TAYLOR-WILES PATCHING LEMMAS À LA KISIN

HARUZO HIDA

CONTENTS

1

9

1. Patching lemmas References

We present an exposition of Kisin's patching argument which simplified and generalized earlier argument by Wiles, Taylor and Fujiwara. Main references are Kisin's two papers [K1] and [K2].

1. PATCHING LEMMAS

Let K/\mathbb{Q}_p be a finite extension with *p*-adic integer ring *W*.

Lemma 1.1. If $\varphi : R \to T$ is a surjective algebra homomorphism of noetherian integral domains and dim $T = \dim R$, then φ is an isomorphism.

Proof. Since $\operatorname{Spec}(T)$ is a closed subscheme of an integral irreducible scheme $\operatorname{Spec}(R)$; so, if it is proper closed subscheme, dim $T < \dim R$, a contradiction; so, $\operatorname{Spec}(R) = \operatorname{Spec}(T)$, which implies $R \cong T$.

There is a version of the above lemma:

Lemma 1.2. Let B be a complete local noetherian domain and T be a complete local algebra. If $\varphi : B[[x_1, \ldots, x_m]] \to T$ is a surjective algebra homomorphism and dim $T = \dim B + m$, then φ is an isomorphism.

Proof. By assumption, T is noetherian; so, $\operatorname{Spec}(T)^{red}$ is a finite union of integral irreducible components. Let $\operatorname{Spec}(T_0) \subset \operatorname{Spec}(T)^{red}$ be an irreducible component of maximal dimension; so, dim $T = \dim T_0$. Thus we have the surjective algebra homomorphism $T \twoheadrightarrow T_0$. Composing this with $B[[x_1, \ldots, x_m]] \twoheadrightarrow T$, we have a surjective algebra homomorphism: $B[[x_1, \ldots, x_m]] \twoheadrightarrow T_0$. Applying the above lemma to this morphism, we get $B[[x_1, \ldots, x_m]] \cong T_0$, and hence $B[[x_1, \ldots, x_m]] \cong T$.

Here is a simpler version by Kisin ([K1] Proposition 3.4.1) of the Taylor-Wiles patching theorem (see [HMI] Theorem 3.23):

Date: May 16, 2007.

The author is partially supported by the NSF grant: DMS 0244401 and DMS 0456252.

Proposition 1.3 (Taylor-Wiles, Fujiwara, Kisin). Let B be a complete local W-domain of dimension d + 1, and let $\varphi : R \to T$ be a surjective homomorphism of B-algebras. Assume to have two non-negative integers h and j such that for each positive integer n, there is a commutative diagram of W-algebras:

(1.1)

$$\widetilde{B} := B[[x_1, \dots, x_{h+j-d}]] \xrightarrow{\rightarrow} R_n \xrightarrow{\varphi_n} T_n \\
\nearrow \qquad \downarrow \qquad \downarrow \\
\Lambda := W[[y_1, \dots, y_h, t_1, \dots, t_j]] \qquad R \xrightarrow{\varphi} T,$$

which satisfies

- (0) The square consists of homomorphisms of B-algebras;
- (1) The horizontal and vertical morphisms are surjective;
- (2) $(y_1,\ldots,y_h)R_n = \operatorname{Ker}(R_n \to R)$ and $(y_1,\ldots,y_h)T_n = \operatorname{Ker}(T_n \to T);$
- (3) If $\mathfrak{b}_n = \operatorname{Ker}(W[[y_1, \ldots, y_h, t_1, \ldots, t_j]] \to T_n)$, then

$$\mathfrak{b}_n \subset ((1+y_1)^{p^n}-1,\ldots,(1+y_h)^{p^n}-1),$$

and T_n is finite free over Λ/\mathfrak{b}_n (so, in particular, T is finite free over $\Lambda_f := W[[t_1, \ldots, t_j]]);$

(4) R_n is a quotient of a power series ring \widetilde{B} (the bounded tangential dimension).

Then the morphism φ is an isomorphism, as are the maps φ_n for all $n \ge 1$, and B is a Cohen-Macaulay ring.

A noetherian local ring A is Cohen-Macaulay if depth $A = \dim A$ (see [CRT] Section 17). In an application, T is the minimal level Hecke algebra for Hilbert modular forms over a totally real field F with integer ring O, R is the minimal level universal deformation ring (for deformations ramified at the minimal finite set S including p and ∞). Then for a set $Q_n = \{\mathfrak{q}_1, \ldots, \mathfrak{q}_h\}$ of h primes \mathfrak{q}_j outside S with $N(\mathfrak{q}_j) \equiv 1 \mod p^n$, T_n is the Hecke algebra of level $S \sqcup Q_n$ and R_n is the universal deformation ring unramified outside $S \sqcup Q_n$. Let Δ_n be the p-Sylow subgroup of $\prod_j (O/\mathfrak{q}_j)^{\times}$. By the diamond operator (the central action), T_n is an algebra over $W[\Delta_n]$. Write $\Delta_n = \prod C_j$ for the cyclic Sylow subgroup C_j of $(O/\mathfrak{q}_j)^{\times}$ with generator δ_j . Then the order p^{m_j} of C_j is equal to or greater than p^n ; so, we can identify $W[\Delta_n]$ with $W[[y_1, \ldots, y_h]]/((1+y_1)^{p^{m_1}}-1, \ldots, (1+y_h)^{p^{m_h}}-1)$ sending the generator δ_j to $(1+y_j)$; so,

$$\mathfrak{b}_n = ((1+y_1)^{p^{m_1}} - 1, \dots, (1+y_h)^{p^{m_h}} - 1) \subset ((1+y_1)^{p^n} - 1, \dots, (1+y_h)^{p^n} - 1).$$

