* Galois Deformation Ring and Base Change to a Real Quadratic Field

Haruzo Hida

Department of Mathematics, UCLA,

Los Angeles, CA 90095-1555, U.S.A.

A talk at Mazur's 80th anniversary conference, June 7, 2018.

*The author is partially supported by the NSF grant: DMS 1464106.

Consider the universal minimal *p*-ordinary deformation $\rho_{\mathbb{T}}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{T})$ (for a prime $p \geq 5$) of an induced representation $\operatorname{Ind}_F^{\mathbb{Q}}\varphi$ from a real quadratic field *F*. For almost all primes *p* split in *F*, we describe an isomorphism $\mathbb{T} \cong \Lambda[\sqrt{\langle \varepsilon \rangle} - 1]$ for the Iwasawa algebra Λ , where $\langle \varepsilon \rangle := (1+T)^{\log_p(\varepsilon)/\log_p(1+p)} \in \mathbb{Z}_p[[T]] \subset \Lambda$ for a fundamental unit ε of *F*. This implies that the dual adjoint Selmer group of $\rho_{\mathbb{T}}$ is isomorphic to $\Lambda/(\langle \varepsilon \rangle - 1)$ as Λ -modules, and in particular, it is a semi-simple Λ -module after extension of scalars to \mathbb{Q}_p from \mathbb{Z}_p .

$\S 0.$ Setting.

- $p \geq 5$ a fixed prime. ∞ : $F \subset \mathbb{R}$: a real quadratic field.
- O: the integer ring of F; $(p) = \mathfrak{p}\mathfrak{p}^{\sigma}$ (fix \mathfrak{p} and $\sigma|_F \neq 1$).
- $\overline{\rho} = \operatorname{Ind}_{F}^{\mathbb{Q}} \overline{\varphi} \ (\overline{\varphi} : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \mathbb{F}^{\times}); \ [\mathbb{F} : \mathbb{F}_{p}] < \infty; \text{ the Teichmüller}$ lift φ of $\overline{\varphi}$. For simplicity, assume $\mathbb{F} = \mathbb{F}_{p};$

•
$$\varphi^{-}(\tau) = \varphi(\tau)\varphi(\sigma\tau^{-1}\sigma^{-1}).$$

- $\varphi^{-}|_{\operatorname{Gal}(\overline{\mathbb{Q}}_{n}/\mathbb{Q}_{p})} \neq 1$ (locally) and φ^{-} has order ≥ 3 (globally).
- $\mathfrak{c}\infty$: the conductor of φ , assume $\mathfrak{c} + \mathfrak{c}^{\sigma} = O$ and $\mathfrak{c} + \mathfrak{p}^{\sigma} = O$.
- $F(\rho)$: the splitting field of a Galois representation ρ ,

 $F^{(p)}(\overline{\rho})$: the maximal *p*-profinite extension of $F(\overline{\rho})$ unramified outside *p*. $G = \text{Gal}(F^{(p)}(\overline{\rho})/\mathbb{Q}) \triangleright H = \text{Gal}(F^{(p)}(\overline{\rho})/F)$

- $p \nmid h_F h_{F(\varphi^-)}$ for the class number h_X of a number field X.
- $(\mathbb{T}, \rho_{\mathbb{T}} : G \to \operatorname{GL}_2(\mathbb{T}))$: the universal pair among *p*-ordinary deformations with coefficients in local *p*-profinite \mathbb{Z}_p -algebras with residue field \mathbb{F}_p . (*CNL*: category of such algebras)
- \mathbb{T} is an algebra over the Iwasawa algebra $\Lambda = \mathbb{Z}_p[[T]]$ via $\det(\rho_{\mathbb{T}})([u, \mathbb{Q}_p]) = t^{\log_p(u)/\log_p(1+p)}$ (t = 1 + T) for $u \in 1 + p\mathbb{Z}_p$.

§1. Main Theorem. Suppose $p \nmid h_F h_{F(\overline{\varphi}^-)}$. We have $\mathbb{T} = \Lambda[\sqrt{\langle \varepsilon \rangle - 1}]$

for $\langle \varepsilon \rangle = t^{\log_p(\varepsilon)/\log_p(1+p)}$, where ε is a fundamental unit of F.

