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We present an exposition of Kisin’s patching argument which simplified and general-
ized earlier argument by Wiles, Taylor and Fujiwara. Main references are Kisin’s two
papers [K1] and [K2].

1. PATCHING LEMMAS
Let K/Q, be a finite extension with p-adic integer ring W.

Lemma 1.1. If ¢ : R — T is a surjective algebra homomorphism of noetherian integral
domains and dim T = dim R, then ¢ is an isomorphism.

Proof. Since Spec(T') is a closed subscheme of an integral irreducible scheme Spec(R); so,
if it is proper closed subscheme, dim7T" < dim R, a contradiction; so, Spec(R) = Spec(T),
which implies R = T'. O

There is a version of the above lemma:

Lemma 1.2. Let B be a complete local noetherian domain and T be a complete local
algebra. If ¢ : Bl[z1,...,xn]] — T is a surjective algebra homomorphism and dimT =
dim B 4+ m, then ¢ is an isomorphism.

Proof. By assumption, T is noetherian; so, Spec(T)"? is a finite union of integral irre-

ducible components. Let Spec(Tp) C Spec(T)™? be an irreducible component of maxi-
mal dimension; so, dim 7" = dim 7j. Thus we have the surjective algebra homomorphism

T — T,. Composing this with Bl[z1,...,%,]] = T, we have a surjective algebra homo-
morphism: Bl[z1,...,ZTn]] = To. Applying the above lemma to this morphism, we get
Bl[z1,...,zm]] =T, and hence Bl[z1,..., 2, = T. O

Here is a simpler version by Kisin ([K1] Proposition 3.4.1) of the Taylor-Wiles patching
theorem (see [HMI] Theorem 3.23):
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Proposition 1.3 (Taylor-Wiles, Fujiwara, Kisin). Let B be a complete local W -domain
of dimension d + 1, and let ¢ : R — T" be a surjective homomorphism of B-algebras.
Assume to have two non-negative integers h and j such that for each positive integer n,
there is a commutative diagram of W -algebras:

B:=B[xy,...,xhj-d]] — R. 25 T,
(1.1) /ol !
A= W[[yl, e ,yh,tl, e ,tj]] R i T,

which satisfies

(0) The square consists of homomorphisms of B-algebras;

)
(1) The horizontal and vertical morphisms are surjective;

(2) (y1,...,yn) Ry = Ker(R, — R) and (y1,...,yn)T, = Ker(T,, = T);
(3) If b, = Ker(W{[y1, ..., Yn, t1,- .., t;]] = T5), then

bn C ((1_|_y1)p” - 1>>(1 +yh)pn - 1)7

and T, is finite free over A/b, (so, in particular, T is finite free over Ay :=
W(lt1,....t]]); B
(4) R, is a quotient of a power series ring B (the bounded tangential dimension).

Then the morphism @ is an isomorphism, as are the maps @, for alln > 1, and B is a
Cohen-Macaulay ring.

A noetherian local ring A is Cohen-Macaulay if depth A = dim A (see [CRT] Sec-
tion 17). In an application, 7" is the minimal level Hecke algebra for Hilbert modular
forms over a totally real field F' with integer ring O, R is the minimal level univer-
sal deformation ring (for deformations ramified at the minimal finite set S including p
and co0). Then for a set @, = {q1,...,qs} of h primes q; outside S with N(q;) = 1
mod p", T,, is the Hecke algebra of level S U @, and R, is the universal deforma-
tion ring unramified outside S U Q. Let A, be the p-Sylow subgroup of [];(0/q;)*.
By the diamond operator (the central action), 7,, is an algebra over W[A,]. Write
A, = []C; for the cyclic Sylow subgroup C; of (O/q;)* with generator ;. Then
the order p™ of C; is equal to or greater than p"; so, we can identify W[A,] with
Wilys, - un)]/(L+y)P™ = 1,..., (1+y,)P"" — 1) sending the generator d; to (1+ y;);
S0

b= ((1+y)"™ =1, (L4p)™ =) (T +p)" =1, (L) —1).