This proposition then proves the "R = T" theorem for minimal deformation ring. The ring B is the local deformation ring (versal and often an Iwasawa algebra), and $B[[t_1, \ldots, t_j]]$ is the universal framed local deformation ring in Kisin's setting; so, t_i is framed variables; so, we write $\Lambda_f = W[[t_1, \ldots, t_j]]$. In the original setting of Taylor-Wiles, j = 0 and B = W; so, they need to assume representability of the local deformation functor (the *p*-distinguishedness condition). Since the framed deformation functor is always representable, $B[[t_1, \ldots, t_j]]$ is universal. *Proof.* Write \mathbb{F} for the residue field of W. A key point is that \mathbb{F} is a finite field. Let $s = \operatorname{rank}_{\Lambda_f}(T) = \operatorname{rank}_{\Lambda/\mathfrak{b}_n}(T_n)$, and put $r_n = \operatorname{snp}^n(h+j)$ with

$$\mathbf{c}_n = (\mathbf{m}_W^n) + ((1+y_1)^{p^n} - 1, \dots, (1+y_h)^{p^n} - 1, t_1^{p^n}, \dots, t_j^{p^n}) \subset \Lambda.$$

Note that $|T_n/\mathfrak{c}_n T_n| = q^{r_n}$ for $q = |\mathbb{F}|$, and $\operatorname{length}_R \mathfrak{m}_{T_n/\mathfrak{c}_n T_n} < r_n$; in particular, $\mathfrak{m}_R^{r_m}(T_m/\mathfrak{c}_m T_m) = 0$. Thus, $R \xrightarrow{\varphi} T$ induces a homomorphism $R/(\mathfrak{c}_m + \mathfrak{m}_R^{r_m}) \xrightarrow{\varphi} T/\mathfrak{c}_m T$. A patching datum (D, A) of level m is a commutative diagram of W-algebras

where we suppose $\mathfrak{m}_D^{r_m} = 0$ and to have a surjection of *B*-algebras $\widetilde{B} \twoheadrightarrow D$, and the square consists of surjective homomorphisms of *B*-algebras and $\mathfrak{m}_D^{r_m} = 0$. An isomorphism between patching data (D, A) and (D', A') are isomorphisms of each term of diagrams and the 3-dimensional diagram created by these two diagrams has to be commutative. For a given *m*, the order of *D* is bounded by the bounded tangential dimension condition (4) and $\mathfrak{m}_D^{r_m} = 0$; so, there are only finitely many isomorphism classes of patching data of level *m*. Reducing the diagram (1.1) modulo \mathfrak{c}_m , we get infinitely many patching data of level *m* for each $n \ge m$. Thus, by Dirichlet's drawer argument, we can find a subsequence indexed by an infinite set $I \subset \mathbb{N}$ such that the patching data for $n \in I$

form a projective system (including the surjections: $\widetilde{B} \to R_n/\mathfrak{c}_n R_n$ induced by the original ones: $\widetilde{B} \to R_n$ in (1.1)) under reduction modulo \mathfrak{c}_m for $m \in I$ with $m \leq n$. Passing to the projective limit, we get a new commutative diagram

with a surjective algebra homomorphism $\widetilde{B} \twoheadrightarrow R_{\infty}$. Since T_{∞} is free of finite rank over $\Lambda = \lim_{n \in I} \Lambda/\mathfrak{b}_n \Lambda = \lim_{n \in I} \Lambda/((1+y_1)^{p^n} - 1, \dots, (1+y_h)^{p^n} - 1)\Lambda$, we conclude $\dim T_{\infty} = \dim \Lambda = h + j + 1 = \dim B + (h + j - d) = \dim \widetilde{B} \ge \dim T_{\infty}$; so, by the above lemma, we find that

$$B \cong R_{\infty} \cong T_{\infty}$$

in particular, φ_{∞} is an isomorphism. Then T_{∞} is Cohen-Macaulay because it is free of finite rank over the regular ring Λ ; so, B is Cohen-Macaulay, since dim $B[[x_1, \ldots, x_m]] = m + \dim B$ and depth $B[[x_1, \ldots, x_m]] = m + \operatorname{depth} B$.

