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Consider the universal minimal p-ordinary deformation pr : Gal(Q/Q) —
GL>(T) (for a prime p > 5) of an induced representation Ind%gp from a
real quadratic field F. For almost all primes p split in F, we describe
an isomorphism T = A[y/(e) — 1] for the Iwasawa algebra A, where (¢) =
(1 4 T)'°9(e)/109,(1+p) ¢ 7, [[T]] C A for a fundamental unit e of F. This im-

plies that the dual adjoint Selmer group of pr is isomorphic to A/({e) — 1) as
A-modules, and in particular, it is a semi-simple A-module after extension of

scalars to Q, from Z,.



50. Setting.

e p>5 a fixed prime. oo : F C R: a real quadratic field.

e O: the integer ring of F; (p) = pp? (fix p and o|p # 1).

o p=1Ind¥%p (7 : Gal(Q/F) — FX); [F : Fp] < oo; the Teichmiiller
lift ¢ of . For simplicity, assume I = [Fy,;

o o (1) = p(m)p(or o™ 1).

o ¢—|Ga|@p/(@p) # 1 (locally) and ¢~ has order > 3 (globally).

e coo. the conductor of ¢, assume ¢+ ¢ = O and ¢+ p? = 0.

e I'(p):the splitting field of a Galois representation p,

FP)(5): the maximal p-profinite extension of F(p) unramified
outside p. G = Gal(F®)(p)/Q) > H = Gal(F®)(p)/F)

o pJ[hFhF(gp_) for the class number hyxy of a number field X.

o (T,pr : G — GLo(T)): the universal pair among p-ordinary de-
formations with coefficients in local p-profinite Zy-algebras with
residue field F,. (CNL: category of such algebras)

e T is an algebra over the Iwasawa algebra A = Zyp[[T]] via
det(pr)([u, Qp]) = t'09%(W)/109p(1+P) (¢ =1 4 T) for u € 1 + pZ,.




1. Main Theorem. SupposepthhF@_). We have

T = Aly/(e) — 1]

for (e) = ¢°9p(£)/109p(14P) \where ¢ is a fundamental unit of F.
e Ad(pr): the adjoint action of pp on sl5>(T) and Az ;= A/({e)—1).

Corollary. For the adjoint Selmer group Sel(Ad(pt)) over Q,

Sel(Ad(p)) = A! (the Pontryagin dual of A:).

So Sel(Ad(pT))V ®z, Qp is a semi-simple A-module.

This follows from Sel(Ad(pt))Y = Qp/p (a theorem of Mazur).



§2. Presentation Theorem. Since p®x = p for x = (F/—@) we
have an involution ¢+ € Aut(T/A) such that to pr = pr ® x. Let
I :=T(—1)T. Since . acts trivially on T/I, we have (pyr mod I) =
(p5p mod I) = (pr ® x mod I), and hence

(pr mod I) 2 IndE &
for a character ® : H — (T/I)*. By the universality of (T, pr),

Ind Lemma. T/I = A; and ® : H — A is universal among
characters of H deforming @, where N\e = Zp[(Oy /O*) &7 Zyp].
Presentation Theorem. Let T} = {z € T|u(x) = z}.

T2 A[[X]]/(S) X - © €T, Ty =A[[X?2]]/(S) X?+— ©°%=0¢
with involution it Of A[[X]] lifting t: tco(X) = — X, 10(S) = S.
This is done in “Cyclicity of adjoint Selmer groups and fun-

damental units’” posted on the web by a (-compatible Taylor—
Wiles patching argument.



§3. Weierstrass preparation. Note

I=T(-1)T=(©) and T/(©) = A..

Theorem: S(X) = D(X)U(X) with D(0) = (¢)—1 with a unique
monic distinguished polynomial D(X) of degree e := rankp T.

For S = S(X) € A[[X?]],

T/(©) = AlIX]]/(X,5(X)) =A/(5(0)) = A: = S(0) = (¢) — 1.

e By Weierstrass preparation theorem, S(X) = D(X)U(X) for
a distinguished polynomial D(X) = X¢+ --- 4+ D(0) € A[X] for
e = ranka T with D(X) = X¢ mod mp and U(X) € A*.

e U(0)D(0) = S(0) = (¢) — 1, replacing S(X) by U(0)~15(X),
we may assume D(0) = (g) — 1.

Pick a prime divisor P of (¢) — 1. Do the same argument in
Ap[[X]] over the localized-completed DVR Ap.



