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Hecke fields of Hilbert modular analytic families
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Abstract. Take a non CM p-slope 0 analytic family of Hilbert modular forms
of level Np∞ for a prime p of the base totally real field F . We prove that the
Hecke field over Q[μp∞ ] of members of the family grows indefinitely large over
any infinite set of arithmetic points with fixed weight. The condition: p > 2
made in [H11] for F = Q is also eliminated in this paper for the assertion.

Fix a prime p and field embeddings C
ι∞←↩ Q

ιp
↪→ Qp ⊂ Cp, where Q is an

algebraic closure of Q. Fix a finite totally real extension F/Q inside Q with integer
ring O. We define a prime ideal of O by p = {α ∈ O : |ιp(α)|p < 1} and fix an
O-ideal N prime to p.

Let Sκ(N, ε;C) denote the space of weight κ adelic Hilbert cusp forms f :
GL2(F )\GL2(FA)→ C of level N with Neben character ε modulo N, where N is a
non-zero ideal of O. Here the weight κ = (κ1, κ2) is the Hodge weight of the rank 2
pure motive M(f) over F with coefficient in the Hecke field Q(f) associated to the
Hecke eigen new form f ∈ Sκ(N, ε;C) (see [BR]). Since each (non-zero) Hecke eigen
cusp form f generates a unique automorphic representation which contain a unique
new form fnew, we sometime abuse our language saying that M(fnew) is associated
to f and write M(f) for M(fnew). Strictly speaking, each classical member of a
primitive p-adic analytic family is a Hecke eigenform but may not be a new form
(even not a p-stabilized form of a new form but a minimal form as we will describe
below). For each field embedding σ : F ↪→ Q, M(f) ⊗F,ι∞◦σ C has Hodge weight
(κ1,σ, κ2,σ) and (κ2,σ, κ1,σ), and the motivic weight κ1,σ +κ2,σ is independent of σ.
Thus this constancy of κ1,σ +κ2,σ as a function of σ will be imposed always for our
weight κ, and the constant is written as [κ] = κ1,σ+κ2,σ. In addition, we normalize
the weight imposing κ1,σ ≤ κ2,σ. This normalization is the one in [HMI, (SA1–3)].

Denote by I the set of all field embeddings of F in Q. Let Ip be the subset of
I consisting of those σ ∈ I for which ιp ◦ σ is continuous with respect to the p-adic
topology on F , hence factors through F ⊂ Fp. Thus Ip can be identified with the
set of Qp-linear embeddings of Fp into Cp. We split I = Ip 	 Ip. The projection of
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κ ∈ Z[I] × Z[I] to Z[Ip] × Z[Ip] (resp. Z[Ip] × Z[Ip]) is denoted by κp (resp. κp).
Often we use I to denote

∑
σ σ ∈ Z[I]. If the Hodge weight is given by κ = (0, kI)

for an integer k ≥ 1, traditionally, the integer k+1 is called the weight (of the cusp
forms in Sκ(N, ε;C)) at all σ, but we use here the Hodge weight κ.

The “Neben character” we use is again not a traditional one (but the one
introduced in [HMI]). It is a set of three characters ε = (ε1, ε2, ε+), where ε+ :
F×
A /F× → C× is the central character of the automorphic representation πf of

GL2(FA) generated by any Hecke eigenform 0 �= f ∈ Sκ(N, ε;C). The character ε+

has infinity type I − κ1 − κ2, and therefore its finite part has values in Q
×
. The

characters εj is a Q-valued continuous character of Ô× = lim←−0<N∈Z
(O/NO)× with

ε1ε2 = ε+| ̂O× . The two characters εj are purely local and may not extend to Hecke

characters of the idele class group F×
A /F×. Put ε− := ε1ε

−1
2 , and we assume that

ε− factors through (O/N)×; so, the conductor of ε− is a factor of N (which could
be a proper factor of N). Then for the level group

U = U0(N) = {u =
(
a b
c d

)
∈ GL2(Ô) with c ∈ N̂ = NÔ},

we have f(gu) = ε(u)f(g) for all g ∈ GL2(FA) and u ∈ U , where

ε(u) = ε2(det(u))ε
−(aN) = ε1(det(u))(ε

−)−1(dN)

for the projection dN of d to
∏

l|N Fl. The characters εj for j = 1, 2 factor through

(O/Nj)
× for some multiple Nj of N but we do not insist on N = Nj . If the

local component πl of πf is a principal series π(αl, βl) or Steinberg σ(αl, βl) and
(αl|O×

l

, βl|O×
l

) = (ε1|O×
l

, ε2|O×
l

) in this order for the primes l in the level, the min-

imal vector in πl is unique up to scalar multiple (see [H89b, Section 2]). If πl is
super-cuspidal, we suppose that f is new at l. Such a form we call a minimal form
f◦ ∈ Sκ(N

◦, ε;C) in πf with minimal level N◦|N. Though this minimal level N◦ of
πf is a factor of the conductor of πf but could be a proper factor of it. These min-
imal forms are p-adically interpolated (not the new forms). Indeed, if ε1,p and ε2,p
are both non-trivial, the new form fnew has infinite p-slope. Though our “Neben
Typus” appears complicated, to formulate the Hilbert modular “R = T” theorems
in Galois deformation theory, without using such a level structure, the appropriate
Hecke algebra giving the universal deformation ring cannot be produced (cf. [HMI]
§3.2.4), and also the primitive p-adic L-functions can be only constructed via such
level structure (see, for example, [H09] §3.1–3.2). A detailed description of cusp
forms in Sκ(N, ε;C) will be recalled in Section 1.9.

Hereafter, throughout the paper, N denotes an O-ideal prime to p, and we work

with cusp forms of (minimal) level Npr+1 (for r ≥ 0). Extend εj to (F
(∞)
A )× (trivial

outside the level Nj and trivial at a choice of uniformizer �l at each prime l), and
extend the character ε of U to the semi group

Δ0(N) =
{(

a b
c d

)
∈ GL2(F

(∞)
A )

∣∣dÔ + N̂ = Ô, c ∈ N̂

}
by ε

(
a b
c d

)
= ε1(ad− bc)(ε−)−1(dN). The Hecke operator T (y) of the double coset

U
(
y 0
0 1

)
U =

⊔
δ δU is defined by f |T (y)(g) =

∑
δ ε(δ)

−1f(gδ) (see (1.14)). As
shown in [PAF, Section 4.2] or [HMI, Section 4.3], T(y) = y−κ1

p T (y) is optimally
p-integral. For a Hecke eigenform f , the eigenvalue a(y, f) of T (y) depends only

on the ideal y = yÔ ∩ F (see (1.19)); so, for each prime l of F , we write a(l, f)
for a(�l, f) and put T (l) := T (�l). Therefore the y-th Fourier coefficient c(y, f)
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of f is ε1(y)a(y, f) for each Hecke eigenform f normalized so that c(1, f) = 1, and
the Fourier coefficient depends on y (if ε1 �= 1) not just on the ideal y. A T (p)-
eigenform f has p-slope 0 if |y−κ1

p ιp(a(p, f))|p = 1. A p-slope 0 form can have positive

slope at primes p′|p different from p. For a Hecke eigenform f ∈ Sκ(Npr+1, ε;C)
(p � N, r ≥ 0) and a subfield K of Q, the Hecke field K(f) inside C is generated over
K by the eigenvalues a(l, f) of f for the Hecke operators T (l) for all prime ideals l
and the values of ε over finite ideles.

Let Γ ∼= Zm
p be the maximal torsion-free quotient of O×

p . We fix once and for

all a splitting of the projection: O×
p � Γ and decompose O×

p = Γ×Δ for a finite

group Δ. We fix a Zp-basis {γj}j=1,...,m ⊂ Γ so that Γ =
∏

j γ
Zp

j and identify the

Iwasawa algebra Λ = W [[Γ]] with the power series ring W [[T ]] (T = {Tj}j=1,...,m)
by Γ � γj �→ (1+Tj) ∈ Λ (for a sufficiently large discrete valuation ring W flat over

Zp). Putting tj = 1+Tj , we have W [[T ]] = lim←−n
W [t, t−1]/(tp

n−1), where t = (tj)j ,

t−1 = (t−1
j )j and (tp

n − 1) is the ideal (tp
n

1 − 1, . . . , tp
n

m − 1) in W [[T ]]. In this way,

we identify the formal spectrum Spf(Λ) with Ĝm ⊗Zp
Γ∗ for Γ∗ = HomZp

(Γ,Zp),
as tmj giving the character of Γ∗ corresponding tmj (γ∗

i ) = δij for the dual basis
{γ∗

j }j of {γj}j . The group Z[Ip] can be considered to be the character group of

Tp = ResOp/Zp
Gm. The formal completion T̂p of the torus Tp along the origin splits

over W , and hence we identify Ĝm⊗Zp
Γ∗ with T̂p regarding Z[Ip] ⊂ HomZp

(Γ,W )
by sending κp to the homomorphism γj �→

∑
σ∈Ip

logp(σ(γj)
κp,σ )/ logp(σ(γj)). This

gives a rational structure on the formal torus Ĝm⊗Zp
Γ∗ as a formal completion of

the algebraic torus Tp.
Fix a weight κ ∈ Z[I]2 satisfying κ2−κ1 ≥ I. A p-adic p-slope 0 analytic family

of eigenforms F = {fP |P ∈ Spec(I)(Cp)} is indexed by points of Spec(I)(Cp), where
I is a torsion-free domain of finite rank over Λ (in this sense, we call Spec(I) a finite
torsion-free covering of Spec(Λ)). For each P ∈ Spec(I)(Cp), fP is a p-adic Hecke
eigenform of p-slope 0 of level Np∞ for a fixed prime to p-level N. The family
is called analytic because P �→ a(y, fP ) is a p-adic analytic function on the rigid
analytic space associated to the formal spectrum Spf(I) in the sense of Berthelot (cf.
[dJ, §7]). We call P ∈ Spec(I)(Qp) arithmetic of weight κ(P ) = κp(P ) + κp ∈ Z[I]
(κp(P ) ∈ Z[Ip]) with character ε = (ε1, ε2, ε+) if κ2(P ) − κ1(P ) ≥ I, ε1|Γ has

values in μp∞(Qp) and P (tj − ε−1
1 (γj)γ

κ1,p

j ) = 0 for all j (regarding P as a W -

algebra homomorphism P : I → Qp). Here γk =
∏

σ∈Ip
σ(γ)kσ for γ ∈ Op and

k =
∑

σ∈Ip
kσσ, and k ≥ I means kσ ≥ 1 for all σ ∈ I. Classicity of a member

of an analytic family of modular forms depends on weight κp outside p. The
weight (0, 1) at an infinite place σ corresponds classical weight 2 at σ; so, weight
κ = (−Ip, I + Ip) is perfectly a p-arithmetic weight with [κ] = 1.

Recall that we have fixed a weight κ ∈ Z[I]2 satisfying κ2 − κ1 ≥ I. We
remark that each maximal (non-constant) slope 0 family comes from an irreducible
subscheme Spec(I) of the spectrum Spec(hp.ord) of the big p-ordinary Hecke algebra
hp.ord of level Np∞, though the full proof of this fact in [W] is not published. Here
hp.ord is the Hecke algebra cut out by p-ordinary idempotent ep = limn→∞ T(p)n!

from the Hecke algebra of level Np∞ and fixed weight κp outside Ip). Since [W]
is not widely available, we suppose the following facts (minimally necessary in this
work) as axioms:
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(A1) We have a Λ-algebra h with specific element T(y) for each y ∈ Ô ∩ F×
A

which is finite torsion-free over Λ;
(A2) For each arithmetic point P ∈ Spec(Λ)(Qp) = HomW -alg(I,Qp) with

κ(P ) = κ, we have an algebra homomorphism h to the P-ordinary part
hp.ord
κ (Npr(P )+1, εP ;Qp) of the Hecke algebra of Sp.ord

κ (Npr(P )+1, εP ;Qp)
sending T(y) to T(y) inducing an embedding

h⊗Λ,P Qp ↪→ hp.ord
κ (Npr(P )+1, εP ;Qp).

By (A2), if P is arithmetic of weight κ, fP is known to be a p-stabilized classical
Hecke eigenform and has a set of “Neben characters” εP = (εP,1, εP,2, εP+) whose
restriction to Γ is still written by εP . Since we can move essentially from one
central character to another by Hecke character twist (πf �→ πf ⊗ χ), without
losing generality, we may (and do) fix εP+ = ε+ throughout the paper. Thus the
characters εP,j of (O/Nj)

××O×
p satisfy εP,1εP,2 = ε+| ̂O× . We write pr(P )+1 for the

level of εP at p in the sense that the classical p-stabilized form fP is a minimal form
of minimal level Npr(P )+1; so, we have r(P ) ≥ 0. We assume now that Spec(I) is
one of the irreducible components of Spec(h). See Section 1.9 for more details of
Hecke algebras.

Though we stated the minimum facts necessary as the axioms (A1–2), actually
we can vary κp(P ) in Z[Ip] (while fixing κp), and if we take h = hp.ord, the em-
bedding in (A2) can be proven to be an isomorphism as long as κ2,p − κ1,p ≥ Ip
(the proof of these facts will be given in [HHA]). Just for logical completeness,
once a p-slope 0 family is given, rather than the precise control theorem asserting
hp.ord ⊗Λ,P Qp

∼= hp.ord
κ (Npr(P )+1, εP ;Qp), we only need the boundedness of the

dimension of Sp.ord
κ (Npr(P )+1, εP ;Qp) independent of arithmetic P with κ(P ) = κ,

which we will prove as Theorem 1.1. We can take h to be the image in hp.ord of the
full nearly p-ordinary Hecke algebra parameterizing p-slope 0 forms (in [PAF, Sec-
tion 4.2]) assuming p|N, and then the assertions (A1–2) have been known for long
time (see [H89a]).

Pick an infinite set A of arithmetic points in Spec(I) of weight κp(P ) = κp; so,
fP for P ∈ A has fixed weight κ. We define the following Hecke field QA(F) out of
F :

(H) QA(F) is the composite of Q(fP ) inside Q for all arithmetic P ∈ A.
Since QA(F) contains the values of εj for all fP , it contains the cyclotomic Z×

p -
extension Q[μp∞ ]. If the family contains a theta series of weight κ of the norm
form of a quadratic extension M/F , M is a CM field, and all forms indexed by
Spec(I) have CM by the same CM field M , and hence QA(F) is contained in a
finite extension of Q(μp∞) (Proposition 3.3).

We prove the following so-called horizontal theorem.

Theorem. Let the notation and the assumptions be as above. The field QA(F)
for a fixed weight κ (with κ2−κ1 ≥ I) is a finite extension of K := Q(μp∞) if, and
only if F contains some theta series of weight κ of a CM quadratic extension of F .
Moreover, for a non-CM family F , we have

lim
P∈A

[K(fP ) : K] =∞,

where the limit is taken with respect to the filter of A made of (all) complements of
finite subsets of A.
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We will prove a stronger version of the horizontal theorem as Theorem 3.1
in the text. Note that the Zariski closure of A in Spf(I) may have as its image in

Ĝm⊗Zp
Γ∗
/W a totally transcendental formal subscheme of T̂p/W (non-algebraizable

to any closed subscheme of Tp) as it may not have arithmetic points of weight
different from κ. There is a vertical version varying the weight κp (while fixing κp)
as discussed in [H11] for elliptic cusp forms, but we do not touch it in this paper.

As was in [H11], the proof of the above theorem is based on the finiteness of
Weil l-numbers of given weight in Q[μp∞ ] up to multiplication by roots of unity

and a rigidity lemma on a formal subscheme of the formal torus Ĝm ⊗Zp
Γ∗ for

Γ∗ = HomZp
(Γ,Zp) stable under the action t �→ tz for t ∈ Ĝm (see Section 4). A

main difficulty we encountered in trying to generalize the method of [H11] in the
Hilbert modular case is that in the elliptic modular case, the Zariski closure A of A
projects down to the full torus Ĝm; so, A is algebraic, and we could change weight
of arithmetic points. In the many variable situation, as already mentioned, the

image of the closure of A can have a transcendental image in Ĝm⊗Zp
Γ∗, and hence

all the arithmetic points in the closure of A may have a constant weight (so, we lose
freedom of varying weight). Another difficulty is that our rigidity lemmas proven
in [H11] are given for power series of one variable (i.e., given for one dimensional
multiplicative formal groups). We prove a rigidity lemma (Lemma 4.1) in several
variables barely sufficient to prove our claim (and therefore, the lemma is not an
optimal form we hoped to prove; see [C1, Remark 6.6.1 (iv)]).

For a finite Galois extension E/F , we can consider a Gal(E/F )-invariant ana-
lytic family for the Hecke algebra h/E of GL(2)/E. If the base-change from F to E
is proven, this family comes from a family for GL(2)/F ; so, the above theorem tells
us the behavior of Hecke fields for such Galois invariant families. Since we do not
know the existence of base-change in general, we briefly describe the relative case
at the end of this paper (see Theorem 7.2).

Here are general notation used in this paper. We denote by a Gothic letter
an ideal of a number field. The corresponding Roman letter denotes the residual
characteristic if a Gothic letter is used for a prime ideal. For each prime l of F ,
we write Fl for the l-adic completion of F , and for an integral ideal a, we put
Fa =

∏
l|a Fl. For an idele x ∈ F×

A , let xa (resp. x∞) denote the projection of x to

F×
a (resp. to F×

∞ = (F ⊗Q R)×). Then we write x = x(a)xa and x = x(a∞)xax∞

and put F
(a∞)
A = {x(a∞)|x ∈ F×

A }. Put G = ResO/ZGL(2) with center Z and the
maximal diagonal torus T0. For a local ring A, its maximal ideal is denoted by mA.
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1. Hilbert Modular Forms of p-power level

We give a brief summary of arithmetic theory of Hilbert modular forms and
p-adic modular forms of level Np∞. The theory is similar to the one of level Np∞,
but the description of the theory seems not to be found in the existing literature.
Hence giving an account would be useful, though logically speaking, the results
necessary for this work are in Subsections 1.8–1.14 (and the earlier sections are
to prepare the readers for the results in these subsections). Perhaps, new results
appear starting with §1.11, and if the reader is familiar with the subjects, he or she
can go directly to Section 2.