• $Ad(\rho_{\mathbb{T}})$: the adjoint action of $\rho_{\mathbb{T}}$ on $\mathfrak{sl}_2(\mathbb{T})$ and $\Lambda_{\varepsilon} := \Lambda/(\langle \varepsilon \rangle - 1)$.

Corollary. For the adjoint Selmer group $Sel(Ad(\rho_{\mathbb{T}}))$ over \mathbb{Q} , $Sel(Ad(\rho_{\mathbb{T}})) \cong \Lambda_{\varepsilon}^{\vee}$ (the Pontryagin dual of Λ_{ε}). So $Sel(Ad(\rho_{\mathbb{T}}))^{\vee} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a semi-simple Λ -module.

This follows from $\operatorname{Sel}(Ad(\rho_{\mathbb{T}}))^{\vee} \cong \Omega_{\mathbb{T}/\Lambda}$ (a theorem of Mazur).

§2. Presentation Theorem. Since $\overline{\rho} \otimes \chi \cong \overline{\rho}$ for $\chi = \left(\frac{F/\mathbb{Q}}{\Gamma}\right)$, we have an involution $\iota \in \operatorname{Aut}(\mathbb{T}/\Lambda)$ such that $\iota \circ \rho_{\mathbb{T}} \cong \rho_{\mathbb{T}} \otimes \chi$. Let $I := \mathbb{T}(\iota-1)\mathbb{T}$. Since ι acts trivially on \mathbb{T}/I , we have $(\rho_{\mathbb{T}} \mod I) = (\rho_{\mathbb{T}}^{\iota} \mod I) \cong (\rho_{\mathbb{T}} \otimes \chi \mod I)$, and hence

$$(\rho_{\mathbb{T}} \mod I) \cong \operatorname{Ind}_F^{\mathbb{Q}} \Phi$$

for a character $\Phi: H \to (\mathbb{T}/I)^{\times}$. By the universality of $(\mathbb{T}, \rho_{\mathbb{T}})$,

Ind Lemma. $\mathbb{T}/I \cong \Lambda_{\varepsilon}$ and $\Phi : H \to \Lambda_{\varepsilon}^{\times}$ is universal among characters of H deforming $\overline{\varphi}$, where $\Lambda_{\varepsilon} = \mathbb{Z}_p[(O_p^{\times}/\overline{O^{\times}}) \otimes_{\mathbb{Z}} \mathbb{Z}_p].$

Presentation Theorem. Let $\mathbb{T}_+ := \{x \in \mathbb{T} | \iota(x) = x\}$.

 $\mathbb{T} \cong \Lambda[[X]]/(S) \ X \mapsto \Theta \in \mathbb{T}, \ \mathbb{T}_+ = \Lambda[[X^2]]/(S) \ X^2 \mapsto \Theta^2 = \theta$ with involution ι_{∞} of $\Lambda[[X]]$ lifting $\iota: \iota_{\infty}(X) = -X, \iota_{\infty}(S) = S.$

This is done in "Cyclicity of adjoint Selmer groups and fundamental units" posted on the web by a ι -compatible Taylor– Wiles patching argument.

§3. Weierstrass preparation. Note

 $I = \mathbb{T}(\iota - 1)\mathbb{T} = (\Theta) \text{ and } \mathbb{T}/(\Theta) \cong \Lambda_{\varepsilon}.$

Theorem: S(X) = D(X)U(X) with $D(0) = \langle \varepsilon \rangle - 1$ with a unique monic distinguished polynomial D(X) of degree $e := \operatorname{rank}_{\Lambda} \mathbb{T}$.

For $S = S(X) \in \Lambda[[X^2]]$,

$$\mathbb{T}/(\Theta) = \Lambda[[X]]/(X, S(X)) = \Lambda/(S(0)) = \Lambda_{\varepsilon} \Rightarrow S(0) = \langle \varepsilon \rangle - 1.$$

- By Weierstrass preparation theorem, S(X) = D(X)U(X) for a distinguished polynomial $D(X) = X^e + \cdots + D(0) \in \Lambda[X]$ for $e = \operatorname{rank}_{\Lambda} \mathbb{T}$ with $D(X) \equiv X^e \mod \mathfrak{m}_{\Lambda}$ and $U(X) \in \Lambda^{\times}$.
- $U(0)D(0) = S(0) = \langle \varepsilon \rangle 1$, replacing S(X) by $U(0)^{-1}S(X)$, we may assume $D(0) = \langle \varepsilon \rangle 1$.

