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Limit Mordell–Weil groups and their p-adic closure

Haruzo Hida

Abstract. This is a twin article of [H14b], where we study the
projective limit of the Mordell–Weil groups (called pro Λ-MW groups)
of modular Jacobians of p-power level. We prove a control theorem of
an ind-version of the K-rational Λ-MW group for a number field K. In
addition, we study its p-adic closure in the group of Kp-valued points
of the modular Jacobians for a p-adic completion Kp for a prime p|p
of K. As a consequence, if Kp = Qp, we give an exact formula for the
rank of the ordinary/co-ordinary part of the closure.
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1. Introduction

Consider a p-adic ordinary family of modular eigenforms of prime-to-p level
N . This is an irreducible scheme Spec(I) which is finite torsion-free over the
Iwasawa algebra Zp[[T ]], and whose points P of codimension one and not in
the special fiber correspond to ordinary p-adic modular eigenforms fP . Among
those points, many corresponds to modular classical eigenforms of weight 2 and
level Npr (for variable r), and such points are Zariski dense in Spec(I). An old,
well-known, and fundamental construction of Eichler–Shimura attaches to any
modular cuspidal eigenform f of weight 2 an abelian variety Af defined over
Q, of dimension the degree of the field generated by the coefficients of f over
Q. For these abelian varieties Af , one can consider the Mordell–Weil group
Af(Q) and more generally, Af (k) for k a fixed number field, which are finitely

generated abelian groups. Let us set Âf (k) = Af (k) ⊗Z Zp. We consider the

following natural question: how does the Mordell–Weil group Âf (k) varies as
f varies among those cuspidal eigenforms of weight 2 in the family? We give a
partial answer to this question in the form of control theorems (Theorems 1.1
and 6.6) for these Mordell–Weil groups. An analogous result is proved when
the number field k is replaced by an l-adic field kl, and also a consequence
concerning the image of Af (k) in Af (kl).
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Fix a prime p. This article concerns the p-slope 0 Hecke eigen cusp forms of
level Npr for r > 0 and p - N , and for small primes p = 2, 3, they exists
only when N > 1; thus, we may assume Npr ≥ 4. Then the open curve
Y1(Npr) (obtained from X1(Npr) removing all cusps) gives the fine smooth
moduli scheme classifying elliptic curves E with an embedding µNpr ↪→ E.
Anyway for simplicity, we assume that p ≥ 3, although we indicate often any
modification necessary for p = 2. A main difference in the case p = 2 is that
we need to consider the level Npr with r ≥ 2, and whenever the principal ideal

(γpr−1

− 1) shows up in the statement for p > 2, we need to replace it by

(γpr−2

− 1) (assuming r ≥ 2), as the maximal torsion-free subgroup of Z×
2 is

1+22Z2. We applied in [H86b] and [H14a] the techniques of U(p)-isomorphisms
to p-divisible Barsotti–Tate groups of modular Jacobian varieties of all p-power
level (with a fixed prime-to-p level N) in order to get coherent control under
diamond operators. In this article, we apply the same techniques to Mordell–
Weil groups of the Jacobians and see what we can say. We hope to study
U(p)-isomorphisms of the Tate–Shafarevich groups of the Jacobians in a future
article.
Let Xr = X1(Npr)/Q be the compactified moduli of the classification problem
of pairs (E, φ) of elliptic curves E and an embedding φ : µNpr ↪→ E[Npr] as
finite flat group schemes. Since Aut(µpr ) = (Z/prZ)×, z ∈ Z×

p acts on Xr via

φ 7→ φ ◦ z for the image z ∈ (Z/prZ)×. We write Xr
s (s > r) for the quotient

curve Xs/(1 + prZp). The complex points Xr
s (C) contains Γr

s\H as an open
Riemann surface for Γr

s = Γ0(p
s) ∩ Γ1(Npr). Write Jr/Q (resp. Jr

s/Q) for the

Jacobian of Xr (resp. Xr
s ) whose origin is given by the infinity cusp ∞ of

the modular curves. We regard Jr as the degree 0 component of the Picard
scheme of Xr. For a number field k, we consider the group of k-rational points
Jr(k). The Hecke operator U(p) and its dual U∗(p) act on Jr(k) and their
p-adic limit e = limn→∞ U(p)n! and e∗ = limn→∞ U∗(p)n! are well defined on
the Barsotti–Tate group Jr[p

∞]. For a general abelian variety over a number

field k, we put X̂(k) = X(k) ⊗Z Zp (though we give the definition of the sheaf

X̂ in the following section for global and local field k and if k is local, X̂ may
not be the tensor product as above).

By Picard functoriality, we have injective limits J∞(k) = lim
−→r

Ĵr(k) and

J∞[p∞](k) = lim
−→r

Jr[p
∞](k), on which e acts. Here Jr [p

∞] is the p-divisible

Barsotti–Tate group of Jr over Q). Write G = e(J∞[p∞]), which is called the Λ-
adic Barsotti–Tate group in [H14a] and whose integral property was scrutinized
there. We define the p-adic completion of J∞(k):

J̌∞(k) = lim
←−
n

J∞(k)/pnJ∞(k).

These groups we call ind (limit) MW-groups. Since projective limit and in-
jective limit are left-exact, the functor R 7→ J∞(R) is a sheaf with values in
abelian groups on the fppf site over Q (we call such a sheaf an fppf abelian
sheaf).
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Adding superscript or subscript “ord” (resp. “co-ord”), we indicate the image
of e (resp. e∗). The compact cyclic group Γ = 1 + pZp ⊂ Z×

p acts on these
modules by the diamond operators. In other words, we identify canonically
Gal(Xr/X0(Npr)) for modular curves Xr and X0(Npr) with (Z/NprZ)×, and
the group Γ acts on Jr through its image in Gal(Xr/X0(Npr)). We study
control of J̌∞(k)ord under diamond operators.
A compact or discrete Zp-module M is called an Iwasawa module if it has a
continuous action of the multiplicative group Γ = 1 + pZp with a topological
generator γ = 1 + p. If M is given by a projective or an injective limit of
naturally defined compact Zp[Γ/Γpr

]-modules Mr , we say M has exact control

if Mr = M/(γpr

−1)M in the case of a projective limit and Mr = M [γpr

−1] =
{x ∈M |(γpr

− 1)x = 0} in the case of an injective limit. If M is compact and
M/(γ − 1)M is finite (resp. of finite type over Zp), M is Λ-torsion (resp. of

finite type over Λ), where Λ = Zp[[Γ]] = lim
←−r

Zp[Γ/Γpr

] (the Iwasawa algebra).

When p = 2, we need to take Γ = 1+p2Z2 and γ = 1+4 = 5 ∈ Γ. In addition,
we need to assume often s > r > 1 in place of s > r > 0 for odd primes.
The big ordinary Hecke algebra h (whose properties we recall at the end of this
section) acts on J̌ord

∞ and Jord
∞ as endomorphisms of functors. Let k be a number

field or a finite extension of Ql for a prime l. Write BP for Shimura’s abelian
variety quotient of Jr in [Sh73] and AP for his abelian subvariety AP ⊂ Jr

[IAT, Theorem 7.14] associated to a Hecke eigenform fP in an analytic family
of slope 0 Hecke eigenforms {fP |P ∈ Spec(I)} (for an irreducible component
Spec(I) of Spec(h) for the big ordinary Hecke algebra h). Here we assume that
fP has weight 2 and is a p-stabilized new form of level Npr with r = r(P ) > 0.
Let Spec(T) ⊂ Spec(h) be the connected component containing Spec(I). For
any h-module, we write MT (or MT) for the T-eigen component 1T · M =
M ⊗h T for the idempotent 1T of T in h. Suppose that P is a principal ideal
generated by α ∈ T (regarding as P ∈ Spec(T)). This principality assumption
holds most of the cases (see Proposition 5.1). Then we may assume that α =
lim
←−s

αs (as an endomorphism of the fppf abelian sheaf J∞) for αs ∈ End(Js),

BP = Jr/αr(Jr), and the abelian variety AP is the connected component of
Jr[αr] = Ker(αr). For a finite extension k of Q or Ql (for a prime l), we show
in Section 4 that the Pontryagin dual GT(k)∨ is often a finite module and at
worst is a torsion Λ-module of finite type.
In this paper as Proposition 6.4, we prove the following exact sequence:

(1.1) ÂP (k)ord,T ι∞−−→ J̌∞(k)ord,T α
−→ J̌∞(k)ord,T,

where Ker(ι∞) is finite and Coker(α) is a Zp-module of finite type with free

rank less than or equal to dimQp B̂r(k)⊗Zp Qp. The main result Theorem 6.6 of

this paper is basically the Zp-dual version of Proposition 6.4 for J̌∞(k)∗ord,T :=

HomZp(J̌∞(k)ord,T, Zp). Here is a shortened statement of our main theorem
(Theorem 6.6 in the text):
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Theorem 1.1. The sequence Zp-dual to the one in (1.1):

(1.2) 0→ Coker(α)∗T → J̌∞(k)∗ord,T → J̌∞(k)∗ord,T → ÂP (k)∗ord,T → 0

is exact up to finite error.

In Theorem 6.6, we give many control sequences similar to (1.2) for other
incarnations of J̌∞(k)∗ord,T.

These modules J̌∞(k)∗ord,T are modules over the big ordinary Hecke algebra h.

We cut down these modules to an irreducible component Spec(I) of Spec(h).
In other words, we study the following I-modules:

J̌∞(k)ord
I := J̌∞(k)ord ⊗h I.

We could ask diverse questions out of our control theorem. For example, when
is AP (κ) dense in AP (κp) for a prime p|p of a number field κ? We can answer
this question for almost all P if κp = Qp and dimQ AP0 (κ) ⊗Z Q > 0 for one
sufficiently generic P0 (see Corollary 7.2). In [H14b], we extend the control

result to the projective limit lim
←−r

Ĵr(k)ord
T . In a forthcoming paper [H14c],

we prove “almost” constancy of the Mordell–Weil rank of Shimura’s abelian
variety in a p-adic analytic family.
Our point is that we have a control theorem of the limit Mordell–Weil groups
(under mild assumptions) which is possibly smaller than the Selmer groups
studied more often. We hope to discuss the relation of our result to the limit
Selmer group studied by Nekovár in [N06] in our future paper.
The control theorems for h proven for p ≥ 5 in [H86a] and [H86b] and in
[GME, Corollary 3.2.22] for general p assert that, for p > 2, the quotient

h/(γpr−1

− 1)h is canonically isomorphic to the Hecke algebra hr (r > 0) in
EndZp(Jr[p

∞]ord) generated over Zp by Hecke operators T (n) (while for p = 2,

h/(γpr−2

− 1)h ∼= hr for r ≥ 2). By this control result, we showed that h is a
free of finite rank over Λ (see [GK13] for the treatment for p = 2).

We recall succinctly how these control theorems were proven in [H86b] (and in
[H86a]) for p ≥ 5, as it gives a good introduction to the methods used in the
present paper. The arguments in these papers work well for p = 2, 3 assuming
that Npr ≥ 4 (see [GK13] for details in the case of p = 2). We have a well
known commutative diagram of U(ps−r)-operators:

(1.3)

Jr,R
π∗

−→ Jr
s,R

↓ u ↙ u′ ↓ u′′

Jr,R
π∗

−→ Jr
s,R,

where the middle u′ is given by Us
r (ps−r) and u and u′′ are U(ps−r). These

operators comes from the double coset Γ
(

1 0
0 ps−r

)
Γ′ for Γ = Γr

s = Γ0(p
s) ∩

Γ1(Npr) and Γ′ = Γr′

s′ for suitable s ≥ r, s′ ≥ r′. Note that U(pn) = U(p)n.
Then the above diagram implies

(1.4) Jr/Q[p∞]ord ∼= Jr
s/Q[p∞]ord and Ĵr/Q(k)ord ∼= Ĵr

s/Q(k)ord.
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The commutativity of the diagram (1.3) and the level lowering (1.4) are uni-
versally true even when we replace the fppf abelian sheaf Jr by any fppf sheaf
with reasonable U(p)-action compatible with the modular tower · · · → Xr →
· · · → X1.
For computational purpose, in [H86b], we identified J(C) with a subgroup
of H1(Γ, T) (for the Γ-module T := R/Z with trivial Γ-action). Since

Γr
s . Γ1(Nps), we may consider the finite cyclic quotient group C :=

Γr
s

Γ1(Nps) =

Γpr−1

/Γps−1

. By the inflation restriction sequence, we have the following com-
mutative diagram with exact rows, writing H•(?, T) as H•(?):

H1(C)
↪→

−−−−→ H1(Γr
s) −−−−→ H1(Γ1(Nps))γpr−1

=1 −−−−→ H2(C)
x ∪

x
x∪

x

? −−−−→ Jr
s (C) −−−−→ Js(C)[γpr−1

− 1] −−−−→ ?.

Since H2(C, T) = 0 and U(p)s−r(H1(C, T)) = 0, we have the control of
Barsotti–Tate groups (see [H86b] and more recent [H14a, §4–5]):

Js[p
∞][γpr−1

− 1]ord
/C
∼= Jr [p

∞]ord
/C .

Out of this control by the Γ-action of the ordinary Barsotti–Tate groups
Jr[p

∞]ord, we proved the control of h (cited above) by the diamond opera-
tors.
A suitable power of U(p)-operator killing the kernel and cokernel of the restric-
tion maps in (1) should be also universally true not just over C but over smaller
rings. We will study almost the same diagram obtained by replacing H1(?, T)
for ? = Γ1(Nps) and Γr

s by H1
fppf(X/Q,O×

X) = PicX/Q for X = Xs and Xr
s .

In an algebro-geometric way, we verify that an appropriate power of the U(p)-
operator kills the corresponding kernel and cokernel. Technical points aside,
this is a key to the proof of Theorem 1.1. This principle should hold for more
general sheaves (under a Grothendieck topology) with U(p)-action compatible
with the modular tower, and the author plans to present many other examples
of such in his forthcoming papers.

We call a point P ∈ Spec(h)(Qp) an arithmetic point of weight 2 if P (γpj

−1) =
0 for some integer j ≥ 0. Though the construction of the big Hecke algebra

is intrinsic, to relate an algebra homomorphism λ : h → Qp killing γpr−1

− 1
for sufficiently large r > 0 to a classical Hecke eigenform, we need to fix (once

and for all) an embedding Q
ip
−→ Qp of the algebraic closure Q in C into a fixed

algebraic closure Qp of Qp.

Contents

1. Introduction 1
2. Sheaves associated to abelian varieties 6
3. U(p)-isomorphisms 11
4. Structure of Λ-BT groups over number fields and local fields 19



Limit Mordell–Weil groups 6

5. Abelian factors of modular Jacobians 23
6. Structure of ind-Λ-MW groups over number fields and local field 26
7. Closure of the global Λ-MW group in the local one 39
References 43

2. Sheaves associated to abelian varieties

Let k be a finite extension of Q or the l-adic field Ql. In this section, we set
the notation used in the rest of the paper and present a general fact about an
exact sequence of abelian varieties. Let 0 → A → B → C → 0 be an exact
sequence of algebraic groups proper over the field k. We assume that B and C
are abelian varieties. However A can be an extension of an abelian variety by
a finite (étale) group.
If k is a number field, let S be a finite set of places where all members of the
above exact sequence have good reduction outside S; so, all archimedean places
are included in S. Let K = kS (the maximal extension unramified outside S).

If k is a finite extension of Ql, we put K = k (an algebraic closure of k). A
general field extension of k is denoted by κ. We consider the étale topology, the
smooth topology and the fppf topology on the small site over Spec(k). Here
under the smooth topology, covering families are made of faithfully flat smooth
morphisms.