84. D(X) is Eisenstein. We have
S(X) = Dp(X)Up(X) with Dp(X) € Ap[z] and Up(X) € Ap[[X]]*.
By the uniqueness of the decomposition, D = Dp, Sso,
D(X)=X° modP and P || ({¢) — 1) = D(0).
Since ({(e) —1) = (P

m—1

—1) (m = ordp(eP~1 — 1)) is square-free,

D(X) is an Eisenstein polynomial with respect to P.

Irreducibility Theorem. T = A[X]/(D(X)) is an integral do-
main fully ramified at each prime factor P of {e) — 1.

If e=2, we have T = A[,/(e) — 1].

T is regular < ordp(eP~1 —1)=m=1as ({&) - 1) = (P ~ —1);
o If ' = Q[V5], m > 1<« pis Wall-Sun-Sun primes (1992).
No Wall-Sun-Sun primes < 2.6 x 1017

e p= 191,693, --- are for such for Q[+v/10].

m—1



§5. Pseudo character (start of the proof of ¢ = 2).

e A pseudo-character T: X — A (A€ CNL) from an A-algebra
X is a function satisfying

(T1) T(1) =2

(T2) T'(rs) =T (sr) for all r,s € X;

(T3) T'(r)T(s)T(t) +T(rst) +T(tsr) —T(rs)T(t) —---=0;

(T4) r— det(T) = 3(T(r)? — T(r2)) is multiplicative.

Cayley—Hamilton (CH) representation lifting T

e An A-GMA E is an A-algebra of the form E = <C ﬁ) with
A-modules B and C' equipped with product law B C — A. The
product of E is then given by usual matrix product.

e A homomorphism p: X — FE is a CH representation of T' if

N

T = Tr(p), det(T) = det(p), p(r)2 —T(r)p(r) 4+ det(T) = 0.



§6. Universal ordinary CH representation.
e A CH representation p : Zy,[H] — E (continuous with respect
to the topology induced by Zy[[H]]) is called ordinary if

b(Dpa) = 0, CL(Ipa) =1, C(Dp) = 0 and d([p) =1

writing p = <CCL 2) This definition is similar to the one by Wang-
Erickson and Wake over Gal(Q/Q).

e [ here is a universal triple

(Rord,EOTd,pO"“d - H — E‘”“d) deforming Tr(p) |y

made of R% ¢ CNL, a R"*-GMA E°% = <§Z:;l gz:j) and a

CH representation p°"¢ such that we have a unique Zp,-algebra
morphism ¢p : R — A and an R°"*-GMA homomorphism ¢p :
E°d — E such that Tr(p) = ¢po Tr(p°"%) and ¢p o p' £ p for
any ordinary CH representation p: H — E deforming o @ ..



§7. Universal ordinary reducible CH representation.

e Universal “reducibility’” locus: Spec(R™%) ¢ Spec(R°"%) such
that pred — pord ®1:H — pord ® pord Rred —- pred — <g;2§ g;zj)
satisfies the universality among reducible ordinary CH deforma-

tion. Again by universality, pj¢¢ = & and R’ =2 A..

e By Bellaishe—Chenevier, the reducibility ideal J of R°"? giving
Rred = Rord/ 7 is the image in R of BT ® L4 CT4.

Let Ly/F(P~) be the maximal (only) p-abelian p-ramified exten-
sion with Galois group Y. Write V(¢ ™) the ¢—-branch of Y.

Reducibility Theorem. We have E™ed — Ne o Y@
ocYV(p )o Ne

BT 2 Y(poT) =2 A and CT% 2 oY(p ot =2 A,

as R™-modules (the cyclicity follows from cyclicity paper). The
product map Bred g ¢red B, Rred s the zero map.



§8. Univ Theorem: R4 & Ty, Eord — (%_F %J‘r), p°"h = polgr.

Proof. By universality, we have r : RoTd 210, T, (r is the dual of

p— Tr(plg)); so, T/ T — I /I for I :=T NI = (©2).
e By cyclicity over A: of V(¢ ™), we find B¢/ 7B is cyclic over
RO"4. By NAK, B° is cyclic over R°"d: ¢°rd is cyclic over R4,
e Since J is the image of B4 @,q C°"¢, J is cyclic; so, J is a
principal ideal (n) (n € R"®). For all n > 0 we have

Rord/(n) =RI=N = A= T—I—/(Q)

zm—m”xl lel—ﬁ”x
1
VAN — I/t

e We find that J7/gn+1 = m /11 = gord =T,

e Since B¢ js generated by one element by NAK and T_ is free

of rank 1 over Ty, Fod = (j%_r %I:J_r) and p" = pr|p. [ ]



39. p-Inertia Theorem.

pr(D) ={(8§?%) |a € t’r,b € ON}
for the p-inertia subgroup I C Gal(F(pt)/F(p)).