Pick a prime divisor P of $\langle \varepsilon \rangle - 1$. Do the same argument in $\widehat{\Lambda}_P[[X]]$ over the localized-completed DVR $\widehat{\Lambda}_P$.

§4. D(X) is Eisenstein. We have

 $S(X) = D_P(X)U_P(X)$ with $D_P(X) \in \widehat{\Lambda}_P[x]$ and $U_P(X) \in \widehat{\Lambda}_P[[X]]^{\times}$. By the uniqueness of the decomposition, $D = D_P$, so,

$$D(X) \equiv X^{e} \mod P \text{ and } P \parallel (\langle \varepsilon \rangle - 1) = D(0).$$

Since $(\langle \varepsilon \rangle - 1) = (t^{p^{m-1}} - 1)$ $(m = \operatorname{ord}_{\mathfrak{p}}(\varepsilon^{p-1} - 1))$ is square-free,

D(X) is an **Eisenstein polynomial** with respect to P.

Irreducibility Theorem. $\mathbb{T} = \Lambda[X]/(D(X))$ is an integral domain fully ramified at each prime factor P of $\langle \varepsilon \rangle - 1$. If e = 2, we have $\mathbb{T} \cong \Lambda[\sqrt{\langle \varepsilon \rangle - 1}]$.

 \mathbb{T} is regular \Leftrightarrow ord_p($\varepsilon^{p-1}-1$) = m = 1 as ($\langle \varepsilon \rangle -1$) = ($t^{p^{m-1}}-1$);

- If $F = \mathbb{Q}[\sqrt{5}]$, $m > 1 \Leftrightarrow p$ is Wall-Sun-Sun primes (1992). No Wall-Sun-Sun primes $\leq 2.6 \times 10^{17}$.
- $p = 191, 693, \cdots$ are for such for $\mathbb{Q}[\sqrt{10}]$.

§5. Pseudo character (start of the proof of e = 2).

• A pseudo-character $T : X \to A$ ($A \in CNL$) from an A-algebra X is a function satisfying

(T1)
$$T(1) = 2;$$

(T2) $T(rs) = T(sr)$ for all $r, s \in X;$
(T3) $T(r)T(s)T(t) + T(rst) + T(tsr) - T(rs)T(t) - \dots = 0;$
(T4) $r \mapsto \det(T) = \frac{1}{2}(T(r)^2 - T(r^2))$ is multiplicative.

Cayley–Hamilton (CH) representation lifting T:

- An A-GMA E is an A-algebra of the form $E = \begin{pmatrix} A & B \\ C & A \end{pmatrix}$ with A-modules B and C equipped with product law $B \otimes C \to A$. The product of E is then given by usual matrix product.
- A homomorphism $\rho: X \to E$ is a **CH representation** of T if

$$T = \text{Tr}(\rho), \ \det(T) = \det(\rho), \ \rho(r)^2 - T(r)\rho(r) + \det(T) = 0.$$

§6. Universal ordinary CH representation.

• A CH representation $\rho : \mathbb{Z}_p[H] \to E$ (continuous with respect to the topology induced by $\mathbb{Z}_p[[H]]$) is called **ordinary** if

$$b(D_{\mathfrak{p}^{\sigma}}) = 0, \ a(I_{\mathfrak{p}^{\sigma}}) = 1, \ c(D_{\mathfrak{p}}) = 0 \text{ and } d(I_{\mathfrak{p}}) = 1$$

writing $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. This definition is similar to the one by Wang-Erickson and Wake over Gal($\overline{\mathbb{Q}}/\mathbb{Q}$).

• There is a universal triple

 $(R^{ord}, E^{ord}, \rho^{ord} : H \to E^{ord})$ deforming $\operatorname{Tr}(\overline{\rho})|_H$ made of $R^{ord} \in CNL$, a R^{ord} -GMA $E^{ord} = \begin{pmatrix} R^{ord} & B^{ord} \\ C^{ord} & R^{ord} \end{pmatrix}$ and a CH representation ρ^{ord} such that we have a unique \mathbb{Z}_p -algebra morphism $\phi_R : R^{ord} \to A$ and an R^{ord} -GMA homomorphism $\phi_E :$ $E^{ord} \to E$ such that $\operatorname{Tr}(\rho) = \phi_R \circ \operatorname{Tr}(\rho^{ord})$ and $\phi_E \circ \rho^{ord} \cong \rho$ for any ordinary CH representation $\rho : H \to E$ deforming $\overline{\varphi} \oplus \overline{\varphi}_{\varsigma}$.