We want to define p-adically completed sheaves X̂ for X = A, B, C as above
defined over these sites. The word “p-adically completed” does not always mean

X̂(R) is given by the projective limit lim
←−n

X(R)/pnX(R), and the definition

depends on the choice of k. For the moment, assume that k is a number
field. In this case, for an extension X of abelian variety defined over k by a

finite flat group scheme, we define X̂(F ) := X(F ) ⊗Z Zp for an fppf extension

F over k. We may regard its p-adic “completion” 0 → Â → B̂ → Ĉ → 0
as an exact sequence of fppf/smooth/étale abelian sheaves over k (or over
any subring of k over which B and C extend to abelian schemes). Here the
word “completion” means tensoring with Zp over Z. Indeed, for any ring R

of finite type over k, R 7→ Ĉ(R) := C(R) ⊗Z Zp is an exact functor from the
category of abelian fppf/smooth/étale sheaves into itself; therefore, the tensor

construction gives Ĉ(κ) = lim
←−n

C(κ)/pnC(κ) if κ is a field of finite type, since

C(κ) is an abelian group of finite type by a generalized Mordell-Weil theorem
(e.g., [RTP, IV]). Let ε denote the dual number. Then we have a canonical
identification Lie(C)/κ = Ker(C(κ[ε])→ C(κ)) (e.g. [EAI, §10.2.4]), and hence

Lie(C) ⊗Z Zp = Ker(Ĉ(κ[ε])→ Ĉ(κ)) is the p-adic completion of the κ-vector
space Lie(C) if κ is a finite extension of k. Since we find a complementary
abelian subvariety C ′ of B such that C ′ is isogenous to C and B = A + C ′

with finite A ∩ C ′, adding the primes dividing the order |A ∩ C ′| to S, the
intersection A ∩ C ′ ∼= Ker(C ′ → C) extends to an étale finite group scheme
outside S; so, C ′(K) → C(K) is surjective. Thus we have an exact sequence
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of Gal(K/k)-modules

0→ A(K) → B(K)→ C(K)→ 0.

Note that Â(K) = A(K) ⊗Z Zp :=
⋃

F Â(F ) for F running over all finite
extensions of k inside K. Then we have an exact sequence

(2.1) 0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0.

Now assume that k is a finite extension of Ql. We put K = k (an algebraic
closure of k). Suppose that F is a finite extension of k. Then A(F ) = Odim A

F ⊕
∆F for a finite group ∆F and the l-adic integer ring OF of F (see [M55]
ot [T66]). Now suppose l 6= p. For an fppf extension R/k, we define again

Â(R) := A[p∞](R) = lim
−→n

A[pn] for A[pn] := Ker(A(R)
pn

−→ A(R)). Then we

have Â(F ) = lim
←−n

A(F )/pnA(F ) = ∆F,p := ∆F ⊗Z Zp, and we have Â(K) =

lim
−→F

Â(F ) = A[p∞](K), and Â, B̂ and Ĉ are identical to the fppf/smooth/étale

abelian sheaves A[p∞], B[p∞] and C[p∞], where X[p∞] := lim
−→n

X[pn] as an

ind finite flat group scheme with X[pn] = Ker(pn : X → X) for X = A, B, C.

We again have the exact sequence (2.1) of Gal(k/k)-modules:

0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0

and an exact sequence of fppf/smooth/étale abelian sheaves

0→ Â→ B̂ → Ĉ → 0

whose value at finite extension κ/Ql coincides with the projective limit X̂(κ) =
lim
←−n

X(κ)/pnX(κ) for X = A, B, C.

Suppose l = p. For any module M , we define M (p) by the maximal prime-
to-p torsion submodule of M . For X = A, B, C and an fppf extension R/k,

the sheaf R 7→ X(p)(R) = lim
−→p-N

X[N ](R) is an fppf/smooth/étale abelian

sheaf. Then we define the fppf/smooth/étale abelian sheaf X̂ by the sheaf
quotient X/X(p). Since X(F ) = Odim X

F ⊕ X[p∞](F ) ⊕ X(p)(F ) for a finite

extension F/k, on the étale site over k, X̂ is the sheaf associated to a presheaf

R 7→ X(R)/X(p)(R) = Odim X
F ⊕ X[p∞](R). If X has semi-stable reduction

over OF , we have X̂(F ) = X◦(OF ) + X[p∞](F ) ⊂ X(F ) for the formal group
X◦ of the identity connected component of the Néron model of X over OF .
Since X becomes semi-stable over a finite Galois extension F0/k, in general

X̂(F ) = H0(Gal(F0F/F ), X(F0F )) for any finite extension F/K (or more gen-

erally for each finite ’etale extension F/k); so, F 7→ X̂(F ) is a sheaf over
the étale site over k. Thus by [ECH, II.1.5], the sheafication coincides over
the étale site with the presheaf F 7→ lim

←−n
X(F )/pnX(F ). Thus we conclude

X̂(F ) = lim
←−n

X(F )/pnX(F ) for any étale finite extensions F/k. Moreover

X̂(K) =
⋃

F X̂(F ). Applying the snake lemma to the commutative diagram
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with exact rows (in the category of fppf/smooth/étale abelian sheaves):

A(p) ↪→
−−−−→ B(p) �

−−−−→ C(p)

∩

y ∩

y ∩

y

A −−−−→
↪→

B −−−−→
�

C,

the cokernel sequence gives rise to an exact sequence of fppf/smooth/étale
abelian sheaves over k:

0→ Â→ B̂ → Ĉ → 0

and an exact sequence of Gal(k/k)-modules

0→ Â(K)→ B̂(K)→ Ĉ(K)→ 0.

In this way, we extended the étale sheaves Â, B̂, Ĉ defined on the étale site over
Spec(k) to an abelian sheaves on the smooth, fppf and étale sites keeping the

exact sequence Â ↪→ B̂ � Ĉ intact. However note that our way of defining

X̂ for X = A, B, C depends on the base field k = Q, Qp, Ql. In summary, we
have, for fppf algebras R/k:

(S) X̂(R) =






X(R) ⊗Z Zp if [k : Q] <∞,

X[p∞](R) if [k : Ql] <∞ (l 6= p),

(X/X(p))(R) as a sheaf quotient if [k : Qp] <∞.

Lemma 2.1. Let the notation be as above (in particular, X is an extension of an
abelian variety over k by a finite étale group scheme). If κ is either an integral
domain or a field of finite type over k and either k is a number field or a local

field with residual characteristic l 6= p, we have X̂(κ) = lim
←−n

X̂(κ)/pnX̂(κ). If

κ is an étale extension of finite type over k and k is a p-adic field, we again

have X̂(κ) = lim
←−n

X̂(κ)/pnX̂(κ).

Proof. First suppose that k is a number field. If κ is a field extension of fi-
nite type over k, by [RTP, IV], X(κ) is a Z-module of finite type; so, we

have X̂(κ) = X(κ) ⊗Z Zp = lim
←−

X(κ)/pnX(κ). Here the first identity is just

by the definition. More generally, if κ/k is a Krull domain of finite type
over k, κ is a normal noetherian domain; and κ =

⋂
V V for discrete valua-

tion ring V in Q(κ) containing κ. By projectivity of the abelian variety, we
have X(V ) = X(Q(κ) (by the valuative criterion of properness), which implies

X(κ) =
⋂

V X(V ) = X(Q(κ)) (so, X̂(κ) = X̂(Q(κ))) for the quotient field
Q(κ) of κ. In particular, if κ is a smooth extension of finite type, an the re-
sult follows, Since the normalization κ̃ of κ in Q(κ) is a Krull domain, we find

X̂(κ) ⊂ X̂(κ̃) = X̂(Q(κ)); so, X̂(κ) is an abelian group of finite type as long
as κ is an integral domain of finite type over k (and hence is a reduced algbera
of finite type over k).

If k is local of residual characteristic l 6= p, we have X̂ = X[p∞]. If κ is an

integral domain of finite type over k, then X̂(κ) is a finite p-group, and the
result is obvious.
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The case where k is local of residual characteristic p is already dealt with before
the lemma. �

For a sheaf X under the topology ?, we write H•
? (X) for the cohomology group

H1
? (Spec(κ), X) under the topology ?. If we have no subscript, H1(X) means

the Galois cohomology H•(Gal(K/κ), X) for the Gal(K/κ)-module X.

Lemma 2.2. Let X be an extension of an abelian variety over k by a finite étale
group scheme of order prime to p. For any intermediate extension K/κ/k, We
have a canonical injection

lim
←−
n

X̂(κ)/pnX̂(κ) ↪→ lim
←−
n

H1(X[pn]).

Similarly, for any fppf, smooth or étale extension κ/k of finite type which is an
integral domain, we have an injection

lim
←−
n

X̂(κ)/pnX̂(κ) ↪→ lim
←−
n

H1
? (X[pn])

for ? = fppf, sm or ét according as κ/k is an fppf extension or a smooth
extension.

By Lemma 2.1, we have X̂(κ) = lim
←−n

X̂(κ)/pnX̂(κ) in the following cases:

(2.2)



[k : Q] <∞ and κ is an integral domain of finite type over k

[k : Ql] <∞ with l 6= p and κ is an integral domain of finite type over k

[k : Qp] <∞ and κ is a finite algebraic extension over k.

Proof. We consider the sheaf exact sequence under the topology ? = fppf or
sm or étale on Spec(κ)

0→ X[pn]→ X̂
pn

−→ X̂.

We want to show that the multiplication by pn is surjective. If our cohomology
theory is Galois cohomology (or equivalently ? = étale), we have an exact
sequence

0→ X[pn](K)→ X(K)
pn

−→ X(K)→ 0.

Since X̂(K) = X(K) ⊗Z Zp, the desired exactness follows.
Let κ be an fppf extension of k. Then for each x ∈ X(κ), we consider the
Cartesian diagram

Xx −−−−→ X
y

ypn

Spec(κ) −−−−→
x

X.

Then Xx
∼= X[pn] as schemes over κ; so, Xx = Spec(R) for an étale finite

extension R of κ, which is obviously smooth and also fppf extension of κ. Thus
over the covering R/κ, x is the image of the point given by Spec(R) ↪→ X. Then

by [ECH, II.2.5 (c)], X
pn

−→ X is an epimorphism of sheaves under étale, smooth
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and also fppf topology. If k is a number field, we have X̂(κ) = X(κ)⊗Z Zp, we

get the exactness of X[pn] ↪→ X̂ � X̂ from the exactness of X[pn] ↪→ X � X.
If k is a finite extension of Ql for l 6= p, we can argue as above replacing X

by X̂ = X[p∞] and get the exactness of X[pn] ↪→ X̂ � X̂ . Suppose that k

is a finite extension of Qp. Then X̂ = X/X(p) as a ?-sheaf. Take x ∈ X̂(κ).
Then by definition, we have an ?-extension R of κ such that x is the image of
y ∈ X(R). Then as above we can find a ?-extension R′/R such that y = pny′ for

y′ ∈ X(R′). Then for the image x′ of y′ ∈ X(R′) in X̂(R′), we have pnx′ = x.

Thus again X̂
pn

−→ X̂ is an epimorphism of sheaves under the topology ?.
Thus we can apply Kummer theory to the sheaf exact sequence

0→ X[pn] ↪→ X̂
pn

−→ X̂ → 0

with respect to the topology given by ?, we have an inclusion

X̂(κ)/pnX̂(κ) ↪→ H1
? (X[pn]). Passing to the limit with respect to n, we

have δ : lim
←−n

X(κ)/pnX(κ)→ lim
←−n

H1
? (X[pn]). Since taking projective limit is

a left exact functor, δ is injective as desired. �

Taking instead an injective limit, we get

Lemma 2.3. Let A be an abelian variety over k. For any intermediate extension
K/κ/k, we have an exact sequence

0→ Â(κ) ⊗Zp Tp → H1
? (A[p∞])→ H1

? (Â)→ 0

for ? = fppf, sm or ét according as κ/k is an fppf extension, a smooth extension

or an étale extension. In particular, the Pontryagin dual of H1
? (Â) is a Zp-

module of finite type; so, H1
? (Â) has the form (Qp/Zp)

j⊕∆ for some 0 ≤ j ∈ Z
and a finite p-group ∆.

Proof. Since any smooth covering has finer étale covering, we have H•
sm(Â) =

H•
ét(Â) (cf. [ECH, III.3.4 (c)]). Since an étale covering is covered by a finer étale

finite coverings, Hq
ét(Â) and Hq(A) for q > 0 is a torsion module. This torsion-

ness is well known for Galois cohomology (as the Galois group is profinite; see
[CNF, (1.6.1)]).

Pick any x ∈ Â(κ). We can find an étale finite extension κ′/κ such that

pny = x for some y ∈ Â(κ′). Then y is unique modulo Â[pn](κ′). Therefore,

the sheaf quotient (Â/A[p∞])(κ) is p-divisible and torsion-free; so, is a sheaf of

Qp-vector spaces. In other words, Â/A[p∞] is isomorphic to the sheaf tensor

product Â ⊗Zp Qp. Thus we have an exact sequence

0→ A[p∞]→ Â→ Â⊗Zp Qp → 0.

Since H1
? (Â ⊗Zp Qp) is a Qp-vector space, the image in H1

? (Â ⊗Zp Qp) of the

torsion module H1(Â) vanishes. Thus we have an exact sequence

0→ Â(κ)⊗Zp Tp → H1
? (A[p∞])→ H1

? (Â)→ 0.
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Since 0 → Â(κ) ⊗Zp Z/pZ → H1
? (Â[p]) → H1

? (Â)[p] → 0 is exact, by the

finiteness of H1(Â[p]) = H1(A[p]) (see [ADT, I.5]), the last assertion for Galois
cohomology follows. Then using the comparison theorem (cf. [ECH, III.3.4 (c)
and III.3.9]), we conclude the same for other topologies. �

3. U(p)-isomorphisms

We recall the results in [H14b, §3] with detailed proofs for some results and
a brief account for some others (as [H14b] is being written along with this

paper). For Z[U ]-modules X and Y , we call a Z[U ]-linear map X
f
−→ Y a

U -injection (resp. a U -surjection) if Ker(f) is killed by a power of U (resp.
Coker(f) is killed by a power of U). If f is both U -injection and U -surjection,
we call f is a U -isomorphism. Thus, f is a U -injection (resp. a U -surjection, a
U -isomorphism) if after tensoring Z[U, U−1], it becomes an injection (resp. a
surjection, an isomorphism). In terms of U -isomorphisms, we describe briefly
the facts we study in this article (and in later sections, we fill in more details
in terms of the ordinary projector e).
Let N be a positive integer prime to p. We assume Npr ≥ 4 (without losing any
generality as remarked in the introduction). We consider the (open) modular
curve Y1(Npr)/Q which classifies elliptic curves E with an embedding φ : µpr ↪→

E[pr] = Ker(pr : E → E). Let Ri = Z(p)[µpi ], Ki = Q[µpi ], R∞ =
⋃

i Ri ⊂ Q

and K∞ =
⋃

i Ki ⊂ Q. For a valuation subring or a subfield R of K∞ over
Z(p) with quotient field K, we write Xr/R for the normalization of the j-line
P(j)/R in the function field of Y1(Npr)/K . The group z ∈ (Z/prZ)× acts on

Xr by φ 7→ φ◦z, as Aut(µNpr ) ∼= (Z/NprZ)×. Thus Γ = 1+pZp = γZp acts on
Xr (and its Jacobian) through its image in (Z/NprZ)×. Only in the following
section, we need the result over a discrete valuation ring R. Hereafter, in most
cases, we take U = U(p) for the Hecke-Atkin operator U(p) (though we take
U = U∗(p) sometimes for the dual U∗(p) of U(p)).
Let Jr/R = Pic0

Xr/R be the connected component of the Picard scheme. We
state a result comparing Jr/R and the Néron model of Jr/K over R. Thus
we assume that R is a valuation ring. By [AME, 13.5.6, 13.11.4], Xr/R is
regular; the reduction Xr ⊗R Fp is a union of irreducible components, and the
component containing the∞ cusp has geometric multiplicity 1. Then by [NMD,
Theorem 9.5.4], Jr/R gives the identity connected component of the Néron
model of the Jacobian of Xr/R. We write Xs

r/R for the normalization of the

j-line in the function field of the canonical Q-curve associated to the modular
curve of the congruence subgroup Γr

s = Γ1(Npr)∩ Γ0(p
s) (for 0 < r ≤ s). The

open curve Y r
s/Q = Xr

s/Q − {cusps} classifies triples (E, C, φ : µNpr ↪→ E) with

a cyclic subgroup C of order ps containing the image φ(µpr).
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We denote Pic0
Xr

s /R by Jr
s/R. Similarly, as above, Jr

s/R is the connected com-

ponent of the Néron model of Xr
s/K . Note that

(3.1) Γr
s\Γ

r
s

(
1 0
0 ps−r

)
Γ1(Npr)

=
{(

1 a
0 ps−r

) ∣∣∣a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)
(

1 0
0 ps−r

)
Γ1(Npr).