1.1. Abelian varieties with real multiplication. Put O∗ = {x ∈ F |
Tr(xO) ⊂ Z} (which is the different inverse d−1). Recall the level ideal N, and
fix a fractional ideal c of F prime to pN. We write A for a fixed base algebra,
in which N(c) and the prime-to-p part of N(N) is invertible. To include the case
where p ramifies in the base field F , we use the moduli problem of Deligne–Pappas
in [DeP] to define the Hilbert modular variety. As explained in [Z, Sections 2 and
3], if p is unramified in F , the resulting p-integral model of the Hilbert modular
Shimura variety is canonically isomorphic to the one defined by Kottwitz (described
also in [PAF, Chapter 4]). Let c be an integral ideal of F prime to p. Writing c+

for the monoid of totally positive elements in c, giving data (c, c+) is equivalent to
fix a strict ideal class of c. The Hilbert modular variety M = M(c;N) of level N
classifies triples (X,Λ, i)/S formed by

• An abelian scheme π : X → S of relative dimension d = [F : Q] over an
A–scheme S with an embedding: O ↪→ End(X/S);

• An O–linear polarization X⊗c
Λ−→
∼

Xt := Pic0X/S inducing an isomorphism

(c, c+) ∼= (HomSym
S (X/S, X

t
/S),P(X,Xt

/S)), where HomSym
S (X/S, X

t
/S) is

the O-module of symmetric O-linear homomorphisms and P(X,Xt
/S) ⊂

HomSym
S (X/S, X

t
/S) is the positive cone made up of O-linear polarizations;

• A closed O–linear immersion i = iN : (Gm ⊗Z O∗)[N] ↪→ X for the group
(Gm⊗ZO

∗)[N] of N-torsion points of the multiplicative O-module scheme
Gm ⊗Z O∗.

By Λ, we identify the O–module HomSym
S (X/S, X

t
/S) of symmetric O–linear ho-

momorphisms inside HomS(X/S, X
t
/S) with c. We require that the (multiplicative)

monoid of symmetric O–linear isogenies induced locally by ample invertible sheaves
be identified with the set of totally positive elements c+ ⊂ c. The quasi projective
scheme M = M(c;N)/A is the coarse moduli scheme of the following functor ℘ from

the category of A–schemes into the category SETS: ℘(S) =
[
(X,Λ, i)/S

]
, where

[ ] = { }/ ∼= is the set of isomorphism classes of the objects inside the brackets,
and (X,Λ, i) ∼= (X ′,Λ′, i′) if we have an O–linear isomorphism φ : X/S → X ′

/S such

that Λ′ = φt ◦ Λ ◦ (φ ⊗ 1) and i′∗ ◦ φ = i∗(⇔ φ ◦ i = i′). The scheme M is a fine
moduli if N is sufficiently deep (see [DeP]).

1.2. Geometric Hilbert modular forms. In the definition of the functor ℘
in §1.1, we could impose local OS ⊗Z O-freeness of the OS ⊗Z O-module π∗(ΩX/S)

as was done by Rapoport in [R]. We consider an open subfunctor ℘R of ℘ which
is defined by imposing locally freeness of π∗(ΩX/S) over OS ⊗Z O. Over Z[ 1

DF
] for
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the discriminant DF of F , the two functors ℘R and ℘ coincide (see [DeP]). We
write MR(c;N) for the open subscheme of M(c;N) representing ℘R. For ω with
π∗(ΩX/S) = (OS⊗ZO)ω, we consider the functor classifying quadruples (X,Λ, i, ω):

Q(S) =
[
(X,Λ, i, ω)/S

]
.

Let T = ResO/ZGm. We let a ∈ T (S) = H0(S, (OS ⊗Z O)×) act on Q(S) by
(X,Λ, i, ω) �→ (X,Λ, i, aω). By this action, Q is a T–torsor over the open subfunctor
℘R of ℘; so, Q is representable by an A–scheme M = M(c;N) affine over MR =
MR(c;N)/A. For each weight k ∈ X∗(T ) = Homgp-sch(T,Gm), if F �= Q, the k−1–

eigenspace of H0(M/A,OM/A) is the space of modular forms of weight k integral
over a ring A. We write Gk(c,N;A) for this space of A–integral modular forms,
which is an A–module of finite type. When F = Q, we need to take the subsheaf of
sections with logarithmic growth towards cusps (the condition (G0) below). Thus
f ∈ Gk(c,N;A) is a functorial rule (i.e., a natural transformation f : Q → Ga)
assigning a value in B to each isomorphism class of (X,Λ, i, ω)/B (defined over an
A–algebra B) satisfying the following three conditions:

(G1) f(X,Λ, i, ω) ∈ B if (X,Λ, i, ω) is defined over B;
(G2) f((X,Λ, i, ω)⊗BB′) = ρ(f(X,Λ, i, ω)) for each morphism ρ : B/A → B′

/A;

(G3) f(X,Λ, i, aω) = k(a)−1f(X,Λ, i, ω) for a ∈ T (B).

By abusing the language, we pretend f to be a function of isomorphism classes of
test objects (X,Λ, i, ω)/B hereafter. The sheaf of k−1–eigenspace OM[k−1] under

the action of T is an invertible sheaf on MR
/A. We write this sheaf as ωk (imposing

(G0) when F = Q). Then we have

Gk(c,N;A) ∼= H0(MR(c;N)/A, ω
k
/A) canonically,

as long asMR(c;N) is a fine moduli space. Writing X := (X,λ, i,ω) for the universal

abelian scheme overMR, s = f(X)ωk (ωk =

k︷ ︸︸ ︷
ω ⊗ · · · ⊗ ω) gives rise to the section of

ωk. Conversely, for any section s ∈ H0(MR(c;N), ωk), taking a unique morphism
φ : Spec(B) → MR such that φ∗X = X for X := (X,Λ, i, ω)/B, we can define

f ∈ Gk by φ∗s = f(X)ωk.
We suppose that the fractional ideal c is prime to Np, and take two ideals a and

b prime to Np such that ab−1 = c. To (a, b), we attach the Tate AVRM Tatea,b(q)
(symbolically given as Gm ⊗ a∗/qb in [K]) defined over the completed group ring
Z((ab)) made of formal series f(q) =

∑
ξ	−∞ a(ξ)qξ (a(ξ) ∈ Z). Here ξ runs over

all elements in ab, and there exists a positive integer n (dependent on f) such that
a(ξ) = 0 if σ(ξ) < −n for some σ ∈ I. We write A[[(ab)≥0]] for the subring of
A[[ab]] made of formal series f with a(ξ) = 0 for all ξ with σ(ξ) < 0 for at least
one embedding σ : F ↪→ R.

Strictly speaking, Tatea,b(q) is defined over Z[[C∗]] := Z[[qξ]]ξ∈C∗ for the dual
cone C∗ under the trace pairing of a cone C inside ab≥0 = {ξ � 0|ξ ∈ ab}. When
we evaluate a modular form at Tatea,b(q), it has values in Z[[ab≥0]] =

⋂
C Z[[C∗]];

so, by abusing the language, we proceed as if Tatea,b(q) were defined over the
non-noetherian ring Z[[ab≥0]]. In addition, we skipped a step of introducing the
toroidal compactification ofMR and M (done in [R] and [DeP]) whose (completed)
stalk at the cusp corresponding to (a, b) actually carries Tatea,b(q). The scheme
M/A is proper normal by [DeP] and hence by Zariski’s connected theorem, it is
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geometrically connected. Since MR is open dense in each fiber of M (as shown by
[DeP]), it is geometrically connected. Therefore the q-expansion principle holds
for H0(MR(c;N), ωk). We refer details of these facts to [K, Chapter I], [C], [DiT],
[Di], [DeP], [HiT, Section 1] and [PAF, 4.1.4]. The scheme Tatea,b(q) can be
extended to a semi-abelian scheme over the toroidal compactification adding the
fiber Gm ⊗ a∗ over the cusp “(a, b)”. Since a is prime to p, ap = Op. Thus if A is
a Zp–algebra, we have a canonical isomorphism:

Lie(Tatea,b(q) mod A) = Lie(Gm ⊗ a∗) ∼= A⊗Z a∗ ∼= A⊗Z O∗.

By duality, we have ΩTatea,b(q)/A[[(ab)≥0]]
∼= A[[(ab)≥0]]. Indeed we have a canonical

generator ωcan of ΩTate(q) induced by dt
t ⊗ 1 on Ĝm⊗ a∗ = Ĝm⊗Op for the formal

completion Ĝm ⊗ a∗ sat the identity 1 ∈ Ĝm ⊗ a∗(Fp) of Ĝm ⊗ a∗. We have a
canonical inclusion (Gm ⊗ O∗)[N] = (Gm ⊗ a∗)[N] into Gm ⊗ a∗, which induces
a canonical closed immersion ican : (Gm ⊗ O∗)[N] ↪→ Tate(q). As described in
[K, (1.1.14)] and [HiT, page 204], Tatea,b(q) has a canonical c–polarization Λcan.
Thus we can evaluate f ∈ Gk(c,N;A) at (Tatea,b(q),Λcan, ican, ωcan). The value
f(q) = fa,b(q) actually falls in A[[(ab)≥0]] (if F �= Q : Koecher principle) and is
called the q–expansion at the cusp (a, b). When F = Q, we impose f to have values
in the power series ring A[[(ab)≥0]]:

(G0) fa,b(q) ∈ A[[(ab)≥0]] for all (a, b).

1.3. p-Adic Hilbert modular forms of level Np∞. Let p be the p-adic
place of F induced by ιp, and regard p as a prime ideal of O. Suppose that A =
lim←−n

A/pnA (such a ring is called a p-adic ring) and that N is prime to p. Put p =∏
p′|p,p′ �=p

p′ for the product taken over all prime factors p′|p different from p. Since

O⊗ZA = O⊗ZZp⊗Zp
A = Op⊗Zp

A = Ap×Ap for Op = Op×Op, Ap = A⊗Zp
Op

and Ap = A ⊗Zp
Op, we can think of the Op-part ΩX/A,p = ApΩX/A = OpΩX/A

for p-adic rings A. We consider a functor into sets

℘̂(A) =
[
(X,Λ, ip, ω

p, iN)/S
]

defined over the category of p–adic A–algebras B = lim←−n
B/pnB. Here ωp is a

generator over Bp of π∗(ΩX/B,p). An important point is that we consider an
embedding of ind-group schemes ip : μp∞ ⊗Zp

O∗
p ↪→ X[p∞] (in place of the p-part

ωp of a differential ω), which induces Ĝm ⊗ O∗
p
∼= X̂p := X̂ ⊗O Op for the formal

completion X̂ along the identity section of the characteristic p–fiber of the abelian
scheme X over A.

We call an AVRM X over a characteristic p ring A p-ordinary if the Barsotti–
Tate group X[p∞] is ordinary; in other words, its (Frobenius) Newton polygon has
only two slopes 0 and 1. In the moduli M(c;N)/Fp

, locally under Zariski topology,
p-ordinary locus is an open dense subscheme of M(c;N) (see [G] and [Z, Section 3]).
Indeed, the locus is obtained by inverting the partial Hasse invariant

∏
i hp,i given

in [AG, §7.12] (over M(c;N)/Fp
). So, the p-ordinary locus Mp.ord(c;N) inside

MR(c;N) is open dense in MR(c;N). Let M̂R(c;N) be the formal completion of
MR(c;N) along Mp.ord(c;N)/Fp

with universal abelian scheme A.

By a standard argument, the functor

Ip(A) =
[
(X,Λ, ip, iN)/S

]
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is represented by the Igusa p-tower

Igp := Isom
̂MR(c;N)

(μp∞ ⊗Zp
O∗

p,A[p∞]◦)

for the connected component A[p∞]◦. Then ℘̂ is represented by a Tp-torsor Ĩgp over
Igp for Tp := ResOp/Zp

Gm (via the multiplication action ωp �→ aωp for a ∈ T (A));

so, ℘̂ is represented by the scheme Ĩgp (e.g., [PAF, 4.1.9]).
Taking a character k ∈ Z[I], write kp ∈ Z[Ip] for its projection to the Ip-part.

Then we regard it as a character of Tp. A p–adic modular form f/A of weight kp over
a p–adic ring A is a function (strictly speaking, a functorial rule) of isomorphism
classes of (X,Λ, ip, ω

p, iN)/B (iN : Gm ⊗Z O∗[N] ↪→ X) satisfying the following
three conditions:

(P1) f(X,Λ, ip, ω
p, iN) ∈ B if (X,Λ, ip, ω

p, iN) is defined over B;
(P2) f((X,Λ, ip, ω

p, iN) ⊗B B′) = ρ(f(X,Λ, ip, ω
p, iN)) for each continuous

A–algebra homomorphism ρ : B → B′;
(P3) fa,b(q) ∈ A[[(ab)≥0]] for all (a, b) prime to Np (this condition is automatic

if F �= Q by Koecher principle);
(P4) f(X,Λ, ip, aω

p, iN) = a−kp

f(X,Λ, ip, ω
p, iN) for all a ∈ T (A).

We write Vkp(c,Np∞;A) for the space of p–adic modular forms satisfying (P1-
4). This space Vkp(c,Np∞;A) is a p–adically complete A–module and is the kp

eigenspace of H0(Ĩgp,O˜Igp
) under the action of Tp.

The q-expansion principle is valid both for classical modular forms and p-adic
modular forms f :

(q-exp) The q–expansion: f �→ fa,b(q) ∈ A[[(ab)≥0]] determines f uniquely.

This follows from the irreducibility of the level p∞ Igusa tower, which can be proven
as in [DeR] and [PAF, 4.2.4]; the argument in [PAF] proving irreducibility also
works well for the partial tower.

Since Ĝm ⊗ O∗ has a canonical invariant differential dt
t , we have ωp = ip,∗(

dt
t )

on X/B (under the notation of (P1–4)). Since over the p-adic ring B, ωp can be
written as a sum of the Op-eigen part ωp and the Op-eigen part ωp uniquely, the
sum ωp +ωp is a generator over O⊗Z B of H0(X,ΩX/B). This allows us to regard
f ∈ Gk(c,N;A) a p–adic modular form by

f(X,Λ, ip, ω
p, iN) := f(X,Λ, iN, ωp + ωp).

By (q-exp), this gives an injection of Gk(c,N;A) into Vkp(c,Np∞;A) preserving
q–expansions.

1.4. Complex analytic Hilbert modular forms. Over C, the category of
test objects (X,Λ, i, ω) is equivalent to the category of triples (L,Λ, i) made of the
following data (by the theory of theta functions): L is an O–lattice in O⊗ZC = CI ,
an alternating pairing Λ : L ∧O L ∼= c∗ and i : N∗/O∗ ↪→ FL/L. The alternating
form Λ is supposed to be positive in the sense that Λ(u, v)/ Im(uvc) is totally
positive definite. The differential ω can be recovered by ι : X(C) = CI/L so that
ω = ι∗du where u = (uσ)σ∈I is the variable on CI . Conversely

LX =

{∫
γ

ω ∈ O ⊗Z C
∣∣∣γ ∈ H1(X(C),Z)

}
is a lattice in CI , and the polarization Λ : Xt ∼= X ⊗ c induces L ∧ L ∼= c∗.
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Using this equivalence, we can relate our geometric definition of Hilbert modu-
lar forms with the classical analytic definition. Define Z by the product of I copies
of the upper half complex plane H. We regard Z ⊂ F ⊗Q C = CI . For each z ∈ Z,
we define

Lz = 2π
√
−1(bz + a

∗), Λz(2π
√
−1(az + b), 2π

√
−1(cz + d)) = −(ad− bc) ∈ c

∗

with iz : N∗/O∗ → CI/Lz given by iz(a mod O∗) = (2π
√
−1a mod Lz).

Consider the following congruence subgroup Γ1
1(N; a, b) given by{(

a b
c d

)
∈ SL2(F )

∣∣∣a, d ∈ O, b ∈ (ab)∗, c ∈ Nabd and d− 1 ∈ N

}
.

Write Γ1
1(c;N) = Γ1

1(N;O, c−1). We let g = (gσ) ∈ SL2(F ⊗Q R) = SL2(R)I act
on Z by linear fractional transformation of gσ on each component zσ. It is easy to
verify

(Lz,Λz, iz) ∼= (Lw,Λw, iw) ⇐⇒ w = γ(z) for γ ∈ Γ1
1(N; a, b).

The set of pairs (a, b) with ab−1 = c is in bijection with the set of cusps (unramified
over∞) of Γ1

1(N; a, b). Two cusps are equivalent if they transform each other by an
element in Γ1

1(N; a, b). The standard choice of the cusp is (O, c−1), which we call
the infinity cusp of M(c;N). For each ideal t, (t, tc−1) gives another cusp. The two
cusps (t, tc−1) and (s, sc−1) are equivalent under Γ1

1(c;N) if t = αs for an element
α ∈ F× with α ≡ 1 mod N in F×

N
. We have

M(c;N)(C) ∼= Γ1
1(c;N)\Z, canonically.

Take the following open compact subgroup of G(A(∞)):

U1
1 (N) =

{(
a b
c d

)
∈ G(Ẑ)

∣∣c ∈ NÔ and a ≡ d ≡ 1 mod NÔ
}
,

and put K = K1
1 (N) = ( d 0

0 1 )
−1

U1
1 (N) ( d 0

0 1 ) for an idele d with dÔ = d̂ and dd = 1.
Here for an idele and an O-ideal a �= 0, we write xa for the projection of x to∏

l|a F
×
l

and x(a) = xx−1
a . Then taking an idele c with cÔ = ĉ and cc = 1, we see

that

Γ1
1(c;N) ⊂

(
( c 0
0 1 )K ( c 0

0 1 )
−1 ∩G(Q)+

)
⊂ O×Γ1

1(c;N)

for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a complete representative set {c} ⊂ F×

A for the strict ray class group

Cl+F (N) modulo N, we find by the approximation theorem that

G(A) =
⊔

c∈Cl+F (N)

G(Q) ( c 0
0 1 )K ·G(R)+

for the identity connected component G(R)+ of the Lie group G(R). This shows

(1.1) G(Q)\G(A)/KCi
∼= G(Q)+\G(A)+/KCi

∼=
⊔

c∈Cl+F (N)

M(c;N)(C),

where G(A)+ = G(A(∞))G(R)+ and Ci is the stabilizer of i = (
√
−1 . . . ,

√
−1) ∈ Z

in G(R)+. By (1.1), a Cl+F (N)–tuple (fc)c with fc ∈ Gk(c,N;C) can be viewed as
a single automorphic form defined on G(A).
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Recall the identification X∗(T ) with Z[I] so that k(x) =
∏

σ σ(x)
kσ . Regarding

f ∈ Gk(c,N;C) as a function of z ∈ Z by f(z) = f(Lz,Λz, iz), it satisfies the
following automorphic property:

(1.2) f(γ(z)) = f(z)
∏
σ

(cσzσ + dσ)kσ for all γ =
(
a b
c d

)
∈ Γ1

1(c;N).