This proposition then proves the “R = T7 theorem for minimal deformation ring.
The ring B is the local deformation ring (versal and often an Iwasawa algebra), and
B[t ...,t;]] is the universal framed local deformation ring in Kisin’s setting; so, ¢; is
framed variables; so, we write Ay = W/{[t1,...,;]]. In the original setting of Taylor-
Wiles, j = 0 and B = W; so, they need to assume representability of the local deforma-
tion functor (the p-distinguishedness condition). Since the framed deformation functor
is always representable, B([t1, ..., ;]| is universal.
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Proof. Write F for the residue field of W. A key point is that F is a finite field. Let
s = ranky, (T') = ranky s, (T},), and put r, = snp"™(h + j) with

Ch = (mTI/LV) + ((1 +y1)pn - 17?(1 +yh)pn - 17t§)n>>t§)n) C A
Note that |T,,/c¢,T,,| = ¢™ for ¢ = |F|, and lengthpmyz,/c,7,, < 7y; in particular,

7 (T /¢mTm) = 0. Thus, R % T induces a homomorphism R/(c,, +my) 2 T/c,,T.
A patching datum (D, A) of level m is a commutative diagram of W -algebras

B - D A
/! l l
A Rf(cn +miR 5 T/e,T,

where we suppose m7;* = 0 and to have a surjection of B-algebras B — D, and the square
consists of surjective homomorphisms of B-algebras and m}* = 0. An isomorphism
between patching data (D, A) and (D', A’) are isomorphisms of each term of diagrams
and the 3-dimensional diagram created by these two diagrams has to be commutative.
For a given m, the order of D is bounded by the bounded tangential dimension condition
(4) and m’y" = 0; so, there are only finitely many isomorphism classes of patching data
of level m. Reducing the diagram (1.1) modulo ¢,,, we get infinitely many patching
data of level m for each n > m. Thus, by Dirichlet’s drawer argument, we can find a
subsequence indexed by an infinite set I C N such that the patching data for n € I

B  — R,/(ca+m)R, 2 T,/c,T,
/ l |
Alc, R/(c, +wi)R 5 T/e,T,

form a projective system (including the surjections: B — R, /c, R, induced by the
original ones: B — R, in (1.1)) under reduction modulo ¢,, for m € I with m < n.
Passing to the projective limit, we get a new commutative diagram

B —» R, 2 T,
/] !
A R & T

with a surjective algebra homomorphism B —» Rs. Since Tu is free of finite rank
over A =1lim _ A/b,A=1lim _ A/((1+y)” —1,...,(1+yn)” — 1A, we conclude

dmT, =dimA=h+j+1=dimB+ (h+j—d) = dim B > dim T; so, by the above
lemma, we find that

B~ R Ty,
in particular, (., is an isomorphism. Then T, is Cohen-Macaulay because it is free of
finite rank over the regular ring A; so, B is Cohen-Macaulay, since dim B[[z1, ..., z,]] =
m + dim B and depth B[[z1, ..., x,]] = m + depth B. O

To state a slightly advanced patching lemma, we need the notion of the Fitting ideal.
For a commutative ring A and a finitely presented A-module M, taking a presentation
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AV 2 A0 0, the fitting ideal Fitt4(M) is defined by the ideal generated by
b x b-minors and a X a-minors of the matrix expression of ®. When A = Z and if

M = Z/NZ, we find Z N, Z — M — 0 is a presentation, and hence Fitt(M) = |N|.
More generally if M is a finite Z-module, Fitt(M) = (|M]). If A is a DVR and M is
torsion, Fitt(M) = m'™™ ™ 1f A = W[[T]], then the reflexive closure (the double
A-dual) of Fitta(M) is the characteristic ideal of M. The reflexive closure of an ideal
a of A is equal to the intersection of all principal ideal containing a. Since tensor

product preserves presentation, if ¢ : A — B is an algebra homomorphism, we have
Fittg(M ®4 B) = Fitta(M)B. Here is a lemma of Kisin:

Lemma 1.4. Let {A,, v, @ Ay — At and { My, py = My, — My_1}n>1 be a
projective system of local artinian rings A, and A,-modules M, of finite presentation.
If v, and p,, are all surjective and the number of generators of M, over A, is bounded
independently of n, then Fittg M = @n Fitta, M, for M = llnn M, and A = llnn A,.

This is an easy exercise (see [K1] 3.4.10).
The following patching theorem is an invention of Kisin (see [K1] Proposition 3.4.6)
which allows to treat nonminimal deformation rings.