Write Us
r (ps−r) : Js

r/R → Jr/R for the Hecke operator of Γs
rαs−rΓ1(Npr) for

αm =
(

1 0
0 pm

)
. Strictly speaking, the Hecke operator induces a morphism of the

generic fiber of the Jacobians and then extends to their connected components
of the Néron models by the functoriality of the model (or equivalently by Picard
functoriality). Then we have the following commutative diagram from the
above identity, first over C, then over K and by Picard functoriality over R:

(3.2)

Jr/R
π∗

−→ Jr
s/R

↓ u ↙ u′ ↓ u′′

Jr/R
π∗

−→ Jr
s/R,

where the middle u′ is given by Us
r (ps−r) and u and u′′ are U(ps−r). Thus

(u1) π∗ : Jr/R → Jr
s/R is a U(p)-isomorphism (for the projection π : Xr

s →

Xr).

Taking the dual U∗(p) of U(p) with respect to the Rosati involution associated
to the canonical polarization on the Jacobians. We have a dual version of the
above diagram for s > r > 0:

(3.3)

Jr/R
π∗←− Jr

s/R

↑ u∗ ↗ u′∗ ↑ u′′∗

Jr/R
π∗←− Jr

s/R.

Here the superscript “∗” indicates the Rosati involution corresponding to the
canonical divisor on the Jacobians, and u∗ = U∗(p)s−r for the level Γ1(Npr)
and u′′∗ = U∗(p)s−r for Γr

s. Note that these morphisms come from the following
double coset identity:

(3.4) Γr
s\Γ

r
s

(
ps−r 0

0 1

)
Γ1(Npr)

=
{(

ps−r a
0 1

) ∣∣∣a mod ps−r
}

= Γ1(Npr)\Γ1(Npr)
(

ps−r 0
0 1

)
Γ1(Npr).

From this, we get

(u∗1) π∗ : Jr
s/R → Jr/R is a U∗(p)-isomorphism, where π∗ is the dual of π∗.

In particular, if we take the ordinary and the co-ordinary projector e =
limn→∞ U(p)n! and e∗ = limn→∞ U∗(p)n! on J [p∞] for J = Jr/R, Js/R, Jr

s/R,

noting U(pm) = U(p)m, we have

π∗ : Jord
r/R[p∞] ∼= Jr,ord

s/R [p∞] and π∗ : Jr,co-ord
s/R [p∞] ∼= Jco-ord

r/R [p∞]
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where “ord” (resp. “co-ord”) indicates the image of the projector e (resp. e∗).
For simplicity, we write Gr/R := Jord

r/R[p∞]/R.

Suppose that we have morphisms of three noetherian schemes X
π
−→ Y

g
−→ S

with f = g ◦ π. We look into

H0
fppf(T, R1f∗Gm) = R1f∗O

×
X(T ) = PicX/S(T )

for S-scheme T and the structure morphism f : X → S (see [NMD, Chapter 8]).

Suppose that f and g have compatible sections S
sg
−→ Y and S

sf
−→ X so that

π ◦ sf = sg . Then we get (e.g., [NMD, Section 8.1])

PicX/S(T ) = Ker(s1
f : H1

fppf(XT , O×
X)→ H1

fppf(T, O×
T ))

PicY/S(T ) = Ker(s1
g : H1

fppf(YT , O×
YT

)→ H1
fppf(T, O×

T ))

for any S-scheme T , where sq
f : Hq

fppf(XT , O×
XT

) → Hq
fppf(T, O×

T ) and sn
g :

Hn
fppf(YT , O×

YT
) → Hn

fppf(T, O×
T ) are morphisms induced by sf and sg , respec-

tively. Here we wrote XT = X ×S T and YT = Y ×S T . We suppose that
the functors PicX/S and PicY/S are representable by smooth group schemes
(for example, if X, Y are curves and S = Spec(k) for a field k; see [NMD,

Theorem 8.2.3 and Proposition 8.4.2]). We then put J? = Pic0
?/S (? = X, Y ).

Anyway we suppose hereafter also that X, Y, S are varieties (in the sense of
[ALG, II.4]).
For an fppf covering U → Y and a presheaf P = PY on the fppf site over Y ,
we define via Čech cohomology theory an fppf presheaf U 7→ Ȟq(U , P ) denoted

by Ȟ
q
(PY ) (see [ECH, III.2.2 (b)]). The inclusion functor from the category

of fppf sheaves over Y into the category of fppf presheaves over Y is left exact.
The derived functor of this inclusion of an fppf sheaf F = FY is denoted by
H•(FY ) (see [ECH, III.1.5 (c)]). Thus H•(Gm/Y )(U) = H•

fppf(U , O×
U ) for a

Y -scheme U as a presheaf (here U varies in the small fppf site over Y ).
Assuming that f , g and π are all faithfully flat of finite presentation, we use
the spectral sequence of Čech cohomology of the flat covering π : X � Y in
the fppf site over Y [ECH, III.2.7]:

(3.5) Ȟp(XT /YT , Hq(Gm/Y ))⇒ Hn
fppf(YT , O×

YT
)

∼
−→
ι

Hn(YT , O×
YT

)

for each S-scheme T . Here F 7→ Hn
fppf(YT , F ) (resp. F 7→ Hn(YT , F )) is

the right derived functor of the global section functor: F 7→ F (YT ) from the
category of fppf sheaves (resp. Zariski sheaves) over YT to the category of
abelian groups. The canonical isomorphism ι is the one given in [ECH, III.4.9].
By the sections s?, we have a splitting Hq(XT , O×

XT
) = Ker(sq

f ) ⊕Hq(T, O×
T )

and Hn(YT , O×
YT

) = Ker(sn
g ) ⊕ Hn(T, O×

T ). Write H•
YT

for H•(Gm/YT
) and

Ȟ•(H0
YT

) for Ȟ•(YT /XT , H0
YT

). Since

PicX/S(T ) = Ker(s1
f,T : H1(XT , O×

XT
)→ H1(T, O×

T ))

for the morphism f : X → S with a section [NMD, Proposition 8.1.4], from
this spectral sequence, we have the following commutative diagram with exact
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rows, writing Ȟ0(XT

YT
, ?) as Ȟ0(?) and H1(T, O×

T ) as H1(O×
T ):

(3.6)

?1 −−−−→ Ȟ1(H0
YT

) Ȟ1(H0
YT

)
y

y
y∩

PicT ⊕JY (T )
↪→

−−−−→ PicT ⊕PicY/S(T )
∼

−−−−→ H1(O×
T )⊕ Ker(s1

g,T )

c

y b

y a

y

PicT ⊕Ȟ0(JX(T ))
↪→

−−−−→ Ȟ0(PicY (T )) Ȟ0(H1(Gm,Y ))
y

y
y

?2 −−−−→ Ȟ2(H0
YT

) Ȟ2(H0
YT

),

where we have written J? = Pic0
?/S (the identity connected component of

Pic?/S). Here the vertical exactness at the right two columns follows from
the spectral sequence (3.5) (see [ECH, Appendix B]).

We now recall the definition of the Čech cohomology: for a general S-scheme

T and Čech cochain ci0,...,iq ∈ H0(X
(q+1)
T , O×

X
(q+1)
T

),

(3.7) Ȟq(
XT

YT
, H0(Gm/Y )) =

{(ci0,...,iq)|
∏

j(ci0...̌ij...iq+1
◦ pi0...̌ij...iq+1

)(−1)j

= 1}

{dbi0...iq =
∏

j(bi0...̌ij ...iq
◦ pi0...̌ij...iq

)(−1)j |bi0...̌ij ...iq
∈ H0(X

(q)
T , O×

X
(q)
T

)}

where we agree to put H0(X
(0)
T , O

(0)
XT

) = 0 as a convention,

X
(q)
T =

q︷ ︸︸ ︷
X ×Y X ×Y · · · ×Y X×ST,

O
X

(q)
T

=

q︷ ︸︸ ︷
OX ×OY OX ×OY · · · ×OY OX ×OS OT ,

the identity
∏

j(c◦pi0...̌ij...iq+1
)(−1)j

= 1 takes place in O
X

(q+2)
T

and pi0...̌ij ...iq+1
:

X
(q+2)
T → X

(q+1)
T is the projection to the product of X the j-th factor removed.

Since T×T T ∼= T canonically, we have X
(q)
T
∼=

q︷ ︸︸ ︷
XT ×T · · · ×T XT by transitivity

of fiber product.
Take a correspondence U ⊂ Y ×S Y given by two finite flat projections π1, π2 :
U → Y of constant degree (i.e., πj,∗OU is locally free of finite rank deg(πj) over
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OY ). Consider the pullback UX ⊂ X ×S X given by the Cartesian diagram:

UX = U ×Y ×SY (X ×S X) −−−−→ X ×S X
y

y

U
↪→

−−−−→ Y ×S Y

Let πj,X = πj ×S π : UX � X (j = 1, 2) be the projections.

We describe the correspondence action of U on H0(X,O×
X) in down-to-earth

terms. Consider α ∈ H0(X,OX). Then we lift π∗
1,Xα = α ◦ π1,X ∈

H0(UX ,OUX ). Put αU := π∗
1,Xα. Note that π2,X,∗OUX is locally free of rank

d = deg(π2) overOX , the multiplication by αU has its characteristic polynomial
P (T ) of degree d with coefficients in OX . We define the norm NU (αU ) to be
the constant term P (0). Since α is a global section, NU (αU) is a global section,
as it is defined everywhere locally. If α ∈ H0(X,O×

X), NU (αU) ∈ H0(X,O×
X).

Then define U(α) = NU (αU ), and in this way, U acts on H0(X,O×
X).

For a degree q Čech cohomology class [c] ∈ Ȟq(X/Y , H0(Gm/Y )) of a Čech

q-cocycle c = (ci0,...,iq), U([c]) is given by the cohomology class of the Čech co-
cycle U(c) = (U(ci0,...,iq)), where U(ci0,...,iq) is the image of the global section
ci0,...,iq under U . Indeed, (π∗

1,Xci0,...,iq ) plainly satisfies the cocycle condition,

and (NU (π∗
1,Xci0,...,iq)) is again a Čech cocycle as NU is a multiplicative homo-

morphism. By the same token, we see that this operation sends coboundaries
to coboundaries and obtain the action of U on the cohomology group.

Lemma 3.1. Let the notation and the assumption be as above. In particular,
π : X → Y is a finite flat morphism of geometrically reduced proper schemes
over S = Spec(k) for a field k. Suppose that X and UX are proper schemes
over a field k satisfying one of the following conditions:

(1) UX is geometrically reduced, and for each geometrically connected com-
ponent X◦ of X, its pull back to UX by π2,X is also connected; i.e.,

π0(X)
π∗

2,X
−−−→

∼
π0(UX);

(2) (f ◦ π2,X)∗OUX = f∗OX .

If π2 : U → Y has constant degree deg(π2), the action of U on H0(X,O×
X)

factors through the multiplication by deg(π2) = deg(π2,X).

Proof. By properness, under (1) or (2), H0(UX ,OUX )
π2,X,∗

= H0(X,OX)(
(1)
=

kπ0(X)) for the set of connected components π0(X) of X. In particular, we see

αU ∈ H0(UX ,OUX ) = H0(X,OX), which tells us that NU (αU ) = α
deg(π2)
U , and

the result follows. �

Consider the iterated product πi,X(q) = πi,X ×Y · · · ×Y πi,X : U
(q)
X → X(q)

(i = 1, 2). Here U
(q)
X =

q︷ ︸︸ ︷
UX ×Y UX ×Y · · · ×Y UX . We plug in U

(j)
X in the first
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j slots of the fiber product (for 0 < j ≤ q) and consider

U
(j−1)
X ×Y X(q−j+1)

π
(q)
1,j
←−− Uj := U

(j)
X ×Y X(q−j)

π
(q)
2,j
−−→ U

(j−1)
X ×Y X(q−j+1)

which induces a correspondence Uj in (U
(j−1)
X ×Y X(q−j+1)) ×Y (U

(j−1)
X ×Y

X(q−j+1)). Here πi,j restricted to first j − 1-factors UX is the identity idUX ;
the last q−j factors is the identity idX and at the j-th factor, it is the projection
πi (i = 1, 2). For example, if q = 3 and i = 2, we have

UX ×Y UX ×Y UX

π
(q)
2,3

−−−−−−−−−→
idU × idU ×π2

UX ×Y UX ×Y X

π
(q)
2,2

−−−−−−−−→
idU ×π2×idX

UX ×Y X ×Y X
π

(q)
2,1

−−−−−−−−−→
π2×idX × idX

X ×Y ×Y X.

Naturally π2,X(q) factors through the following q consecutive coverings Uq
ρq
−→

Uq−1
ρq−1
−−−→ · · ·

ρ1
−→ X(q) for ρj = π

(q)
2,j . Note that the norm map NUq =

Nπ
2,X(q)

: π2,X(q),∗O
×
Uq
→ O×

X(q) factors through the corresponding norm maps:

NUq = Nq ◦Nq−1 ◦ · · · ◦N1,

where Nj is the norm map with respect to Uj → Uj−1. The last norm is

essentially the product of NU and the identity of X(q−1) corresponding to
U ×Y X(q−1)

� X(q). In particular, ρ1,∗(OU1) = π2,X,∗(OUX ) ⊗OY OX(q−1)

and

(f ◦ ρ1)∗(OU1) = (f ◦ π2,X)∗(OUX )⊗OY

q−1︷ ︸︸ ︷
f∗OX ⊗OY · · · ⊗OY f∗OX .

Thus if the assumption (2) in Lemma 3.1 is satisfied, the corresponding assump-
tion for U1 is satisfied. The assumption (1) implies (2) which is really necessary
for the proof of Lemma 3.1. Applying the argument proving Lemma 3.1 to the
correspondence U1 and the last factor N1 of the norm, we get

Corollary 3.2. Let the notation and the assumption be as in Lemma 3.1.
Then the action of U (q) on H0(X,O×

X(q)) factors through the multiplication by
deg(π2) = deg(π2,X).

Here is a main result of this section:

Proposition 3.3. Suppose that S = Spec(k) for a field k. Let π : X → Y
be a finite flat covering of (constant) degree d of geometrically reduced proper

varieties over k, and let Y
π1←− U

π2−→ Y be two finite flat coverings (of constant

degree) identifying the correspondence U with a closed subscheme U
π1×π2
↪→ Y ×S

Y . Write πj,X : UX = U ×Y X → X be the base-change to X. Suppose one of
the conditions (1) and (2) of Lemma 3.1 for (X, U). Then

(1) The correspondence U ⊂ Y ×SY sends Ȟq(H0
Y ) into deg(π2)(Ȟ

q(H0
Y ))

for all q > 0.
(2) If d is a p-power and deg(π2) is divisible by p, Ȟq(H0

Y ) for q > 0 is
killed by UM if pM ≥ d.
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(3) The cohomology Ȟq(H0
Y ) with q > 0 is killed by d.

Proof. The first assertion follows from Corollary 3.2. Indeed, by (3.7), U (q) acts
on each Čech q-cocycle, through an action factoring through the multiplication
by deg(π2,X) = deg(π2) by Corollary 3.2.

Now we regard X
π
−→ Y as a correspondence of Y (with multiplicity d)

by the projection π1 = π2 = π : X → Y . Then [X](c) = dc for
c ∈ Ȟq(X/Y, H0(Gm/Y )). On the other hand, by the definition of the cor-

respondence action, [X] factors through Ȟq(X/X, H0(Gm/Y )) = 0, and hence

dx = 0. This shows that if X/Y is a covering of degree d, Ȟq(X/Y, H0(Gm/Y ))
is killed by d proving (3), and the assertion (2) follows from the first (1). �

We apply the above proposition to (U, X, Y ) = (U(p), Xs, X
r
s ) with U given

by U(p) ⊂ Xr
s × Xr

s over Q. Indeed, U := U(p) ⊂ Xr
s × Xr

s corresponds
to X(Γ) given by Γ = Γ1(Npr) ∩ Γ0(p

s+1) and UX is given by X(Γ′) for
Γ′ = Γ1(Nps) ∩ Γ0(p

s+1) both geometrically irreducible curves. In this case
π1 is induced by z 7→ z

p on the upper complex plane and π2 is the natural

projection of degree p. In this case, deg(Xs/Xr
s ) = ps−r and deg(π2) = p.