The holomorphy of f follows from the functoriality (G2). The function f has the
Fourier expansion

f(z) =
∑

ξ∈(ab)≥0

a(ξ)eF (ξz)

at the cusp corresponding to (a, b). Here eF (ξz) = exp(2π
√
−1

∑
σ ξ

σzσ). This
Fourier expansion gives the q–expansion fa,b(q) substituting qξ for eF (ξz).

1.5. Γ0-level structure and Hecke operators. We now assume that the
base algebra A is a W–algebra. Choose a prime q of F . We are going to define
Hecke operators U(qn) and T (1, qn) assuming for simplicity that q � pN, though we
may extend the definition for arbitrary q (see [PAF, 4.1.10]). Then X[qr] is an étale
group over B if X is an abelian scheme over an A–algebra B. We call a subgroup
C ⊂ X cyclic of order qr if C ∼= O/qr over an étale faithfully flat extension of B.

We can think of quintuples (X,Λ, i, C, ω)/S adding an additional information
C of a cyclic subgroup scheme C ⊂ X cyclic of order qr. We define the space of
classical modular forms Gk(c,N,Γ0(q

r);A) (resp. the space Vkp(c,Np∞,Γ0(q
r);A)

of p–adic modular forms) of prime-to-p level (N,Γ0(q
r)) by (G1-4) (resp. (P1-4))

replacing test objects (X,Λ, i, ω) (resp. (X,Λ, iN, ip, ω
p)) by (X,Λ, i, C, ω) (resp.

(X,Λ, iN, C, ip, ω
p)).

Our Hecke operators are defined on the space of prime-to-p level (N,Γ0(q
r)).

The operator U(qn) is defined only when r > 0 and T (1, qn) is defined only when
r = 0. For a cyclic subgroup C ′ of X/B of order qn, we can define the quotient
abelian scheme X/C ′ with projection π : X → X/C ′. The polarization Λ and the
differential ω induce a polarization π∗Λ and a differential (π∗)−1ω on X/C ′. If
C ′ ∩ C = {0} (in this case, we call that C ′ and C are disjoint), π(C) gives rise to
the level Γ0(q

r)–structure on X/C ′. Then we define for f ∈ Gk(cq
n;N,Γ0(q

r);A),

(1.3) f |U(qn)(X,Λ, C, i, ω) =
1

N(qn)

∑
C′

f(X/C ′, π∗Λ, π ◦ i, π(C), (π∗)−1ω),

where C ′ runs over all cyclic subgroups of order qn disjoint from C. Since π∗Λ =
π ◦ Λ ◦ πt is a cqn–polarization, the modular form f has to be defined for abelian
varieties with cqn–polarization. Since q � N, forgetting the Γ0(q

n)–structure, we
define for f ∈ Gk(cq

n;N;A)

(1.4) f |T (1, qn)(X,Λ, i, ω) =
1

N(qn)

∑
C′

f(X/C ′, π∗Λ, π ◦ i, (π∗)−1ω),

where C ′ runs over all cyclic subgroups of order qn. We check that f |U(qn) and
f |T (1, qn) belong to Vkp(c,Np∞,Γ0(q

r);A) and stays in Gk(c,N,Γ0(q
r);A) if f ∈

Gk(cq
n,N,Γ0(q

r);A). We have

U(qn) = U(q)n.
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1.6. Hilbert modular Shimura varieties. We extend the level structure
i limited to N–torsion points to a far bigger structure η(p) including all prime-
to–p torsion points. Let Z(p) = Q ∩ Zp (the localization of Z at (p)). Triples

(X,Λ, η(p))/S for Z(p)–schemes S are classified by an integral model Sh
(p)
/Z(p)

(cf.

[Ko]) of the Shimura variety Sh/Q associated to the algebraic Z(p)–group G (in the
sense of Deligne [De, 4.22] interpreting Shimura’s original definition in [Sh] as a
moduli of abelian schemes up to isogenies). Here the classification is up to prime-
to–p isogenies, and Λ is an equivalence class of polarizations up to multiplication
by totally positive elements in F prime to p.

To give a description of the functor represented by Sh(p), we introduce some

more notations. We consider the fiber category A(p)
F over schemes defined by

(Object) abelian schemes X with real multiplication by O;
(Morphism) HomA(p)

F

(X,Y ) = Hom(X,Y )⊗Z Z(p).

Isomorphisms in this category are isogenies with degree prime to p (called “prime-
to–p isogenies”), and hence the degree of polarization Λ is supposed to be also prime
to p. Two polarizations are equivalent if Λ = cΛ′ = Λ′ ◦ i(c) for a totally positive c
prime to p. We fix an O–lattice L ⊂ V = F 2 with O–hermitian alternating pairing
〈·, ·〉 inducing a self duality on Lp = L⊗Z Zp.

For an open-compact subgroup K of G(A(∞)) maximal at p (i.e. K = GL2(Op)

×K(p)), we consider the following functor from Z(p)–schemes into SETS:

(1.5) ℘
(p)
K (S) =

[
(X,Λ, η(p))/S with (det)

]
.

Here η(p) : L⊗Z A(p∞) ∼= V (p)(X) = T (X)⊗Z A(p∞) is an equivalence class of η(p)

modulo multiplication η(p) �→ η(p) ◦ k by k ∈ K(p) for the Tate module T (X) =
lim←−N

X[N] (in the sheafified sense that η(p) ≡ (η′)(p) mod K étale-locally), and a

Λ ∈ Λ induces the self-duality on Lp. As long as K(p) is sufficiently small, ℘
(p)
K is

representable over any Z(p)–algebra A (cf. [Ko], [DeP] and [Z, Section 3]) by a
scheme ShK/A = Sh/K, which is smooth over Spec(Z(p)) if p is unramified in F/Q

and singular if p|DF but is smooth outside a closed subscheme of codimension 2 in

the p-fiber Sh(p) ×Z(p)
Fp by the result of [DeP]. We let g ∈ G(A(p∞)) act Sh

(p)
/Z(p)

by

x = (X,Λ, η) �→ g(x) = (X,Λ, η ◦ g),
which gives a right action of G(A) on Sh(p) through the projection G(A) �
G(A(p∞)).

By the universality, we have a morphism MR(c;N) → Sh(p)/Γ̂1
1(c;N) for the

open compact subgroup: Γ̂1
1(c;N)=( c 0

0 1 )K
1
1 (N) ( c 0

0 1 )
−1

=
(
cd−1 0
0 1

)
U1
1 (N)

(
cd−1 0
0 1

)−1

maximal at p. The image of MR(c;N) gives a geometrically irreducible compo-

nent of Sh(p)/Γ̂1
1(c;N). If N is sufficiently deep, we can identify MR(c;N) with

its image in Sh(p)/Γ̂1
1(c;N). By the action on the polarization Λ �→ αΛ for a

suitable totally positive α ∈ F , we can bring MR(c;N) into MR(αc;N); so, the
image of lim←−N

MR(c;N) in Sh(p) only depends on the strict ideal class of c in

lim←−N:N+(p)=O
Cl+F (N).

1.7. Level structure with “Neben” character. In order to make a good
link between classical modular forms and adelic automorphic forms (which we will
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describe in the following subsection), we would like to introduce “Neben” charac-
ters. We fix an integral ideal N′ ⊂ O. We think of the following level structure on
an AVRM X:

(1.6) i : (Gm ⊗O∗)[N′] ↪→ X[N′] and i′ : X[N′] � O/N′,

where the sequence

(1.7) 1→ (Gm ⊗O∗)[N′]
i−→ X[N′]

i′−→ O/N′ → 0

is exact and is required to induce a canonical duality between (Gm ⊗ O∗)[N′] and
O/N′ under the polarization Λ. Here, if N′ = (N) for an integer N > 0, a canonical
duality pairing

〈·, ·〉 : (Gm ⊗O∗)[N ]×O/N → μN

is given by 〈ζ ⊗ α,m⊗ β〉 = ζmTr(αβ) for (α, β) ∈ O∗ ×O and (ζ,m) ∈ μN ×O/N
identifying (Gm ⊗ O∗)[N ] = μN ⊗ O∗ and O/N = (Z/NZ) ⊗Z O. In general,
taking an integer 0 < N ∈ N′, the canonical pairing between (Gm ⊗ O∗)[N′] and
O/N′ is induced by the one for (N) via the canonical inclusion (Gm ⊗ O∗)[N′] ↪→
(Gm ⊗O∗)[N ] and the quotient map O/(N) � O/N′.

We fix two characters ε1 : (O/N′)× → A× and ε2 : (O/N′)× → A×, and we
insist for f ∈ Gk(c,N;A) on the version of (G0-3) for quintuples (X,Λ, i ·a, d · i′, ω)
and the equivariancy:

(Neben) f(X,Λ, i · d, a · i′, ω) = ε1(d)ε2(a)f(X,Λ, i, i′, ω) for a, d ∈ (O/N)×.

Here the order ε1(d)ε2(a) is correct as the diagonal matrix ( d 0
0 a ) in T0(O/N′) acts

on the quotient O/N′ by a and the submodule (Gm ⊗O∗)[N′] by d. Here Λ is the
polarization class modulo multiple of totally positive numbers in F prime to p. We
write Gk(c,Γ0(N), ε;A) (ε = (ε1, ε2)) for the A–module of geometric modular forms
satisfying these conditions.

1.8. Adelic Hilbert modular forms. Let us interpret what we have said
so far in automorphic language and give a definition of the adelic Hilbert modular
forms and their Hecke algebra of level N (cf. [H96, Sections 2.2-4] and [PAF,
Sections 4.2.8–4.2.12]).

We consider the following open compact subgroup of G(A(∞)):

U0(N) =
{(

a b
c d

)
∈ GL2(Ô)

∣∣c ≡ 0 mod NÔ
}
,

U1
1 (N) =

{(
a b
c d

)
∈ U0(N)

∣∣a ≡ d ≡ 1 mod NÔ
}
,

(1.8)

where Ô = O ⊗Z Ẑ and Ẑ =
∏


 Z
. Then we introduce the following semi-group

(1.9) Δ0(N) =
{(

a b
c d

)
∈ G(A(∞)) ∩M2(Ô)

∣∣c ≡ 0 mod NÔ, dN ∈ O×
N

}
,

where dN is the projection of d ∈ Ô to ON :=
∏

q|N Oq for prime ideals q. Writing

T0 for the maximal diagonal torus of GL(2)/O and putting

(1.10) D0 =
{
diag[a, d] = ( a 0

0 d ) ∈ T0(F
(∞)
A ) ∩M2(Ô)

∣∣dN = 1
}
,

we have (e.g. [MFG, 3.1.6] and [PAF, Section 5.1])

(1.11) Δ0(N) = U0(N)D0U0(N).
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In this section, the group U is assumed to be a subgroup of U0(Npα) with U ⊃
U1
1 (Npα) for some 0 < α ≤ ∞ (though we do not assume that N is prime to

p). Formal finite linear combinations
∑

δ cδUδU of double cosets of U in Δ0(Npα)
form a ring R(U,Δ0(Npα)) under convolution product (see [IAT, Chapter 3] or
[MFG, 3.1.6]). Recall the prime element �q of Oq for each prime q fixed in the
introduction. The algebra is commutative and is isomorphic to the polynomial ring
over the group algebra Z[U0(Npα)/U ] with variables {T (q), T (q, q)}q. Here T (q)

(resp. T (q, q) for primes q � Npα) corresponds to the double coset U
(
�q 0
0 1

)
U (resp.

U0�qU). The group element u ∈ U0(Npα)/U in the group algebra Z[U0(Npα)/U ]
corresponds to the double coset UuU (cf. [H95, Section 2]).

As in the introduction, we extend εj to a character of (F
(∞)
A )× ⊂ Ô××

∏
q
�Z

q

trivial on the factor
∏

q
�Z

q , and denote the extended character by the same symbol

εj . In [HMI, (ex0–3)], ε2 is extended as above, but the extension of ε1 taken there

is to keep the identity ε+ = ε1ε2 over (F
(∞)
A )×. The present extension is more

convenient in this paper.
The double coset ring R(U,Δ0(Npα)) naturally acts on the space of modu-

lar forms on U . We now recall the action (which is a slight simplification of
the action of [UxU ] given in [HMI, (2.3.14)]). Recall the diagonal torus T0 of
GL(2)/O; so, T0 = G2

m/O. Since T0(O/N′) is canonically a quotient of U0(N
′)

for an ideal N′, a character ε : T0(O/N′) → C× can be considered as a charac-
ter of U0(N

′). If εj is defined modulo Nj , we can take N′ to be any multiple of

N1 ∩ N2. Writing ε (( a 0
0 d )) = ε1(a)ε2(d), if ε

− = ε1ε
−1
2 factors through (O/N)×

for for an ideal N|N′, then we can extend the character ε of U0(N
′) to Δ0(N) by

putting ε(δ) = ε1(det(δ))(ε
−)−1(dN) for δ =

(
a b
c d

)
∈ Δ0(N) (as before). In this

sense, we hereafter assume that ε is defined modulo N and regard ε as a char-
acter of the group U0(N) and the semi-group Δ0(N). We fix a Hecke character
ε+ : F×

A /F× → C× with infinity type (1− [κ])I (for the integer [κ] = κ1,σ + κ2,σ)

such that ε+(z) = ε1(z)ε2(z) for z ∈ Ô×.
Writing I for the set of all embeddings of F into Q and T 2 for ResO/ZT0 (the

diagonal torus of G), the group of geometric characters X∗(T 2) is isomorphic to
Z[I]2 so that (m,n) ∈ Z[I]2 send diag[x, y] ∈ T 2 to xmyn =

∏
σ∈I(σ(x)

mσσ(y)nσ).

Taking κ = (κ1, κ2) ∈ Z[I]2, we assume [κ]I = κ1 + κ2, and we associate with κ a
factor of automorphy:

(1.12) Jκ(g, τ ) = det(g∞)κ1−Ij(g∞, τ )κ2−κ1+I for g ∈ G(A) and τ ∈ Z.

We define Sκ(U, ε;C) for an open subgroup U ⊂ U0(N) by the space of functions
f : G(A) → C satisfying the following three conditions (e.g. [HMI, (SA1–3)] and
[PAF, 4.3.1]):

(S1) f(αxuz) = ε(u)ε+(z)f(x)Jκ(u, i)
−1 for α ∈ G(Q), u ∈ U ·Ci and z ∈ Z(A).

(S2) Choose u ∈ G(R) with u(i) = τ for τ ∈ Z, and put fx(τ ) = f(xu)Jκ(u, i)
for each x ∈ G(A(∞)) (which only depends on τ ). Then fx is a holomorphic
function on Z for all x.

(S3) fx(τ ) for each x is rapidly decreasing as ησ →∞ (τ = ξ+ iη) for all σ ∈ I
uniformly.

If we replace the word “rapidly decreasing” in (S3) by “slowly increasing”, we get
the definition of the space Gκ(U, ε;C). It is easy to check (e.g. [HMI, (2.3.5)] that
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the function fx in (S2) satisfies

(1.13) fx(γ(τ )) = ε−1(x−1γx)fx(τ )Jκ(γ, τ ) for all γ ∈ Γx(U),

where Γx(U) = xUx−1G(R)+∩G(Q). Also by (S3), fx is rapidly decreasing towards
all cusps of Γx; so, it is a cusp form. If we restrict f as above to SL2(FA), the
determinant factor det(g)κ1−I in the factor Jκ(g, τ ) disappears, and the automorphy
factor becomes only dependent on k = κ2−κ1 + I ∈ Z[I]; so, the classical modular
form in Gk has single digit weight k ∈ Z[I]. Via (1.1), we have an embedding of
Sκ(N

′, ε;C) into Gk(Γ0(N
′), ε;C) =

⊕
[c]∈Cl+F

Gk(c,Γ0(N
′), ε;C) (c running over a

complete representative set prime toN′ for the strict ideal class group Cl+F ) bringing

f into (fc)[c] for fc = fx (as in (S3)) with x =
(
cd−1 0
0 1

)
(for d ∈ F×

A with dÔ = d̂).
The cusp form fc is determined by the restriction of f to x · SL2(FA). Thus fx
is not exactly the restriction of f to SL2(FA), and the embedding f �→ (fc)c into⊕

[c]∈Cl+F
Gk(c,Γ0(N

′), ε;C) depends on κ and ε+, and hence the uniform definition

of Hecke operators in (1.4) (appeared dependent only on k) produces different
eigenvalues dependent on κ and ε+. In other words, if we vary the weight κ keeping
k = κ2 − κ1 + I, the image of Sκ in Gk(Γ0(N

′), ε;C) transforms accordingly. By
this identification, the Hecke operator T (q) for non-principal q makes sense as an
operator acting on a single space Gκ(U, ε;C), and its action depends on the choice
of κ. The SL(2)–weight of an automorphic representation π of SL2(FA) generated
by f |SL2(FA) for f ∈ Gκ(U, ε;C) is given by k (which specifies the infinity type of

π∞ as a discrete series representation of SL2(FR)). Though in (1.13), ε−1 shows
up, the Neben character of the direct factor Gk(c,Γ0(N

′), ε;C) is given by ε, since
in (Neben), the order of (a, d) is reversed to have ε1(d)ε2(a). It is easy to see that
Gκ = 0 unless κ1 + κ2 = [κ]I for the integer [κ] ∈ Z.

In the introduction, we have extended εj to (F
(∞)
A )× and ε to Δ0(N) (as long

as ε− is defined modulo N), and we have ε(δ) = ε1(det(δ))(ε
−)−1(dN) for δ =(

a b
c d

)
∈ Δ0(N). Let U be the unipotent algebraic subgroup of GL(2)/O defined

by U(A) =
{
( 1 a
0 1 )

∣∣a ∈ A
}
. Note here that U(Ô) ⊂ Ker(ε); so, ε(tu) = ε(t) if

t ∈ D0 and u ∈ U(Ô). For each UyU ∈ R(U,Δ0(Npα)), we decompose UyU =⊔
t∈D0,u∈U( ̂O) utU for finitely many u and t (see [IAT, Chapter 3] or [MFG, 3.1.6])

and define

(1.14) [UyU ](f)(x) =
∑
t,u

ε(t)−1f(xut).

We check that this operator preserves the spaces of automorphic forms: Gκ(N, ε;C)
and Sκ(N, ε;C), and depends only on UyU not the choice of y as long as y ∈ D0.
However it depends on the choice of �q as the character ε (extended to Δ0(N))
depends on �q. This action for y with yN = 1 is independent of the choice of the
extension of ε to T0(FA). When yN �= 1, we may assume that yN ∈ D0 ⊂ T0(FA),
and in this case, t can be chosen so that tN = yN (so tN is independent of single

right cosets in the double coset). If we extend ε to T0(F
(∞)
A ) by choosing another

prime element �′
q and write the extension as ε′, then we have

ε(tN)[UyU ] = ε′(tN)[UyU ]′,

where the operator on the right-hand-side is defined with respect to ε′. Thus
the sole difference is the root of unity ε(tN)/ε′(tN) ∈ Im(ε/ε′|T0(O/N′)). Since it
depends on the choice of �q, we make the choice once and for all, and write T (q)
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for
[
U
(
�q 0
0 1

)
U
]
(if q � N), which coincides with T (1, q) in (1.4) if q � N′. By

linearity, these action of double cosets extends to the ring action of the double
coset ring R(U,Δ0(Npα)).