Corollary. For a Hecke eigen form f of weight > 2 whose Galois
representation py is a deformation of Ind% ©, the restriction of
pf to the inertia subgroup at p is indecomposable.

Write p‘”“d — <g 3). Then the corresponding Wiles' pseudo rep-
resentation 7% = (a,d,x) : H — R°"® for x(h,h") = b(h)c(h)) is
universal among deformations of the Wiles' pseudo representa-
tion associated to p(p). Therefore (T_I_,WO"“d) is the universal
couple also for Wiles’ pseudo deformation. This point is
important as I work in Wiles' theory. Though we go a different
path, Betina found a criterion for the eigencurve C has ramifi-
cation index 2 at Ind%go over the weight space.



§10. Betina’s criterion for e = 2.

e Local ramification index to be 2 at p ~ Ind%go cC=T=
A[\/{(e) — 1] (Irreducibility Theorem).

e Betina’'s criterion: Let M, be the maximal p-abelian extension
of F(¢~) unramified outside [ and My, := MpMypo. Let My be
the maximal multiple Z,-extensions of F(Ad(p)) inside My, and
Lo/Ms be the maximal unramified p-abelian extension of M.
X = Gal(Leo/Mxo) is @ module over Gal(Mso/Q) and Xy be the
maximal x-quotient of X. Thus X, = Gal(L,/Mx). Let F" be
the maximal unramified extension of F (¢ ™) inside My. Then

e = 2 if for example L, /F" is abelian.

e Since Gal(Mw/F (9™ )) = Z, for some large s, it is difficult to
verify his criterion.

e If this criterion is met, Betina shows the triviality of the pseudo
representation (a/,d’,z’) associated to the tangent vector at the
point o € C'; so, e = 2. We try to prove triviality differently.



§11. Pink Theory: Compositio 88 (1993).

R. Pink gave a classification of p-profinite subgroup G of SL»(T):
eletL:G —sl(T) by L(x) = x—%TI’(JZ)].Q, and define the topo-
logical Zy-span & of L(G). Then & is a Lie algebra.

e Define the central descending sequence: G1 = G, G» = (G, G)
(the commutator subgroup) and G, := (G,G,,_1) for n > 2. Sim-
ilarly &1 = &, &3 = [®1,®5] (Lie bracket), and &, = [&,&,,_1]
for n > 2. Then L induces conjugate equivariant group isomor-
phism Gn/Gp41 = Gn /G, 41 forn > 2 and G/Go — /&, becomes
isomorphism after twisting suitable the abelian group structure
of &/B5. e Split Gal(F(p)/F) = A x Hy, with A = Gal(F(p)/F)
and Hp p-profinite. Let G := Ker(detop|Hp) N Ker($®~). Note
Hy, = Z x G with Z 2 t%». For simplicity we ignore the center Z
so small.

e Pick a prime P|T. Then ¢ =® mod P, and (A = ’[AF_I_,p,wOTd)
iSs a universal pair over Ap (P-adic localization completion) of
Wiles' pseudo representation deforming Tr(Ind%goﬂH. Writing
B = Ap. We show t* = thp = my/(m4 +mpg) =0; so, A=DB
and hence T = A.



§12. How to prove T, = B.

e By presentation dimygt* <1 for k = A/m4 (residue field of P).
We have A/(mi—l—mg) = k[t*] — k[e] for dual number ¢. Regard
7 :=7°"% mod (m% +mp) as having values in k[e]. Need to show
7w is the deformation of (&, $.,0).

e By the action of A, & = 8T @ &2 @ &, &T being (o )*!-
eigenspace. Here &1 is upper nilpotent, &2 is diagonal and &~ is
lower nilpotent. exp(@i) — 14®&* C G is the inertia group at L.
e Let D C G be made of diagonal matrices; so, G = exp(&—)D exp(@"‘).
On Dexp(&1T) Uexp(B)D, x(g,h) = b(g)c(h) = 0.

e One can show that « factors through G/G3 (Ballaiche-Chenevier
theory). By vanishing of x, z = 0 on exp(®~)DG3UD exp(&+)G3:
so, a(lg) = a(Da(g) and a(gr) = a(g)a(r) for r € exp(&T)DGs,
| € Dexp(®~)Gz and any g € G. For the unipotent part, a =d =
1; so, a is determined by the restriction to D modulo Gz which is
g-conjugate invariant; so, a is g-conjugate invariant and hence
is @ character. a being a deformation of ¢ is easy.