Assume that a finite group G acts on X/Y faithfully. Then we have a natural
morphism φ : X ×G→ X ×Y X given by φ(x, σ) = (x, σ(x)). In other words,
we have a commutative diagram

X ×G
(x,σ) 7→σ(x)
−−−−−−−→ X

(x,σ) 7→x

y
y

X −−−−→ Y,

which induces φ : X ×G→ X ×Y X by the universality of the fiber product.
Suppose that φ is surjective; for example, if Y is a geometric quotient of X
by G; see [GME, §1.8.3]). Under this map, for any fppf abelian sheaf F , we

have a natural map Ȟ0(X/Y, F ) → H0(G, F (X)) sending a Čech 0-cocycle
c ∈ H0(X, F ) = F (X) (with p∗1c = p∗2c) to c ∈ H0(G, F (X)). Obviously, by
the surjectivity of φ, the map Ȟ0(X/Y, F )→ H0(G, F (X)) is an isomorphism
(e.g., [ECH, Example III.2.6, page 100]). Thus we get

Lemma 3.4. Let the notation be as above, and suppose that φ is surjective. For
any scheme T fppf over S, we have a canonical isomorphism: Ȟ0(XT /YT , F ) ∼=
H0(G, F (XT )).

We now assume S = Spec(k) for a field k and that X and Y are proper reduced
connected curves. Then we have from the diagram (3.6) with the exact middle
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two columns and exact horizontal rows:

0 −−−−→ Z Z −−−−→ 0
x deg

xonto deg

xonto

x

Ȟ1(H0
Y ) −−−−→ PicY/S(T )

b
−−−−→ Ȟ0(XT

YT
, PicY/S(T )) −−−−→ Ȟ2(H0

Y )
x ∪

x
x∪

x

?1 −−−−→ JY (T ) −−−−→
c

Ȟ0(XT

YT
, JX(T )) −−−−→ ?2,

Thus we have ?j = Ȟj(H0
Y ) (j = 1, 2).

By Proposition 3.3, if q > 0 and X/Y is of degree p-power and p| deg(π2),
Ȟq(H0

Y ) is a p-group, killed by UM for M � 0. Taking (X, Y, U)/S to be
(Xs/Q, Xr

s/Q, U(p))/Q for s > r ≥ 1 for p odd and s > r ≥ 2 for p = 2, we get

for the projection π : Xs → Xr
s

Corollary 3.5. Let F be a number field or a finite extension of Ql (for a
prime l not necessarily equal to p). Then we have

(u) π∗ : Jr
s/Q(F )→ Ȟ0(Xs/Xr

s , Js/Q(F ))
(∗)
= Js/Q(F )[γpr−1

− 1] is a U(p)-

isomorphism,

where Js/Q(F )[γpr−1

− 1] = Ker(γpr−1

− 1 : Js(F )→ Js(F )).

From these, we got the following facts as [H14b, Lemma 3.7]

Lemma 3.6. We have morphisms

ιrs : Js/Q[γpr−1

− 1]→ Jr
s/Q and ιr,∗s : Jr

s/Q → Js/Q/(γpr−1

− 1)(Js/Q)

satisfying the following commutative diagrams:

(3.8)

Jr
s/Q

π∗

−→ Js/Q[γpr−1

− 1]

↓ u ↙ ιrs ↓ u′′

Jr
s/Q

π∗

−→ Js/Q[γpr−1

− 1],

and

(3.9)

Jr
s/Q

π∗←− Js/Q/(γpr−1

− 1)(Js/Q)

↑ u∗ ↗ ιr,∗s ↑ u′′∗

Jr
s/Q

π∗

←− Js/Q/(γpr−1

− 1)(Js/Q),

where u and u′′ are U(ps−r) = U(p)s−r and u∗ and u′′∗ are U∗(ps−r) =
U∗(p)s−r. In particular, for an fppf extension T/Q, the evaluated map at T :

(Js/Q/(γpr−1

− 1)(Js/Q))(T )
π∗−→ Jr

s (T ) (resp. Jr
s (T )

π∗

−→ Js[γ
pr−1

− 1](T )) is a
U∗(p)-isomorphism (resp. U(p)-isomorphism).

Remark 3.7. Note here that the natural morphism:

Js(T )

(γpr−1 − 1)(Js(T ))
→ (Js/(γpr−1

− 1)(Js))(T )
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may have non-trivial kernel and cokernel which may not be killed by a power
of U∗(p). In other words, the left-hand-side is an fppf presheaf (of T ) and the

right-hand-side is its sheafication. On the other hand, T 7→ Js[γ
pr−1

− 1](T )

is already an fppf abelian sheaf; so, Jr(T )
π∗

−→ Js[γ
pr−1

− 1](T ) is a U(p)-
isomorphism without ambiguity by the above Lemma 3.6 and Corollary 3.5

combined. Also, as remarked in the introduction, we need to replace γpr−1

− 1

in the above statement by γpr−2

− 1 if p = 2.

4. Structure of Λ-BT groups over number fields and local fields

Let G/R∞
:= lim
−→r

Jr [p
∞]ord

/R∞

, which is a Λ-BT group in the sense of [H14a,

Sections 3 and 5] with a canonical h-action. Here for an abelian variety A/R,

A[pn] = Ker(A
pn

−→ A) and A[p∞]/R = lim
−→n

A[pn] (the p-divisible Barsotti–

Tate group of A over R). For an h-algebra A, we put GA = G ⊗h A. Pick a
reduced local ring T of h and write a(lm) for the image in T of U(lm) or T (lm)
for a prime l according as l|Np or l - Np and mT for the maximal ideal of T.
Since GT is a Λ-BT group in the sense of [H14a, Theorem 5.4, Remark 5.5], we
have the connected-étale exact sequence over Zp[µp∞ ]:

0→ G◦T → GT → G
ét
T → 0,

where G◦T is the connected component of the flat group GT and G ét
T is the quotient

of GT by G◦T. The étale group GT/Q over Q is a Λ-BT group over Q (in the sense

of [H14a, §4]) on which Z×
p act by diamond operators. The entire group GT

extends to a Λ-BT group over Zp[µp∞ ] (see [H14a, Remark 5.5]). The Qp-points
of this sequence descent to Qp giving an exact sequence:

0→ G◦T(Qp)→ GT(Qp)→ G
ét
T (Qp)→ 0

with G ét
T (Qp) = H0(Ip, GT(Qp)) for the inertia group Ip ⊂ Gal(Qp/Qp).

We know that G◦T and G ét
T are well controlled, and the Pontryagin dual modules

of G◦T(Q) and G ét
T (Q) are Λ-free modules of (equal) finite rank (see [H86b, §9]

or [H14a, Sections 4–5]). Here we equip these Λ-divisible modules with the
discrete topology. Take a field k as a base field. Pick a T-ideal a. Write GT[a]
for the kernel of a:

GT[a](R) = {x ∈ GT(R)|ax = 0 ∀a ∈ a},

where R is an fppf extension of k. Write a(p) for the image of U(p) in T.
For the moment, assume that k is a finite extension k of Qp with p-adic integer
ring W . If the residual degree of k is f and a(p)f 6≡ 1 mod mT for the maximal
ideal mT of T, we have

GT[mT]ét(k) = 0,

since the action of Frobp on GT[mT]ét(Qp) is given by multiplication by a(p). On

the other hand, the action of Gal(k/k) on e · J∞[p∞]◦(k)⊗h T factors through
Gal(k[µp∞ ]/k) ↪→ Z×

p → Λ×, where the factor Γ = 1+pZp of Z×
p = Γ×µp−1 is
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embedded into Λ = Zp[[Γ]] by natural inclusion and ζ ∈ µp−1 is sent to ζa for
some 0 ≤ a =: a(T) = ak(T) < p−1. Thus if a(T) 6= 0, we have G◦T[mT](k) = 0.
We have a natural projection π = πr

s : Gs := Js[p
∞]ord

/Q → Gr for s > r (see

[H13a, Section 4] where πr
s is written as Ns

r ). This induces a projective system
of Tate modules {TGs,T := TGs ⊗h T}s and {TG?

s,T} for ? = ◦, ét. We put

TG?
T = lim
←−s

TG?
s,T(Q) for ? = nothing, ◦ or ét. They are Λ-free modules with a

continuous action of Gal(Q/Q). Write ρT for the Galois representation realized
on TGT, and put ρP = ρT mod P acting on TGT/PTGT for P ∈ Spec(T). In
particular, we simply write ρ = ρT = ρmT

for the maximal ideal mT of T.
If T is a Gorenstein ring, then for the Tate modules TGT, TG◦T and TG ét

T as
above, we have

TGT
∼= T2 and TG◦T

∼= T ∼= TG ét
T

as T-modules (e.g., [H13a, Section 4]), and if ρT(Ip) contains a non-trivial

unipotent element for the inertia group Ip in Gal(Qp/k), again we have

G ét
T [mT](k) = 0. Thus we get

Lemma 4.1. Let k/Qp
in Qp be a finite extension and T be a reduced local

ring of h. Assume that k has residual degree f and one of the following two
conditions:

(1) ak(T) 6= 0 and a(p)f 6≡ 1 mod mT,
(2) T is a Gorenstein ring, and ρT(Ip) has non-trivial unipotent element

for the inertia group Ip of Gal(Qp/k).

Then we have GT(k) = 0.

Proof. Let V be the Λ-dual of TGT, which is also the Pontryagin dual of GT.
Then we have H0(k, V/mTV ) ∼= GT[mT](k) = H0(k, GT[mT]). By the assumption
(1) or (2), we have the vanishing GT[mT](k) = 0. Look into the following exact
sequence of sheaves

0→ GT[mT]→ GT
ϕ
−→

⊕

α∈I

GT

with ϕ(x) = (αx)α for a finite set I = {α}α of generators of mT. Taking the
Gal(k/k)-invariant, we get another exact sequence

0→ GT[mT](k)→ GT(k)
ϕk
−−→

⊕

α∈I

GT(k).

Since Ker(ϕk) = GT(k)[mT], we conclude (GT(k))[mT] = GT[mT](k) = 0. Taking
the Pontryagin dual module written as M∨ for a compact or discrete module
M , we have, setting V = GT(Q)∨,

H0(k, V )/mTH0(k, V ) ∼= (GT(k))∨/mT(GT(k))∨ = (GT(k)[mT])∨ = 0,

which implies GT(k)∨ = H0(k, V ) = 0 by Nakayama’s lemma, and hence
GT(k) = 0. This proves the assertion under (1) or (2). �

In the l 6= p case, we remark the following fact:
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Lemma 4.2. Let k/Ql
in Ql be a finite extension for a prime l 6= p and T be a

reduced local ring of h. If the semi-simplification of GT[mT] as a representation
of Gal(Ql/k) does not contain the identity representation, then GT(k) = 0. In
general, GT(k)∨ is always a torsion Λ-module of finite type.

Proof. If the semi-simplification of GT[mT] as a representation of Gal(Ql/k)
does not contain the identity representation, we have H0(k, GT[mT]) = 0; so,

H0(k, V/mTV ) = 0 for V = GT(Q)∨. Writing mT = (αi)i∈I for αi ∈ T with a
finite index set I, we have an exact sequence:

0→ GT[mT](Q)→ GT(Q)
x 7→(αix)i
−−−−−−→

⊕

i∈I

GT(Q).

Taking the Pontryagin dual we have another exact sequence of Galois modules:

0← V/mTV ← V
x 7→(αix)i
←−−−−−−

∏

i∈I

V.

Since Galois homology functor is right exact, the above exact sequence implies

H0(k, V ) ⊗T T/mT = H0(k, V/mTV ) = 0.

Then by Nakayama’s lemma, we get H0(k, V ) = 0, which implies GT(k) = 0.
Let f be the residual degree of k as before. Consider the Hecke polynomial
Hf,l(X) = X2 − A(lf )X + lf 〈l〉f , where A(lf ) is determined by the following
recurrence relation: A(l) = a(l) and A(lm) = a(lm) − l〈l〉a(lm−1) for m ≥
2. If l - Np, GT is unramified over k. By the Eichler–Shimura congruence
relation (e.g. [GME, Theorem 4.2.1]), if l - Np, for the l-Frobenius element

φ ∈ Gal(k/k), the linear operator Hf,l(φ) annihilates GT. Thus if Hf,l(X)

mod mT is not divisible by X−1, GT[mT] as a representation of Gal(Ql/k) does
not contain the identity representation.
For an arithmetic prime P , Hf,l(X) mod P does not have a factor X − 1.
Thus after the localization at P of the Pontryagin dual (GT(k)∨)P is killed by
Hf,l(φ) and φ− 1, and hence GT(k)∨ is a torsion Λ-module.
Now assume that l|N . By the solution of the local Langlands conjecture (see
[C86] and [AAG]), after replacing k by its finite extension, the Galois module
GT[P ] for an arithmetic point P becomes unramified unless ρP is Steinberg at
l (i.e., is multiplicative type at l). Suppose that we have a non-Steinberg P .
Then characteristic polynomial H(X) of φ modulo P is prime to X − 1 (as
H(X) mod P has Weil numbers of weight f as its roots). Then by the same
argument, we conclude the torsion property.
Suppose that all arithmetic point of Spec(T) is Steinberg at l (this often hap-
pens; see a remark below Conjecture 3.4 of [H11, §3]). Write ρP for the 2-
dimensional Galois representation realized on (GT(Ql)

∨) ⊗T κ(P ). Again by
Langlands-Carayol, ρP (Il) for the inertia group Il ⊂ Gal(Ql/k) contains a
non-trivial unipotent element. Thus ρP does not have a quotient on which Il

acts trivially. This shows again the Λ-torsion property. �



Limit Mordell–Weil groups 22

Let Spec(I) ⊂ Spec(T) be an irreducible component. Without assuming the
Gorenstein condition, we have (TGI)P

∼= I2P for almost all height one primes
P ∈ Spec(Λ); so, we have ρI with values in GL2(IP ) for most of P . We call I a

CM component if ρI
∼= IndQ

M Ψ for a Galois character Ψ : Gal(Q/M)→ I×P (for
an imaginary quadratic field M). If I is not a CM component, again for almost
all P , by [Z14], ρT(Ip) contains an unipotent element conjugate to ( 1 u

0 1 ) with

non-zero-divisor u ∈ T×
P . In this case, we have H0(Gal(k/k), TGI)P = 0; so,

GI(k) is a co-torsion Λ-module.

Lemma 4.3. Let k/Qp
in Qp be a finite extension with residual degree f and T

be a reduced local ring of h. Then the Pontryagin dual GT(k)∨ of GT(k) is a
torsion Λ–module of finite type.

Proof. We may suppose either a(p)f ≡ 1 mod mT or ak(T) = 0, as otherwise
GT(k) = 0 by Lemma 4.1. Replacing T by its irreducible component I, we only
need to prove torsion-ness for GI(k)∨. Write V for the Λ-torsion free quotient

of TGI. Then for any P ∈ Spec(Λ)(Qp), we have VP = (TGI)P (as the reflexive
closure in [BCM, Chapter 7] of I is Λ-free).
If I is not a CM component (i.e., ρI is not an induced representation from the
Galois group over an imaginary quadratic field), the assertion follows from the
same argument proving Lemma 4.1 replacing mT by PTP and T by TP . Indeed,
taking an arithmetic point P of weight 2. Then by [Z14], we have u ∈ T×

P . Then
H0(k, VP /PVP ) is a submodule of H0(I, VP /PVP ) (for the inertia group I at
p) killed by a(p)f − 1. Since P is an arithmetic point of weight 1, we may
choose P so that a(p) mod P is a Weil number of weight 1 (indeed, we only
need to assume that the Neben character of fP is non-trivial at p; see [MFM,
Theorem 4.6.17]), and hence a(p)f 6≡ 1 mod P . Thus H0(k, VP /PVP ) = 0.
This implies GI(k)[P ] is a finite module; so, GI(k)∨ is a torsion Λ-module.

