PERMUTATION REPRESENTATIONS AND LANGLANDS BASE CHANGE

HARUZO HIDA

1. QUATERNION CLASS SETS

Pick a quaternion algebra B over a totally real field E and suppose that $B_{\sigma} = B \otimes_{E,\sigma} \mathbb{R} \cong \mathbb{H}$ (the Hamilton quaternion algebra) for all embeddings $\sigma : E \hookrightarrow \mathbb{R}$. To avoid complication from automorphically induced representations from GL(1) over a CM quadratic extension over E, we assume that B ramifies at some finite places. Take a totally real Galois extension F/E with integer ring O and Galois group G = Gal(F/E). Suppose we have a G-invariant maximal order R_F of $B_F = B \otimes_{\mathbb{Q}} F$. An nonzero right R_F -submodule $\mathfrak{A} \subset B_F$ of finite type is called a fractional right R_F -ideal. We can think of an equivalence between right fractional R_F -ideals \mathfrak{A} and \mathfrak{B} of B_F . In other words, $\mathfrak{A} \sim \mathfrak{B} \Leftrightarrow \mathfrak{A} = \alpha \mathfrak{a}\mathfrak{B}$ for $\alpha \in B_F^{\times}$ and a O-ideal \mathfrak{a} . The resulting G-set $C_{0,F}$ of equivalence classes is a finite set (not a group, because \mathfrak{A}^{-1} is a left ideal). We do not have a good definition of the norm map of $C_{0,F} \to C_{0,E}$ for $B_F = B \otimes_{\mathbb{Q}} F$ and $B_E = B \otimes_{\mathbb{Q}} E$. Since $B_E \subset B_F$ naturally, we still have a G-equivariant map $\iota_{F/E} : C_{0,E} \to C_{0,F}$ as long as we choose maximal orders compatibly: $R_E = R_F \cap B$.

2. Hecke operators

Write \mathcal{M}_F for the space of functions $f: C_{0,F} \to K$ for a (fixed) algebraically closed field K. Then we have Hecke operators $T(\mathfrak{n})$ for nonzero O-ideals \mathfrak{n} defined by

$$f|T(\mathfrak{n})(\mathfrak{a}) = \sum_{\mathfrak{x}} f(\mathfrak{a}\mathfrak{x})$$
 (\mathfrak{x} runs over right ideals with reduced norm \mathfrak{n})

The space \mathcal{M}_F has inner product $\langle f, g \rangle = \sum_{x \in C_{0,F}} f(x)g(x)$ invariant under the action of G and for which $T(\mathfrak{n})$ is self-adjoint. By the Jacquet-Langlands correspondence, \mathcal{M}_F as a Hecke module is equivalent to a subspace of Hilbert modular forms over Fof weight 2.

We write \mathbb{T}_F for the K-subalgebra of $\operatorname{End}(\mathcal{M}_F)$ generated by Hecke operators. If K is of characteristic 0, \mathbb{T}_F is a commutative semi-simple algebra, and $\mathcal{M}_F \cong \operatorname{Hom}_K(\mathbb{T}_F, K)$ as \mathbb{T}_F -modules (the multiplicity 1 theorem). Indeed, pick a K-linear form $\lambda : \mathcal{M}_F \to K$ which does not kill any common eigenform under the action of \mathbb{T}_F , the pairing $\langle T, f \rangle = \lambda(f|T)$ gives the duality. If F/E is a Galois extension with Galois

Date: May 14, 2008.

A talk at Northwestern university on 5/11/2008 at a conference in honor of Langlands; The author is partially supported by the NSF grant: DMS 0244401, DMS 0456252 and DMS 0753991.