To introduce rationality of modular forms, we recall Fourier expansion of adelic
modular forms (cf. [HMI, Proposition 2.26]). Recall the embedding ι∞ : Q ↪→ C,
and identify Q with the image of ι∞. Recall also the differental idele d ∈ F×

A with

d(d) = 1 and dÔ = dÔ. Each member f of Sκ(U, ε;C) has its Fourier expansion:

(1.15) f ( y x
0 1 ) = |y|A

∑
0�ξ∈F

c(ξyd, f)(ξy∞)−κ1eF (iξy∞)eF (ξx),

where eF : FA/F → C× is the additive character with eF (x∞) = exp(2πi
∑

σ∈I xσ)

for x∞ = (xσ)σ ∈ RI = F ⊗Q R. Here y �→ c(y, f) is a function defined on y ∈ F×
A

only depending on its finite part y(∞). The function c(y, f) is supported by the set

(Ô × F∞) ∩ F×
A of integral ideles.

Let F [κ] be the field fixed by {σ ∈ Gal(Q/F )|κσ = κ}, over which the character
κ ∈ X∗(T 2) is rational. Write O[κ] for the integer ring of F [κ]. We also define
O[κ, ε] for the integer ring of the field F [κ, ε] generated by the values of ε over F [κ].
For any F [κ, ε]–algebra A inside C, we define

(1.16) Sκ(U, ε;A) =
{
f ∈ Sκ(U, ε;C)

∣∣c(y, f) ∈ A as long as y is integral
}
.

As we have seen, we can interpret Sκ(U, ε;A) as the space of A–rational global
sections of a line bundle of a variety defined over A; so, by the flat base-change
theorem (e.g. [GME, Lemma 1.10.2]),

(1.17) Sκ(N, ε;A)⊗A C = Sκ(N, ε;C).

Thus for any Qp–algebras A, we may consistently define

(1.18) Sκ(U, ε;A) = Sκ(U, ε;Q)⊗Q,ιp
A.

By linearity, y �→ c(y, f) extends to a function on F×
A × Sκ(U, ε;A) with values in

A. For u ∈ Ô×, we know from [HMI, (2.3.20)]

(1.19) c(yu, f) = ε1(u)c(y, f).

If f is a normalized Hecke eigenform, its eigenvalue a(y, f) of T (y) is given by

ε1(y)
−1c(y, f) which depends only on the ideal y := yÔ ∩ F by the above formula

as claimed in the introduction. We define the q–expansion coefficients (at p) of
f ∈ Sκ(U, ε;A) by

(1.20) cp(y, f) = y−κ1
p c(y, f).

The formal q–expansion of an A–rational f has values in the space of functions on

(F
(∞)
A )× with values in the formal monoid algebra A[[qξ]]ξ∈F+

of the multiplicative
semi-group F+ made up of totally positive elements, which is defined by

(1.21) f(y) = N (y)−1
∑
ξ	0

cp(ξyd, f)q
ξ,

where N : F×
A /F× → Q

×
p is the character given by N (y) = y−I

p |y(∞)|−1
A .

We now define for any p–adically complete O[κ, ε]–algebra A in Cp

(1.22) Sκ(U, ε;A) =
{
f ∈ Sκ(U, ε;Cp)

∣∣cp(y, f) ∈ A for integral y
}
.
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As we have already seen, these spaces have geometric meaning as the space of
A–integral global sections of a line bundle defined over A of the Hilbert modular
variety of level U , and the q–expansion above for a fixed y = y(∞) gives rise to
the geometric q–expansion at the infinity cusp of the classical modular form fx for
x =

(
y 0
0 1

)
(see [H91, (1.5)] and [PAF, (4.63)]).

We have chosen a complete representative set {ci}i=1,...,h in finite ideles for the

strict idele class group F×\F×
A /Ô×F×

∞+, where h is the strict class number of F .

Let ci = ciO. Write ti =
(

cid
−1 0
0 1

)
and consider fi = fti as defined in (S2). The

collection (fi)i=1,...,h determines f , because of the approximation theorem. Then
f(cid

−1) gives the q–expansion of fi at the Tate abelian variety with ci–polarization
Tate

c
−1
i ,O(q) (ci = ciO). By (q–exp), the q–expansion f(y) determines f uniquely.

We write T (y) for the Hecke operator acting on Sκ(U, ε;A) corresponding to
the double coset U

(
y 0
0 1

)
U for an integral idele y. We renormalize T (y) to have

a p–integral operator T(y): T(y) = y−κ1
p T (y). Since this only affects T (y) with

yp �= 1, T(q) = T (�q) = T (q) if q � p. However depending on weight, we can have
T(p) �= T (p) for primes p|p. The renormalization is optimal to have the stability
of the A–integral spaces under Hecke operators. We define 〈q〉 = N(q)T (q, q) with
T (q, q) = [U�qU ] for q � N′pα (N′ = N1 ∩N2), which is equal to the central action

of a prime element �q of Oq times N(q) = |�q|−1
A . We have the following formula

of the action of T(q) (e.g., [HMI, (2.3.21)] or [PAF, 4.2.10]):

(1.23) cp(y, f |T(q)) =
{
cp(y�q, f) + cp(y�

−1
q , f |〈q〉) if q is outside Np

cp(y�q, f) otherwise,

where the level N of U is the ideal maximal under the condition: U1
1 (N) ⊂ U ⊂

U0(N). Thus we have T(�q) = (�q)
−κ1
p U(q) when q is a factor of the level of U

(even when q|p; see [PAF, (4.65–66)]). Writing the level of U as Npα, we assume

(1.24) either p|Np
α or [κ] ≥ 0,

since T(q) and 〈q〉 preserve the space Sκ(U, ε;A) under this condition (see [PAF,
Theorem 4.28]). We define the Hecke algebra hκ(U, ε;A) (resp. hκ(N, ε;A)) with co-
efficients in A by the A–subalgebra of the A–linear endomorphism algebra
EndA(Sκ(U, ε;A)) (resp. EndA(Sκ(N, ε;A))) generated by the action of the finite
group U0(Npα)/U , T(q) and 〈q〉 for all q.

1.9. Hecke algebras. We have canonical projections for Uα=U0(N)∩U1
1 (p

α):

R(Uα,Δ0(Np
α)) � R(U,Δ0(Np

α)) � R(U0(Npβ),Δ0(Npβ))

for all α ≥ β (⇔ α(p) ≥ β(p) for all p|p) taking canonical generators to the
corresponding ones, which are compatible with inclusions

Sκ(Np
β, ε;A) ↪→ Sκ(U, ε;A) ↪→ Sκ(Uα, ε;A).

We decompose O×
p = Γ×Δ as in the introduction and hence G = Γ×Δ×(O/N′)×.

We fix κ and ε+ and the initial ε = (ε1, ε2, ε+). We suppose that εj (j = 1, 2) factors
through G/Γ = Δ × (O/N′)× for N′ prime to p. We write N for a factor of N′

such that ε− is defined modulo Npr0+1 for some pr0+1|P. Then we get a projective
system of Hecke algebras {hκ(U, ε;A)}U (U running through open subgroups of
U0(Npr0+1) containing U∞), whose projective limit (when κ2 − κ1 ≥ I) gives rise
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to the universal Hecke algebra hκ(Np∞, ε;A) = lim←−U
hκ(U, ε;A) for a complete

p–adic algebra A.

We have a continuous character T : Ô× → hκ(Np∞, ε;A) given by u �→ T (u)

where f |T (u)(x) = ε1(u)
−1f (x ( u 0

0 1 )) for u ∈ Ô×. This character T factors through
Γ = G/(Δ× (O/N′)×) and induces a canonical algebra structure of hκ(Np∞, ε;A)
over A[[Γ]].

Let W be a sufficiently large complete discrete valuation ring inside Qp (as

before). Define W [ε] ⊂ Qp by the W -subalgebra generated by the values of ε (over
the finite adeles). It has canonical generators T(y) over Λ = W [[Γ]]. Here note that
the operator 〈q〉 acts via multiplication by N(q)ε+(q) for the fixed central character
ε+, where N(q) = |O/q|.

We write hp.ord
κ (U, ε;W ), hp.ord

κ (Npα, ε;W ) and hp.ord = hp.ord
κ =hp.ord

κ (Np∞,
ε;W ) for the image of the (nearly) p-ordinary projector e = limn T(�p)

n! (T(�p)
may depend on the choice of �p but e is independent of the choice). By Brad
Wilson’s thesis [W] at UCLA, this algebra hp.ord is shown to be independent of
κp (as long as κ2 − κ1 ≥ I) but dependent on κp. We plan to give a full details
of a proof of this fact in [HHA] as well as the control theorem we referred in the
introduction, though we only need the the axioms (A1–2) in this paper. We write
hp.ord
κ if the relevance of the weight is important. The algebra hp.ord

κ is by definition
the universal nearly p-ordinary Hecke algebra over Λ of level Np∞ with “Neben
character” ε. We also note here that, if p is the unique prime in F above p, this
algebra hp.ord

κ (Np∞, ε;W ) is exactly the one hκ(ψ
+, ψ′) employed in [HiT, page

240] (note that in [HiT] we assumed κ1 ≥ κ2 reversing our normalization here).
Note that Γ is isomorphic to the additive group Zm

p for m = [Fp : Qp]. Take

a point P ∈ Spf(Λ)(Qp). If P is arithmetic, εP = Pκp(P )−1 is a character of Γ.
By abusing a symbol, we write εP for the character (εP,1,, εP,2, ε+) given by εP,j

on Γ and εj on Δ× (O/N′)×. Writing the conductor of ε−P |O×
p

as pf(P ), we define

r(P ) ≥ 0 by pr(P )+1 = pf(P ) ∩ p. Let κ(P ) = κp(P ) + κp for the fixed κ. As long
as P is arithmetic with κ(P ) = κ, we have a canonical specialization morphism:

hp.ord
κ (Np

∞, ε;W )⊗Λ,P W [εP ] � hp.ord
κ (Np

r(P )+1, ε;W [εP ]).

The specialization morphism takes the generators T(y) to T(y). We show in [HHA]
that this morphism is an isogeny (surjective and of finite kernel). Instead in this
paper, we prove a weaker bounded dimensionality of hp.ord

κ (Npr(P )+1, ε;K[εP ]) in-
dependent of r(P ) for the field of fractions K of W , which is logically sufficient
to prove the theorem in the introduction under the axiom (A1–2). We prove the
bounded dimensionality in §1.11 after defining p-slope 0 analytic families.

1.10. Analytic families of Hecke eigenforms. For a fixed κ and ε+, we
have the algebra h as in (A1–2). We may take h to be the image of the nearly
p-ordinary Hecke algebra of level Np∞ in [PAF, §4.2.12] in the Hecke algebra
generated in hp.ord

κ := hκ(Np∞, ε;W ), or any h giving a closed subscheme Spec(h)
of Spec(hp.ord

κ ) satisfying (A1–2).
By fixing an isomorphism Γ ∼= Zm

p with m = [Fp : Qp], we have identi-
fied Λ with W [[T1, . . . , Tm]] for {ti = 1 + Ti}i=1,...,m corresponding to a Zp-basis
{γi}i=1,...,m of Γ. Regard κ1,p as a character of O×

p whose value at γi is

γ
κ1,p

i =
∏
σ∈Ip

σ(γi)
κ1,p,σ .
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We may write an arithmetic prime P as a prime Λ-ideal

P = (ti − ε1(γi)
−1γ

κ1,p

i )W [ε][[Γ]] ∩Λ.

When κ1,p = k1Ip, our choice of the extension γκ1,p is given by γ �→ N(γ)k1

for the norm map N = NFp/Qp
on O×

p . For a point P ∈ Spec(Λ)(Qp) killing

(ti− ζ−1
i γ

κ1,p

i ) for ζi ∈ μp∞(W ), we make explicit the character εP . First we define
a character εP,1,Γ : O×

p → μp∞(W ) factoring through Γ = O×
p /Δ by εP,1,Γ(γi) = ζi

for all i. Then for the fixed ε+, we put εP,2,Γ = (ε+|Γ)ε−1
P,1,Γ. With the fixed data

ε
(Γ)
1 := ε1|(O/N′)××Δ and ε

(Γ)
2 := ε2|(O/N′)××Δ, we put εP,j = εj,P,Γε

(Γ)
j . In this

way, we form εP = (εP,1, εP,2, ε+).
Let Spec(I) be a reduced irreducible component Spec(I) ⊂ Spec(h). Since h is

torsion-free of finite rank over Λ, Spec(I) is a finite torsion-free covering of Spec(Λ).
Write a(y) and a(l) for the image of T (y) and T (l) in I (so, a(�p) is the image of
T (�p)). We also write a(y) for the image of T(y); so, a(y) = y−κ1

p a(y). If P ∈
Spec(I)(Qp) induces an arithmetic point P0 of Spec(Λ), we call it again an arith-
metic point of Spec(I), and put κ(P ) = κ(P0). If P is arithmetic, by (A2), we have
a Hecke eigenform fP ∈ Sκ(Npr(P )+1, εP ;Qp) such that its eigenvalue for T(l) and
T(y) is given by aP (l) := P (a(l)), aP (y) := P (a(y)) ∈ Qp for all l and y ∈ F×

p . Thus
I gives rise to a family F = FI = {fP |arithemtic P ∈ Spec(I) with κ(P ) = κ} of
classical Hecke eigenforms. We call this family a p-adic analytic family of p-slope 0
(of weight κ with coefficients in I) associated to an irreducible component Spec(I) ⊂
Spec(h). There are sub-family corresponding to any closed integral subscheme
Spec(J) ⊂ Spec(I) as long as Spec(J) has densely populated arithmetic points.

Abusing our language slightly, for any covering π : Spec(̃I) � Spec(I), we consider

the pulled back family F
˜I
= {fP = fπ(P )|arithemtic P ∈ Spec(̃I) with κ(P ) = κ}.

The choice of Ĩ is often the normalization of I or the integral closure of I in a finite
extension of the quotient field of I.

Identify Spec(I)(Qp) with HomW -alg(I,Qp) so that each element a ∈ I gives rise
to a “function” a : Spec(I)(Qp) → Qp whose value at (P : I → Qp) ∈ Spec(I)(Qp)

is aP := P (a) ∈ Qp. Then a is an analytic function of the rigid analytic space
associated to Spf(I). We call such a family p-slope 0 because |aP (�p)|p = 1 for the

p-adic absolute value | · |p of Qp (it is also called a p-ordinary family).

1.11. Bounded Dimensionality. We define a character ε̃ = (ε̃1, ε̃2, ε̃+) with
values in W× by the Teichmüller lift of the reduction modulo mW of the characters
ε. By the following theorem, hκ(Np∞, ε;W ) is finite over Λ; so, the essence of [W]
is torsion-freeness over Λ of this algebra and the control theorem.

Theorem 1.1. Fix a weight κ with κ2 − κ1 ≥ I and a level N. Then the
dimension

dimCp
Sp.ord
κ (Np

r(P )+1, εP ;Cp)

is bounded independently of arithmetic points P ∈ Spec(Λ)(Qp) with κ(P ) = κ.

Let Y0(N) = G(Q)\G(A)/U0(N)Z · SO2(FR) for the center Z nof G(A) and
FR = F ⊗QR. If the assertion of the theorem holds for N contained in the principal
ideal (N) for a sufficiently large integer N , the assertion holds for all N, because
by the theory of primitive forms [MFM] 4.6 and [H88] Section 3 (or the strong
multiplicity one theorem [AAG] Sections 4 and 10), one can recover the dimension
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of each space with lower level. Therefore, replacing N by deeper level, we may
assume that Y0(N) is smooth. Define n = κ2 − κ1 − I. Taking a sufficiently
large algebra R in Cp containing all conjugates of O, consider the representation
ρσ : GL2(O) → GL2(R) induced by σ ∈ I, and take its symmetric n-th tensor
representation

⊗
σ ρ

sym⊗nσ
σ . As in [PAF, §4.3.2], we realize this representation on

the polynomials in {(Xσ, Yσ)}σ with coefficients in R having homogeneous degree
nσ, where R is a W [εP ]-algebra. Then we twist the action by ε suitably (as in
[PAF, §4.3.2]) and write the resulting module by L(κ∗ε;R). Further deepening N if
necessary, this module L(κ∗εP ;R) gives rise to a locally constant sheaf over Y0(N).
Identifying Cp and C compatibly with our chosen embeddings C ←↩ Q ↪→ Cp.
Then the Eichler-Shimura isomorphism (in [PAF, §4.3.4]) gives rise to a Hecke-
equivariant embedding

Sκ(N, ε;C) ↪→ Hd(Y0(N), L(κ∗ε;C)) (d = [F : Q]).

Thus to bound the dimension, we need to bound the rank of Hd
p.ord(Y0(N), L(κ∗ε;

W [εP ])), where Hd
p.ord indicates the image of the p-ordinary projector e.

Proof. Take W to be the ring of Witt vectors with coefficients in an algebraic
closure F of Fp. We simply write LP for L(κ∗ε;W [εP ]). By the long exact sequence

attached to 0→ LP
x�→�·x−−−−−→ LP → LP ⊗W F→ 0 for a prime element � of W [εP ],

we have the following inclusion:

Hd(Y0(Np
r(P )+1), LP )⊗W [εP ] F ↪→ Hd(Y0(Np

r(P )+1), LP ⊗W [εP ] F).

Thus we need to bound

dimF H
d(Y0(Np

r(P )+1), LP ⊗W [εP ] F),

since

dimC Hd
p.ord(Y0(Np

r(P )+1), LP⊗W [εP ]C) ≤ dimF H
d
p.ord(Y0(Np

r(P )+1), LP )⊗W [εP ]F.

By the description of εP in the previous subsection, we have εP ≡ ε̃ mod mW [εP ].
Thus we have

Hd(Y0(Npr(P )+1), LP ⊗W [εP ] F) ∼= Hd(Y0(Npr(P )+1), L(κ∗ε̃,F)).