To state a slightly advanced patching lemma, we need the notion of the Fitting ideal. For a commutative ring A and a finitely presented A-module M, taking a presentation $A^b \xrightarrow{\Phi} A^a \to M \to 0$, the fitting ideal $\operatorname{Fitt}_A(M)$ is defined by the ideal generated by $b \times b$ -minors and $a \times a$ -minors of the matrix expression of Φ . When $A = \mathbb{Z}$ and if $M = \mathbb{Z}/N\mathbb{Z}$, we find $\mathbb{Z} \xrightarrow{N} \mathbb{Z} \to M \to 0$ is a presentation, and hence $\operatorname{Fitt}(M) = |N|$. More generally if M is a finite \mathbb{Z} -module, $\operatorname{Fitt}(M) = (|M|)$. If A is a DVR and M is torsion, $\operatorname{Fitt}(M) = \mathfrak{m}_A^{\operatorname{length}_A M}$. If A = W[[T]], then the reflexive closure (the double Λ -dual) of $\operatorname{Fitt}_A(M)$ is the characteristic ideal of M. The reflexive closure of an ideal \mathfrak{a} of A is equal to the intersection of all principal ideal containing \mathfrak{a} . Since tensor product preserves presentation, if $\varphi : A \to B$ is an algebra homomorphism, we have $\operatorname{Fitt}_B(M \otimes_A B) = \operatorname{Fitt}_A(M)B$. Here is a lemma of Kisin:

Lemma 1.4. Let $\{A_n, \nu_n : A_n \to A_{n-1}\}_{n\geq 1}$ and $\{M_n, \mu_n : M_n \to M_{n-1}\}_{n\geq 1}$ be a projective system of local artinian rings A_n and A_n -modules M_n of finite presentation. If ν_n and μ_n are all surjective and the number of generators of M_n over A_n is bounded independently of n, then $\operatorname{Fitt}_A M = \varprojlim_n \operatorname{Fitt}_{A_n} M_n$ for $M = \varprojlim_n M_n$ and $A = \varprojlim_n A_n$.

This is an easy exercise (see [K1] 3.4.10).

The following patching theorem is an invention of Kisin (see [K1] Proposition 3.4.6) which allows to treat nonminimal deformation rings.

Proposition 1.5 (Kisin). Let B be a complete local neotherian flat W-domain with $\dim_W B = d > 0$. Suppose that for all localization of B at height 1 primes is a discrete valuation ring and that $\operatorname{Spec}(B/\mathfrak{m}_W B)$ has nonempty reduced open subscheme (the nilpotent locus of $\operatorname{Spec}(B/\mathfrak{m}_W B)$ is proper closed subscheme). Let $R \xrightarrow{\varphi} T \to T_{\emptyset}$ be surjective homomorphisms of B-algebras, with T reduced (that is, no nontrivial nilradical). Suppose that there exist non-negative integers h, j and r such that for each non-negative integer n, there is a commutative diagram

(1.2)
$$B[[x_1, \dots, x_{h+j-d+r}]] \xrightarrow{\phi_n} R_n \xrightarrow{\varphi_n} T_n \longrightarrow T_{\emptyset,n}$$
$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
$$\Lambda := W[[y_1, \dots, y_h, t_1, \dots, t_j]] \qquad R \xrightarrow{\varphi} T \longrightarrow T_{\emptyset},$$

which satisfies the following conditions:

- (1) The horizontal maps and downward pointing maps are surjective,
- (2) We have $(y_1, \ldots, y_h)R_n = \operatorname{Ker}(R_n \to R), (y_1, \ldots, y_h)T_n = \operatorname{Ker}(T_n \to T)$ and $(y_1, \ldots, y_h)T_{\emptyset,n} = \operatorname{Ker}(T_{\emptyset,n} \to T_{\emptyset}),$
- (3) If $\mathfrak{b}_n = \operatorname{Ker}(\Lambda \to R_n)$, then

$$\mathfrak{b}_n \subset ((y_1+1)^{p^n}-1,\ldots,(y_h+1)^{p^n}-1)$$

and $T_{\emptyset,n}$ and T_n are finite free over Λ/\mathfrak{b}_n ,

- (4) The kernel, \overline{J}_n , of the induced map $B[[x_1, \ldots, x_{h+j-d+r}]]/\mathfrak{b}_n \twoheadrightarrow R_n$ is generated by at most r elements, and $T_{\emptyset,n}$ is a quotient of \widetilde{B} (but we do not require the compatibility of the \widetilde{B} -algebra structure with ϕ_n),
- (5) For each n there exists a faithful T_n module M_n , and a faithful $T_{\emptyset,n}$ -module $M_{\emptyset,n}$ with the following properties:

- (a) $M_{\emptyset,n}$ and M_n are finite free over Λ/\mathfrak{b}_n of rank equal to $\operatorname{rank}_{\Lambda/\mathfrak{b}_0} T_{\emptyset}$ and $\operatorname{rank}_{\Lambda/\mathfrak{b}_0} T$, respectively,
- (b) There exist maps of T_n -modules:

$$M_{\emptyset,n} \xrightarrow{i} M_n \xrightarrow{i^{\dagger}} M_{\emptyset,n}$$

such that *i* is injective with free cokernel over Λ/\mathfrak{b}_n , i^{\dagger} is surjective, and the composite $i^{\dagger} \circ i$ is multiplication by an element $\zeta_n \in T_{\emptyset,n}$, which has the following property: If $I \subset R_n$ is an ideal such that the natural map $R_n/I \to T_{\emptyset,n}/I$ has kernel \mathfrak{p}_I , and admits a section, then the Fitting ideal of the $T_{\emptyset,n}/I$ -module $\mathfrak{p}_I/\mathfrak{p}_I^2$ satisfies

$$\zeta_n T_{\emptyset,n}/I \subset \operatorname{Fitt}_{T_{\emptyset,n}/I}(\mathfrak{p}_I/\mathfrak{p}_I^2).$$

Then φ is an isomorphism.