 $\mathbf{2}$

group G and R_F is G-invariant, we can make this isomorphism G-equivariant (taking G-invariant λ). Here G acts on \mathbb{T}_F by $T(\mathfrak{n}) \mapsto T(\mathfrak{n}^{\sigma^{-1}})$ and f by $f(x) \mapsto f(x^{\sigma})$. If \mathbb{T}_F is semi-simple, by trace pairing, $\operatorname{Hom}_K(\mathbb{T}_F, K) \cong \mathbb{T}_F$ as (\mathbb{T}_F, G) -module; so, $K[C_{0,F}] \cong \mathcal{M}_F \cong \mathbb{T}_F$ as K[G]-modules.

In adelic language, regarding B^{\times} as an algebraic group so that $B^{\times}(A) = (B \otimes_{\mathbb{A}} A)^{\times}$ for a Q-algebra A, we can identify canonically $C_{0,F}$ with $B^{\times}(F) \setminus B^{\times}(F_{\mathbb{A}}^{(\infty)})/Z(F_{\mathbb{A}}^{(\infty)}) \widehat{R}_{F}^{\times}$ for $\widehat{R}_{F} = R_{F} \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ with $\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}$ and the center $Z \subset B^{\times}$. Let $U = \prod_{\mathfrak{l}} U_{\mathfrak{l}} \subset \widehat{R}_{F}^{\times}$ be a subgroup of finite index $(U_{\mathfrak{l}} \subset B^{\times}F_{\mathfrak{l}})$, \mathfrak{l} running over primes of F). We consider the ray U-class set $C_{0,F}(U) = B^{\times}(F) \setminus B^{\times}(F_{\mathbb{A}}^{(\infty)}/Z(F_{\mathbb{A}}^{(\infty)})U$ and a character $\varepsilon : U \cdot Z(F_{\mathbb{A}}^{(\infty)}) \to K^{\times}$ (with finite order $\varepsilon | U$). We have an isomorphism $C_{0,F} \cong C_{0,F}(\widehat{R}_{F}^{\times})$.

Put $U_1 = \operatorname{Ker}(\varepsilon : U \to K^{\times})$, and let $I = \operatorname{Hom}_{\operatorname{alg}}(O, K)$ and suppose $|I| = [F : \mathbb{Q}]$. Note that $R \otimes_O K \cong M_2(K)^I$ (and we fix this identification); so, we may choose a rational place v so that $R_v \otimes_{O_v} K \cong M_2(K)^I$ and hence we have a natural homomorphism $\sigma : R_v \to M_2(K)$ extending $\sigma \in I$. Let $\mathbb{Z}[I]$ be the free module generated by I. For each $n = \sum_{\sigma} n_{\sigma} \sigma \in \mathbb{Z}[I]$ with $n_{\sigma} \ge 0$, we consider space L(n; K) of K-polynomials in $(X_{\sigma}, Y_{\sigma})_{\sigma \in I}$ homogeneous of degree n_{σ} with respect to the pair (X_{σ}, Y_{σ}) . Regarding $f \in L(n; K)$ as a function on $W := (K^2)^I \ni (x_{\sigma}, y_{\sigma}) \mapsto f(x_{\sigma}, y_{\sigma}) \in K$, we consider the space $\mathcal{M}_{n,F}(U, \varepsilon)$ of functions

$$f: B^{\times}(F) \setminus B^{\times}(F_{\mathbb{A}}) \to L(n; K) \text{ with } f(xu; (x_{\sigma}, y_{\sigma})) = \varepsilon(zu) f(x; (x_{\sigma}, y_{\sigma})\sigma(u_v)^{-1})$$

for all $u \in UB^{\times}(\mathbb{R})$ and $z \in Z(F_{\mathbb{A}})$. If U is sufficiently small,

$$\dim_K \mathcal{M}_{n,F}(U,\varepsilon) = |C_{n,F}(U)|$$

for $C_{n,F}(U) = C_{0,F}(U) \times \{0 \le j \le n\}$, because $\dim_K L(n;K) = |\{0 \le j \le n\}|$. Decompose $U_1gU_1 = \bigsqcup_i g_iU_1$, and define a linear operator on $\mathcal{M}_{n,F}(U,\varepsilon)$ by

$$f|[U_1gU_1](x;w) = \sum_i f(xg_i;w).$$

This operator is a generalization of $T(\mathfrak{n})$.