Note that L(κ̃ε̃;F) is well defined over Y0(Np). Since we have a natural bijection

U0(Np)αrU0(Npr+1)/U0(Npr+1) ∼= U0(Np)αrU0(Np)/U0(Np)

for αr =
(

�r
p 0

0 1

)
, writing ur for the normalized operator

ur := �−κ1
p [U0(Np)αrU0(Np

r+1)],

we get the following commutative diagram for r = r(P ):

Hd(Y0(Npr+1), LP ⊗W [εP ] F)
Res−−→ Hd(Y0(Np), L(κ∗ε̃,F))

↓ T(�r
p) ↘ ↓ T(�r

p)
Hd(Y0(Npr+1), LP ⊗W [εP ] F) −−→

Res
Hd(Y0(Np), L(κ∗ε̃,F)),

where the middle south-east arrow is given by ur. Here, the original action of αr

on
⊗

σ ρ
sym⊗nσ
σ is det(αr)

−κ1 times the action of αr of the twisted module LP (up
to p-adic unit multiple); so, the operator ur is intrinsically integral defined on the
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cohomology group Hd(Y0(Npr+1), LP ⊗W [εP ] F) of characteristic p (and hence the
above diagram commutes). This diagram shows the identity of dimension:

dimF H
d
p.ord(Y0(Np

r(P )+1), LP ⊗W [εP ] F) = dimF H
d
p.ord(Y0(Np), L(κ∗ε̃,F)),

and therefore dimF H
d
p.ord(Y0(Npr(P )+1), LP ⊗W [εP ]F) is bounded. This finishes the

proof. �

1.12. Modular Galois representations. Each (reduced) irreducible com-
ponent Spec(I) of the Hecke spectrum Spec(h) has a 2-dimensional semi-simple
(actually absolutely irreducible) continuous representation ρI of Gal(Q/F ) with co-
efficients in the quotient field of I (see [H86a] and [H89b]). The representation ρI
restricted to the p-decomposition group Dp is reducible (see [HMI, §2.3.8]). Define

the p-adic avatar ε̂+ : (F
(∞)
A )×/F× → Q

×
p by ε̂+(y) = ε+(y)y

I−κ1−κ2
p . We write

ρssI for its semi-simplification over Dp. As is well known now (e.g., [HMI, §2.3.8]),
ρI is unramified outside Np and satisfies

(Gal) Tr(ρI(Frobl)) = a(l) for all prime l � pN,

and
(Loc)

ρssI ([γs
i , Fp]) ∼

(
t−s
i 0

0 tsi ε̂+([γs
i ,Fp])NFp/Qp (γi)

−s

)
and ρssI ([�p, Fp]) ∼

( ∗ 0
0 a(�p)

)
,

where we have written γs
i ∈ Γ for s ∈ Zp via the multiplicative Zp-module structure

of Γ and [x, Fp] is the local Artin symbol.
By (Gal) and Chebotarev density, Tr(ρI) has values in I; so, for any inte-

gral closed subscheme Spec(J) ⊂ Spec(I) with projection π : I → J, π ◦ Tr(ρI) :
Gal(Q/F ) → J gives rise to a pseudo-representation of Wiles (e.g., [MFG, §2.2]).
Then by a theorem of Wiles, we can make a unique 2-dimensional semi-simple con-
tinuous representation ρJ : Gal(Q/F ) → GL2(Q(J)) unramified outside Np with
Tr(ρJ(Frobl)) = π(a(l)) for all primes l outside Np, where Q(J) is the quotient field
of J. If Spec(J) is one point P ∈ Spec(I)(Qp), we write ρP for ρJ. This is the Galois
representation associated to the Hecke eigenform fP (given in [H89b]). Then the
above condition (Loc) implies
(Ram)

ρssP ([u, Fp]) ∼
(

εP,1(u)u
−κ1 0

0 εP,2(u)u
−κ2

)
for u ∈ O×

p and ρssP ([y, Fp]) ∼
( ∗ 0
0 aP (y)

)
for each arithmetic point P .

1.13. CM theta series. Following the description in [H04, §6.2], we con-
struct CM theta series with p-slope 0 and describe the CM component which gives
rise to such theta series. We recall a cusp form f on GL2(FA) with complex multi-
plication by a CM field M . Let M/F be a CM field with integer ring O and choose
a CM type Σ:

IM = Homfield(M,Q) = Σ 	 Σc

for complex conjugation c. To assure the p-slope 0 condition, we need to assume
that the CM type Σ is p–ordinary, that is, the set Σp of p–adic places induced by
ιp ◦σ for σ ∈ Σ is disjoint from Σpc (its conjugate by the generator c of Gal(M/F )).
The existence of such a p-ordinary CM type implies that the prime p of F split in
M/F . Thus Σ = Σp 	 Σ′ and IM = Σp 	 Σ′ 	 Σ′ ◦ c 	 Σpc . Write p = PPc in O
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for two primes P �= Pc such that P is induced by ιp on M . For each k ∈ Z[I] and
X = Σ,Σp,Σ

′, we write kX =
∑

σ∈X kσ|Fσ.
We choose κ2 − κ1 ≥ I with κ1 + κ2 = [κ]I for an integer [κ]. We then choose

a Hecke character λ of conductor CPe (C prime to p) such that

λ((α)) = αcκ1Σ+κ2Σ for α ∈M× with α ≡ 1 mod CP
e,

where Pe = Pe(P)Pce(Pc) for e = e(P)P + e(Pc)Pc. If we need to indicate
that C is the prime-to-p conductor of λ, we write C(λ) for C. We also decompose
C =

∏
L
Le(L) for prime ideals L of M . We extend λ to a p–adic idele character

λ̂ : M×
A /M×M×

∞ → Q
×
p so that λ̂(a) = λ(aO)a−κ2Σ−cκ1Σ

p . By class field theory, we

may regard λ̂ as a character of Gal(F/M). Any character ϕ of Gal(F/M) of the

form λ̂ as above is called “of weight κ”. For a prime ideal L of M outside p, we

write λL for the restriction of λ̂ to M×
L
; so, λL(x) = λ̂(x) = λ(x) for x ∈M×

L
. For

a any prime ideal P′|p of M , we put λP′(x) = λ̂(x)xκ2Σ+cκ1Σ = λ(x) for x ∈M×
P′ .

In particular, for the prime P|p, we have λP(x) = λ̂(x)xκ2Σp for x ∈ M×
P
, and

λPc(x) = λ̂(x)xcκ1Σp for x ∈M×
Pc . Then λL for all prime ideals L (including those

above p) is a continuous character of M×
L

with values in Q whose restriction to O
×
L

is of finite order. By the condition κ1 �= κ2, λ̂ cannot be of the form λ̂ = φ ◦NM/F

for an idele character φ : F×
A /F×F×

∞+ → Q
×
p .

We define a function (F
(∞)
A )× � y �→ c(y, θ(λ)) supported by integral ideles by

(1.25) c(y, θ(λ)) =
∑

x∈(M
(∞)
A

)×,xxc=y

λ(x) if y is integral,

where x runs over elements in M×
A /(Ô(CPe))× satisfying the following four condi-

tions: (0) x∞ = 1, (i) xO is an integral ideal of M , (ii) NM/F (x) = y and (iii)
xQ = 1 for prime factors Q of the conductor CPe. The q–expansion determined by
the coefficients c(y, θ(λ)) gives a unique element θ(λ) ∈ Sκ(Nθ, ε

′
λ;Q) ([HiT, The-

orem 6.1] and [HMI, Theorem 2.72]), where Nθ = NM/F (CP
e)d(M/F ) for the

discriminant d(M/F ) of M/F and ε′λ is a suitable “Neben” character. We have

(C) The central character ελ+ of the automorphic representation π(λ) gener-

ated by θ(λ) is given by the product: x �→ λ(x)|x|A
(

M/F
x

)
for x ∈ F×

A

and the quadratic character
(

M/F
)
of the CM quadratic extension M/F .

We describe the Neben character ελ = (ελ,1, ελ,2, ελ+) of the minimal form
f(λ) in the automorphic representation π(λ). For that, we choose a decomposition
C = FFcI so that FFc is a product of split primes and I for the product of inert or
ramified primes, F + Fc = O and F ⊂ Fc

c. If we need to make the dependence on
λ of these symbols explicit, we write F(λ) = F, Fc(λ) = Fc and I(λ) = I. We put
f = F ∩ F and i = I ∩ F . Define λ−(a) = λ(ac−1) (with ac−1 = aca−1), and write
its conductor as C(λ−). Decompose as above C(λ−) = F(λ−)Fc(λ−)I(λ−) so that

we have the following divisibility of radicals
√
F(λ−)|

√
F(λ) and

√
Fc(λ−)|

√
Fc(λ).

Let T0 = ResO/OGm. The l-component ελ,j,l (j = 1, 2) of the character ελ,j is given
as follows:

(hk1) For l|f, we identify T0(Ol) = O
×
L
×O

×
Lc with this order for the prime ideal

L|(lO∩F) and define ελ,1,l×ελ,2,l by the restriction of λL×λLc to T0(Ol).
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(hk2) For P|p, we identify T0(Op) = O
×
P
×O

×
Pc and define ελ,1,p × ελ,2,p by the

restriction of λP × λPc to T0(Op).
(hk3) For l|(I(λ) ∩ O)d(M/F ) but l � (I(λ−) ∩ O), we can choose a character

φl : F
×
l
→ C× such that λL = φl ◦ NML/Fl

. Then we define ελ,1,l(a) =(
ML/Fl

a

)
φl(a) and ελ,2,l(d) = φl(d), where L is the prime factor of l in

M and
(

ML/Fl

d

)
is the character of ML/Fl.

(hk4) For l|(I(λ−)∩O), ελ,1,l = ελ+,l|O×
l

and ελ,2,l = 1 for the central character

ελ+ given in (C).

We now give an explicit description of the automorphic representation π(λ). In
Cases (hk1–3), taking a prime L|l in M , we have

(1.26) πp(λ) ∼=

⎧⎪⎪⎨⎪⎪⎩
π(λP, λPc) in Case (hk1),

π(λL, λLc) in Case (hk2),

π(
(

ML/Fl

)
φl, φl) in Case (hk3).

In Case (hk4), πl(λ) is the super-cuspidal representation giving rise to

IndFl

Ml
λ̂|Gal(F l/Ml)

.

To describe of f(λ), we split Nθ into a product of co-prime ideals Nnc and
Ncusp so that Nnc is made up of primes in Cases (hk1–3). For l|Nnc, writing
πl(λ) = π(ηl, η

′
l) for characters ηl, η

′
l : F

×
l
→ C×, we write Cl for the conductor of

η−1
l

η′l. Define the minimal level of π(λ) by

N(λ) = Ncusp

∏
l|Nnc

Cl,

where l runs over primes satisfying one of the three conditions (hk1–3). Put

Ξ = {L|L ⊃ FP,L ⊃ N(λ)}
for primes L of M . Then the minimal form f(λ) has the following q-expansion
coefficient:

(1.27) cp(y, f(λ)) =

{∑
xxc=y,xΞ=1 λ̂(x) if y is integral,

0 otherwise,

where x runs over (Ô ∩M×
A(∞)/(O

(Ξ))× with xL = 1 for L ∈ Ξ. See [H04, §6.2]
for more details of this construction (though in [H04], the order of (κ1, κ2) is
interchanged so that κ1 > κ2).

1.14. CM components. We fix κp and vary κp. We fix a Hecke character λ
of type κ as in the previous subsection, and we continue to use the symbols defined

above. We may regard the Galois character λ̂ as a character of ClM (Cp∞).
We consider the ray class group ClM (C(λ−)p∞) modulo C(λ−)p∞. Since

λ−(ac) = (λ−)−1(a), we have C(λ−) = C(λ−)c. Thus Gal(M/F ) = 〈c〉 acts natu-
rally on ClM (C(λ−)p∞). We define the anticyclotomic quotient of ClM (C(λ−)p∞)
by

Cl−M (C(λ−)p∞) := ClM (C(λ−)p∞)/ClM (C(λ−)p∞)1+c.

We have canonical identities:

O
×
p = O

×
P
×O

×
Pc = O×

p ×O×
p
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on which c acts by interchanging the components. The natural inclusion O
×
p /O

×
↪→

Cl(C(λ−)p∞) therefore induces an inclusion Γ ↪→ Cl−M (C(λ−)p∞). Decompose

Cl−M (C(λ−)p∞) = ΓM×ΔM with the maximal finite subgroup ΔM so that ΓM ⊃ Γ.
Then Γ is an open subgroup in ΓM . In particular, W [[ΓM ]] is a regular domain
finite flat over ΛW . Thus we call P ∈ Spec(W [[ΓM ]])(Qp) arithmetic if P is above

an arithmetic point of Spec(ΛW )(Qp). Regard the tautological character

υ : ClM (Cp∞)
projection−−−−−−→ ΓM ↪→W [ΓM ]]×

as a Galois character υ : Gal(M/M)→W [ΓM ]]×.
The composite υP = P ◦ υ for an arithmetic point P ∈ Spec(W [[ΓM ]]) is

of the form ϕ̂P for a Hecke character ϕP with p-type κ′
P,2Σp + κ′

P,1Σ
c
p for κ′

P =

(κ′
P,1, κ

′
P,2) ∈ Z[Ip]2 satisfying κp,2 + κ′

P,2 − (κ1,p + κ′
P,1) ≥ Ip. Assume that λ̂

has values in W× (enlarging W if necessary). We then consider the product λ̂υ :

Gal(M/M)→W [[ΓM ]]× and ρW [[ΓM ]] := IndFM λ̂υ : Gal(M/M)→ GL2(W [[ΓM ]]).
Define IM ⊂ W [[ΓM ]] by the ΛW -subalgebra generated by Tr(ρW [[ΓM ]]). Then we
have the localization identity IM,P = W [[ΓM ]]P for any arithmetic point P (this

follows from the irreducibility of ρP = P ◦ ρW [[ΓM ]] = IndFM λ̂υP ).

We have a surjective projection πλ : hp.ord
κ → IM sending T (l) to

Tr(ρW [[Γ]](Frobl)) for primes l outside N(λ). If πλ factors through h, Spec(IM )
is an irreducible component of Spec(h) by (A1). In particular, ρIM = ρW [[ΓM ]]. Re-
placing Spec(h) by Spec(h) ∪ (

⋃
IM

Spec(IM ) for all possible CM components IM ,

we assume that any CM component is contained in Spec(h). Since IM is torsion-
free and finite over Λ, the axioms (A1–2) are intact under this change. In the same
manner as in [HMI, Proposition 3.78], we can prove the following facts assuming
(A1–2):

Proposition 1.2. Let the notation and the assumptions be as above. Then
for the reduced part hred of h and each arithmetic point P ∈ Spec(Λ)(Qp) with

κ(P ) = κ, Spec(hred
P ) is étale finite over Spec(ΛP ). In particular, no irreducible

components cross each other at a point above arithmetic point of Spec(Λ) of weight
κ.

A component I is called a CM component if there exists a nontrivial character
χ : Gal(Q/F ) → I× such that ρI ∼= ρI ⊗ χ. We also say that I has complex
multiplication if I is a CM component. In this case, we call the corresponding
family F a CM family (or we say F has complex multiplication). It is known
essentially by deformaton theory of Galois characters (cf. [H11, §4]) that any CM
component is given by Spec(IM ) as above for a specific choice of λ.

If F is a CM family associated to I with ρI ∼= ρI ⊗ χ, then χ is a quadratic
character of Gal(Q/F ) which cuts out an imaginary quadratic field M , i.e., χ =(

M/F
)
. Write Ĩ for the integral closure of Λ inside the quotient field of I. The

following three conditions are known to be equivalent:

(CM1) F has CM and ρI ∼= ρI ⊗
(

M/F
)

(⇔ ρI ∼= IndFM λ̂ for a character λ̂ :

Gal(Q/M)→ Ĩ×);
(CM2) For all arithmetic P of Spec(I)(Qp), fP is a binary theta series of the

norm form of M/F ;
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(CM3) For some arithmetic P of Spec(I)(Qp), fP is a binary theta series of the
norm form of M/F .

Indeed, (CM1) is equivalent to ρI ∼= IndFM λ̂ for a character λ̂ : Gal(Q/M) →
Ĩ× unramified outside Np (e.g., [MFG, Lemma 2.15]). Since the characteristic

polynomial of ρI(σ) has coefficients in I, its eigenvalues fall in Ĩ; so, the character

λ̂ has values in Ĩ× (see, [H86b, Corollary 4.2]). Then by (Gal) and (Loc), λ̂P =

P ◦ λ̂ : Gal(Q/M) → Q
×
p for an arithmetic P ∈ Spec(̃I)(Qp) is a locally algebraic

p-adic character, which is the p-adic avatar of a Hecke character λP : M×
A /M× →

C× of type A0 of the quadratic extension M/F . Then by the characterization

(Gal) of ρI, fP is the theta series with q-expansion
∑

a
λP (a)q

N(a), where a runs
over all integral ideals of M . By κ2(P ) − κ1(P ) ≥ I (and (Gal)), M has to be
a CM field in which p is split (as the existence of Hecke characters of infinity
type corresponding to such κ(P ) forces that M/F is a CM quadratic extension).
This shows (CM1)⇒(CM2)⇒(CM3). If (CM2) is satisfied, we have an identity

Tr(ρI(Frobl)) = a(l) = χ(l)a(l) = Tr(ρI ⊗χ(Frobl)) with χ =
(

M/F
)
for all primes

l outside a finite set of primes (including prime factors of N(λ)p). By Chebotarev
density, we have Tr(ρI) = Tr(ρI ⊗ χ), and we get (CM1) from (CM2) as ρI is semi-
simple. If a component Spec(I) contains an arithmetic point P with theta series fP
of M/F as above, either I is a CM component or otherwise P is in the intersection
in Spec(h) of a component Spec(I) not having CM by M and another component
having CM by M (as all families with CM by M are made up of theta series of M
by the construction of CM components as above). The latter case cannot happen
as two distinct components never cross at an arithmetic point in Spec(h) (i.e.,
the reduced part of the localization hP is étale over ΛP for any arithmetic point
P ∈ Spec(Λ)(Qp); see Proposition 1.2). Thus (CM3) implies (CM2). We call a
binary theta series of the norm form of a CM quadratic extension of F a CM theta
series.

Remark 1.1. If Spec(J) is an integral closed subscheme of Spec(I), we write
the associated Galois representation as ρJ. By abuse of language, we say J has CM

by M if ρJ ∼= ρJ ⊗
(

M/F
)
. Thus (CM3) is equivalent to having ρP with CM for

some arithmetic point P . More generally, if we find some arithmetic point P in
Spec(J) and ρP has CM, J and I have CM.