Lemma 1.6. Let the notation and assumption be as in the proposition. Then T_{\emptyset} is reduced, and ζ_0 is not a zero divisor of T_{\emptyset} .

Proof. Let \mathcal{K} be the quotient field of $\Lambda/\mathfrak{b}_0 = W[[t_1, \ldots, t_j]]$. Then $T_{\mathcal{K}} = T \otimes_{\Lambda} \mathcal{K}$ is a finite dimensional semi-simple algebra over \mathcal{K} ; so, $T_{\mathcal{K}} = \mathcal{K}_1 \oplus \cdots \oplus \mathcal{K}_s$ and $T_{\emptyset,\mathcal{K}} = T_{\emptyset} \otimes_{\Lambda} \mathcal{K} =$ $\mathcal{K}_1 \oplus \cdots \oplus \mathcal{K}_t$ with finite extensions $\mathcal{K}_i/\mathcal{K}$ for $t \leq s$. Thus $T_{\emptyset,\mathcal{K}}$ is reduced, and hence $T_{\emptyset} \subset T_{\emptyset,\mathcal{K}}$ is reduced. Since $M_{\mathcal{K}} = M_0 \otimes_{\Lambda} \mathcal{K}$ is faithful over $T_{\mathcal{K}}$ with $\dim_{\mathcal{K}} T_{\mathcal{K}} = \dim_{\mathcal{K}} M_{\mathcal{K}}$, we conclude $M_{\mathcal{K}} \cong T_{\mathcal{K}}$. Similarly, we have $M_{\emptyset,0,\mathcal{K}} = M_{\emptyset,0} \otimes_{\Lambda} \mathcal{K} \cong T_{\emptyset,\mathcal{K}}$. Thus after tensoring $\mathcal{K}, i^{\dagger} \circ i$ gives an automorphism of $M_{\emptyset,0,\mathcal{K}}$; so, it is not a zero divisor of T_{\emptyset} . \Box

In an application, $T_{\emptyset,n}$ is the level $Q_n \sqcup S$ Hecke algebra flat at p, and T_n is the level $Q_n \sqcup S$ Hecke algebra without imposing the flatness condition at p. The rings R_n is the universal deformation ring unramified outside $S \sqcup Q_n$ without imposing the flatness condition at p. The module $M_{\emptyset,n}$ (resp. M_n) is the space of automorphic forms (with integral coefficients in W) of level $S \sqcup Q_n$ on a definite quaternion algebra everywhere unramified at finite places. Here \emptyset indicates that we impose flatness at p. The morphism $i : M_{\emptyset,n} \to M_n$ is the natural inclusion and i^{\dagger} is its adjoint under the Petersson inner product.

For the proof, we need the following lemmas which we do not prove. The first one is a famous lemma by Lenstra generalizing an argument of Wiles in his Fermat's last theorem paper:

Lemma 1.7 (Lenstra). Let V be a discrete valuation ring, R be a complete noetherian local V-algebra, T a finite flat local V-algebra, and $\varphi : R \to T$ and $\pi : T \to V$ be surjective V-algebra homomorphisms. Then the following three conditions are equivalent:

(1) $\operatorname{length}_V(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^2)$ is finite, and

 $\operatorname{length}_{V}(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^{2}) \leq \operatorname{length}_{V}(V / (\operatorname{Ann}_{T}(\operatorname{Ker}(\pi))V))$

(which is equivalent to $(\operatorname{Ann}_T \operatorname{Ker}(\pi))V \subset \operatorname{Fitt}_V(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^2));$

(2) $\operatorname{length}_{V}(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^{2})$ is finite, and

 $\operatorname{length}_{V}(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^{2}) = \operatorname{length}_{V}(V / (\operatorname{Ann}_{T}(\operatorname{Ker}(\pi))V))$

(which is equivalent to $(\operatorname{Ann}_T \operatorname{Ker}(\pi))V = \operatorname{Fitt}_V(\operatorname{Ker}(\pi \circ \varphi) / \operatorname{Ker}(\pi \circ \varphi)^2));$

(3) T is a complete intersection, $(Ann_T(Ker(\pi))) \neq 0$ and φ is an isomorphism.

See [L] for Lenstra's proof.

We now prove Kisin's proposition Proposition 1.5.

Proof. Now a patching datum $(D, A, A_{\emptyset}, N, N_{\emptyset})$ of level m consists of

(1) a commutative diagram of W-algebras:

where $\mathfrak{m}_D^{r_m} = 0$,

(2) An A-module N and an A_{\emptyset} -module N_{\emptyset} such that N and N_{\emptyset} are free over $\Lambda/\mathfrak{c}_m\Lambda$ of rank equal to $\operatorname{rank}_{\Lambda_f} T$ and $\operatorname{rank}_{\Lambda_f} T_{\emptyset}$, respectively, and equipped with maps of A-modules $N_{\emptyset} \to N \to N_{\emptyset}$.