§7. Universal ordinary <u>reducible</u> CH representation.

• Universal "reducibility" locus: $\operatorname{Spec}(R^{red}) \subset \operatorname{Spec}(R^{ord})$ such that $\rho^{red} = \rho^{ord} \otimes 1 : H \to E^{ord} \otimes_{R^{ord}} R^{red} =: E^{red} = \begin{pmatrix} R^{red} & B^{red} \\ C^{red} & R^{red} \end{pmatrix}$ satisfies the universality among reducible ordinary CH deformation. Again by universality, $\rho_{11}^{red} = \Phi$ and $\underline{R^{red} \cong \Lambda_{\varepsilon}}$.

• By Bellaïshe–Chenevier, the **reducibility** ideal \mathcal{J} of R^{ord} giving $R^{red} = R^{ord}/\mathcal{J}$ is the **image** in R^{ord} of $B^{ord} \otimes_{R^{ord}} C^{ord}$.

Let $L_{\mathfrak{p}}/F(\Phi^{-})$ be the maximal (only) *p*-abelian \mathfrak{p} -ramified extension with Galois group \mathcal{Y} . Write $\mathcal{Y}(\varphi^{-})$ the φ^{-} -branch of \mathcal{Y} .

Reducibility Theorem. We have $E^{red} = \begin{pmatrix} \Lambda_{\varepsilon} & \mathcal{Y}(\varphi^{-}) \\ \sigma \mathcal{Y}(\varphi^{-}) \sigma^{-1} & \Lambda_{\varepsilon} \end{pmatrix}$; so,

$$B^{red} \cong \mathcal{Y}(\varphi^{-}) \cong \Lambda_{\varepsilon}$$
 and $C^{red} \cong \sigma \mathcal{Y}(\varphi^{-}) \sigma^{-1} \cong \Lambda_{\varepsilon}$

as R^{red} -modules (the cyclicity follows from cyclicity paper). The product map $B^{red} \otimes C^{red} \xrightarrow{0} R^{red}$ is the zero map.

§8. Univ Theorem: $R^{ord} \cong \mathbb{T}_+$, $E^{ord} = \begin{pmatrix} \mathbb{T}_+ & \mathbb{T}_- \\ \mathbb{T}_- & \mathbb{T}_+ \end{pmatrix}$, $\rho^{ord} = \rho_{\mathbb{T}}|_H$. *Proof.* By universality, we have $\pi : R^{ord} \xrightarrow{onto} \mathbb{T}_+$ (π is the dual of $\rho \mapsto \operatorname{Tr}(\rho|_H)$); so, $\mathcal{J}^n/\mathcal{J}^{n+1} \twoheadrightarrow I_+^n/I_+^{n+1}$ for $I_+ := \mathbb{T}_+ \cap I = (\Theta^2)$. • By cyclicity over Λ_{ε} of $\mathcal{Y}(\varphi^-)$, we find $B^{ord}/\mathcal{J}B^{ord}$ is cyclic over R^{ord} . By NAK, B^{ord} is cyclic over R^{ord} ; C^{ord} is cyclic over R^{ord} . • Since \mathcal{J} is the image of $B^{ord} \otimes_{R^{ord}} C^{ord}$, \mathcal{J} is cyclic; so, \mathcal{J} is a principal ideal (η) ($\eta \in R^{ord}$). For all n > 0 we have

• We find that $\mathcal{J}^n/\mathcal{J}^{n+1} \cong I_+^n/I_+^{n+1} \Rightarrow R^{ord} = \mathbb{T}_+.$

• Since B^{ord} is generated by one element by NAK and \mathbb{T}_- is free of rank 1 over \mathbb{T}_+ , $E^{ord} = \begin{pmatrix} \mathbb{T}_+ & \mathbb{T}_- \\ \mathbb{T}_- & \mathbb{T}_+ \end{pmatrix}$ and $\rho^{ord} = \rho_{\mathbb{T}}|_H$.