For a prime \mathfrak{l} of F, if $U_{\mathfrak{l}} \subsetneq (R_F \otimes_O O_{\mathfrak{l}})^{\times}$, we call \mathfrak{l} is in the level of U, and write S for the set of primes either in the level of U or $\mathfrak{l}|_{v}$. We write as $L(n,\varepsilon;K)$ the $Z(F_{\mathbb{A}})U$ -module L(n;K) with the action $zu \cdot f := \varepsilon(zu)f(x_{\sigma}, y_{\sigma})\sigma(u_{v})^{-1})$. We write $\mathbb{T}_{n,F}(U)$ for the subalgebra of $\operatorname{End}_{K}(\mathcal{M}_{n,F}(U,\varepsilon))$ generated over K by the operators $[U_{1}gU_{1}]$ for all $g \in B^{\times}(F_{\mathbb{A}}^{(S)})$ $(F_{\mathbb{A}}^{(S)})$: adeles outside S and ∞). We write $T(\mathfrak{l}) = [U_{1}gU_{1}]$ if $\mathfrak{l} \notin S, g \in R_{\mathfrak{l}}$ and $N(g)O = \mathfrak{l}$.

Let $B_1 = \operatorname{Ker}(N : B^{\times} \to \mathbb{G}_{m/E})$ for the reduced norm map N. In the above definition, we can replace every groups (B^{\times}, U, Z) by $(B_1, B_1(F_{\mathbb{A}}^{(\infty)}) \cap U, Z \cap B_1)$ and obtain a B_1 -version of corresponding spaces and Hecke algebras. We use same notation also for the B_1 -version, and if necessary, we explicitly indicate with which version we are working.

3. A CONJECTURE ON GALOIS PERMUTATION REPRESENTATIONS

Suppose F/E is a Galois extension with Galois group G. Then G acts on $B_F = B \otimes_{\mathbb{Q}} F$ through the right factor F. We choose an open compact subgroup $U \subset \widehat{R}_F^{\times}$ so that it is stable under G. We suppose $\varepsilon(u^{\tau}) = \varepsilon(u)$ and $n\tau = n$ (through permutation of I). Then the Galois group G naturally acts on the finite set $C_{n,F}(U)$ by

$$(x, j)^{\sigma} = (x^{\sigma}, j\sigma) \ (x \in C_{n,F}(U) \text{ and } 0 \le j \le n)$$

and on $\mathcal{M}_{n,F}(U,\varepsilon)$ by the pull back left action: $\tau \cdot f(x; (x_{\sigma}, y_{\sigma})) = f(x^{\tau}; (x_{\sigma\tau}, y_{\sigma\tau}))$. Since $\mathbb{T}_{n,F}(U)$ acts on $\mathcal{M}_{n,F}(U,\varepsilon)$, we can let $\tau \in G$ act on $\mathbb{T}_{n,F}(U)$ from the left by $[U_1gU_1]^{\sigma} = [U_1g^{\sigma^{-1}}U_1]$ (thus $T(\mathfrak{l})^{\sigma} = T(\mathfrak{l}^{\sigma^{-1}})$). Thus G acts on the finite set $\operatorname{Spec}(\mathbb{T}_{n,F}(U))(K) = \operatorname{Hom}_{K\text{-alg}}(\mathbb{T}_{n,F}(U), K)$ from the right canonically. We have the following conjecture made long ago.