2. Weil numbers

Since Q sits inside C, it has “the” complex conjugation c. For a prime l, a Weil
l-number α ∈ Q of integer weight k ≥ 0 is defined by the following two properties:

(1) α is an algebraic integer;
(2) |ασ| = lk/2 for all σ ∈ Gal(Q/F ) for the complex archimedean absolute

value | · |.
Note that Q(α) is in a CM field finite over Q (e.g., [Ho, Proposition 4]), and the
Weil number is realized by the Frobenius eigenvalue of a CM abelian variety over
a finite field of characteristic l. If we ease the condition (1) above to

(1′) lmα is an algebraic integer for 0 ≤ m ∈ Z,

we call the number satisfying (1′) and (2) a generalized Weil number of weight k
(generalized Weil numbers includes Frobenius eigenvalues of Tate twists of a CM
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abelian variety over a finite field of characteristic l). We call two nonzero numbers
a, b ∈ Q equivalent (written as a ∼ b) if a/b is a root of unity. The following fact is
proven in [H11, Corollary 2.5]:

Proposition 2.1. Let d be a positive integer. Let Kd be the set of all finite
extensions of Q[μp∞ ] of degree d inside Q whose ramification at l is tame. Then
there are only finitely many Weil l-numbers of a given weight in the set-theoretic
union

⋃
L∈Kd

L (in Q) up to equivalence.

Here is another lemma proven in [H11, Lemma 2.6]:

Lemma 2.2. Let K? be one of KL and Kd. Suppose K? �= ∅. Then the group
of roots of unity in the composite L of L for L ∈ K? in Q contains μp∞(K) as a
subgroup of finite index.

3. Theorems and conjectures

Hereafter, we fix a weight κ ∈ Z[I]2 satisfying

(W) κ2 − κ1 ≥ I and κ1 + κ2 = [κ]I for an integer [κ] ≥ 1.

As for the level, we assume

(L) Npr0 (r0 ≥ 0, p � N) is the conductor of ε− prime to p and N′pr
′
0 (r′0 ≥

0, p � N′) is the maximal ideal such that εj (j = 1, 2) are defined on

(O/N′pr
′
0)×.

In addition to the weight, we fix the central character ε+ and the starting Neben
character ε, but the Neben character εP varies in such a way that ε−1εP factors
through Γ having values in μp∞(Qp). Let f ∈ Sκ(Npr+1, ε;W ) be a Hecke eigenform
normalized so that f |T(y) = ap(y, f)f for all y. Here ap(y, f) = y−κ1

p a(y, f). For

primes l � Np, write f |T (l) = (αl+βl)f and αlβl = ε+(l)l
fl if l � Npr+1 (αl, βl ∈ Q),

where |O/l| = lfl . If l|Np, we put βl = 0 and define αl ∈ Q by f |U(l) = αlf .
The inverse of the Hecke polynomial Hl(X) = (1− αlX)(1− βlX) for l � N′p gives

the Euler l-factor of L(Np
′)(s, πf ) =

∑
n,n+N′=O a(n, f)N(n)−s after replacing X by

|O/l|−s = N(l)−s.
Let F = {fP }P∈Spec(I)(Cp) be a p-adic analytic family of Hecke eigen cusp forms

of p-slope 0. Without assuming (W), the function P �→ ap,P (y) = ap(y, fP ) is a
function on Spec(I) in the structure sheaf I. Since a(�p, fP ) = �κ1

p ap(�p, fP ) for a
fixed κ1 in (W), P �→ a(�p, fP ) = αp,P is also an element in I. We write αl,P , βl,P

for αl, βl for fP , which does not depend on the choice of �p by (1.19). By [B]
(and [H88, Lemma 12.2]), αl,P is a generalized Weil l-number of weight [κ]fl for fl
given by |O/l| = lfl . Writing |κ1| = maxσ ∈ I with κ1,σ < 0(|κ1,σ|), the Hodge weight

κ + (|κ1|I, |κ1|I) has all non-negative coefficients, and hence lfl|κ1|αl,P is a Weil
l-number.

We state the horizontal theorem in a form slightly stronger than the theorem
in the introduction:

Theorem 3.1. Pick an infinite set A ⊂ Spec(I)(Qp) of arithmetic points P

with fixed weight κ satisfying κ2−κ1 ≥ I. Write MA(F) ⊂ Q for the field generated
over K := Q(μp∞) by {αp,P }P∈A, where P runs over all arithmetic points
in A. Then the field MA(F) is a finite extension of Q(μp∞) if, and only if fP
is a CM theta series for some arithmetic P with κ(P ) = κ. Moreover we have
limP∈A[K(αp,P ) : K] =∞ unless F has complex multiplication.
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We prove this theorem in Section 6. For a prime l � p, we may conjecture the
l-version of the stronger form in the horizontal case also:

Conjecture 3.2 (Horizontal l-version). Write M
(l)
A (F) for the field generated

over K := Q(μp∞) by {αl,P }P∈A. Then M
(l)
A (F) is a finite extension of K if,

and only if for some arithmetic P with k(P ) ≥ 1, either fP is a CM theta series
or the automorphic representation generated by fP is square-integrable at l. If

[M
(l)
A (F) : K] =∞, we have

lim
P∈A

[K(a(l, fP )) : K] =∞ (⇔ lim
P∈A

[K(αl,P ) : K] =∞).

In the same manner as was done after Conjecture 3.4 in [H11], one can show

[M
(l)
A (F) : K] < ∞ if fP0

is square-integrable at a prime l � p for one arithmetic
P0. We can prove the following statements in exactly the same manner as in the
elliptic modular case treated in [H11] as Proposition 3.5 (WH):

Proposition 3.3. Let M̃H,κ(F) be the field generated over Q by {α2
l,P , β

2
l,P }l,P ,

where P runs over all arithmetic point with κ(P ) = κ for a fixed κ with κ2−κ1 ≥ I

and l runs over all primes. The field M̃H,κ(F) is a finite extension of Q(μp∞) for a
fixed κ if, and only if fP is a CM theta series for some arithmetic P with κ(P ) = κ.

We add one more lemma:

Lemma 3.4. Let F be a p-slope 0 p-adic analytic family of Hecke eigenforms
with coefficients in I. Let K = Q(μp∞) and fix κ with κ2−κ1 ≥ I. Then the degree
[K(fP ) : K(αp,P )] for arithmetic P with κ(P ) = κ is bounded independently of P .

Proof. As we have seen, εP ε
−1 has values in μp∞ for all arithmetic points

P . We prove that the degree [K ′(fP ) : K ′(αp,P )] is bounded independently of P
for K ′ = Q(μp∞ , ε). Here K ′ is the field generated by the values of ε over finite
ideles over Q(μp∞). Note here that K ′ is a finite extension of K, and hence the
lemma follows from the boundedness of [K ′(fP ) : K

′(αp,P )]. Then by Theorem 1.1,

dimCp
Sp.ord
κ (Npr(P )+1, εP ;Cp) is bounded by a constant d independent of P with

κ(P ) = κ. Since εP has values in K ′, if σ ∈ Aut(Cp/K(αp,P )), f
σ
P is another Hecke

eigenform within the same space Sp.ord
κ (Npr(P )+1, εP ;Cp). Thus

[K ′(fP ) : K
′(a(p, fP ))] = #{fσP |σ ∈ Aut(Cp/K

′(αp,P ))} ≤ d

as desired. �

4. Rigidity lemmas

We study formal subschemes of Ĝ := Ĝn
m stable under the action of t �→ tz for

all z in an open subgroup U of Z×
p .

Lemma 4.1. Let X = Spf(X ) be a closed formal subscheme of Ĝ = Ĝn
m/W flat

geometrically irreducible over W (i.e., X ∩Qp = W ). Suppose there exists an open

subgroup U of Z×
p such that X is stable under the action Ĝ � t �→ tu ∈ Ĝ for all

u ∈ U . If there exists a subset Ω ⊂ X(Cp) ∩ μn
p∞(Cp) Zariski dense in X, then

ζ−1X is a formal subtorus for some ζ ∈ Ω.

A similar assertion is not valid for a formal group Ĝ2
m/K = Spec(K[[T, T ′]])

over a characteristic 0 field K. Writing t = 1+ T and t′ = 1+T ′ for multiplicative
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variables, the formal subscheme Z defined by tlog(t
′) = 1 is not a formal torus, but

it is stable under (t, t′) �→ (tm, t′m) for any m ∈ Z. See [C1, Remark 6.6.1 (iv)] for
an optimal expected form of the assertion similar to the above lemma.

Proof. Let Xs be the singular locus of the associated scheme Xsh = Spec(X )
over W , and put X◦ = Xsh \ Xs. The scheme Xs is a closed formal subscheme
of X. To see this, we note, by the structure theorem of complete neotherian ring,
that X is finite over a power series ring W [[X1, . . . , Xd]] ⊂ X for d = dimW X (cf.
[CRT, §29]). The sheaf of continuous differentials ΩX/Spf(W [[X1,...,Xd]] is a torsion
X -module, and Xs is the support of the formal sheaf of ΩX/Spf(W [[X1,...,Xd]] (which
is a closed formal subscheme of X). The regular locus of X◦ is open dense in the
generic fiber Xsh

/K := Xsh ×W K of Xsh (for the field K of fractions of W ). Then

Ω◦ := X◦ ∩ Ω is Zariski dense in Xsh
/K .

In this proof, by extending scalars, we always assume that W is sufficiently

large so that for ζ ∈ Ω we focus on, we have ζ ∈ Ĝ(W ) and that we have a plenty of
elements of infinite order in X(W ) and in X◦(K) ∩X(W ), which we simply write
as X◦(W ) := X◦(K) ∩X(W ).

Note that the stabilizer Uζ of ζ ∈ Ω in U is an open subgroup of U . Indeed, if
the order of ζ is equal to pa, then Uζ = U ∩ (1 + paZp). Thus making a variable
change t �→ tζ−1 (which commutes with the action of Uζ), we may assume that the

identity 1 of Ĝ is in Ω◦.

Let Ĝan, Xan and Xs
an be the rigid analytic spaces associated to X and X◦

(in Berthelot’s sense in [dJ, §7]). We put X◦
an = Xan \ Xs

an, which is an open

rigid analytic subspace of Xan. Then we apply the logarithm log : Ĝan(Cp) →
Cn

p = Lie(Ĝan
/Cp

) sending (tj)j ∈ Ĝan(Cp) (the p-adic open unit ball centered at

1 = (1, 1, . . . , 1)) to (logp(tj))j) ∈ Cn
p for the p-adic Iwasawa logarithm map logp :

C×
p → Cp. Then for each smooth point x ∈ X◦(W ), taking a small analytic open

neighborhood Vx of x (isomorphic to an open ball in W d for d = dimW X) in
X◦(W ), we may assume that Vx = Gx ∩ X◦(W ) for an n-dimensional open ball

Gx in Ĝ(W ) centered at x ∈ Ĝ(W ). Since Ω◦ �= ∅, log(X◦(W )) contains the origin
0 ∈ Cn

p . Take ζ ∈ Ω◦. Write Tζ for the Tangent space at ζ of X. Then Tζ
∼= W d for

d = dimW X. The space Tζ ⊗W Cp is canonically isomorphic to the tangent space
T0 of log(Vζ) at 0.

If dimW X = 1, there exists an infinite order element t1 ∈ X(W ). We may
(and will) assume that U = (1 + pmZp) for 0 < m ∈ Z. Then X is the (formal)

Zariski closure tU1 of

tU1 = {t1+pmz
1 |z ∈ Zp} = t1{tp

mz
1 |z ∈ Zp},

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of

{tp
mz

1 |z ∈ Zp}; in other words, regarding tu1 as a W -algebra homomorphism tu1 :
X → Cp, we have t1Z = Spf(Z) for Z = X/

⋂
u∈U Ker(tu1 ). Since tU1 is an infinite

set, we have dimW Z > 0. From geometric irreducibility and dimW X = 1, we

conclude X = t1Z and Z ∼= Ĝm. Since X contains roots of unity ζ ∈ Ω ⊂ μn
p∞(W ),

we confirm that X = ζZ for ζ ∈ Ω ∩ μn
pm′ for m′ � 0. Replacing t1 by tp

m

1

for m as above if necessary, we have the translation Zp � s �→ ζts1 ∈ Z of one

parameter subgroup Zp � s �→ ts1. Thus we have log(t1) =
dts1
ds |s=0 ∈ Tζ , which is

sent by “log : Ĝ → Cn
p” to log(t1) ∈ T0. This implies that log(t1) ∈ T0 and hence
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log(t1) ∈ Tζ for any ζ ∈ Ω◦ (under the identification of the tangent space at any

x ∈ Ĝ with Lie(Ĝ)). Therefore Tζ ’s over ζ ∈ Ω◦ can be identified canonically. This
is natural as Z is a formal torus, and the tangent bundle on Z is constant, giving
Lie(Z).

Suppose that d = dimW X > 1. Consider the Zariski closure Y of tU for
an infinite order element t ∈ Vζ (for ζ ∈ Ω◦). Since U permutes finitely many
geometrically irreducible components, each component of Y is stable under an open
subgroup of U . Therefore Y =

⋃
ζ ′Tζ′ is a union of formal subtori Tζ′ of dimension

≤ 1, where ζ ′ runs over a finite set inside μn
p∞(Cp) ∩ X(Cp). Since dimW Y = 1,

we can pick Tζ′ of dimension 1 which we denote simply by T . Then T contains tu

for some u ∈ U . Applying the argument in the case of dimW X = 1 to T , we find
u log(t) = log(tu) ∈ Tζ ; so, log(t) ∈ Tζ for any ζ ∈ Ω◦ and t ∈ Vζ . Summarizing
our argument, we have found

(T) The Zariski closure of tU in X for an element t ∈ Vζ of infinite order

contains a coset ξT of one dimensional subtorus T , ξpm′
= 1 and tp

m′
∈ T

for some m′ > 0;
(D) Under the notation as above, we have log(t) ∈ Tζ .

Moreover, the image V ζ of Vζ in Ĝ/T is isomorphic to (d−1)-dimensional open ball.

If d > 1, therefore, we can find t
′ ∈ V ζ of infinite order. Pulling back t

′
to t′ ∈ Vζ ,

we find log(t), log(t′) ∈ Tζ , and log(t) and log(t′) are linearly independent in Tζ .
Inductively arguing this way, we find infinite order elements t1, . . . , td in Vζ such that
log(ti) span over the quotient fieldK ofW the tangent space Tζ/K = Tζ⊗WK ↪→ T0

(for any ζ ∈ Ω◦). We identify T1/K ⊂ T0 with Tζ/K ⊂ T0. Thus the tangent bundle
over X◦

/K is constant as it is constant over the Zariski dense subset Ω◦. Therefore

X◦ is close to an open dense subscheme of a coset of a formal subgroup. We
pin-down this fact.

Take tj ∈ Vζ as above (j = 1, 2, . . . , d) which give rise to a basis {∂j = log(tj)}j
of the tangent space of Tζ/K = T1/K . Note that tuj ∈ X and u∂j = log(tuj ) =

u log(tj) ∈ T1/K for u ∈ U . The embedding log : Vζ ↪→ T1 ⊂ Lie(Ĝ/W ) is surjective
onto a open neighborhood of 0 ∈ T1 (by extending scalars if necessary). For t ∈ Vζ ,
if we choose t closer to ζ, log(t) getting closer to 0. Thus replacing t1, . . . , td inside
Vζ by elements in Vζ closer to ζ, we may assume that log(ti)± log(tj) for all i �= j
is in log(Vζ).

So, for each pair i �= j, we can find ti±j ∈ Vζ such that log(tit
±1
j ) = log(ti) ±

log(tj) = log(ti±j). The element log(ti±j) is uniquely determined in log(Ĝan(Cp)) ∼=
Ĝan(Cp)/μ

n
p∞(Cp). Thus we conclude ζ ′i±jtit

±1
j = ti±j for some ζ ′i±j ∈ μn

pN

for sufficiently large N . Replacing X by its image under the p-power isogeny

Ĝ � t �→ tp
N ∈ Ĝ and ti by tp

N

i , we may assume that tit
±1
j = ti±j all in X. Since

tUi ⊂ X, by (T), for a sufficiently large m′ ∈ Z, we find a one dimensional subtorus

Ĥi containing tp
m′

i such that ζiĤi ⊂ X with some ζi ∈ μn
pm′ for all i. Thus again

replacing X by the image of the p-power isogeny Ĝ � t �→ tp
m′
∈ Ĝ, we may assume

that the subgroup Ĥ (Zariski) topologically generated by t1, . . . , td is contained in

X. Since {log(ti)}i is linearly independent, we conclude dimW Ĥ ≥ d = dimW X,

and hence X must be the formal subgroup Ĥ of Ĝ. Since X is geometrically irre-

ducible, Ĥ = X is a formal subtorus. Pulling it back by the p-power isogenies we
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have used, we conclude X = ζĤ for the original X and ζ ∈ μn
pm′N (W ). Since Ω is

Zariski dense in X, we may assume that ζ ∈ Ω. This finishes the proof. �

Corollary 4.2. Let W be a complete discrete valuation ring in Cp. Write
W [[T ]] = W [[T1, . . . , Tn]] for the tuple of variable T = (T1, . . . , Tn). Let

Ĝ := Ĝn
m = Spf( ̂W [t1, t

−1
1 . . . , tn, t

−1
n ]),

and identify ̂W [t1, t
−1
1 . . . , tn, t

−1
n ] with W [[T ]] for tj = 1+ Tj. Let Φ(T1, . . . , Tn) ∈

W [[T ]], Suppose that there is a Zariski dense subset Ω ⊂ μn
p∞(Cp) in Ĝ(Cp) such

that Φ(ζ − 1) ∈ μp∞(Cp) for all ζ ∈ Ω. Then there exists ζ0 ∈ μp∞(W ) and

z = (zj)j ∈ Zn
p with zj ∈ Zp such that ζ−1

0 Φ(t) =
∏

j(tj)
zj , where (1 + T )x =∑∞

n=0

(
x
n

)
Tn with x ∈ Zp.

Proof. Pick η = (ηj) ∈ Ω. Making variable change T �→ η−1(T + 1)− 1 (i.e.,

Tj �→ η−1
j (Tj +1)−1 for each j) replacing W by its finite extension if necessary, we

may replace Ω by η−1Ω � 1; so, rewriting η−1Ω as Ω, we may assume that 1 ∈ Ω.
Then Φ(0) = ζ0 ∈ μp∞ . Thus again replacing Φ by ζ−1

0 Φ, we may assume that
Φ(0) = 1.

For σ ∈ Gal(K(μp∞)/K) with the quotient field K of W ,

Φ(ζσ − 1) = Φ(ζ − 1)σ.

Writing φ(ζ) = Φ(ζ − 1), the above identity means φ(ζσ) = φ(ζ)σ. Identify
Gal(K(μp∞)/K) with an open subgroup U of Z×

p . This is possible as W is a
discrete valuation ring, while W [μp∞ ] is not. Writing σu ∈ Gal(F (μp∞)/F ) for the
element corresponding to u ∈ U , we find that

Φ ◦ u(ζ − 1) = Φ(ζu − 1) = Φ(ζσu − 1) = Φ(ζ − 1)σu = u ◦ Φ(ζ − 1).