A morphism of pairing data

$$(D, A, A_{\emptyset}, N, N_{\emptyset}) \rightarrow (D', A', A'_{\emptyset}, N', N'_{\emptyset})$$

consists of

- (i) a morphism of corresponding elements of the data making the total diagram out of (1.2) commutative when we take the identity maps for the lower rows and $B[[x_1, \ldots, x_{h+j-d+r}]],$
- (ii) morphisms $N \to N'$ of A-modules and $N_{\emptyset} \to N'_{\emptyset}$ of A_{\emptyset} -modules, which makes the following diagram commutes:

Again we reduce the diagram (1.2) for each $n \ge m$ modulo $\mathbf{c}_m + \mathbf{m}_R^{r_m}$ and the finiteness of the isomorphism classes of patching data of level m, we find an infinite subset $I = \{n_m \ge m\}_{m \in \mathbb{N}} \subset \mathbb{N}$ and a coherent projective system of the data (1.2) modulo $\mathbf{c}_m + \mathbf{m}_R^{r_m}$:

$$\left\{\frac{R_{n_m}}{(\mathfrak{c}_m+\mathfrak{m}_R^{r_m})R_{n_m}},\frac{T_{n_m}}{\mathfrak{c}_mT_{n_m}},\frac{T_{\emptyset,n_m}}{\mathfrak{c}_mT_{\emptyset,n_m}},\frac{M_{n_m}}{\mathfrak{c}_mM_{n_m}},\frac{M_{\emptyset,n_m}}{\mathfrak{c}_mM_{\emptyset,n_m}}\right\}_{n_m\in\mathbb{N}}$$

Passing to the projective limit, we get, writing for simplicity $\mathbb{T} = \varprojlim_m T_{n_m}$ and $\mathbb{T}_{\emptyset} := \varprojlim_m T_{\emptyset, n_m}$,

 $\mathbb{M} = \varprojlim_m M_{n_m} / \mathfrak{c}_m M_{n_m} \text{ and } \mathbb{M}_{\emptyset} = \varprojlim_m M_{n_m} / \mathfrak{c}_m M_{\emptyset, n_m} \text{ with } \mathbb{M}_{\emptyset} \xrightarrow{i} \mathbb{M} \xrightarrow{i^{\dagger}} \mathbb{M}_{\emptyset} \text{ giving}$ $i^{\dagger} \circ i = \zeta_{\infty} \in T_{\emptyset, \infty}.$ They satisfy

- (a) $\mathbb{T} := T_{\infty}$ and $\mathbb{T}_0 := T_{\emptyset,\infty}$ are free of finite rank over $\Lambda = W[[y_1, \ldots, y_h, t_1, \ldots, t_j]]$ with rank $r = \operatorname{rank}_{W[[t_1, \ldots, t_j]]} T$ and $r_{\emptyset} = \operatorname{rank}_{W[[t_1, \ldots, t_j]]} T_{\emptyset}$, respectively;
- (b) $J_{\infty} = \text{Ker}(B[[x_1, \ldots, x_{h+j-r+d}]] \to R_{\infty})$ is generated by (at most) r elements;
- (c) \mathbb{M} and \mathbb{M}_{\emptyset} are faithful modules over T_{∞} and $T_{\emptyset,\infty}$, respectively. They are free of finite rank over Λ of rank equal to r and r_{\emptyset} respectively,
- (d) We have surjective W-algebra homomorphism $B \twoheadrightarrow \mathbb{T}_{\emptyset}$.

By (a), dim \mathbb{T}_{\emptyset} = dim \widetilde{B} . By (d) and Lemma 1.2, we have $\mathbb{T}_{\emptyset} \cong B[[z_1, \ldots, z_{h+j-d}]]$ for variables z_i . By (a), $\mathbb{T}_{\emptyset} = \bigcap_P \mathbb{T}_{\emptyset,P}$ for all height 1 primes P of Λ , and hence $\mathbb{T}_{\emptyset} = \bigcap_P \mathbb{T}_{\emptyset,P}$ over all height 1 primes P of \mathbb{T}_{\emptyset} . In particular,