Now assume that I is a CM component with ρI = IndQ
M Ψ. Define Ψc(σ) =

Ψ(cσc−1) for a complex conjugation c. In the imaginary quadratic field M , p
splits into a product of two primes pp as ρI is ordinary. For any arithmetic
point P ∈ Spec(I)(Qp) ΨP := Ψ mod P ramifies at p and its restriction to
the inertia group at p has infinite order, and Ψc is unramified at p with infinite
order Ψc(Frobp) (from an explicit description of Ψ; cf, [H13a, §3]). Then we
have VP = V ⊗I IP

∼= I2P. Thus replacing k by the composite kMp, we have

VP
∼= Ψ⊕Ψc over Gal(Qp/k). Since Ψc is unramified at p and Ψc

P(Frobp) has

infinite order. This shows that H0(k, VP/PVP) = 0, and again we find that
G∨I (k) is a torsion I-module and hence a torsion Λ-module. �

Corollary 4.4. If k is a number field or a finite extension of Ql, the local-
ization of GT(k)∨ at an arithmetic prime of weight 2 vanishes.

Proof. We only need to prove this for a finite extension k of Ql. Write W
for the integer ring of k. Replacing k by its finite extension, we may assume
that AP has semi-stable reduction over W for an arithmetic prime at P . If
AP has good reduction and l 6= p, the l-Frobenius acts on TpAP by a Weil
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number of weight ≥ 1, and then AP [p∞](k) is finite; so, GT[P ](k) is finite. If
l = p, by [Z14], the inertia image in Aut(TpAP ) contains a non-trivial unipotent
element, and hence again AP [p∞](k) is finite, and the result follows. If AP has
multiplicative reduction, AP [p∞](k) is finite by a theorem of Tate–Mumford as
the Tate period of AP is non-trivial. This shows that GT[P ](k) is finite, and
hence the result follows. �

5. Abelian factors of modular Jacobians

Let hr(Z) be the subalgebra generated by T (n) (including U(l) for l|Np) of
End(Jr/Q). Then hr(Zp) = hr(Z) ⊗Z Zp is canonically isomorphic to the Zp-
subalgebra of End(Jr[p

∞]) generated by T (n) (including U(l) for l|Np). Then
hr = hr(Zp)

ord by the control theorems in [H86a] and [H86b].

As before, let k be a finite extension of Q inside Q or a finite extension of
Ql inside Ql. Let Ar be a abelian subvariety of Jr defined over k. Write As

(s > r) for the image of Ar in Js under the morphism π∗ : Jr → Js given
by Picard functoriality from the projection π : Xs → Xr . If Ar is Shimura’s
abelian subvariety attached to a Hecke eigenform f , we sometimes write Af,s

for As to indicate this fact. Hereafter we assume

(A) We have a coherent sequence αs ∈ End(Js/Q) (for all s ≥ r) having the
limit α = lim

←−s
αs ∈ End(J∞/Q) such that

(a) As is the connected component of Js[αs] with Js = As +αs(Js) so
that the inclusion: As[p

∞] ∼= Js[αs][p
∞] is a U(p)-isomorphism,

(b) the restriction αs|αs(Js) ∈ End(αs(Js)) is a self-isogeny.

Here for s′ > s, coherency of αs means the following commutative diagram:

Js
π∗

−−−−→ Js′

αs

y
yαs′

Js −−−−→
π∗

Js′

.

The Rosati involution h 7→ h∗ and T (n) 7→ T ∗(n) (with respect to the canonical
divisor on Jr) brings hr(Z) to h∗

r(Z) ⊂ End(Jr/Q). Define A∗
s to be the identity

connected component of Js[α
∗]. The condition (A) is equivalent to

(B) The abelian quotient map Js � Bs = Coker(αs) dual to A∗
s ⊂ Js

induces an U(p)-isomorphism of Tate modules: Tp(Js/αs(Js))→ TpBs

and αs induces an automorphism of the Qp-vector space Tpαs(Js)⊗Zp

Qp.

Again if Ar is Shimura’s abelian subvariety of Jr associated to a Hecke eigen-
form f , we sometimes write Bf,s for Bs as above. The condition (A) (and
hence (B)) is a mild condition. Here are sufficient conditions for (α, As, Bs) to
satisfy (A) (and (B)):

Proposition 5.1. Let Spec(T) be a connected component of Spec(h) and
Spec(I) be an irreducible component of Spec(T). Then the condition (A) holds
for the following choices of (α, As, Bs):
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(P1) Fix r > 0. Then αs = α for a factor α|γpr−1

− 1 in Λ, As = Js[α]◦

(the identity connected component) and Bs = Pic0
As/Q for all s ≥ r.

(P2) Suppose that an eigen cusp form f = fP new at each prime l|N belongs
to Spec(T) and that T = I is regular (or more generally a unique fac-
torization domain). Then writing the level of fP as Npr, the algebra

homomorphism λ : T → Qp given by f |T (l) = λ(T (l))f gives rise to
the prime ideal P = Ker(λ). Since P is of height 1, it is principal
generated by $ ∈ T. This $ has its image $s ∈ Ts = T ⊗Λ Λs for

Λs = Λ/(γps−1

−1). Since hs = h⊗ΛΛs = Ts⊕Xs as an algebra direct
sum, End(Js/Q) ⊗Z Zp ⊃ hs(Zp) = Ts ⊕ Ys with Ys projecting down
onto Xs. Then, we can approximate as = $s ⊕ 1s ∈ hs(Zp) for the
identity 1s of Ys by αs ∈ hs(Z) so that αshs(Zp) = ashs(Zp) (hereafter
we call αs “sufficiently close” to as if αshs(Zp) = ashs(Zp)). For this
choice of αs, As := Af,s and Bs := Bf,s.

(P3) More generally than (P2), we pick a general connected component
Spec(T) of Spec(h). Pick a (classical) Hecke eigenform f = fP (of
weight 2) for P ∈ Spec(T). Assume that hs (for every s ≥ r) is re-
duced and P = ($) for $ ∈ T, and write $s for the image of $ in
hs(Zp). Take the complementary direct summand Ys of Ts in hs(Zp)
and approximate as := $s⊕ 1s in hs(Zp) to get αs sufficiently close to
as. Then for this choice of αs, As := Af,s and Bs := Bf,s.

(P4) Suppose that T/($) for a non-zero divisor $ ∈ T is a reduced algebra

of characteristic 0 factoring through hr := h/(γpr−1

− 1)h for some
r > 0. Assume that Ts is reduced for every s ≥ r, and write $s for the
image of $ in Ts. Then approximating as = $s ⊕ 1s by αs ∈ hs(Z)
sufficiently closely for each s ≥ r, we define As to be the connected
component of Js[αs] and Bs to be its dual quotient.

Proof. We first prove (P4). Since αs is sufficiently close to as, we have the
identity αshs(Zp) = ashs(Zp) of ideals. By reducedness of Ts, we have an
algebra product decomposition: hs(Qp) := hs(Zp)⊗Zp Qp = αs(Ts)⊗Zp Qp×Zs

for the complementary Qp-subalgebra Zs, which is given by (Ts/($s))⊗Zp Qp.
Write the idempotent of Zs as εs ∈ Zs. Then εs + as is invertible in hs(Qp).
For some positive integer Ms, βs := U(p)Msεs ∈ hs(Z) ⊂ End(Js). Then by
εs + as ∈ hs(Qp)×, the connected component As of Js[αs] is given by βs(Js),
Js = βs(Js) + αs(Js) = As + α(Js), and the inclusion map As ↪→ Js[αs] is
an U(p)-isomorphism. Since αs is invertible in αs(hs(Qp)), αs induces a self-
isogeny of α(Js). Thus the triple satisfies (A). Since $s′hs′(Zp) surjects down
to $shs(Zp) for all s′ ≥ s, we can adjust αs inductively to have a projective
system {αs ∈ End(Js)}s≥r. Thus α = lim

←−s
αs ∈ End(J∞) does the job. This

proves (P4). The assertions (P2) and (P3) are direct consequences of (P4).

As for (P1), since α|(γpr−1

− 1)|(γps−1

− 1) in the unique factorization domain
Λ, factoring γps

− 1 = αsβs, the ideals (αs) and (βs) are co-prime in the
unique-factorization domain Λ. From this, we have Js = βs(Js) + α(Js) =
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As +α(Js), and α|α(Js) is a self isogeny of α(Js) as α|α(Js) is a non-zero-divisor
in End(α(Js)). �

Remark 5.2. (i) Under (P2), all arithmetic points P of weight 2 in Spec(I)
satisfies (A).
(ii) For a given weight 2 Hecke eigenform f , for density 1 primes p of Q(f), f is
ordinary at p (i.e., a(p, f) 6≡ 0 mod p; see [H13b, §7]). Except for finitely many
primes p as above, f belongs to a connected component T which is regular (see
[F02, §3.1]); so, (P2) is satisfied for such T.
(iii) If N is square-free (as assumed for simplicity in the introduction), hs

is reduced [H13a, Corollary 1.3]; so, if an arithmetic prime P ∈ Spec(hr) is
principal, αs as in (P3) satisfies (A).

If Ar = Af,r is Shimura’s abelian subvariety associated to a primitive form f
as in [IAT, Theorem 7.14], its dual quotient Jr � Br = Bf,r is also associated
to f in the sense of [Sh73]. However, if Ar is not associated to a new form, the
dual quotient may not be associated to the Hecke eigen form f . To clarify this
point, we introduce an involution of Js. We fix a generator ζ of the Zp-module

Zp(1) = lim
←−n

µpn(Q); so, ζ is a coherent sequence of generators ζpn of µpn(Q)

(i.e., ζp
pn+1 = ζpn for all n > 0). We also fix a generator ζN of µN (Q), and

put ζNpr := ζNζpr . Identify the étale group scheme Z/NpnZ/Q[ζN ,ζpn ] with

µNpn by sending m ∈ Z to ζm
Npn . Then for a couple (E, φNpr : µNpr ↪→ E)/K

for a Q[µNpr ]-algebra K, let φ∗ : E[Npr] � Z/NprZ be the Cartier dual of
φNpr . Then φ∗ induces E[Npr]/ Im(φNpr ) ∼= Z/NprZ. Define i : Z/prZ ∼=
(E/ Im(φNpr ))[Npr] by the inverse of φ∗. Then we define ϕNpr : µNpr ↪→

E/ Im(φNpr ) by ϕNpr : µNpr ∼= Z/NprZ
i
−→ (E/ Im(φNpr ])[pr] ⊂ E/ Im(φNpr ).

This induces an involution wr of Xr defined over Q[µNpr ], which in turn induces
an automorphism wr of Jr/Q[ζNpr ].

Let P ∈ Spec(h)(Qp) be an arithmetic point of weight 2. Then we have a p-
stabilized Hecke eigenform form fP associated to P ; i.e., fP |T (n) = P (T (n))fP

for all n. Suppose f = fP and write Af,r = AP . Then f∗
P = wr(fP ) is the

dual common eigenform of T ∗(n). If fP is new at every prime l|Np, f∗
P is a

constant multiple of the complex conjugate fc
P of fP (but otherwise, it could

be different). Then the abelian quotient associated to f∗
P is the dual abelian

variety of AP . Thus if f∗
P is not constant multiple of fc

P , Bf,r is not assocaited
to f∗

P (see a remark at the end of [H14b, §6] for more details of this fact).
Pick an automorphism σ ∈ Gal(Q(µNpr )/Q) with ζσ

Npr = ζz
Npr for z ∈

(Z/NprZ)×. Since wσ
r is defined with respect to ζσ

Npr = ζz
Npr , we find

wσ
r = 〈z〉 ◦wr. By this formula, if x ∈ AP (Q) and σ ∈ Gal(Q/Q) with ζσ = ζz

for z ∈ Z×
p × (Z/NZ)× = lim

←−s
(Z/NpsZ)×, we have wr(x)σ = 〈z〉(wr(x

σ)).

Thus wσ
r = 〈z〉 ◦ wr = wr ◦ 〈z

−1〉 (see [MW86, page 237] and [MW84, 2.5.6]).
Let πs,r,∗ : Js → Jr for s > r be the morphism induced by the covering map
Xs � Xr through Albanese functoriality. Then we define πr

s = wr ◦ πs,r,∗ ◦ws.
Then (πr

s)
σ = wr〈z

−1〉πs,r,∗〈z〉ws = πr
s for all σ ∈ Gal(Q(µNps )/Q); thus, πr

s

is well defined over Q, and satisfies T (n) ◦ πr
s = πr

s ◦ T (n) for all n prime to
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Np and U(q) ◦ πr
s = πr

s ◦ U(q) for all q|Np (as w? ◦ h ◦ w? = h∗ for h ∈ h?(Z)
(? = s, r) by [MFM, Section 4.6]. Since w2

r = 1, {Js, π
r
s}s>r form a Hecke equi-

variant projective system of abelian varieties defined over Q. We then define as

described in (S) just above Lemma 2.1 an fppf abelian sheaf X̂ for any abelian
variety quotient or subvariety X of Js/k over the fppf site over k = Q and Ql

(note here the definition of X̂ depends on k).
In general, for As in (A), we have A∗

s = ws(As) ⊂ Js because T (n) ◦ ws =
ws ◦ T ∗(n) for all n (see [MFM, Theorem 4.5.5]). Thus (Bs, π

r
s) in (B) gives

rise to a natural projective system of abelian variety quotients of Js.

6. Structure of ind-Λ-MW groups over number fields and local

field

We return to the setting of Section 2; so, K/k is the infinite Galois extension
defined there. In this section, unless otherwise mentioned, we often let κ denote
an intermediate finite extension of k inside K (although the results in this
section are valid for κ satisfying (2.2) unless otherwise mentioned).
We assume (A) in Section 5 for (αs, As, Bs). By (A), the inclusion As[p

∞] ↪→
Js[αs][p

∞] is a U(p)-isomorphism; so, we have the identity of the ordinary

parts: Âord
s = Ĵord

s [αs]. From the exact sequence

0→ Js[αs]→ Js
αs−→ Js → Bs → 0,

we get the following exact sequence of sheaves:

(6.1) 0→ Âord
s → Ĵord

s
αs−→ Ĵord

s → B̂ord
s → 0.

This is because tensoring Zp (or taking the p-primary part X/X(p) as in (S))
is an exact functor. Since taking injective limit is an exact functor, writing

Xord
∞ = lim

−→s
X̂ord

s , we get the following exact sequence of sheaves:

(6.2) 0→ Aord
∞ → Jord

∞
α
−→ Jord

∞ → Bord
∞ → 0.

First, we shall describe Aord
∞ and Bord

∞ in terms of Âr and B̂r . The Picard
functoriality induces a morphism π∗

r,s : Jr → Js. This gives a Hecke equivariant
inductive system {Js, π

∗
r,s}s>r of abelian varieties defined over Q. Since the

two morphisms Jr → Jr
s and Jr

s → Js[γ
pr−1

− 1] (Picard functoriality) are
U(p)-isomorphisms of fppf abelian sheaves by (u1) and Corollary 3.5 (see also
Remark 3.7), we get the following two isomorphisms of fppf abelian sheaves:

(6.3) Ar [p
∞]ord ∼

−−→
π∗

r,s

As[p
∞]ord and Âord

r
∼
−−→
π∗

r,s

Âord
s ,

since Âord
s is the isomorphic image of Âord

r ⊂ Ĵr in Ĵs[γ
pr−1

− 1]. Since wr ◦
T (n) = T ∗(n)◦wr (by [MFM, Theorem 4.5.5]), twisting Cartier duality pairing
[·, ·] : Jr[p

r] × Jr[p
r] → µpr coming from the canonical polarization, we get a

perfect pairing (·, ·) : Jr [p
r] × Jr[p

r] → µpr with (x|T (n), y) = (x, y|T (n))
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(e.g., [H14a, Section 4]). By this w-twisted Cartier duality applied to the first
identity of (6.3), we have

(6.4) Bs[p
∞]ord ∼

−→
πr

s

Br[p
∞]ord.

Thus, by Kummer sequence, we have the following commutative diagram

B̂ord
s (κ) ⊗ Z/pmZ = (Bs(κ) ⊗ Z/pmZ)ord −−−−→

↪→
H1(Bs[p

m]ord)

πr
s

y o

y(6.4)

B̂ord
r (κ)⊗ Z/pmZ = (Br(κ)⊗ Z/pmZ)ord −−−−→

↪→
H1(Br [p

m]ord)

This shows

B̂ord
s (κ) ⊗ Z/pmZ ∼= B̂ord

r (κ)⊗ Z/pmZ.