We find that u ◦ φ = φ ◦ u is valid on the Zariski dense subset Ω of Spec(W [[T ]]);

so, φ as a formal scheme morphism of Ĝn
m into Ĝm commutes with the action of

u ∈ U .
Regard W [[T ]] as the affine ring of the formal torus Ĝn

m/W (so that T is given

by t−1). Note that u ∈ Z×
p acts on Ĝn

m as a group automorphism induced by a W -
bialgebra automorphism of W [[T ]] sending t = (1+T ) �→ tu = (1+T )u =

∏
j(tj)

u.

More generally, take a morphism of formal schemes φ ∈ HomSCH/W
(Ĝm), which

sends 1 to 1. Put Ĝ := Ĝn
m × Ĝm/W . We consider the graph Γφ of φ which

is an irreducible formal subscheme Γφ ⊂ Ĝn
m × Ĝm smooth over W . Writing the

variable on Ĝ as (T, T ′), Γφ is the geometrically irreducible closed formal subscheme

containing the identity 1 ∈ Ĝ defined by the principal ideal (t′−φ(t)). If φ◦u = u◦φ
for all u in an open subgroup U of Z×

p (where U acts on the source Ĝn
m and on the

target Ĝm by t �→ tu), Γφ is stable under the diagonal action of U on Ĝ and is finite

flat over Ĝr
m (the left factor of Ĝ). Then, applying Lemma 4.1 to Γφ, we find that

Γφ is a subtorus of rank n − 1 surjecting down to the last factor Ĝm. Since any

subtorus of rank n − 1 in Ĝ whose projection to the last factor is étale surjective
is defined by the equation t′ = (1 + T )z. Thus t′ − Φ(T ) = (t′ − (1 + T )z)u(T, T ′)
for a unit power series u(T, T ′) ∈ W [[T, T ′]]. Thus t′ = t′u(T, T ′), and hence
u(T, T ′) = 1. �
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5. A Frobenius eigenvalue formula

Recall the fixed weight κ with κ2 − κ1 ≥ I. In this section, we assume the
following conditions and notations:

(J1) Let Spec(J) be a closed reduced geometrically irreducible subscheme of
Spec(I) flat over Spec(W ) of relative dimension r with Zariski dense set
A of arithmetic points of the fixed weight κ.

(J2) We identify Spf(Λ) for Λ=W [[Γ]] with Ĝm⊗Zp
Γ∗ for Γ∗ :=HomZp

(Γ,Zp)
naturally.

Then for any direct Zp-summand Γ ⊂ Γ, Ĝm ⊗Zp
Γ∗ is a closed formal torus of

Ĝm ⊗Zp
Γ∗.

Lemma 5.1. Let the notation and the assumption be as in (J1–2). Then, after
making extension of scalars to a sufficiently large complete discrete valuation ring
W ⊂ Cp, we can find a Zp-direct summand Γ of Γ with rank dimW Spf(J) and an
arithmetic point P0 ∈ A ∩ Spec(J)(W ) such that we have the following cartesian
diagram:

Spf(I) −−−−→ Ĝm ⊗Zp
Γ∗ = Spf(ΛW )

∪
,⏐⏐ ,⏐⏐∪

Spf(J) −−−−→ P0 · (Ĝm ⊗Zp
Γ∗),

where P0 ·(Ĝm⊗Zp
Γ∗) is the image of the multiplication by the point P0 ∈ Ĝm⊗Zp

Γ∗

inside Ĝm ⊗Zp
Γ∗.

Proof. Let π : Spec(J) → Spec(Λ) be the projection. Then the smallest
reduced closed subscheme Z ⊂ Spec(Λ) containing the topological image of π con-
tains an infinitely many arithmetic points of weight κ. Take a basis {γ1, . . . , γm} of
Γ, and write Ĝm⊗Zp

Γ∗ as Spf( ̂W [tj , t
−1
j ]

j=1,...,m
) for the variable tj corresponding

to the dual basis {γ∗
j }j of Γ∗. Let P1 ∈ Z be an arithmetic point of weight κ under

P ∈ Spec(J)(W ) (after replacing W by its finite extension, we can find P ). Then
by the variable change t �→ P−1

1 · t (which can be written as tj �→ ζjγ
−κ1
j tj for

suitable ζj ∈ μp∞(W )), the image of arithmetic points of Spec(J) of weight κ in

Z is contained in μm
p∞(Qp). Since Z is defined over W , Ω := Z(Cp) ∩ μn

p∞(Cp) is
stable under Gal(K[μp∞ ]/K) for the quotient field K of W . Then by Lemma 4.1,
we may assume, after making further variable change t �→ η−1t for η ∈ μm

p∞(W )

(again replacing W by its finite extension if necessary), that Z contains Ĝm⊗Zp
Γ∗

for a rank dimW Spf(J) direct summand Γ of Γ. Then putting P0 = P1 · η, we get
the desired result. �

If a prime l is a factor of N (so l �= p) and fP (or more precisely the automorphic
representation generated by fP ) is Steinberg (resp. super-cuspidal) at l for an
arithmetic point P , then all members of F are Steinberg (resp. super-cuspidal) at
l (see the remark after Conjecture 3.4 in [H11]).

Take a prime l � Np of O with αl,P �= 0 for some P (so, l can be equal to p).
If l � Np, replacing I by its finite extension, we assume that det(T − ρI(Frobl)) = 0
has roots in I. Since αl,P �= 0 for some P (and hence αl,P is a p-adic unit), fP is
not super-cuspidal at l for any arithmetic P .
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Take Γ as in Lemma 5.1 given for J, and write Λ = W [[Γ]]. Fix a basis
γ1, . . . , γr ∈ Γ and identify Λ with W [[T ]](T = (Ti)i=1,...,r) by γi ↔ ti = 1 + Ti.

Let Q be the quotient field of Λ and fix its algebraic closure Q. We embed J into
Q. We introduce one more notation:

(J3) If l = p, let A be the image a(�p) in J, and if l � Np, fix a root A in Q
of det(T − ρJ(Frobl)) = 0. Replacing J by its finite extension, we assume
that A ∈ J.

Recall AP = P (A). Take and fix pn-th root t
1/pn

i of ti in Q (i = 1, 2, . . . , r) and
consider

W [μpn ][[T ]][t1/p
n

] := W [μpn ][[T1, . . . , Tr]][t
1/pn

1 , . . . , t1/p
n

r ] ⊂ Q

which is independent of the choice of t1/p
n

. Take a basis {γ = γ1, . . . , γm} of Γ
over Zp (containing {γ1, . . . , γr}) and write N : Cl(Np∞)→ Z×

p for the norm map

NFp/Qp
. We write tj (t := t1) for the variable of Ĝm ⊗Zp

Γ∗ corresponding to the
dual basis of {γj}j of Γ∗.

Proposition 5.2 (Frobenius eigenvalue formula). Let the notation and the
assumption be as in (J1–3). Pick a prime ideal l and define A as in (J3). Write
K := Q[μp∞ ] and LP = K(AP ) for each arithmetic point P with κ(P ) = κ. Suppose

(BTl) LP /K is a finite extension of bounded degree independently of P ∈ A and
in LP /K, the prime l is at worst tamely ramified for all P ∈ A.

Then, after making extension of scalars to a sufficiently large W , we have

A ∈W [μpn ][[T1, . . . , Tr]][t
1/pn

1 , . . . , t1/p
n

r ] ∩ J

in Q for 0 ≤ n ∈ Z, and there exists s = (si) ∈ Qr
p and a constant c ∈ W× such

that A(T ) = c(1 + T )s = c
∏

i t
si
i .

Let EP = K[αp,P ]. We will see in the next section that c is actually a general-
ized Weil l-number for any l under the following condition:

(Bp) EP /K is a finite extension of bounded degree independently of P ∈ A.
To simplify the notation, for k = r and m, we often write (ζγ−κ1,pt−1) for the ideal

in W [[T1, . . . , Tk]] generated by a tuple (ζjγ
−κ1,p

j tj − 1) for j = 1, 2, . . . , k (where

ζ = (ζj) is also a tuple in μk
p∞(Qp)). The value of k should be clear in the context.

Proof. Since A is Zariski dense in Spec(J), for any Gal(K[μp∞ ]/K) for the
field K of fractions of W , Ast :=

⋃
σ∈Gal(K[μp∞ ]/K)Aσ is Zariski dense in Spec(J).

We replace A by Ast. Let Z = Spec(Λ/a) for a := Ker(Λ → J) be the image
of Spec(J) in Spec(Λ), and identify A with its image in Z. By Proposition 2.1,
we have only a finite number of generalized Weil l-numbers α of weight [κ]fl with
bounded l-power denominator (i.e., lBα is a Weil number of weight 2B[κ]fl for
some B > 0) in

⋃
P∈A LP up to multiplication by roots of unity. Here we can take

B = |κ1|. Hence, replacing A by its subset of infinite cardinality, we may assume
that AP for all P ∈ A hits one α of such generalized Weil l-numbers of weight [κ]fl,
up to roots of unity, since the automorphic representation generated by fP is not
Steinberg because l � N.

Let P0 be as in Lemma 5.1 for this A. Adding one point to A does not

change the setting; so, taking A = A ∪ {P1 = (γ
−κ1,p

j tj − 1)j=1,...,m}, we may
assume that P0 = P1. By making a variable change t �→ P0 · t, we may assume that
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P0 = (tj − 1)j=1,...,m, and A ⊂ μr
p∞(K), where we regard μr

p∞ as a subgroup

of Ĝm ⊗Zp
Γ∗ (for Γ ∼= Zr

p as in Lemma 5.1) isomorphic to Spf(W [[Γ]]) =

Spf( ̂W [t1, t
−1
1 , . . . , tr, t

−1
r ]) = Spf(W [[T1 . . . , Tr]]) with tj = 1 + Tj . Write simply

Ĥ :=Ĝm⊗Zp
Γ∗ and Ĝ=Ĝm⊗Zp

Γ∗. We have X∗(Ĝ)=Homformal gp(Ĝ/W , Ĝm/W )=

Γ and X∗(Ĝ) = Γ∗.

Suppose for the moment J = P0 ·Ĥ for the base discrete valuation ring W finite
flat over Zp. Choosing γ1, . . . , γr to be a generator of Γ for r = rankZp

Γ, we may
assume that the projection Λ → W [[T ]] = J has kernel (tr+1 − 1, . . . , tm − 1). In
down to earth terms, for A = A(T ) in (J3), the variable change t �→ P0 · t is the

variable change Tj �→ Yj = γ
−κ1,p

j (1 + Tj)− 1 with Y = (Y1, . . . , Ym), and we have

A(Y )|Y=0 = A(T )|
Tj=γ

κ1,p
1 −1

. Let Ω1 = {εP,1(γ)|P ∈ A} which is an infinite set in

μp∞(K). Let

Φ1(Y ) := α−1A(Y ) = A(γ−κ1,p(1 + T )− 1) ∈W [[Y ]]

and L be the composite of LP for P running through A. By this variable change,

A is brought into an infinite subset Ω1 of μr
p∞(Qp) ⊂ Ĝr

m = Ĝm⊗Zp
Γ∗ made up of

ζ ∈ Ω1 such that Φ1(ζ−1) is a root of unity in L. By Lemma 2.2, the group of roots
of unity of L contains μp∞(K) as a subgroup of finite index, and we find an infinite
subset Ω ⊂ Ω1 and a root of unity ζ1 such that {Φ1(ζ − 1)|ζ ∈ Ω} ⊂ ζ1μp∞(K).

Then Φ = ζ−1
1 Φ1 satisfies the assumption of Corollary 4.2, and for a root of unity

ζ, we have A(Y ) = ζα(1 + Y )s for s ∈ Zr
p, and A(T ) = ζα(γ−κ1,p(1 + T ))s. Thus

A(T ) = c(1 + T )s for a non-zero p-adic unit c = ζαγ−κ1,ps ∈W× as desired.
We now assume that A ∈W [[T ]][(1 + T )1/p

n

]. Since

Spf(W [[T ]][t1/p
n

]]) ∼= Ĝm
t�→tp

n

−−−−→ Ĝm = Spf(W [[T ]]),

by applying the same argument as above to W [[T ]][t1/p
n

]], we get A(T ) =
ζ0(1 + T )s/p

n

for s ∈ Zr
p.

We thus need to show A ∈ W [μpn ][[T ]][t1/p
n

] for sufficient large n, and then
the result follows from the above argument. Again we make the variable change
T �→ Y we have already done. Replacing A by α−1A for a suitable Weil l-number α
of weight k (up to μp∞(Qp)), we may assume that there exists an infinite set A0 ⊂
Spec(J)(Qp) such that P ∩Λ = (1+ Y − ζP ) for ζP ∈ μr

p∞(Qp) and AP ∈ μp∞(Qp)
for all P ∈ A0. By another variable change (1 + Y ) �→ ζ(1 + Y ) for a suitable
ζ ∈ μr

p∞(Qp), we may further assume that we have P0 ∈ A0 with ζP0
= 1 and

AP0
= 1 (i.e., choosing α well in α · μp∞(Qp)). We now write K for the subalgebra

of I topologically generated by A over Λ = W [[Y ]]. Then we have K = Λ[A] ⊂ J.
Since J is geometrically irreducible, the base ring W is integrally closed in K.
Since A is a unit in J, we may embed the irreducible formal scheme Spf(K) into

Ĝr
m × Ĝm = Spf( ̂W [y, y−1, t′, t′−1]) by the surjective W -algebra homomorphism

π : ̂W [y, y−1, t′, t′−1] � K sending (y, t′) to (1+Y,A). Write Z ⊂ Ĝr
m× Ĝm for the

reduced image of Spf(K). Thus we are identifying Λ with ̂W [y, y−1] by y ↔ 1+ Y .

Then P0 ∈ Z is the identity element of (Ĝr
m×Ĝm)(Qp). Since A is integral over Λ, it

is a root of a monic polynomial Φ(t′) = Φ(y, t′) = t′
d
+a1(y)t

′d−1
+· · ·+ad(y) ∈ Λ[t′]

irreducible over the quotient field Q of Λ, and we have K ∼= Λ[t′]/(Φ(y, t′)). Thus

J is free of rank d over Λ; so, π : Z → Ĝr
m = Spf(Λ) is a finite flat morphism of
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degree d. We let σ ∈ Gal(Qp/Qp) act on Λ by
∑∞

n=0 anY
n �→

∑∞
n=0 a

σ
nY

n and on

Λ[t′] by
∑

j Aj(Y )t′
j �→

∑
j A

σ
j (Y )t′

j
for Aj(Y ) ∈ Λ. Note that Φ(ζP , AP ) = 0 for

P ∈ A0. Since AP ∈ μp∞(Qp), A
σ
P = A

ν(σ)
P for the p-adic cyclotomic character

ν : Gal(Qp/Qp) → Z×
p . Since W is a discrete valuation ring, for its quotient field

F , the image of ν on Gal(Qp/F ) is an open subgroup U of Z×
p . Thus we have

Φσ(ζ
ν(σ)
P , A

ν(σ)
P ) = Φ(ζP , AP )

σ = 0 for all σ ∈ Gal(Qp/Qp) and if σ ∈ Gal(Qp/F ),
Φσ = Φ. Thus we get

Φ(ζ
ν(σ)
P , A

ν(σ)
P ) = Φ(ζP , AP )

σ = 0 for all P ∈ A0.

For s ∈ Z×
p , consider the integral closed formal subscheme Zs ⊂ Ĝr

m × Ĝm defined

by Φ(ys, t′
s
) = 0. If s ∈ U , we have A0 ⊂ Z ∩ Zs. Since Z and Zs are finite flat

over Λ and A0 is an infinite set, we conclude Z = Zs. Thus Z ⊂ Ĝr
m× Ĝm is stable

under the diagonal action (y, t′) �→ (ys, t′
s
) for s ∈ U . By Lemma 4.1, Z is a formal

multiplicative group and is a formal subtorus of Ĝr
m × Ĝm, because 1 = P0 ∈ Z.

The projection π : Z → Spf(Λ) = Ĝr
m is finite flat of degree d. So π : Z → Ĝr

m

is an isogeny. Thus we conclude Ker(π) ∼=
∏r

j=1 μpmj and hence d = pm for m =∑
j mj ≥ 0. This implies K = Λ[A] ⊂ W [μpn ][[Y ]][(1 + Y )p

−n

] = W [μpn ][[T ]][tp
−n

]

for n = max(mj |j), as desired. �

6. Proof of the horizontal theorem: Theorem 3.1

The way of the proof of Theorem 3.1 in this paper is far simpler than the earlier
one given in [H11], and we do not need the existence of infinitely many arithmetic
points on Spec(J) of different weight which was used in the proof of [H11]. Indeed,
Theorem 3.1 follows from the following result:

Theorem 6.1. Let the notation be as in Proposition 5.2, and write K :=
Q[μp∞ ] and EP = K(αp,P ) for each arithmetic point P with κ(P ) = κ. Suppose
that there exists an infinite set A of arithmetic points with κ(P ) = κ satisfying the
following condition:

(Bp) EP /K is a finite extension of bounded degree independent of P ∈ A.
Then we have a CM quadratic extension M/F (in which p splits) such that the
component I has complex multiplication by M . In particular, the constant c in
Proposition 5.2 is a generalized Weil number.

Proof. By (Bp) and Lemma 3.4, the condition (BTl) of Proposition 5.2 is
satisfied if l is sufficiently large. We now assume that l is sufficiently large so
that tameness in (BTl) is satisfied. As proved in the proof of Proposition 5.2, we

have A ∈ W [μpn ][[T1, . . . , Tr]][t
p−n

1 , . . . , tp
−n

r ]. Since rankW [[T1,...,Tr ]] J ≥ pn(r+1),
the exponent n is bounded independent of l. Taking the maximum n0 of n and

replacing W by W [μpn0 ], by the variable change tj �→ tp
n0

j , we may assume that

J = W [[T1, . . . , Tr]] and A ∈ W [[T1, . . . , Tr]]. We use the symbols introduced in
the proof of Proposition 5.2. Since we now move l, we write Al for A defined for
a prime l � Np and regard Al as a function of t = (tj) with tj = (1 + Tj). By
Proposition 5.2, we have Al(ζγ

κ1,p) = ζsαl with s ∈ Zr
p (dependent on l) for all

ζ ∈ μr
p∞(Qp), where αl is a generalized Weil l-number.