(1.4) \mathbb{T}_{\emptyset} is a normal noetherian integral domain,

since *B* is regular in codimension 1. Choosing $\tilde{z}_i \in R_\infty$ whose image in \mathbb{T}_{\emptyset} is equal to z_i , sending z_i to \tilde{z}_i for each *i* produces a section $\iota : \mathbb{T}_{\emptyset} \to R_\infty$ of the projection map $R_\infty \twoheadrightarrow \mathbb{T}_{\emptyset}$. For any ideal *I* with artinian quotient R_∞/I , we find some *n* such that $R_\infty \to R_\infty/I$ factors through R_n . Then by (5b), for $\mathfrak{p}_I = \operatorname{Ker}(R_n/I \to T_{\emptyset,n}/I) = \operatorname{Ker}(R_\infty/I \to \mathbb{T}_{\emptyset}/I)$, we have $\zeta_n T_{\emptyset,n}/I \subset \operatorname{Fitt}_{T_{\emptyset,n}/I}(\mathfrak{p}_I/\mathfrak{p}_I^2)$, which is identical to $\zeta_\infty \mathbb{T}_{\emptyset}/I \subset \operatorname{Fitt}_{\mathbb{T}_{\emptyset}/I}(\mathfrak{p}_I/\mathfrak{p}_I^2)$. Since any closed ideal *I* of R_∞ is an intersection of ideals *I'* with Artinian quotient R_∞/I' and the section ι induces a section of $R_\infty/I \twoheadrightarrow \mathbb{T}_{\emptyset}/I$, we actually have $\zeta_\infty \mathbb{T}_{\emptyset}/I \subset$ $\operatorname{Fitt}_{\mathbb{T}_{\emptyset}/I}(\mathfrak{p}_I/\mathfrak{p}_I^2)$ for any closed ideal *I* (by Lemma 1.4); in particular, I = 0. Since ζ_∞ mod $(y_1, \ldots, y_h) = \zeta_0 \neq 0$ (Lemma 1.6), $\zeta \neq 0 \in \mathbb{T}_{\emptyset} \cong \widetilde{B}$, which is an integral domain. Thus for $\mathfrak{p}_0 = \mathfrak{p}_I$ for I = (0), $\operatorname{Fitt}_{\mathbb{T}_{\emptyset}}(\mathfrak{p}_0/\mathfrak{p}_0^2) \supset \zeta_\infty \mathbb{T}_{\emptyset}$ implies for any hight 1 prime *P* of \mathbb{T}_{\emptyset} , length $_{\mathbb{T}_{\emptyset,P}}(\mathfrak{p}_{0,P}/\mathfrak{p}_{0,P}^2) < \infty$.

Since $T \cong \mathbb{T}/(y_1, \ldots, y_h)\mathbb{T}$ and $T_{\emptyset} \cong \mathbb{T}_{\emptyset}/(y_1, \ldots, y_h)\mathbb{T}_{\emptyset}$ are reduced (Lemma 1.6), for an nonempty open subscheme U of $\operatorname{Spec}(\mathbb{T})$, U is reduced. Since each irreducible component of $\operatorname{Spec}(\mathbb{T})$ has intersection with $\operatorname{Spec}(\mathbb{T}/(y_1, \ldots, y_h)\mathbb{T})$ (because \mathbb{T} is finite flat over Λ), U intersects with each irreducible component nontrivially. Thus for minimal primes P of \mathbb{T} , \mathbb{T}_P is reduced; in other words, writing the nilradical $\mathfrak{n}_{\mathbb{T}}$ of \mathbb{T} as $\mathfrak{n}_{\mathbb{T}} =$ $\bigcap_{P \in \operatorname{Ass}(\mathbb{T})} P$, $\mathfrak{n}_{\mathbb{T}} \neq 0$ implies $\operatorname{Ass}(\mathbb{T})$ has embedded (nonminimal) primes. Since \mathbb{T} is Cohen-Macaulay (that is, depth $\mathbb{T} = \dim \mathbb{T}$, because \mathbb{T} is flat over Λ), all associated primes of \mathbb{T} is minimal ([CRT] Theorem 17.3). Thus $(0) = \mathfrak{n}_{\mathbb{T}} = \bigcap_P P$ for minimal primes P in \mathbb{T} ; in particular, $\mathbb{T} \hookrightarrow \prod_P \mathbb{T}/P$ by the Chinese remainder theorem; so, \mathbb{T} is reduced.

Now pick any height one prime $P \subset \mathbb{T}_{\emptyset}$ such that $P \cap W = \mathfrak{m}_W = (\pi)$. Then $V = \mathbb{T}_{\emptyset,P}$ is a discrete valuation ring (because \mathbb{T}_{\emptyset} is a normal noetherian ring; see [CRT] Theorems 10.2 and 10.4). Since $R_{\infty} \to \mathbb{T}_{\emptyset}$ has a section (of *B*-algebras), regarding R_{∞} as a \mathbb{T}_{\emptyset} algebra, we can localize R_{∞} at *P*. We now check Lenstra's criterion to show $R_{\infty,P} \cong \mathbb{T}_P$. Write $\mathfrak{p} = \operatorname{Ker}(\mathbb{T} \to \mathbb{T}_{\emptyset})$ (then $\mathfrak{p}_P = \operatorname{Ker}(\mathbb{T}_P \to \mathbb{T}_{\emptyset,P} = V)$). The criterion is:

$$\operatorname{Ann}_{\mathbb{T}_P}(\mathfrak{p}_P)V \subset \operatorname{Fitt}_V((\mathfrak{p}_0/\mathfrak{p}_0^2)_P) = \operatorname{Fitt}_V(\mathfrak{p}_{0,P}/\mathfrak{p}_{0,P}^2)$$