Proposition 1.5 (Kisin). Let B be a complete local neotherian flat W-domain with
dimy B = d > 0. Suppose that for all localization of B at height 1 primes is a dis-
crete valuation ring and that Spec(B /my B) has nonempty reduced open subscheme (the
nilpotent locus of Spec(B /my B) is proper closed subscheme). Let R % T — Ty be sur-
jective homomorphisms of B-algebras, with T reduced (that is, no nontrivial nilradical).
Suppose that there exist non-negative integers h, j and r such that for each non-negative
integer n, there is a commutative diagram

Bl[z1, .. Thejdsr]] o Ry S T, — Tya
(1.2) T l l l
A=Wy, Yn ti, .- t]] R & T — Ty

which satisfies the following conditions:

(1) The horizontal maps and downward pointing maps are surjective,

(2) We have (y1,...,yn)Rn = Ker(R, — R), (y1,...,yn)Tn = Ker(T,, — T) and
Wi yn) Ton = Ker (T, — Tp),

(3) If b, = Ker(A — R,,), then

b, C (1 + 1P =1, (yn + D = 1)

and Ty ,, and T, are finite free over A/b,,

(4) The kernel, J,,, of the induced map B[z, ... s Thaj—dtr]]/bn = R, is generated
by at most r elements, and Tj,, is a quotient of B (but we do not require the

compatibility of the B-algebra structure with ¢,,),
(5) For each n there exists a faithful T,, module M,,, and a faithful Ty ,,-module My,
with the following properties:
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(a) My, and M, are finite free over A/b, of rank equal to ranky e, Ty and
ranky /e, 1', Tespectively,
(b) There exist maps of T,,-modules:

. .-I—
M@,n L) Mn Z_) M@,n

such that i is injective with free cokernel over A/b,, il is surjective, and
the composite i’ o i is multiplication by an element ¢, € Ty, which has
the following property: If I C R, is an ideal such that the natural map
R,/I — Ty /I has kernel p;, and admits a section, then the Fitting ideal of
the Ty../I-module p;/p3 satisfies

CuTon/I C Fittr, /1(pr/p7).

Then ¢ is an isomorphism.

Lemma 1.6. Let the notation and assumption be as in the proposition. Then T} is
reduced, and (y is not a zero diwvisor of Tj.

Proof. Let K be the quotient field of A/by = W{[[t1,...,t;]]. Then Tx = T®x K is a finite
dimensional semi-simple algebra over K; so, Tix = K1 @ --- @ K and Ty =Th @4 K =
K1 & - @ K, with finite extensions K;/IC for ¢t < s. Thus Tj « is reduced, and hence
Ty C Ty is reduced. Since My = Mo® K is faithful over Ty with dimg Tk = dimx Mk,
we conclude Mx = Ty. Similarly, we have Myox = Mpo @a K = Tpx. Thus after
tensoring K, if o gives an automorphism of Mjy g «; so, it is not a zero divisor of Ty. O

In an application, Ty, is the level @, LI .S Hecke algebra flat at p, and T, is the level
Q. LS Hecke algebra without imposing the flatness condition at p. The rings R, is
the universal deformation ring unramified outside S LI (),, without imposing the flatness
condition at p. The module My, (resp. M,) is the space of automorphic forms (with
integral coefficients in W) of level S LI @,, on a definite quaternion algebra everywhere
unramified at finite places. Here () indicates that we impose flatness at p. The morphism
i: My, — M, is the natural inclusion and i' is its adjoint under the Petersson inner
product.

For the proof, we need the following lemmas which we do not prove. The first one
is a famous lemma by Lenstra generalizing an argument of Wiles in his Fermat’s last
theorem paper:

Lemma 1.7 (Lenstra). Let V be a discrete valuation ring, R be a complete noetherian
local V -algebra, T a finite flat local V -algebra, and ¢ : R — T and 7 : T — V be
surjective V -algebra homomorphisms. Then the following three conditions are equivalent:

(1) lengthy (Ker(m o )/ Ker(m o p)?) is finite, and
lengthy (Ker(m o ¢)/ Ker(m o ¢)?) < lengthy (V/(Anny(Ker(7))V)
(which is equivalent to (Anng Ker(7))V C Fitty (Ker(m o @)/ Ker(w o ©)?));
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(2) length,, (Ker(7 o @)/ Ker(m o )?) is finite, and
lengthy, (Ker(m o )/ Ker(m o ¢)?) = length,, (V/(Anny(Ker(7))V)

(which is equivalent to (Anny Ker(m))V = Fitty (Ker(m o )/ Ker(m o ¢)?));
(3) T is a complete intersection, (Anny(Ker(m))V # 0 and ¢ is an isomorphism.

See [L] for Lenstra’s proof.
We now prove Kisin’s proposition Proposition 1.5.

Proof. Now a patching datum (D, A, Ay, N, Ny) of level m consists of
(1) a commutative diagram of W-algebras:

Bl[z1, - s Thajdir])] — D s A - Ay
T l l !
Aen R/(cm + iR 5 T/, T — Tp/en Ty,

where m" =0,

(2) An A-module N and an Ag-module Ny such that N and Ny are free over A/c,, A
of rank equal to rank,, T and ranky, Tj, respectively, and equipped with maps
of A-modules Ny — N — N.