Pick two distinct points P, P ′ ∈ A and write f = fP and g = fP ′ . Thus
αl,P ′ = ζlαl,P for a ζl ∈ μr

m(Qp) for a p-power m = pe (i.e., εP,1/εP ′,1(γi) ∈
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μm(Qp)). Consider the compatible system of Galois representations associated to
f and g (cf. [B] for compatibility). Fix one more prime q and an embedding
ιq : Q ↪→ Qq. Write q for the place of Q(f, g) associated to the induced embedding

ιq : Q(f, g) = Q(f)(g) ↪→ Qq. Write ρf = ρf,q (resp. ρg = ρg,q) for q-adic member
of the compatible system associated to f and g.

Since ζl = ζs, ζl has the order m bounded independently of l. Thus we have
αm
l,P ′ = αm

l,P for all eigenvalues (suitably ordered) of ρ?,q(Frobl) for all l � Np with

sufficiently large l. We consider the function ρm? on Gal(Q/F ) sending σ to them-th
power ρ?(σ)

m of the matrix ρ?(σ). In particular, Tr(ρmf (Frobl)) = Tr(ρmg (Frobl))

for all primes l � Npq with l � 0. Since Tr(ρm? ) : g �→ Tr(ρm? (g)) ∈ Qq is a
continuous function, by Chebotarev density theorem, we get Tr(ρmf ) = Tr(ρmg )

all over Gal(Q/F ). Writing ρsym⊗j for the symmetric n-th tensor representation
of any 2-dimensional matrix representation ρ, we have Tr(ρm) = Tr(ρsym⊗m) −
Tr(ρsym⊗(m−2) ⊗ det ρ). Thus we get

(6.1) Tr(ρsym⊗m
f ⊕ (ρsym⊗(m−2)

g ⊗det ρg)) = Tr(ρsym⊗m
g ⊕ (ρ

sym⊗(m−2)
f ⊗det ρf ))

Assume on the contrary to the desired assertion that the family does not have
complex multiplication (hence by (CM1–3), f and g do not have complex multipli-
cation), and we aim to get a contradiction. By [Di1, §0.1], if q is sufficiently large
and f and g do not have complex multiplication, the image of its residual repre-
sentation contains SL2(Fq) up to conjugation. If q > m, as is well known, the j-th

symmetric tensor representations ρsym⊗j
? of ρ? (? = f, g) (even reduced modulo q)

are all absolutely irreducible and distinct for 0 ≤ j ≤ m. Thus the above identity
implies ρsym⊗m

f
∼= ρsym⊗m

g . Thus the m-th symmetric power of the compatible
system of f is isomorphic to that of g. This is contradictory. To see this, write
ρ?,p for the p-adic component of the compatible system of ? = f, g for the place p

induced by ιp : Q ↪→ Qp. Then we have an isomorphism ρ?,p|Gal(Qp/Qp)
∼=
( ε? ∗

0 δ?

)
.

Then we have

{εm−j
f δjf |j = 0, . . . ,m} = {εm−j

g δjg|j = 0, . . . ,m}.

By (Ram), we have εm−j
? δj?([u, Fp]) = u−κ1m+(κ1−κ2)j (for each j) up to finite order

characters. Therefore, by κ2 − κ1 ≥ I, we conclude

εm−j
f δjf = εm−j

g δjg for each j.

By (Ram) and det ρf = det ρg = νε+, for ε = εP,1/εP ′,1, we find εf/εg = ε and
δf/δg = ε−1 on the inertia group at p. By our choice of m, we have εm = 1, and
these identities combined tells us

εm−j
f δjf = εm−j

g δjg = εm−2jεm−j
f δjf = ε−2jεm−j

f δjf

for all j = 1, . . . ,m. Thus ε2j = 1 (j = 1, . . . ,m) and hence ε2 = 1. This is
impossible if we choose ε having order > 2. Thus f and hence g must have complex
multiplication. The multiplication field M/F has to be the same for f and g by
(CM1–3). Then c is a generalized Weil number by the explicit form in (CM1) of
the Galois representations attached to CM forms in a p-adic family. �

7. Relative version

If F = Q, by the solution of Serre’s mod p modularity conjecture by Khare–
Wintenberger, all two dimensional odd compatible systems of Galois representation
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come from modular forms, and this fact is heavily used to show a finiteness property
of some class of rational abelian varieties in [H12]. Over general F , we do not know
yet the generalized Serre’s conjecture. Only available results are Taylor’s potential
modularity, and therefore, it would be useful to study relative version of our main
results if one expects this type of applications of our horizontal theorem. Since the
proof is the same for the relative version, we just sketch here the outcome briefly.

Let E/F be a totally real finite Galois extension with Galois group G. We
assume

(UR) the fixed prime p is unramified in E/F .

If we have well established theory of base-change, we can explicitly relate the max-
imal G-invariant quotient of a Hecke algebra for GL(2)/E with level group U to
the Hecke algebra for GL(2)/F for the corresponding level group. Since the theory
of base-change is not known in general (except for soluble G), we can think of the
G-invariant quotient directly and would like to state a version of the horizontal
theorem for such Hecke algebras. Since the construction and the proof are the
same, we only describe necessary notations and state the result without going into
details. For the space of Hilbert modular cusp forms and Hecke algebras, we add
subscript “/E” to indicate their dependence on E, for example, hκ(N, ε;A) for E
is written as hκ/E(N, ε;A).

Let S := Sp be the set of all primes of E over the fixed prime p of F . Write R
for the integer ring of E, and denote by ΓE for the maximal torsion-free quotient
of R×

S for the S-completion RS =
∏

P∈S RP. We put IS =
⊔

P∈S IP and split

IE := Homfield(E,Q) = IS 	 IS . The projection of κ ∈ Z[I]× Z[I] to Z[IS ]× Z[IS ]
(resp. Z[IS ] × Z[IS ]) is denoted by κS (resp. κS). Often we use IE to denote∑

σ σ ∈ Z[IE ]. The Neben typus in this setting is again a set of three characters
ε = (ε1, ε2, ε+) as before.

Let W be a sufficiently large complete valuation ring inside Cp and fix an R-
ideal N �= 0 prime to S. We write hS.ord

κ/E (U, ε;W ), hS.ord
κ/E (Npα, ε;W ) and hS.ord

κS/E =

hS.ord
κS/E(Np∞, ε;W ) for the image of the (nearly) S-ordinary projector eS =

∏
P∈S eP

for eP = limn T(�p)
n!, where �p is a prime element in RP. The algebra hS.ord

κS/E

is by definition the universal nearly ordinary Hecke algebra over W [[GE ]] of level
Np∞ with “Neben character” ε. Here GE = R×

S × (R/N)× (the E-version of

G). We write ΓE for the maximal torsion-free quotient of R×
S . We fix a sec-

tion of the projection R×
S � ΓE and regard ΓE as a subgroup of GE . Choos-

ing the section well, we may assume that ΓE =
∏

P∈S ΓP with ΓP ⊂ R×
P
. As

before, we write Λ = Λ/E for the group algebra W [[ΓE ]]. Choosing a basis
{γi,P}i=1,...,m′ of ΓP, we identify Λ/E with W [[Ti,P]]i,P∈S so that γi,P corresponds
ti,P = 1 + Ti,P. Since E/F is a Galois extension, m′ = rankOp

RP is independent
of P ∈ S. For a tuple (ζi,P)i,P of p-power root of unity and κS ∈ Z[IS ] with
κ1,S − κ2,S ≥ IS , we call P ∈ Spec(Λ/E)(Qp) arithmetic if P (ti,P − ζ−1

i,Pγ
κ1,P

i,P ) = 0

for all tuples (i,P) ∈ {1, 2, . . . ,m′}×S, where κ1,P is the projection of κ to Z[IP].

Write simply h/E = hS.ord
κS/E(Np∞, ε;W ). Then we call a point P ∈ Spec(h/E)(Qp)

arithmetic if P is over an arithmetic point of Spec(ΛE)(Qp). For each arithmetic

P ∈ Spec(h/E)(Qp), we define theP-level exponent r(P )P of fP in the same manner
as r(P ) (replacing (p, F ) by (P, E)). Then we put formally r(P ) =

∑
P∈S r(P )PP

and define pr(P )+1 =
∏

P∈S Pr(P )P+1.
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For a fixed κS and ε+, we assume that the algebra h/E is characterized by the
following two properties (stronger than (A1–2)):

(a1) h/E is torsion-free of finite rank over ΛW equipped with T(l),T(y) ∈ h/E

for all primes l prime to p and y ∈ R×
p ,

(a2) if κ2 − κ1 ≥ I and P is an arithmetic point of Spec(ΛW ), we have a
surjective W -alegbra homomorphism:

h/E ⊗ΛE
ΛE/P → hS.ord

κ(P )/E(Npr(P )+1, εP ;W [εP ]) with finite kernel,

sending T(l) to T(l) (and T(y) to T(y)).

Until we give detailed proof of the assertion (a1–2) in [HHA], we just admit them
in this paper.

The Galois group G acts naturally on GE , R
×
S and its quotient ΓE . We as-

sume that the section ΓE ↪→ R×
S (of the projection R×

S � ΓE) is G-equivariant.
This is possible as the section can be chosen to be expP ◦ logP for the exponen-

tial map/logarithm map for each component R×
P

of R×
S . Thus Λ/E has natural

G-action through W -algebra automorphisms. Then we consider the maximal G-
invaiant quotient Λ/E/

∑
σ∈G

Λ/E(σ − 1)Λ/E .

Lemma 7.1. Under (UR), by the canonical surjection induced by the norm map
relative to RS/Op, we have Λ/E/

∑
σ∈G

Λ/E(σ−1)Λ/E
∼= Λ/F . Similarly, we have

W [[GE ]]/
∑
σ∈G

W [[GE ]](σ − 1)W [[GE ]] ∼= W [[G]].

Proof. Let K (resp. k) be the residue field of RP (resp. Op). By (UR), all
norm 1 elements of R×

P
is of the form xφ−1 for x ∈ R×

P
. Thus

Ker(NEP/Fp
: ΓP → Γ) = Im(φ− 1 : ΓP → ΓP),

where ΓP is the maximal torsion-free quotient of R×
P
. This is equivalent to

W [[ΓP]]/
∑

σ∈Gal(EP/Fp)

W [[ΓP]](σ − 1)W [[ΓP]] ∼= Λ/F

by the homomorphism induced by the local norm map at P/p. Since Λ/E =⊗̂
P∈SW [[ΓP]] (the tensor product taken over W ), from the above identity, we

obtain

Λ/E/
∑
σ∈G

Λ/E(σ − 1)Λ/E
∼= Λ/F .

The proof for

W [[GE ]]/
∑
σ∈G

W [[GE ]](σ − 1)W [[GE ]] ∼= W [[G]]

is similar and simpler. �

Suppose Nσ = N and (κS)σ = κS for all σ ∈ G, where σ ∈ G acts on Z[IE ] by
right multiplication. Then G acts on h/E by T(y) �→ T(yσ). The structure homo-
morphism W [[GE ]]→ h/E is G-equivariant. Thus we may consider the quotient

(7.1) hG := h/E/
∑
σ∈G

h/E(σ − 1)h/E .
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Thus the quotient is a Λ/F -algebra by Lemma 7.1. Write H = H/F for the
maximal Λ/F -torsion free quotient of the algebra hG in (7.1) which is a pseudo-
isomorphic to hG (as Λ/F -modules). By definition, Spec(hG) is the maximal
subscheme of Spec(h) fixed by G. Identify Spec(W [[G]]) with the maximal sub-
scheme of Spec(W [[GE ]]) fixed by G by Lemma 7.1. Pick an arithmetic point P
of Spec(W [[G]]) and consider the localization h/E,P and its reduced part hred

/E,P .

Similarly to [HMI], we can prove that hred
/E,P is étale finite over W [[G]]P = ΛW,P .

Thus after extending scalars to a étale finite extension A over ΛW,P , we get a trivi-
alization hred

/E,P⊗ΛW,P
A ∼= Ad for d = rankΛW,P

h/E,P (i.e., Spec(hred
/E,P )×Spec(ΛW,P )

Spec(A) =
⊔
Spec(A) for d copies of Spec(A)). Then the action ofG on hred

/E,P⊗ΛW,P

A factors through the permutation action on Ad, and hence by descent,

hred
G,P

∼= hred
/E,P /

∑
σ∈G

hred
/E,P (σ − 1)hred

/E,P
∼= Hred

P

for the reduced part hred
G and its localization hred

G,P . Thus from (a2), we conclude

(a3) Hred
P /Hred

P
∼= hred

G,P /Phred
G,P is canonically isomorphic to the reduced part

of the maximal G-invariant quotient of hS.ord
κ(P ) (Npα, εP ;K) for the quotient

field K of W .

Let Spec(I) be a reduced irreducible component Spec(I) ⊂ Spec(H). By the
above description, Spec(I) is a finite torsion-free covering of Spec(Λ). Since G acts
on hG trivially, defining the inner conjugate ρσI (τ ) = ρI(σ̃τ σ̃

−1) for an extension

σ̃ of σ ∈ G to Q, we have Tr(ρσI (FrobL)) = T(Lσ) = T(L) = Tr(ρI(FrobL)) for
all prime L of R outside Np. By Chebotarev density, we conclude ρσI

∼= ρI. Since

H2(G, Q
×
) = 0 by the divisibility of Q

×
, ρI extends to Gal(Q/F ) (after replacing

I by a suitable finite flat extension). The extension is unique up to twists by
characters of G (see [MFG, §4.3.5]). We choose an extension and write it as ρI still.
We call I a CM component if (CM1) is satisfied for the extended ρI. This notion does
not depends on the choice of the extension. Then for a finite idele y ∈ F×

A , we write
aF (l) for Tr(ρI(FrobL)) in I for primes l of O outside Np. Writing ρI|Dp

∼= ( ε ∗
0 δ )

so that δ restricted to IP coincides with ε2,P for all P|p by local class field theory,

we put aF,p(y) = δ([y, Fp]) and aF (y) = y
κ2,p
p δ([y, Fp]) for y ∈ F×

p . So, aF (�p)
f is

equal to a(�P) for a suitable exponent f , and a(L) can be written as a polynomial
of aF (l) and ε+(l) for any prime L of E above l. If P is arithmetic, by (a3), we have a
G-invariant Hecke eigenform fP ∈ Sκ(P )(Npr(P )+1, εP ;Qp) such that its eigenvalue

for T(L) and T(y) is given by aP (l) := P (a(L)), aP (y) := P (a(y)) ∈ Qp for all L
and y ∈ E×

p . Thus I gives rise to a family F = {fP |arithemtic P ∈ Spec(I)} of
Hecke eigenforms. Under this circumstance, we put αp,P = aP (�p) for arithmetic
points P . As before, Q[μNp∞ ](αp,P ) is well defined independent of the choice of
�p, where N is the prime-to-p part of order of εP,1|O×

p
(which is independent of P ).

Then exactly in the same manner as we have done in the proof of Theorem 3.1, we
get

Theorem 7.2. Let the notation and the assumptions be in the setting relative
to E/F as above. Pick an infinite set A ⊂ Spec(I)(Qp) of arithmetic points P with

fixed weight κ satisfying κ2 − κ1 ≥ I. Write MA(F) ⊂ Q for the field generated
over K := Q(μp∞) by {αp,P }P∈A, where P runs over all arithmetic points in A.
Then the field MA(F) is a finite extension of Q(μp∞) if, and only if fP is a CM
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theta series for an arithmetic P with k(P ) ≥ 1. Moreover we have

lim
P∈A

[K(αp,P ) : K] =∞

unless F has complex multiplication.
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les caractéristiques divisant le discriminant (French), Compositio Math. 90 (1994), no. 1,
59–79. MR1266495 (95a:11041)

[DeR] Pierre Deligne and Kenneth A. Ribet, Values of abelian L-functions at negative integers
over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286, DOI 10.1007/BF01453237.
MR579702 (81m:12019)

http://www.ams.org/mathscinet-getitem?mr=0379375
http://www.ams.org/mathscinet-getitem?mr=0379375
http://www.ams.org/mathscinet-getitem?mr=1492449
http://www.ams.org/mathscinet-getitem?mr=1492449
http://www.ams.org/mathscinet-getitem?mr=879273
http://www.ams.org/mathscinet-getitem?mr=879273
http://www.ams.org/mathscinet-getitem?mr=2894984
http://www.ams.org/mathscinet-getitem?mr=2894984
http://www.ams.org/mathscinet-getitem?mr=2243770
http://www.ams.org/mathscinet-getitem?mr=2243770
http://www.ams.org/mathscinet-getitem?mr=1291394
http://www.ams.org/mathscinet-getitem?mr=1291394
http://www.ams.org/mathscinet-getitem?mr=1779182
http://www.ams.org/mathscinet-getitem?mr=1779182
http://www.ams.org/mathscinet-getitem?mr=1021004
http://www.ams.org/mathscinet-getitem?mr=1021004
http://www.ams.org/mathscinet-getitem?mr=2055355
http://www.ams.org/mathscinet-getitem?mr=2055355
http://www.ams.org/mathscinet-getitem?mr=2110225
http://www.ams.org/mathscinet-getitem?mr=2110225
http://www.ams.org/mathscinet-getitem?mr=2327298
http://www.ams.org/mathscinet-getitem?mr=2327298
http://www.ams.org/mathscinet-getitem?mr=1235020
http://www.ams.org/mathscinet-getitem?mr=1235020
http://www.ams.org/mathscinet-getitem?mr=1053489
http://www.ams.org/mathscinet-getitem?mr=1053489
http://www.ams.org/mathscinet-getitem?mr=0498581
http://www.ams.org/mathscinet-getitem?mr=0498581
http://www.ams.org/mathscinet-getitem?mr=1266495
http://www.ams.org/mathscinet-getitem?mr=1266495
http://www.ams.org/mathscinet-getitem?mr=579702
http://www.ams.org/mathscinet-getitem?mr=579702


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

136 HARUZO HIDA

[Di] Mladen Dimitrov, Compactifications arithmétiques des variétés de Hilbert et formes mod-
ulaires de Hilbert pour Γ1(c, n) (French), Geometric aspects of Dwork theory. Vol. I, II,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 527–554. MR2099078 (2006e:11063)

[Di1] Mladen Dimitrov, Galois representations modulo p and cohomology of Hilbert modular

varieties (English, with English and French summaries), Ann. Sci. École Norm. Sup. (4)
38 (2005), no. 4, 505–551, DOI 10.1016/j.ansens.2005.03.005. MR2172950 (2006k:11100)

[DiT] Mladen Dimitrov and Jacques Tilouine, Variétés et formes modulaires de Hilbert
arithmétiques pour Γ1(c, n) (French, with French summary), Geometric aspects of Dwork
theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 555–614.
MR2099080 (2006e:11064)
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