for $\mathfrak{p}_0 = \operatorname{Ker}(R_{\infty} \to \mathbb{T}_{\emptyset})$. We look at $\mathbb{M}_{\emptyset} \xrightarrow{i} \mathbb{M} \xrightarrow{i^{\dagger}} \mathbb{M}_{\emptyset}$ which are made up of homomorphism of \mathbb{T}_{\emptyset} -modules. Let \mathbb{K} be the quotient field of Λ . Since \mathbb{T} (resp. \mathbb{T}_{\emptyset}) is reduced, $\mathbb{T}_{\mathbb{K}} = \mathbb{T} \otimes_{\Lambda} \mathbb{K}$ (resp. $\mathbb{T}_{\emptyset,\mathbb{K}} = \mathbb{T}_{\emptyset} \otimes_{\Lambda} \mathbb{K}$) is a finite dimensional semi-simple algebra over \mathbb{K} , and by the argument proving Lemma 1.6, we find that $\mathbb{M}_{\mathbb{K}} = \mathbb{M} \otimes_{\Lambda} \mathbb{K}$ (resp. $\mathbb{M}_{\emptyset,\mathbb{K}} = \mathbb{M}_{\emptyset} \otimes_{\Lambda} \mathbb{K}$) is free of rank 1 over $\mathbb{T}_{\mathbb{K}}$ (resp. $\mathbb{T}_{\emptyset,\mathbb{K}}$), and $\mathbb{T}_{\mathbb{K}} = X \oplus \mathbb{T}_{\emptyset,\mathbb{K}}$ as an algebra direct sum. Thus $\mathbb{M}_{\mathbb{K}}[\mathfrak{p}] = M[\mathfrak{p}] \otimes_{\Lambda} \mathbb{K}$ for $\mathbb{M}[\mathfrak{p}] = \{x \in \mathbb{M} | \mathfrak{p}x = 0\}$ is free of rank 1 over $\mathbb{T}_{\emptyset,\mathbb{K}}$. Since $\mathbb{M}[\mathfrak{p}] = \{x \in \mathbb{M} | \mathfrak{p}x = 0\}$ contains $\operatorname{Im}(i)$, $\operatorname{Im}(i) \setminus \mathbb{M}[\mathfrak{p}] \hookrightarrow \operatorname{Coker}(i)$ is a torsion Λ -module; however, $\operatorname{Coker}(i)$ is free over Λ ; so, $\operatorname{Im}(i) = \mathbb{M}[\mathfrak{p}]$. Thus i^{\dagger} induces a surjection

$$\mathbb{M}/\mathbb{M}[\mathfrak{p}] \twoheadrightarrow M_{\emptyset}/i^{\dagger} \circ i(\mathbb{M}_{\emptyset}) = \mathbb{M}_{\emptyset}/\zeta_{\infty}\mathbb{M}_{\emptyset}.$$

Note that $\mathbf{p} = (X \oplus 0) \cap \mathbb{T}$, $\operatorname{Ann}_{\mathbb{T}}(\mathbf{p}) = \mathbb{T} \cap (0 \oplus \mathbb{T}_{\emptyset,\mathbb{K}})$ and $\mathbb{M}[\mathbf{p}] = (0 \oplus \mathbb{M}_{\emptyset,\mathbb{K}}) \cap \mathbb{M}$, and hence $\mathbb{M}/\mathbb{M}[\mathbf{p}]$ is a module over the image $\mathbb{T}/\operatorname{Ann}_{\mathbb{T}}(\mathbf{p})$ of \mathbb{T} in X. Thus $\mathbb{M}_{\emptyset}/i^{\dagger} \circ i(\mathbb{M}_{\emptyset})$ is a module over $\mathbb{T}_{\emptyset}/\operatorname{Ann}_{\mathbb{T}}(\mathbf{p})\mathbb{T}_{\emptyset}$, which implies $(\operatorname{Ann}_{\mathbb{T}}\mathbf{p})\mathbb{T}_{\emptyset} \subset \zeta_{\infty}\mathbb{T}_{\emptyset}$. In particular,

$$(\operatorname{Ann}_{\mathbb{T}_P}\mathfrak{p}_P)V \subset \zeta_{\infty}V \subset \operatorname{Fitt}_V(\mathfrak{p}_{0,P}/\mathfrak{p}_{0,P}^2)$$

as desired. Lenstra's lemma shows that $R_{\infty,P} \cong \mathbb{T}_P$ for all height 1 prime $P \subset \mathbb{T}_{\emptyset}$ over \mathfrak{m}_W . Such height 1 primes (of \mathbb{T}_{\emptyset} over \mathfrak{m}_W) are in bijection with the irreducible components of $\mathbb{T}_{\emptyset}/\mathfrak{m}\mathbb{T}_{\emptyset}$. Thus the set of irreducible components of $\operatorname{Spec}(R_{\infty}/\mathfrak{m}R_{\infty})$ of maximal dimension h + j is in bijection with the set of irreducible components of $\operatorname{Spec}(\mathbb{T}/\mathfrak{m}_W\mathbb{T})$.