A morphism of pairing data
(D, A, Ag, N, Ng) — (D/>A/> fZJ>N/>N(;J)
consists of
(i) a morphism of corresponding elements of the data making the total diagram out
of (1.2) commutative when we take the identity maps for the lower rows and
B[y, .. ,Ih—i-j—d—i-r]]a

(ii) morphisms N — N’ of A-modules and Ny — N of Ag-modules, which makes
the following diagram commutes:

Ny N Ny
N; N’ Nj.

Again we reduce the diagram (1.2) for each n > m modulo ¢, + m}}* and the finiteness
of the isomorphism classes of patching data of level m, we find an infinite subset I =
{nm > m}men C N and a coherent projective system of the data (1.2) modulo ¢, +m’":

{ an Tnm T(Z),nm Mnm M(Z),nm }
( nm€l

¢ + M) R T € Ton,, €M, ¢ Mo .,
Passing to the projective limit, we get, writing for simplicity T = llnm T,, and Ty :=
lim Ty,
—m ~ B

B[[Il,...,ih_,_j_d_,_r]] — ROO @;w) T — T@

(1.3) T | l l
A=Wy, Yn i, ] R % T — T,
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i if _
M = linm M, /e M,, and My = linm M., /¢mMyp,, with My — M — My giving
i 0i = (s € Tp.o. They satisfy
(a) T := T and Ty := T}« are free of finite rank over A = W{ly1,...,yn, t1,- .., 1]
with rank r = ranky s, .. 17 and ry = rankyyy, ..+, Tp, respectively;
(b) Joo = Ker(B[[z1, ..., Thtj—rtda]] — Roo) is generated by (at most) r elements;
(c) M and My are faithful modules over T, and T ., respectively. They are free of
finite rank over A of rank equal to r and 7y respectively,
(d) We have surjective W-algebra homomorphism B — Tj.

By (a), dim Ty = dim B. By (d) and Lemma 1.2, we have Ty = Bl[#1,. .., 2ntj—d|] for
variables z;. By (a), Ty = () Ty p for all height 1 primes P of A, and hence Ty = (), Tp p
over all height 1 primes P of Ty. In particular,

.....

(1.4) Ty is a normal noetherian integral domain,

since B is regular in codimension 1. Choosing z; € R, whose image in Ty is equal to z;,
sending z; to z; for each ¢ produces a section ¢ : Ty — R, of the projection map Ry, —
Ty. For any ideal I with artinian quotient R« /I, we find some n such that Re, — Reo/I
factors through R,,. Then by (5b), for p; = Ker(R,,/I — Ty,/I) = Ker(Rs/I — Ty/I),
we have (,Typn/I C Fitty, ,(pr/p7), which is identical to (Ty/I C Fittr,,;(pr/p7).
Since any closed ideal I of R, is an intersection of ideals I’ with Artinian quotient
R /1" and the section ¢ induces a section of R, /I — Ty/I, we actually have (Ty/I C
Fittr,/1(ps/p7) for any closed ideal I (by Lemma 1.4); in particular, I = 0. Since (x

mod (y1,...,yn) = (o # 0 (Lemma 1.6), ( # 0 € Ty = B, which is an integral domain.
Thus for py = p; for I = (0), Fitty,(po/pd) D (xTp implies for any hight 1 prime P of
Ty, lengthy, ,(po,p/P5 p) < 00.

Since T = T/(y1,...,yn)T and Ty = Ty/(y1,...,yn)Tp are reduced (Lemma 1.6),
for an nonempty open subscheme U of Spec(T), U is reduced. Since each irreducible
component of Spec(T) has intersection with Spec(T/(y1,...,yn)T) (because T is finite
flat over A), U intersects with each irreducible component nontrivially. Thus for minimal
primes P of T, Tp is reduced; in other words, writing the nilradical ny of T as np =
Npeassry > nr # 0 implies Ass(T) has embedded (nonminimal) primes. Since T is
Cohen-Macaulay (that is, depthT = dim T, because T is flat over A), all associated
primes of T is minimal ([CRT] Theorem 17.3). Thus (0) = ny = NpP for minimal
primes P in T; in particular, T < [[, T/P by the Chinese remainder theorem; so, T is
reduced.