Passing to the limit, we get

(6.5) B̂ord
s

∼
−→
πr

s

B̂ord
r and (Bs ⊗Z Tp)

ord ∼
−→
πr

s

(Br ⊗Z Tp)
ord

as fppf abelian sheaves. As long as κ is either a field extension of finite type of
a number field or a finite extension of Ql (l 6= p) or a finite algebraic extension
of Qp, the projective limit of B?(κ) ⊗ Z/pmZ (with respect to m) is equal to

B̂? (by Lemma 2.1). In short, we get

Lemma 6.1. Assume κ to be given either by a field extension of finite type of
k if k is a finite extension of Q or Ql (l 6= p) or by a finite algebraic extension
of k if [k : Qp] <∞. Then we have the following isomorphism

Âr(κ)ord ∼
−−→
π∗

s,r

Âs(κ)ord and B̂s(κ)ord ∼
−→
πr

s

B̂r(κ)ord

for all s > r including s =∞.

By computation, we get πr
s ◦ π∗

r,s = ps−rU(ps−r). To see this, as Hecke opera-
tors, π∗

r,s = [Γr
s], πr,s,∗ = [Γr]. Thus we have

(6.6) πr
s ◦ π∗

r,s = [Γr
s] · ws · [Γr] ·wr = [Γs] · [wswr] · [Γr]

= [Γr
s : Γs][Γ

r
s

(
1 0
0 ps−r

)
Γr] = ps−rU(ps−r).

Then we have the commutative diagram of fppf abelian sheaves for s′ > s

(6.7)

Âord
s′

∼
←−−−−

π∗

r,s′

Âord
r

πs
s′

y
yps′−sU(p)s′−s

Âord
s

∼
←−−−−

π∗

r,s

Âord
r .

Note that As and Bs are mutually (w-twisted) dual as abelian varieties (see
Section 5), and the w-twisted duality is compatible with Hecke operators. Thus
Bs[p

n] is the w-twisted Cartier dual of As[p
n]. The w-twisted Cartier duality

pairing in [H14a, Section 4] satisfies (x|X, y) = (x, y|X) for X = T (n), U(q),
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and πs
r and π∗

r,s are adjoint each other under this duality. Then we have the
dual commutative diagram of fppf abelian sheaves:

(6.8)

B̂ord
s′

∼
−−−−→

πr
s′

B̂ord
r

π∗

s,s′

x
xps′−sU(p)s′−s

B̂ord
s

∼
−−−−→

πr
s

B̂ord
r .

By (6.7) and (6.8), we have the following four exact sequences of fppf abelian
sheaves:

0→As[p
s−r]ord → As[p

∞]ord πr
s−→ Ar[p

∞]ord → 0,

0→Br [p
s−r]ord → Br [p

∞]ord
π∗

r,s
−−→ Bs[p

∞]ord → 0

(6.9)

and

0→As[p
s−r]ord → Âord

s

πr
s−→ Âord

r → 0,

0→Br [p
s−r]ord → B̂ord

r

π∗

r,s
−−→ B̂ord

s → 0.

(6.10)

Lemma 6.2. Let the notation and assumtions be as in Lemma 6.1. Then we
have a canonical isomorphism

lim
−→

s,π∗

r,s

B̂ord
s (κ) ∼= lim

−→
s,ps−rU(p)s−r

B̂ord
r (κ) ∼= B̂r(κ)ord ⊗Zp Qp.

Proof. Identifying the left and the right column of (6.8), we have the cohomol-
ogy exact sequence of the second exact sequence of (6.10):

(6.11) 0→ Br [p
s−r]ord(κ)

πs
r−→ B̂ord

r (κ)
π∗

r,s
−−→ B̂ord

s (κ)→ H1
? (Br [p

s−r]ord).

Passing to the inductive limit of {Br [p
s−r]ord, ps−rU(p)s−r}s,

{B̂r(κ)ord, ps−rU(p)s−r}s and {B̂s, π
∗
r,s}s, we have the following commu-

tative diagram with exact rows:

(6.12)

lim
−→s

B̂ord
r (κ) → lim

−→s
B̂ord

s (κ) → lim
−→s

H1
? (Br [p

s−r]ord)

‖ ‖ o ↓

lim
−→s

B̂ord
r (κ) → lim

−→s
B̂ord

s (κ) → H1
? (lim
−→s

Br[p
s−r]ord).

Here the last isomorphism comes from the commutativity of injective limit and
cohomology.
For a free Zp-module F of finite rank, we suppose to have a commutative
diagram:

F
pn

−−−−→ F

‖

y
yp−n

F −−−−→
↪→

p−nF.
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Thus we have lim
−→n,x 7→pnx

F = lim
−→n,x 7→p−nx

p−nF ∼= F ⊗Zp Qp. If T is a torsion

Zp-module with pBT = 0 for B � 0, we have lim
−→n,x 7→pnx

T = 0. Thus for

general M = F ⊕ T , we have lim
−→n,x 7→pnx

M ∼= M ⊗Zp Qp. Applying this

consideration to M = B̂r(κ), we get

lim
−→

s,x 7→psU(p)sx

B̂r(κ) ∼= B̂r(κ)⊗Zp Qp.

Similarly, lim
−→n,x 7→pnU(p)nx

Br [p
n](κ) = lim

−→n,x 7→pnU(p)nx
Br [p

n](K) = 0. Thus

from the above diagram (6.12), we conclude the lemma. �

Consider the composite morphism $s : As ↪→ Js � Bs of fppf abelian sheaves.
Since Bs = Js/αs(Js) and Js = As + αs(Js) with finite intersection Js =
As×Js αs(Js), we have a commutative diagram with exact rows in the category
of fppf abelian sheaves:

(6.13)

α(Js)
↪→

−−−−→ Js
�

−−−−→
ρs

Bs

∪

x ∪

x
x‖

0→ α(Js)×Js As −−−−→
↪→

As
$s−−−−→
�

Bs.

We have this diagram over Rs := Z(p)[µps ] (not just over Q) by taking the
connected components of the Néron models of Js, As and Bs. The intersection
α(Js)×Js As = Ker($s) is an étale finite group scheme over Q. These abelian
varieties are known to have semi-stable reduction over Rs by the good reduction
theorem of Carayol–Langlands. If the character Z×

p 3 z 7→ 〈z〉 ∈ End(As)
× is

non-trivial, we may replace Js by its complement J
(0)
s of the image of J0

s in Js.
Under this circumstance, α(Js)×Js As = Ker($s) is a finite flat group scheme
over Rs. Since As and Bs has good reduction over Rr, Ker($s) is a finite flat
group scheme defined over Rr. We consider the exact sequence

0→ Ker($s)→ As
$s−−→ Bs → 0.

which is an exact sequence of fppf abelian sheaves over Rr (and smooth abelian
sheaves over Q or Z[ 1p ]). From this, writing Cs for the p-primary part of

Ker($s), we have an exact sequence of fppf abelian sheaves over Rr (and
smooth abelian sheaves over Q or Z[ 1p ]):

0→ Cs → Âs → B̂s → 0.
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We have the following commutative diagram with exact rows:

As[p
s−r]ord ∼

−−−−→ As[p
s−r]ord −−−−→

�

0
y

y
y

Cord
s −−−−→

↪→
Âord

s −−−−→
�

B̂ord
s

y
y o

y

Cord
r −−−−→

↪→
Âord

r −−−−→
�

B̂ord
r .

By the snake lemma applied to the right two exact columns of the above dia-
gram, we get the following exact sequence:

(6.14) 0→ Ar [p
s−r]ord → Cord

s → Cord
r → 0

with Cord
s ↪→ As[p

∞]ord
π∗

r,s
←−−

∼
Ar [p

∞]ord.

Proposition 6.3. We have the following exact sequence under the ?-topology
over k, where ? = sm, étale, nothing and fppf:

(6.15) 0→ Âord
r → Jord

∞
α
−→ Jord

∞
ρ∞

−−→ B̂ord
r ⊗Zp Qp → 0

with Âord
r /Âord

r [p∞] ∼= B̂ord
r ⊗Zp Qp.

Proof. By (6.13), Cord
s is equal to Âord

s ∩ α̂(Ĵord
s ). Since As is the connected

component of Js[α] with U(p)-isomorphism As ↪→ Js[αs], we have Cord
s =

α(Ĵord
s )[α]. Since α is an isogeny on α(Js), we have an exact sequence of

sheaves indexed by s under ?-topology

0→ Cord
s → α(Ĵord

s )
αs−→ α(Ĵord

s )→ 0.

Passing to the inductive limit of these exact sequences (and noting lim
−→s

Cord
s =

Ar[p
∞]ord by (6.14)), we get another exact sequences:

0→ Âord
r [p∞]→ α(Jord

∞ )
α
−→ α(Jord

∞ )→ 0.

Therefore by (6.14), we get the following exact sequences (indexed by s) of
sheaves under ?-topology:

(6.16) 0→ Cord
s → (Âord

s × α(Ĵord
s ))→ Ĵord

s → 0.

Passing again to the inductive limit of these exact sequences (and noting Âord
r
∼=

Âord
s by π∗

r,s and lim
−→s

Cord
s = Ar[p

∞]ord), we get the top and the bottom exact

sequences of the following commutative diagram:

Âord
r [p∞]

↪→
−−−−→ (Âord

r × α(Jord
∞ ))

�

−−−−→ Jord
∞

0

y α

y α

y

Âord
r [p∞]

↪→
−−−−→ (Âord

r × α(Jord
∞ ))

�

−−−−→ Jord
∞ .
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Applying the snake lemma (noting that the connection map is the zero map),
we get

Coker(Jord
∞

α
−→ Jord

∞ ) = Âord
r /Âord

r [p∞].

Thus we have the following exact sequence of sheaves:

(6.17) 0→ Âord
r → Jord

∞ → Jord
∞ → Âord

r /Âord
r [p∞]→ 0.

There is another way to see (6.17). Passing to the inductive limit of the exact
sequences of sheaves

0→ Âord
s → Ĵord

s
αs−→ Ĵord

s
ρs
−→ B̂ord

s → 0,

we get the following exact sequence of sheaves:

0→ Âord
r → Jord

∞
α
−→ Jord

∞
ρ∞

−−→ lim
−→

s,x 7→ps−rU(p)s−r

B̂ord
r → 0

as Âord
r
∼= Âord

s by π∗
r,s. This combined with (6.17) and Lemma 6.2 proves

the exact sequence in (6.15). By (6.16), we have Âord
s ∩ α(Ĵord

s ) ∼= Cord
s ; thus

Ker(Âord
s → B̂ord

s ) ∼= Cord
s with lim

−→s
Cord

s = Ar [p
∞]ord, passing to the inductive

limit we again get the identity of sheaves:

lim
−→

s,x 7→ps−rU(p)s−r

B̂ord
r
∼= Âord

r /Âr[p
∞]ord ∼= B̂ord

r ⊗Zp Qp.

This finishes the proof. �

We have two exact sequences of sheaves:

0→Âord
r → Jord

∞
α
−→ α(Jord

∞ )→ 0,

0→α(Jord
∞ )→ Jord

∞
ρ∞

−−→ B̂ord
r ⊗Zp Qp → 0.

(6.18)

These leave us to study the two error terms

E1(κ) := α(Jord
∞ )(κ)/α(Jord

∞ (κ)) and E2(κ) := B̂ord
r (κ) ⊗Zp Qp/ρ∞(Jord

∞ (κ)).

Let Es
1(κ) := α(Jord

s )(κ)/α(Jord
s (κ)) and Es

2(κ) := B̂ord
s (κ)/ρs(Ĵ

ord
s (κ)) =

Coker(ρs) for ρs : Jord
s (κ)→ B̂ord

s (κ). Note that

Es
1(κ)(↪→ H1

? (Âord
r ) = H1

? (Aord
r )⊗Z Zp)

and Es
2(κ) = Bord

s (κ)/ρs(Ĵ
ord
s (κ))(↪→ H1

? (α(Ĵord
s ))[α])

are p-torsion finite modules as long as s is finite. Note that α|α(Js) is a self
isogeny; so,

0→ α(Js)[α]ord → α(Ĵord
s )

αs−→ α(Ĵord
s )→ 0

is an exact sequence of sheaves. Since α(Js)[α]ord = Cord
s , we have another

exact sequence:

0→ α(Ĵord
s )(κ)/α(α(Ĵord

s )(κ))→ H1
? (Ĉord

s )→ H1
? (α(Ĵord

s ))[α]→ 0.
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We have the following commutative diagram with exact rows and exact
columns:

Es
1(κ)

↪→
−−−−→ H1

? (Âord
r ) −−−−→ H1

? (Ĵord
s )

onto

x
x

x
α( bJord

s )(κ)

α(α( bJord
s )(κ))

↪→
−−−−→ H1

? (Cord
s )

�

−−−−→ H1
? (α(Ĵord

s ))[α]

αs

x
x

x∪

bJord
s (κ)

α( bJord
s )(κ)

ρs
−−−−→

↪→
B̂ord

s (κ) −−−−→
�

Es
2(κ).

The left column is exact by definition. The middle column is the part of the long

exact sequence attached to the short one Cord
s ↪→ Âord

s � B̂ord
s , and the right

column is the same for α(Ĵord
s ) ↪→ Ĵord

s � B̂ord
s . Note lim

−→s
Cord

s = Ar[p
∞]ord.

Passing to the limit, we have the limit commutative diagram with exact rows
and exact columns:

(6.19)

E1(κ)
↪→

−−−−→ H1
? (Âord

r ) −−−−→ H1
? (Jord

∞ )

onto

x πB

x
x

α(Jord
∞

)(κ)
α(α(Jord

∞
)(κ))

↪→
−−−−→ H1

? (Ar [p
∞]ord)

�

−−−−→ H1
? (α(Jord

∞ ))[α]

α

x δB

x
x∪

Jord
∞

(κ)
α(Jord

∞
)(κ)

ρ∞

−−−−→
↪→

B̂ord
r (κ) ⊗Zp Qp −−−−→

�

E2(κ).

We have seen, Âord
r /Ar[p

∞]ord ∼= B̂r ⊗Zp Qp as sheaves of Qp-vector space; so,

H1
? (Âord

r /Ar[p
∞]ord) is a Qp-vector space. On the other hand, H1

? (Âord
r ) is a

p-torsion module (e.g., Lemma 2.2). Therefore the natural map H1
? (Âord

r ) →

H1
? (Âord/Ar[p

∞]ord) is the zero map. Thus by long exact sequence attached to

0 → Ar[p
∞]ord → Âord

r → Âord
r /A[p∞] → 0, the morphism πB is onto. Since

Ar(κ) ⊗Z Tp = Br(κ) ⊗Z Tp, the map δB factors through the Kummer map
Ar(κ) ⊗Z Tp ↪→ H1(Ar [p

∞]ord). Thus

Ker(δB) = Im(Âr(κ)→ B̂r(κ)⊗Zp Qp) ∼= Ker(α),

where the last identity follows from the snake lemma applied to the above
diagram.
Consider the following exact sequence:

E1(κ)[pn] = TorZ
1(E1(κ), Z/pnZ)

in−→ α(Jord
∞ (κ))⊗ Z/pnZ

→ α(Jord
∞ )(κ)⊗ Z/pnZ→ E1(κ)⊗ Z/pnZ→ 0,
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which produces the following commutative diagram with exact rows for n > m:

E1(κ)[pn]
in−−−−→

α(Jord
∞

(κ))
pnα(Jord

∞
(κ))

jn
−−−−→

α(Jord
∞

)(κ)
pnα(Jord

∞
)(κ)

�

−−−−→ E1(κ)⊗ Z/pnZ
y

y
y

y

E1(κ)[pm]
im−−−−→

α(Jord
∞

(κ))
pmα(Jord

∞
(κ))

jm
−−−−→

α(Jord
∞

)(κ)
pmα(Jord

∞
)(κ) −−−−→

�

E1(κ) ⊗ Z/pmZ

This in turn produces two commutative diagrams with exact rows:

(6.20)

E1(κ)[pn]
in−−−−→

α(Jord
∞

(κ))
pnα(Jord

∞
(κ)) −−−−→ Coker(in) = Im(jn)→ 0

y
y

y

E1(κ)[pm]
im−−−−→

α(Jord
∞

(κ))
pmα(Jord

∞
(κ)) −−−−→ Coker(in) = Im(jm)→ 0

and

(6.21)

0→ Ker(in) −−−−→ E1(κ)[pn]
in−−−−→ Im(in)→ 0

y
y

y

0→ Ker(im) −−−−→ E1(κ)[pm]
im−−−−→ Im(im)→ 0.

