, and we get at the same time τ (OS) = 2, which
actually follows also from [AAG] Theorem 4.5.1. Thus we have

Theorem 2.7. Let dg be the invariant measure on OS(Q)\OS(A) with total
volume 1 (so the half of the Tamagawa measure). Then we have, if n > 4,

∫

OS(Q)\OS(A)

Θ(Φ)(s, g)dg = E(Φ)

for all Φ ∈ S(VA).

The proof of this theorem given in [We2] VI is deeper than what we said,
using the full force of measure theory, without making use of the known fact on
the Tamagawa numbers; so, it gives another proof of the fact that τ (OS) = 2
(see Mars’s papers in [AGD] Chapter II for a simplified account of Weil’s second
proof). Therefore, the determination of the Tamagawa numbers is basically
equivalent to the identity as above. However the Siegel formula itself is deeper,
because it also involves the explicit determination of Fourier coefficients of E(Φ),
which contains more information than the Tamagawa number.

Exercises

1. Write S as in (2.14). Then show that α(w) =

(
1 w −S′[w]/2

0 1 −S′tw
0 0 1

)
is an element

of OS(A) if w ∈ An−2.

2. Writing V = Qpv ⊕W ⊕ Qpv
′ with the notation in (2.14) and identifying

W = Qn−2
p using the base {vj} there, show that i∗ω0 is invariant under

translation: w 7→ w + w′ and a 7→ λa for λ ∈ Q×
p and w′ ∈ W . Hint: use

the existence of α(w) and ω0(gx) = ω0(x) for g ∈ OS(Qp).

2.6 General case

In this subsection, we briefly describe what Weil proved for more general sym-
plectic groups SpS .

We keep the notation of the previous section, but we consider V q for a
positive integer q instead of V . Then we define S[v] = S(vi, vj) ∈ Mq(Q)
writing v = (v1, . . . , vq) for vi ∈ V . Then we have

Spq(A) ⊂ ZO(A) =
{
σ ∈ Sp(V qA)

∣∣σg = gσ for all g ∈ OS(A)
}
,

where g ∈ OS(A) acts on v diagonally as vg = (v1g, . . . , vqg). We put

Mpq(A) =
{
g ∈Mp(V qA)

∣∣π(g) ∈ Spq(A)
}

(A = R,Qp,A)

and Pq(A) = P (A)∩Spq(A) inside SpV q(A). Then we can prove in the exactly
the same way as in the case: q = 1 that the action of Mpq commutes with the
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action of OS ; so, we have well define Θ(Φ)(s, g). In this case, for Φ ∈ S(V qA ),

E(Φ)(s) =
∑

γ∈Pq(Q)\Spq(Q)

(γsΦ)(0) (s ∈Mpq(A))

converges absolutely if n > 2q + 2 (the same proof as in the case of q = 1
works well), and the Siegel-Weil formula is valid in the same way under this
assumption:

∫

OS(Q)\OS(A)

Θ(Φ)(s, g)dg = E(Φ)(s) (s ∈ Spq(A)).

The computation itself is basically the same as in the case of SL(2), but in this
case, we need to take care of η ∈ Mq(Q) such that rank η < q. Modular forms
on SL(2) is determined by its Fourier coefficients of eA(ηx) for η 6= 0; so, we
have deduced the identity of c(0; ∗) to those of c(η; ∗) for η 6= 0. However this
is no longer true in the general Siegel modular case; so, Weil used an induction
argument on q a bit more technical.

In the above setting, the module V qA is considered to be a left module over
Mq(A), and it is also considered to be AA = EndA(VA)–module. In particular,
A has involution a 7→ StaS−1 and OS(A) = {x ∈ AA|xx∗ = 1}. Thus we can
further generalize this situation as follows: Take a simple algebra A over a field Q

with involution x 7→ x∗. Take a simple A–module V , and put V̂ = HomA(V,A).

We can identify V̂ q
A

with (V q
A

)∗ by 〈x, y〉 = e(TrA/Q(y(x))). By using these

pairing, we construct Sp(GA) for GA = V qA×(V̂ qA) (A: any Q–algebra), Mp(GA)
(A = R,Qp,A) and OS(A) = {x ∈ AA|xx∗ = 1}. We then define

SpA,q(A) =
{(

a b
c d

)
∈ Sp(GA)

∣∣a, b, c, d ∈ EndA(V qA)
}

MpA,q(A) =
{
x ∈ Mp(GA)

∣∣π(x) ∈ SpA,q(A)
}
.

(2.19)

We write P for the parabolic subgroup of Spq(A) with lower left corner element
c = 0. Then we can think of

E(Φ)(s) =
∑

γ∈P(Q)\SpA,q(Q)

(γsΦ)(0) (s ∈MpA,q(A))

Θ(Φ)(s, g) =
∑

ξ∈V q

sΦ(ξg) (s ∈ MpA,q(A), g ∈ OS(A)).
(2.20)

Writing A = Mm(D) for a division algebraD with center F , then we can always
write x∗ = S · txιS−1 for an involution x 7→ xι of D and S ∈ A× with tSι = εS
(ε = ±1). We now define

δ = dimF D and δ′ = dimF {ξ ∈ D|ξι = εξ}.

Then Weil proved that if m > 2q + 4(δ/δ′) − 2, then E(Φ) is absolutely con-
vergent. Under a splitting condition at one place (that is, a generalization of

30



Witt’s theorem holds there), Weil also proved

∫

OS (Q)\OS(A)

Θ(s, g)dg = E(Φ)

for the measure dg on OS(Q)\OS(A) of total volume 1 (see [We2] Théorème
5). The groups of type OS cover almost all classical groups (another result of
Siegel); so, the Siegel-Weil formula and the Tamagawa number are known for
almost all such groups.
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