Now pick any height one prime P C Ty such that PNW = myy = (7). Then V = Ty p
is a discrete valuation ring (because Ty is a normal noetherian ring; see [CRT| Theorems
10.2 and 10.4). Since R, — Ty has a section (of B-algebras), regarding R., as a Ty-
algebra, we can localize R, at P. We now check Lenstra’s criterion to show R p = Tp.
Write p = Ker(T — Ty) (then pp = Ker(Tp — Ty p = V). The criterion is:

Annt,, (pp)V C Fitty((po/pg)p) = Fitty (po.r/05.p)
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for po = Ker(Rs, — Tp). We look at My — M LR My which are made up of ho-
momorphism of Ty-modules. Let K be the quotient field of A. Since T (resp. Ty) is
reduced, Tx = T@aK (resp. Typx = Tp®@4K) is a finite dimensional semi-simple algebra
over K, and by the argument proving Lemma 1.6, we find that Mg = M ®, K (resp.
Mpyx = My ®a K) is free of rank 1 over Tk (resp. Typk), and Tx = X @ Ty as an
algebra direct sum. Thus Mg[p] = M[p] @4 K for M[p| = {z € M|pz = 0} is free of rank
1 over Ty k. Since M[p] = {z € M|pxz = 0} contains Im(7), Im(7)\M][p] — Coker(7) is a
torsion A-module; however, Coker(i) is free over A; so, Im(i) = M[p]. Thus ' induces a
surjection

M/M[p] — My/it 0 i(My) = My/CooMy.

Note that p = (X @ 0) N T, Annp(p) =T N (0@ Tyx) and M[p] = (0 ¢ My k) N M, and
hence M/M[p] is a module over the image T/ Annt(p) of T in X. Thus My /i 0i(My) is
a module over Ty/ Anny(p)Ty, which implies (Anny p)Ty C (o Ty. In particular,

(Anng, pp)V C (V' C Fitty (po.r/pg p)

as desired. Lenstra’s lemma shows that R., p = Tp for all height 1 prime P C Ty
over myy. Such height 1 primes (of Ty over my,) are in bijection with the irreducible
components of Ty/mTy. Thus the set of irreducible components of Spec(Ry/mRy)
of maximal dimension h + j is in bijection with the set of irreducible components of
Spec(T /my T).

To prove R. = T, it is enough to prove Re/my Ry = T/my T, because R, =
lim Roo/mjy Reo, T =lim T/my, T and

Roo/mw Roo — m" 'Ry /mll, Ryy — m" ' T/m}, T = T/my T

(because my = (7w) and T is W-flat). Let A = B[[x1,..., Th+j—d+r]], Which is Cohen-
Macaulay (because B is by Proposition 1.3). Since J,,, = Ker(A/(¢,, +m’") = Roo/cm +
my' = Ry /¢, +mp" ) is generated by r elements, J,, = im J, = Ker(A — R) is
generated by r elements. By a result of Raynaud (the lemma following this proof),
for any given irreducible component C; C Spec(R./my R ), there exists an irre-
ducible component Cy C Spec(Rs/my Rs) containing an irreducible component of
C% C Spec(Ty/my Ty) such that dim(C; N Cy) > h+j+r+1—r—1= h+ j which
is equal to the dimension of C4 and C5. Thus C) = C which has maximal dimension,
we conclude C7 = Cy. Thus any irreducible component of Spec(Rs/my Roo) is of max-
imal dimension; hence, Jo, must be generated by a regular sequence of length r ([CRT]
Theorem 17.4). Thus R /my R is Cohen-Macaulay, and there is no embedded primes
of Ry /My Reo. In particular, Spec(Re /my Ry) is equi-dimensional, and the full set [
of minimal primes of R /mw R is in bijection with the set of irreducible components
of Spec(Ro /My Ry). By the isomorphism of the localizationa at height 1 primes of Ty
over My, (Re/Mw Roo)p = (T/myT)p for all P € I, and the kernel of the surjection
Ro/my Ry — T/my T is contained in ()., P = (0) (no embedded primes). Thus we
conclude Ro/my Roo = T/my T. O
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We now state Raynaud’s lemma as formulated in [SW] Proposition A.1 and Corollary
A2

Lemma 1.8. Let A be a local Cohen-Macaulay ring of dimension d, and suppose that
a=(f1,..., fr) is anideal of A withr < d—2. Let I be the set of irreducible components
of Spec(A/a). If I = I | | I is a partition of I with Iy # 0 and Iy # 0, then there exist
wrreducible components Cy € Iy and Cy € Iy such that Cy N Cy contains a prime of
dimension d —r — 1.
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