Since the diagram of (6.21) is made of finite modules (as E1(κ) ⊂ H1(Âord
r );

Lemma 2.3), projective limit is an exact functor (from the category of compact
modules), and passing to the limit, we get

lim
←−
n

Im(in) = Im(i∞ : lim
←−
n

E1(κ)[pn]→ lim
←−
n

α(Jord
∞ (κ))

pnα(Jord
∞ (κ))

).

By the snake lemma (cf. [BCM, I.1.4.2 (2)]) applied to (6.20), Im(jn)→ Im(jm)
is a surjection for all n > m. Thus the projective system of the following exact
sequences:

{0→ Im(jn)→
α(Jord

∞ )(κ)

pnα(Jord
∞ )(κ)

→ E1(κ) ⊗ Z/pnZ→ 0}n

satisfies the Mittag–Leffler condition. Passing to the projective limit, we get
the exact sequence

0→ α(J̌ord
∞ (κ)) = Im(j∞)→ α(J̌ord

∞ )(κ)→ lim
←−
n

E1(κ)⊗ Z/pnZ→ 0.

Since E1(κ) = (Qp/Zp)
R⊕∆ ↪→ H1

? (Âr)
ord for a finite group ∆ and an integer

R ≥ 0 (by Lemma 2.3), lim
←−n

E1(κ)⊗Z/pnZ is a finite group isomorphic to the

torsion subgroup ∆ of E1(κ). Thus

(6.22) J̌ord
∞ (κ)

α
−→ α(J̌ord

∞ )(κ) has finite cokernel ∆,

and ∆ is isomorphic to the maximal torsion submodule of E1(κ)∨.
Consider the “big” ordinary Hecke algebra h given by lim

←−s
hs as in the in-

troduction. For a Λ-algebra homomorphism h → R and an h-module M ,
we put MR = M ⊗h R. Take a connected component Spec(T) of Spec(h)



Limit Mordell–Weil groups 34

such that α in (A) restricted to Spec(T) is a non-unit; so, Âord
s (K)T 6= 0.

Note that MT is a direct summand of M ; so, the above diagrams and ex-
actness are valid after tensoring T over h (attaching subscript T). Note that
α(J∞)ord[p∞](κ) ⊂ Jord

∞ [p∞](κ) = G(κ).
Since Im(ρ∞)T is a direct summand in J∞(κ)T and α(Jord

∞ (κ)T)[pn] ∼=

Tor
Zp

1 (α(Jord
∞ (κ)T), Z/pnZ), we have the following exact sequences:

α(Jord
∞ (κ)T)[pn]→

Âord
r (κ)T

pnÂord
r (κ)T

→
Jord
∞ (κ)T

pnJord
∞ (κ)T

α
−→

α(Jord
∞ (κ)T)

pnα(Jord
∞ (κ)T)

→ 0

0→α(Jord
∞ (κ)T)⊗ Z/pnZ→ Jord

∞ (κ)T ⊗ Z/pnZ→ Im(ρ∞)T ⊗ Z/pnZ→ 0.

(6.23)

The module α(Jord
∞ (κ)T)[pn] is killed by the annihilator a of GT(κ)∨ in Λ which

is prime to γpr

− 1 (note that γpr

− 1 kills Âord
r (κ)). Thus the image of

α(Jord
∞ (κ)T)[pn] in Âord

r (κ)T ⊗ Z/pnZ is killed by A = a + (γpr−1

− 1) ⊂ Λ.
Since Λ/A is a finite ring and G∨T is a Λ-module of finite type, we get

(6.24) |Ker(Âord
r (κ)T ⊗ Z/pnZ→ Jord

∞ (κ)T ⊗ Z/pnZ)| < B

for a constant B > 0 independent of n.
Applying the snake lemma to the following commutative diagram with exact
rows:

pnÂord
r (κ)T

↪→
−−−−→ Âord

r (κ)T
�

−−−−→ Âord
r (κ)T ⊗ Z/pnZ

y
y

y

pnJord
∞ (κ)T −−−−→

↪→
Jord
∞ (κ)T −−−−→

�

Jord
∞ (κ)T ⊗ Z/pnZ,

we have an isomorphism, for Fn := pnJord
∞ (κ)T ∩ Âord

r (κ)T,

Fn/pnÂord
r (κ)T

∼= Ker(Âord
r (κ)T ⊗ Z/pnZ→ Jord

∞ (κ)T ⊗ Z/pnZ)

whose right-hand-side is finite with bounded order independent of n by (6.24).

Consider the two filters on Âord
r (κ)T:

F := {Fn = (pnJord
∞ (κ)T ∩ Âord

r (κ)T)}n and {pnÂord
r (κ)T}n

with Fn ⊃ pnÂord
r (κ)T. On the free quotient Âord

r (κ)T/Âord
r [p∞](κ)T, the two

filters induce the same p-adic topology. Writing Ãord
r (κ)T for the completion of

Âord
r (κ)T with respect to F , therefore we find

(6.25)

the natural surjective morphism: Âord
r (κ)T � Ãord

r (κ)T has finite kernel.

This shows that the following sequence is exact by [CRT, Theorem 8.1 (ii)]:

(6.26) 0→ Ãord
r (κ)T → J̌ord

∞ (κ)T
α
−→ α(J̌ord

∞ (κ)T)→ 0.

By this sequence combined with finiteness of Ker(Ãord
r (κ)T → Âord

r (κ)T), we
get
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Proposition 6.4. Take a connected component Spec(T) of Spec(h) with

Âord
s,T 6= 0. Then we have the following exact sequence:

0→ Ãord
r (κ)T → J̌ord

∞ (κ)T
α
−→ J̌ord

∞ (κ)T,

where Coker(α) is a Zp-module of finite type with dimQp Coker(α) ⊗Zp Qp ≤

dimQp B̂r(κ)T ⊗Zp Qp. Moreover we have a natural surjection: Âord
r (κ)T →

Ãord
r (κ)T with finite kernel. If GT(κ) = 0, then Âord

r (κ)T
∼= Ãord

r (κ)T

We will see that the torsion submodule of Coker(α) is isomorphic to the max-
imal p-torsion submodule of E1(κ)∨.

Proof. The second sequence of (6.18) evaluated at κ produces the following
exact sequence:

0→ α(Jord
∞ )(κ)T → Jord

∞ (κ)T
ρ∞

−−→ B̂ord
r (κ)T ⊗Zp Qp.

By the exact sequence of the bottom row in the diagram (6.19), the image

Im(ρ∞) is embedded into (B̂r ⊗ Qp)(κ)T, and thus Im(ρ∞) ∼= Qi
p ⊕ Zj

p with

i+ j ≤ dim B̂r(κ)T⊗Zp Qp. Thus we get the following exact sequences indexed
by n:

0 = Im(ρ∞)[pn] ∼= Tor
Zp

1 (Im(ρ∞), Z/pnZ)→ α(Jord
∞ )(κ)T ⊗Zp Z/pnZ

→ Jord
∞ (κ)T ⊗Zp Z/pnZ→ Im(ρ∞)T ⊗Zp Z/pnZ ∼= (Z/pnZ)j → 0.

Since these sequences satisfy the Mittag–Leffler condition, passing to the limit,
we get another exact sequence:

0→ α(J̌ord
∞ )(κ)T → J̌ord

∞ (κ)T
ρ∞

−−→ Zj
p → 0.

Then the assertion follows from (6.22).
We can check the last assertion by scrutinizing our computation, but here is a

short cut. Since Ker(Âord
r (κ)T → Ãord

r (κ)T) is a submodule of A[p∞]ord(κ) ⊂
GT(κ) = 0. Thus the morphism has to be an isomorphism. �

Lemma 6.5. Let κ be as in Lemma 6.1. Then the maximal torsion submodule
of J̌∞(κ)ord

T is equal to GT(κ) if GT(κ) is finite. Otherwise, it is killed by pB

for some 0 < B ∈ Z.

Proof. By definition, the maximal torsion submodule of Ĵs(κ)ord
T = (Js(κ) ⊗Z

Zp)
ord
T for finite s is given by Gs(κ)T := Js[p

∞](κ)ord
T . For s =∞, the maximal

torsion submodule of J∞(κ)T = lim
−→s

Ĵs(κ)ord
T is given by G(κ)T. Thus we have

an exact sequence for finite s:

0→ Gs(κ)T → Ĵs(κ)ord
T → Fs → 0

for the maximal Zp-free quotient Fs := Ĵs(κ)ord
T /Gs(κ)T. This is a split ex-

act sequence as the right term Ĵs(κ)ord
T /Gs(κ)T is Zp-free. By taking p-adic

completion: M 7→ M̌ = lim
←−n

M/pnM , we get a split exact sequence for finite
s:

0→ Ǧs(κ)T → Ĵs(κ)ord
T → Fs → 0.
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This shows Ǧs(κ)T = Gs(κ)T for finite s, and Ǧs(κ)T is a finite module if κ is as
in Lemma 6.1. Since Fs is Zp-flat for all s ≥ r, F = lim

−→s
Fs is a Zp-flat module.

For s =∞, we have the limit exact sequence (noting G(κ)T = G∞(κ)T)

0→ G(κ)T → J∞(κ)ord
T → F → 0,

and F = J∞(κ)ord
T /G(κ)T. By Zp-flatness of F , after tensoring Z/pnZ over Zp,

we still have an exact sequence (cf. [BCM, I.2.5]) indexed by 0 < n ∈ Z:

0→ G(κ)T/pnG(κ)T → J∞(κ)ord
T ⊗Zp Z/pnZ→ F/pnF → 0,

which obviously satisfies the Mittag–Leffler condition (with respect to n). Pass-
ing to the projective limit with respect to n, we get the limit exact sequence:

0→ Ǧ(κ)T → J̌∞(κ)ord
T → F̌ → 0,

Since F is Zp-flat, F̌ is torsion-free (and hence Zp-flat by [BCM, I.2.4]). Indeed,
we have the following commutative diagram with exact rows:

TorZp(F/pF, Z/pnZ)
↪→

−−−−→ F/pnF
x 7→px
−−−−→ F/pnF

�

−−−−→ F/pF

o

y ‖

y ‖

y
y‖

F/pF −−−−→
↪→

F/pnF
x 7→px
−−−−→ F/pnF −−−−→

�

F/pF.

Regard this as a projective system of exact sequences indexed by 0 < n ∈ Z.
Then the transition maps of F/pF at the extreme right end is the identity and
at the extreme left end is multiplication by p (i.e., the zero map). Passing to
the limit, from left exactness of projective limit, we get an exact sequence

0 = lim
←−

x 7→px

F/pF → F̌
f 7→pf
−−−−→ F̌ ,

and hence F̌ is p-torsion-free.
If G(κ) is killed by pB for some 0 < B ∈ Z, we still have Ǧ(κ)T = G(κ)T.
Otherwise, for some 0 < j ∈ Z, G(κ)T fits into the following split exact sequence
by Lemmas in Section 4,

0→ (Qp/Zp)
j → G(κ)T → G(κ)tor

T → 0

for G(κ)tor
T killed by pB for some 0 < B ∈ Z. Thus Ǧ(κ)T = G(κ)tor

T , which is

the maximal torsion submodule of J̌∞(κ)ord
T . �

We put M∗ = HomZp(M, Zp) for a Zp-module M and

X̌s,T(k)∗ord := HomZp(X̌s(k)ord
T , Zp) and X̂s,T(k)∗ord := HomZp(X̂s(k)ord

T , Zp)

with s = r, r + 1, . . . ,∞ for X = J, A, B. The algebra h acts on J̌∞ natu-
rally. As before, we write for an h-algebra R, J̌∞(k)ord

R = J̌∞(k)ord ⊗h R and

J̌∞(k)∗ord, R = J̌∞(k)∗ord ⊗h R.

Assume the condition (A) in Section 5 for (α, As, Bs). Take a connected com-
ponent Spec(T) of Spec(h) in which the image of α is non-unit. Replacing α by
1Tα for the idempotent 1T of T, we may assume that α ∈ T as in the setting of
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(P4) in Proposition 5.1. Recall GT(k)∨tor is the maximal Zp-torsion submodule
of GT(k)∨. We now state the principal result of this paper:

Theorem 6.6. Let k be either a number field or a finite extension of Ql for a
prime l. Then we get

(1) Consider the following sequence Zp-dual to the one in Proposition 6.4:

0→ Coker(α)∗T → J̌∞(k)∗ord,T
α∗

−−→ J̌∞(k)∗ord,T

ι∗
∞−−→ Âr(k)∗ord,T → 0.

Then
(a) If GT(k) = 0, the sequence is exact except that Ker(ι∗∞)/ Im(α∗) is

finite;
(b) If GT(k)∨tor = 0, the sequence is exact except that Ker(ι∗∞)/ Im(α∗)

and Coker(ι∗∞) are both finite;
(c) If GT(k)∨tor 6= 0, the sequence is exact up to finite error.
(d) The module GT(k)∨tor is killed by pB for some finite 0 ≤ B ∈ Z, and

the cokernel Coker(ι∗∞) is finite and is killed by pB . In particular,
after localizing the sequence by any prime divisor P ∈ Spec(Λ),
the sequence is exact.

(2) After tensoring Qp with the sequence (1), the following sequence

0→ Coker(α)∗T ⊗Zp Qp → J̌∞(k)∗ord,T ⊗Zp Qp

→ J̌∞(k)∗ord,T ⊗Zp Qp → Âr(k)∗ord, T ⊗Zp Qp → 0

is an exact sequence of p-adic Qp-Banach spaces (with respect to the

Banach norm having the image of J̌∞(k)∗ord,T in J̌∞(k)∗ord,T ⊗Zp Qp as

its closed unit ball).
(3) The compact module J̌∞(k)∗ord,T is a Λ-module of finite type, and

J̌∞(k)∗ord,T ⊗Zp Qp is a Λ[ 1p ]-module of finite type.

Proof. We prove the exactness of the sequence (1). Since Âord
r (κ)T → Ãord

r (κ)T

has finite kernel and is an isomorphism if GT(k) = 0 by Proposition 6.4, we only
need to prove the various exactness of (1). By Proposition 6.4, the following
sequence is exact:

0→ Ãord
r (k)T

ι∞−−→ J̌∞(k)ord
T

α
−→ J̌∞(k)ord

T

π∗

∞−−→ X → 0

for X = Coker(α). We consider the short exact sequence:

0→ Ãord
r (k)T

ι∞−−→ J̌∞(k)ord
T → Coker(ι∞)→ 0

and another exact sequence:

0→ Coker(ι∞)
α
−→ J̌∞(k)ord

T

π∗

∞−−→ X → 0.

Applying the dualizing functor: M 7→ M∗ := HomZp(M, Zp), we get the fol-
lowing exact sequences:

0→ Coker(ι∞)∗ → J̌∞(k)∗ord,T

ι∗
∞−−→ Ãr(k)∗ord,T → Ext1Zp

(Coker(ι∞), Zp),
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X∗ ↪→ J̌∞(k)∗ord,T
α∗

−−→ Coker(ι∞)∗ → Ext1Zp
(X, Zp)→ Ext1Zp

(J̌∞(k)ord,T, Zp).

Thus Ext1Zp
(X, Zp) contains Ker(ι∗∞)/ Im(α∗). Computing Ext1Zp

(M, Zp) by

the injective resolution 0 → Zp → Qp
π
−→ Qp/Zp → 0 (see [MFG, (4.10)]), we

find

Ext1Zp
(M, Zp) = Coker(HomZp(X, Qp)

π∗−→ HomZp(X, Qp/Zp)) = M [p∞]∨.

Since X is a Zp-module of finite type by Proposition 6.4, Ext1Zp
(X, Zp) =

X[p∞]∨ is finite. Similarly Ext1Zp
(J̌∞(k)ord,T, Zp) = J̌∞(k)ord,T[p∞]∨ =

GT(k)∨tor and hence if GT(k)∨tor = 0, Ext1Zp
(X, Zp) = Ker(ι∗∞)/ Im(α∗). Any-

way, Ker(ι∗∞)/ Im(α∗) is finite.