To prove $R_{\infty} \cong \mathbb{T}$, it is enough to prove $R_{\infty}/\mathfrak{m}_W R_{\infty} \cong \mathbb{T}/\mathfrak{m}_W \mathbb{T}$, because $R_{\infty} \cong \lim_{n \to \infty} R_{\infty}/\mathfrak{m}_W^n R_{\infty}$, $\mathbb{T} = \lim_{n \to \infty} \mathbb{T}/\mathfrak{m}_W^n \mathbb{T}$ and

$$R_{\infty}/\mathfrak{m}_{W}R_{\infty}\twoheadrightarrow\mathfrak{m}^{n-1}R_{\infty}/\mathfrak{m}_{W}^{n}R_{\infty}\twoheadrightarrow\mathfrak{m}^{n-1}\mathbb{T}/\mathfrak{m}_{W}^{n}\mathbb{T}\cong\mathbb{T}/\mathfrak{m}_{W}\mathbb{T}$$

(because $\mathfrak{m}_W = (\pi)$ and \mathbb{T} is W-flat). Let $A = B[[x_1, \ldots, x_{h+j-d+r}]]$, which is Cohen-Macaulay (because B is by Proposition 1.3). Since $J_m = \operatorname{Ker}(A/(\mathfrak{c}_m + \mathfrak{m}_A^{r_m}) \twoheadrightarrow R_\infty/\mathfrak{c}_m + \mathfrak{m}_A^{r_m})$ $\mathfrak{m}_{R_{\infty}}^{r_m} = R_m/\mathfrak{c}_m + \mathfrak{m}_{R_m}^{r_m}$ is generated by r elements, $J_{\infty} = \lim_{m \to \infty} J_m = \operatorname{Ker}(A \twoheadrightarrow R_{\infty})$ is generated by r elements. By a result of Raynaud (the lemma following this proof), for any given irreducible component $C_1 \subset \operatorname{Spec}(R_\infty/\mathfrak{m}_W R_\infty)$, there exists an irreducible component $C_2 \subset \operatorname{Spec}(R_{\infty}/\mathfrak{m}_W R_{\infty})$ containing an irreducible component of $C'_2 \subset \operatorname{Spec}(\mathbb{T}_{\emptyset}/\mathfrak{m}_W\mathbb{T}_{\emptyset})$ such that $\dim(C_1 \cap C_2) \geq h + j + r + 1 - r - 1 = h + j$ which is equal to the dimension of C'_2 and C_2 . Thus $C'_2 = C_2$ which has maximal dimension, we conclude $C_1 = C_2$. Thus any irreducible component of $\operatorname{Spec}(R_\infty/\mathfrak{m}_W R_\infty)$ is of maximal dimension; hence, J_{∞} must be generated by a regular sequence of length r ([CRT] Theorem 17.4). Thus $R_{\infty}/\mathfrak{m}_W R_{\infty}$ is Cohen-Macaulay, and there is no embedded primes of $R_{\infty}/\mathfrak{m}_W R_{\infty}$. In particular, $\operatorname{Spec}(R_{\infty}/\mathfrak{m}_W R_{\infty})$ is equi-dimensional, and the full set I of minimal primes of $R_{\infty}/\mathfrak{m}_W R_{\infty}$ is in bijection with the set of irreducible components of $\operatorname{Spec}(R_{\infty}/\mathfrak{m}_W R_{\infty})$. By the isomorphism of the localization at height 1 primes of \mathbb{T}_{\emptyset} over \mathfrak{m}_W , $(R_\infty/\mathfrak{m}_W R_\infty)_P \cong (\mathbb{T}/\mathfrak{m}_W \mathbb{T})_P$ for all $P \in I$, and the kernel of the surjection $R_{\infty}/\mathfrak{m}_W R_{\infty} \twoheadrightarrow \mathbb{T}/\mathfrak{m}_W \mathbb{T}$ is contained in $\bigcap_{P \in I} P = (0)$ (no embedded primes). Thus we conclude $R_{\infty}/\mathfrak{m}_W R_{\infty} \cong \mathbb{T}/\mathfrak{m}_W \mathbb{T}$. We now state Raynaud's lemma as formulated in [SW] Proposition A.1 and Corollary A.2:

Lemma 1.8. Let A be a local Cohen-Macaulay ring of dimension d, and suppose that $\mathfrak{a} = (f_1, \ldots, f_r)$ is an ideal of A with $r \leq d-2$. Let I be the set of irreducible components of $\operatorname{Spec}(A/\mathfrak{a})$. If $I = I_1 \bigsqcup I_2$ is a partition of I with $I_1 \neq \emptyset$ and $I_2 \neq \emptyset$, then there exist irreducible components $C_1 \in I_1$ and $C_2 \in I_2$ such that $C_1 \cap C_2$ contains a prime of dimension d - r - 1.

References

Books

- [CRT] H. Matsumura, *Commutative Ring Theory*, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, New York, 1986.
- [HMI] H. Hida, Hilbert Modular Forms and Iwasawa Theory, Oxford University Press, 2006

Articles

- [K1] M. Kisin, Moduli of finite flat group schemes, and modularity, preprint, 2004 (downloadable at www.math.uchicago.edu/~kisin).
- [K2] M. Kisin, Modularity of 2-adic Barsotti-Tate representations, preprint, 2007 (downloadable at www.math.uchicago.edu/~kisin).
- [L] H. W. Lenstra, Jr., Complete intersections and Gorenstein rings, in Series in Number Theory 1 (1995): "Elliptic curves, Modular forms, & Fermat's last theorem", pp.99–109.
- [SW] C. Skinner and A. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ. Math. No. 89 (2000), 5–126.