 \S **9.** *p*-Inertia Theorem.

$$\rho_{\mathbb{T}}(I) = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \middle| a \in t^{\mathbb{Z}_p}, b \in \Theta \Lambda \right\}$$

for the p-inertia subgroup $I \subset \text{Gal}(F(\rho_{\mathbb{T}})/F(\overline{\rho}))$.

Corollary. For a Hecke eigen form f of weight ≥ 2 whose Galois representation ρ_f is a deformation of $\operatorname{Ind}_F^{\mathbb{Q}}\overline{\varphi}$, the restriction of ρ_f to the inertia subgroup at p is indecomposable.

Write $\rho^{ord} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then the corresponding Wiles' pseudo representation $\pi^{ord} = (a, d, x) : H \to R^{ord}$ for x(h, h') = b(h)c(h') is universal among deformations of the Wiles' pseudo representation associated to $\rho(\overline{\rho})$. Therefore $(\mathbb{T}_+, \pi^{ord})$ is **the universal couple also for Wiles' pseudo deformation**. This point is important as I work in Wiles' theory. Though we go a different path, Betina found a criterion for the **eigencurve** C has ramification index 2 at $\operatorname{Ind}_F^{\mathbb{Q}} \varphi$ over the weight space.

§10. Betina's criterion for e = 2.

• Local ramification index to be 2 at $\wp \sim \operatorname{Ind}_F^{\mathbb{Q}} \varphi \in C \Rightarrow \mathbb{T} = \Lambda[\sqrt{\langle \varepsilon \rangle - 1}]$ (Irreducibility Theorem).

• Betina's criterion: Let $M_{\mathfrak{l}}$ be the maximal *p*-abelian extension of $F(\varphi^-)$ unramified outside \mathfrak{l} and $M_{\infty} := M_{\mathfrak{p}}M_{\mathfrak{p}^{\sigma}}$. Let M_{∞} be the maximal multiple \mathbb{Z}_p -extensions of $F(Ad(\overline{\rho}))$ inside M_{∞} and L_{∞}/M_{∞} be the maximal unramified *p*-abelian extension of M_{∞} . $X := \operatorname{Gal}(L_{\infty}/M_{\infty})$ is a module over $\operatorname{Gal}(M_{\infty}/\mathbb{Q})$ and X_{χ} be the maximal χ -quotient of X. Thus $X_{\chi} = \operatorname{Gal}(L_{\chi}/M_{\infty})$. Let F'' be the maximal unramified extension of $F(\varphi^-)$ inside M_{∞} . Then

e = 2 if for example L_{χ}/F'' is abelian.

• Since $\operatorname{Gal}(M_{\infty}/F(\varphi^{-})) \cong \mathbb{Z}_{p}^{s}$ for some large s, it is difficult to verify his criterion.

• If this criterion is met, Betina shows the triviality of the pseudo representation (a', d', x') associated to the tangent vector at the point $\wp \in C$; so, e = 2. We try to prove triviality differently.

§11. Pink Theory: Compositio 88 (1993).

R. Pink gave a classification of *p*-profinite subgroup \mathcal{G} of $SL_2(\mathbb{T})$: • Let $L : \mathcal{G} \to \mathfrak{sl}_2(\mathbb{T})$ by $L(x) = x - \frac{1}{2} \operatorname{Tr}(x) \mathbb{1}_2$, and define the topological \mathbb{Z}_p -span \mathfrak{G} of $L(\mathcal{G})$. Then \mathfrak{G} is a Lie algebra.