We have Coker(ι∞) ↪→ J̌∞(k)ord
T . Again, we get, as Λ-modules,

Ext1Zp
(Coker(ι∞), Zp) ∼= Coker(ι∞)[p∞]∨

which is a quotient of GT(k)∨tor (see Lemmas 4.2, 4.3 and 6.5). Indeed, as-
suming finiteness of GT(k), the torsion part of J̌∞(k)ord

T is isomorphic to a
submodule of GT(k) by Lemma 6.5; in particular, it has finite torsion (this
proves (1a)). Without assuming finiteness of GT(k), the p-torsion part of
Coker(ι∞) is a Λ-submodule of a bounded p-torsion Λ–module GT(k)tor by
Lemma 6.5. Thus Ext1Zp

(Coker(ι∞), Zp) is is a quotient of GT(k)∨tor and killed

by pB for some 0 ≥ B ∈ Z (and this proves (1b)). In addition, Coker(i∗∞) =

Coker(J̌∞(k)∗ord,T → Ãr(k)∗ord,T) factors through the Zp-module Ãr(k)∗ord,T of

finite type, which lands in the bounded p-torsion module Coker(ι∞)[p∞]∨ (by
Lemma 6.5); so, Coker(i∗∞) must have finite order (this shows (1c)). There-
fore, the error term Coker(i∗∞) is a pseudo-null Λ-module, it is killed after
localization at prime divisors of Spec(Λ). Thus we get all the assertions in (1).
The exact sequence in (1) tells us that J̌∞(k)∗ord, T/α(J̌∞(k)∗ord, T) is isomorphic

(up to finite modules) to the Zp-module Âr(k)∗ord, T of finite type, which is a

torsion Λ-module of finite type. Then by Nakayama’s lemma, J̌∞(k)∗ord, T is a

Λ-module of finite type. This proves the assertion (3).
The extension modules appearing in the above proof of (1) is p-torsion Λ-
module of finite type. Thus the sequence

0→ X∗ → J̌∞(k)∗ord, T → J̌∞(k)∗ord, T → Âr(k)∗ord, T → 0

is exact up to p-torsion error. By tensoring Q over Z, we get the exact sequence
(2):

X∗ ⊗Zp Qp ↪→ J̌∞(k)∗ord, T⊗Zp Qp → J̌∞(k)∗ord, T⊗Zp Qp � Âr(k)∗ord, T⊗Zp Qp.

The above sequence is the p-adic Banach dual sequence of the following exact
sequence obtained from the sequence in (1) by tensoring Q:

Âr(k)ord
T ⊗Zp Qp

ι∞−−→
↪→

J̌∞(k)ord
T ⊗Zp Qp

α
−→ J̌∞(k)ord

T ⊗Zp Qp
π∗

∞−−→
�

X ⊗Zp Qp.

Indeed, equipping J̌∞(k)ord
T ⊗Zp Qp with the Banach p-adic norm so that the

closed unit ball is given by the image of J̌∞(k)ord
T in J̌∞(k)ord

T ⊗Zp Qp, the
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sequence is continuous (the first and the last term are finite dimensional Qp-
vector spaces; so, there is a unique p-adic Banach space structure on them).
The dual space of bounded functionals of each term is given by the Qp-dual
of the corresponding space before tensoring Q, which is given by Y ⊗Zp Qp for

Y = Âr(k)∗ord, T, J̌∞(k)∗ord,T and X∗, respectively. This proves (2). �

Corollary 6.7. Let the notation be as in (1) of Theorem 6.6. Consider the

set Ω ⊂ T of prime factors (in Λ) of γpn

− 1 for n = 0, 1, 2, . . . ,∞. Except for
finitely many α ∈ Ω, we have Coker(α)∗T ⊗Λ ΛP = 0 for P = (α) ∈ Spec(Λ),
where ΛP is the localization of Λ at P .

Proof. Note that α ∈ Ω (regarded as α ∈ T) satisfies the assumption (A)
by Proposition 5.1 (P1) and that Λ[ 1p ] is a principal ideal domain (as Λ is

a unique factorization domain of dimension 2; see [CRT, Chapter 7]). Pick
an isomorphism J̌∞(k)∗ord,T ⊗Z Q ∼= Λ[ 1

p
]R ⊕X∗

k of Λ[ 1
p
]-modules with torsion

Λ[ 1p ]-module X∗
k . Then for P outside the support of the Λ[ 1p ]-module X∗

k , by

Theorem 6.6 (2),

K := Ker(α : J̌∞(k)∗ord,T → J̌∞(k)∗ord,T)

is killed by some p-power. Then by the assertion (1) of the above theorem, K
is a Zp-module of finite type; hence K is finite. This shows the result. �

7. Closure of the global Λ-MW group in the local one

Let κ be a number field and k = κp be the p-adic completion of κ for a
prime p|p of κ. Write W for the p-adic integer ring of k, and let Q be the
quotient field of Λ. By [M55] or [T66], for an abelian variety A/k of dimension

g, Â(k) = A(k) ⊗Z Zp has torsion free part Â(k)f isomorphic to the additive

group W g , and the torsion part Â(k)tor is a finite group.
Write F = κ or k. Recall the T-component

J̌∞(F )∗ord,T := J̌∞(F )∗ord ⊗h T

for a connected component Spec(T) of Spec(h). By Theorem 6.6 (3),
J̌∞(F )∗ord,T ⊗Zp Qp is a T ⊗Zp Qp-module of finite type. For simplicity, write

JT(F ) := J̌∞(F )∗ord,T ⊗Zp Qp.
Let the notation be as in Corollary 6.7; in particular, Ω is the set of prime
factors (in Λ) of γpn

− 1 for n = 1, 2, . . . ,∞. Note that α ∈ Ω ⊂ T satisfies the
condition (A) by Proposition 5.1 (P1). Then by Theorem 6.6 (2), this implies

JT(F )/α(JT(F )) ∼= Âord
r (F )∗T ⊗Zp Qp.

Further localizing at each arithmetic point P ∈ Spec(h)(Qp) with P |(γpr−1

−1),
we get, for JTP (F ) = JT(F )⊗T TP for the localization TP at P ,

JTP (F )/α(JTP (F )) ∼= Âord
r (F )∗T ⊗Zp Qp.

Since Λ[ 1p ] is a principal ideal domain, JT(F ) is isomorphic to Λ[ 1p ]mF ⊕ X′
F

for a torsion Λ[ 1p ]-module X′
F . Put XF := X′

F ⊕ G?(k)∨ and decompose
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XF =
⊕

P Λ[ 1p ]/PeF (P) for maximal ideals P of Λ[ 1p ]. Put CharΛ[ 1p ](XF ) =
∏

P PeF (P). If P ∈ Spec(Λ)(Qp) is prime to CharΛ[ 1p ](XF ),

JT(F )/α(JT(F )) ∼= (Λ/P )mF ⊗Zp Qp.

In other words, the ΛP /P -dimension of JT(F )/α(JT(F )) is independent of P
for most of P . We formulate this fact for F = k as follows:

Theorem 7.1. Let the notation be as above. Write W for the p-adic inte-
ger ring of k and Q for the quotient field of Λ. Then the Q-vector space
J̌∞(k)∗ord,T ⊗Λ Q has dimension equal to g = rankZp W · rankΛ T.

Proof. We use the notation introduced in Corollary 6.7. Pick α ∈ Ω, and let
A ⊂ Jr[α] be the identity connected component. Define Jr � B to be the dual
quotient of A ↪→ Jr. By the control Theorem 6.6 (2), we have JT(k)/αJT(k) ∼=
Ǎ(k)∗ord,T ⊗Zp Qp for all α ∈ Ω. Moreover, we have dimκ(P) JT(k)/αJT(k) =
mk outside a finite set S ⊂ Ω. The set S is made of prime factors in Ω of
CharΛ[ 1p ](X

∗
k). Note that mk = rankΛ[ 1p ] JT(k) = dimQ J̌∞(k)∗ord,T⊗Λ Q; so, we

compute rankΛ[ 1p ] JT(k).

By [M55] or [T66], we have Â(k) ∼= W dim A×∆ for a finite p-abelian group ∆.
Regarding A(k) as a p-adic Lie group, we have a logarithm map log : A(k) →
Lie(A/k). For a ring R, write h(R) (resp. hr(R)) for the scalar extension to R
of

Z[T (n)|n = 1, 2, . . . ] ⊂ End(A/Q) ∼= End(B/Q)

(resp. Z[T (n)|n = 1, 2, . . . ] ⊂ End(Jr/Q)).

The Lie algebra Lie(A/Qp
) is the dual of ΩB/Qp

.
Note that ΩJr/Q

∼= ΩXr/Q (e.g., [GME, Theorem 4.1.7]). By q-expansion at the

infinity cusp, we have an embedding i : ΩXr/Q ↪→ Q[[q]] sending ω to i(ω)dq
q

.

Writing i(ω) =
∑∞

n=1 a(n, ω)qn, we have a(m, ω|T (n)) =
∑

0<d|(m,n),(d,Np)=1 d·

a(mn
d2 , ω|〈d〉) for the diamond operator 〈d〉 associated to d ∈ (Z/NprZ)×. From

this, the pairing 〈·, ·〉 : hr(Q)×ΩXr/Q → Q given by 〈H, ω〉 = a(1, ω|H) is non-
degenerate (see [GME, §3.2.6]). Thus we have

ΩJr/k
∼= Homk(hr(k), k) and ΩA/k

∼= Homk(h(k), k) as modules over hr(k),

since h(k) is naturally a quotient of hr(k) and B = Jr/α(Jr) for (α) =
Ker(hr(Zp) � h(Zp)) in hr(Zp). By the duality between Lie(A/k) and ΩA/k,
we have

Lie(A/k) ∼= h(k) as an h(k)-module.

This leads to an isomorphism of h-modules:

Â(k)ord
T ⊗Zp k

log
−−→
∼

Lie(A/k)T
∼= (T/(α)T)⊗Zp k

as T/(α)T is canonically isomorphic to a ring direct summand h(Zp)
ord
T of

h(Zp)
ord as Zp-algebras by the control theorem (cf. [GME, §3.2.6]). Thus

rankW Â(k)ord
T = [k : Qp] rankΛ/(α) T/(α)T = [k : Qp] rankΛ T.
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This proves the desired assertion, as [k : Qp] = rankZp W . �

We have a natural Λ-linear map

J̌∞(κ)ord
T

ι
−→ J̌∞(k)ord

T and J̌∞(k)∗ord, T ⊗Zp Qp
ι∗
−→ J̌∞(κ)∗ord, T ⊗Zp Qp.

We would like to study their kernel and cokernel.

Take a reduced irreducible component Spec(I) ⊂ Spec(T). Let Ĩ be the nor-
malization of I, and write Q(I) for the quotient field of I. Then JF :=

J̌∞(F )∗
ord,eI
⊗Zp Qp is a Ĩ[ 1p ]-module of finite type for F = κ, k. Note that

Ĩ[ 1
p
] is a Dedekind domain. This we can decompose JF = LF ⊕XF for a locally

free Ĩ[ 1p ]-module LF of finite constant rank and a torsion module XF isomor-

phic to
⊕

P Ĩ[ 1p ]/PeF (P) for finitely many maximal ideals P of Ĩ[ 1p ]. We put

CharI(XF ) =
∏

P PeF (P).

For an abelian variety A over κ, write A(κ) ⊂ Â(k) for the p-adic closure of the

image of A(κ) in Â(k). Pick an arithmetic point P ∈ Spec(h)(Qp) of weight 2.
Suppose that the abelian variety AP is realized in Jr and satisfies the condition
(A). By Theorem 6.6 (2), the natural map

JF /P JF → ÂP (F )∗
ord, eI

⊗Zp Qp

is an isomorphism. Thus as long as P - Char(Xk) · Char(Xκ), we have a
surjective linear map

(7.1) ÂP (k)∗
ord, eI

⊗Zp Qp � AP (κ)
∗

ord, eI ⊗Zp Qp
∼= ι∗P (Jk/P Jk)

Qp-dual to the inclusion

AP (κ)
ord
eI ⊗Zp Qp ⊂ ÂP (k))ord

eI
⊗Zp Qp,

where ι∗P = ι∗⊗ id : Jk ⊗h h/P = Jk/P Jk→ ÂP (κ)ord, eI ⊗Zp Qp induced by ι∗.

Put
rk(F ; I) := dimQ(I) JF ⊗eI[ 1p ] Q(I) = rankeI[ 1p ] JF

for the quotient field Q(I) of Ĩ.
We now assume

(a) Taking r = r(P ) and Ar to be AP , the condition (A) holds for AP for
almost all arithmetic points P ∈ Spec(I) of weight 2.

By Proposition 5.1 (P2), the condition (A) holds for “all” arithmetic points
P ∈ Spec(I) of weight 2 if T = I and p is unramified in T/P for one arithmetic

point P ∈ Spec(T)(Qp). Indeed, as shown in [F02, Theorem 3.1], T is regular
under this assumption (and the regularity guarantees the validity of (A) by
Proposition 5.1 (P2)).
Pick a base arithmetic point P0 ∈ Spec(I)(Qp) of weight 2. The point P0 gives

rise to f = fP0 ∈ S2(Γ1(Npr+1)) with B0 = BP0 and A0 = AP0 satisfying
f |T (n) = P0(T (n))f for all n > 0. By Theorem 6.6 (2), we have for F = k, κ,

(ct) JF /P0JF is isomorphic to the Qp-dual of Â0(F )ord
eI
⊗Zp Qp.
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Choosing P0 outside CharI(Xκ) ·CharI(Xk), we may assume the following con-
dition for F = k, κ:

(dim) dimQp(f) JF /P0JF = rk(F ; I).

Here Qp(f) is the quotient field of I/P0I and is generated by P0(T (n)) for all
n over Qp.
Since A0(κ) ⊗Z Q is a Q(f) vector space, if A0(κ) ⊗ Q 6= 0, we have

dimQ(f) A0(κ)⊗Q > 0, which implies that A0(κ)⊗Zp Qp 6= 0. Suppose

k = Qp and (Â0(κ)ord
eI
⊗Zp Qp) 6= 0.

Then (A0(κ) ⊗Zp Qp)
ord
eI

is a finite dimensional vector subspace over Qp of

Â0(k) ⊗Zp Qp stable under T (n) for all n. Let us identify P0(T (n)) ∈ Qp

with a system of eigenvalues of T (n) occurring on Â0(κ)ord
eI
⊗Zp Qp. Then

(A0(κ) ⊗Zp Qp)ord
eI

and Â0(k)ord
eI
⊗Zp Qp are Qp(f)-vector spaces. Thus we

conclude

0 < dimQp(f)(A0(κ)⊗Zp Qp)
ord
eI
≤ dimQp(f)(Â0(k) ⊗Zp Qp)ord

eI
= 1,

which implies

0 < dimQp(f)(A0(κ)⊗Zp Qp)ord
eI

= dimQp(f) Â0(k)ord
eI
⊗Zp Qp = 1.

By (7.1), we get

dimQp ι∗P0
(Jκ/P0Jκ)

= dimQp(A0(κ)⊗Zp Qp) = dimQp(Â0(Qp) ⊗Zp Qp) = dimQp Qp(f).

In other words, by Theorem 6.6 (2), the kernel of the map ι∗: K := Ker(ι∗ :

Jk → Jκ) for k = Qp is a torsion Ĩ[ 1p ]-module. Now we move weight 2 arithmetic

points P ∈ Spec(I)(Qp) ⊂ Spec(T)(Qp). Then KP = K/PK covers surjectively

Ker(ι∗P : Jk/P Jk → Jκ/P Jκ).

By Ĩ[ 1p ]-torsion property of K, K/PK = 0 for almost all points in Spec(I)(Qp),

and we get

Corollary 7.2. Let the notation and the assumption be as above. Suppose
the condition (a), (dim), k = κp = Qp and

dimQ(f) A0(κ) > 0.

Then except for finitely many arithmetic points of Spec(I)(Qp) weight 2, we
have dimQ(fP ) AP (κ) > 0 and

dimQp(fP )(AP (κ)
ord
⊗I/P Qp(fP )) = dimQp Qp(fP ).

For general abelian variety A/Q, an estimate of dimQp A(Q) ⊗Zp Qp relative
to dimQ A(Q) ⊗Z Q and a conjecture is given in [W11]. Here we studied the
dimension over a family and showed its co-ordinary (or ordinary) part stays
maximal for most of members of the family if one is maximal.
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