• Define the central descending sequence: $\mathcal{G}_1 = \mathcal{G}$, $\mathcal{G}_2 = (\mathcal{G}, \mathcal{G})$ (the commutator subgroup) and $\mathcal{G}_n := (\mathcal{G}, \mathcal{G}_{n-1})$ for n > 2. Similarly $\mathfrak{G}_1 = \mathfrak{G}$, $\mathfrak{G}_3 = [\mathfrak{G}_1, \mathfrak{G}_2]$ (Lie bracket), and $\mathfrak{G}_n = [\mathfrak{G}, \mathfrak{G}_{n-1}]$ for n > 2. Then L induces conjugate equivariant group isomorphism $\mathcal{G}_n/\mathcal{G}_{n+1} \cong \mathfrak{G}_n/\mathfrak{G}_{n+1}$ for $n \ge 2$ and $\mathcal{G}/\mathcal{G}_2 \hookrightarrow \mathfrak{G}/\mathfrak{G}_2$ becomes isomorphism after twisting suitable the abelian group structure of $\mathfrak{G}/\mathfrak{G}_2$. • Split $\operatorname{Gal}(F(\rho)/F) = \Delta \ltimes H_p$ with $\Delta \cong \operatorname{Gal}(F(\overline{\rho})/F)$ and H_p p-profinite. Let $\mathcal{G} := \operatorname{Ker}(\det \circ \rho|_{H_p}) \cap \operatorname{Ker}(\Phi^-)$. Note $H_p = Z \times \mathcal{G}$ with $Z \cong t^{\mathbb{Z}_p}$. For simplicity we ignore the center Z so small.

• Pick a prime P|T. Then $\varphi = \Phi \mod P$, and $(A := \widehat{\mathbb{T}}_{+,P}, \pi^{ord})$ is a universal pair over $\widehat{\Lambda}_P$ (*P*-adic localization completion) of Wiles' pseudo representation deforming $\operatorname{Tr}(\operatorname{Ind}_F^{\mathbb{Q}}\varphi)|_H$. Writing $B = \widehat{\Lambda}_P$. We show $t^* = t^*_{A/B} = \mathfrak{m}_A/(\mathfrak{m}_A^2 + \mathfrak{m}_B) = 0$; so, A = Band hence $\mathbb{T}_+ = \Lambda$.

§12. How to prove $\mathbb{T}_+ = B$.

• By presentation $\dim_{\kappa} t^* \leq 1$ for $\kappa = A/\mathfrak{m}_A$ (residue field of P). We have $A/(\mathfrak{m}_A^2 + \mathfrak{m}_B) = \kappa[t^*] \hookrightarrow \kappa[\epsilon]$ for dual number ϵ . Regard $\pi := \pi^{ord} \mod (\mathfrak{m}_A^2 + \mathfrak{m}_B)$ as having values in $\kappa[\epsilon]$. Need to show π is the deformation of $(\Phi, \Phi_c, 0)$.

• By the action of Δ , $\mathfrak{G} = \mathfrak{G}^+ \oplus \mathfrak{G}^\Delta \oplus \mathfrak{G}^-$, \mathfrak{G}^{\pm} being $(\varphi^-)^{\pm 1}$ eigenspace. Here \mathfrak{G}^+ is upper nilpotent, \mathfrak{G}^Δ is diagonal and \mathfrak{G}^- is lower nilpotent. $\exp(\mathfrak{G}^{\pm}) = 1 + \mathfrak{G}^{\pm} \subset \mathcal{G}$ is the inertia group at \mathfrak{p}_{\pm} .

• Let $\mathcal{D} \subset \mathcal{G}$ be made of diagonal matrices; so, $\mathcal{G} = \exp(\mathfrak{G}^-)\mathcal{D}\exp(\mathfrak{G}^+)$. On $\mathcal{D}\exp(\mathfrak{G}^+) \cup \exp(\mathfrak{G}^-)\mathcal{D}$, $\mathbf{x}(g,h) = \mathbf{b}(g)\mathbf{c}(h) = 0$.

• One can show that π factors through $\mathcal{G}/\mathcal{G}_3$ (Ballaïche-Chenevier theory). By vanishing of x, x = 0 on $\exp(\mathfrak{G}^-)\mathcal{D}\mathcal{G}_3 \cup \mathcal{D}\exp(\mathfrak{G}^+)\mathcal{G}_3$; so, a(lg) = a(l)a(g) and a(gr) = a(g)a(r) for $r \in \exp(\mathfrak{G}^+)\mathcal{D}\mathcal{G}_3$, $l \in \mathcal{D}\exp(\mathfrak{G}^-)\mathcal{G}_3$ and any $g \in \mathcal{G}$. For the unipotent part, a = d =1; so, a is determined by the restriction to \mathcal{D} modulo \mathcal{G}_3 which is \mathcal{G} -conjugate invariant; so, a is \mathcal{G} -conjugate invariant and hence is a character. a being a deformation of φ is easy.