Conjecture 3.1. Suppose $n\tau = n$ for all $\tau \in G$. If we are working with the B^{\times} -version of $\mathbb{T}_{n,F}$ and $C_{n,F}(U)$, we suppose that |G| is odd (we do not suppose any condition on G for the B_1 -version). Then there exists a G-equivariant surjection $\iota : C_{n,F}(U) \twoheadrightarrow \operatorname{Spec}(\mathbb{T}_{n,F}(U))(K)$. If we suppose

- (H1) $\mathbb{T}_{n,F}(U)$ is semi-simple and $\dim_K \mathbb{T}_{n,F}(U) = \dim_K \mathcal{M}_{n,F}(U,\varepsilon)$,
- (H2) $\Gamma_g = (U \cdot Z(F_{\mathbb{A}})) \cap g\mathcal{G}(F)g^{-1}$ acts trivially on $L(n,\varepsilon;K)$ for all $g \in \mathcal{G}(F_{\mathbb{A}}^{(\infty)})$ for $\mathcal{G} = B^{\times}$ or B_1 ,

then ι is a bijection.

The assumptions (H1) are the multiplicity one statement of the action of $\mathbb{T}_{n,F}(U)$. So if we choose ε well so that the conductor of ε match the level of U of Γ_0 -type, (H1) holds if K is of characteristic 0 (by the classical multiplicity one theorem for B^{\times} and by Ramakirishnan's multiplicity one theorem for SL(2) if we work with the B_1 -version). For such (U, ε) , (H1) holds for almost all characteristic p > 0. The assumption (H2) holds for all U sufficiently small.

Hereafter, we **assume** (H1–2). Since $\mathbb{T}_{n,F}(U)$ is commutative semi-simple, $\mathbb{T}_{n,F}(U) \cong K[\operatorname{Spec}(\mathbb{T}_{n,F}(U))(K)]$ as K[G]-modules. As described in an exercise in Serre's book on linear representations of finite groups (II.13, Exercise 13.5), if char(K) = 0,

 $K[\operatorname{Spec}(\mathbb{T}_{n,F}(U))(K)] \cong \mathcal{M}_{n,F}(U,\varepsilon) = K[C_{n,F}(U)] \text{ as } G\text{-modules}$ $\Rightarrow \operatorname{Spec}(\mathbb{T}_{n,F}(U))(K) \cong C_{n,F}(U) \text{ as } H\text{-sets for all cyclic subgroups } H \subset G.$

Since $\mathbb{T}_{n,F}(U) \cong \mathcal{M}_{n,F}(U,\varepsilon)$ as G-modules, as already stated, we have

Theorem 3.2. Assume char(K) = 0 or $char(K) > |C_{n,F}(U)|$. If G is cyclic, the conjecture holds.

As for this theorem, even for the B^{\times} -version, we do not need to assume that G has odd order.

4. Galois representations

Pick a sufficiently large prime p and take $K = \overline{\mathbb{Q}}_p$. The prime p is large enough so that any mod p modular Galois representations lifts to K-representations (Wiles-Taylor). We suppose that R_F is stable under G, which is equivalent to

(dd) if B ramifies at a prime ℓ of E, B_F ramifies at all prime factors of ℓ .

Let $U_E = U^G$, and suppose that U is of type $\Gamma_0(N)$ for an O-ideal N outside ramified primes for B (at each ramified primes for B, $U_{\mathfrak{l}}$ is the unique maximal compact subgroup). For simplicity, we suppose $\varepsilon(z \begin{pmatrix} a & b \\ cN & d \end{pmatrix}) = \varepsilon_+(z)\varepsilon(d)$ for $z \in Z(F_{\mathbb{A}})$ and $\begin{pmatrix} a & b \\ cN & d \end{pmatrix} \in \Gamma_0(N)_N$. We suppose $\varepsilon = \varepsilon_E \circ N_{F/E}$ for a similar character ε_E of U_E .

Write $\mathbb{T}_E = \mathbb{T}_{n,E}(U_E)$ for $(U_E = U^G, \varepsilon_E)$, for a fixed (U, ε) satisfying the assumptions (H1–2) of the conjecture. The assumption (H1) and (H2) in the conjecture implies $U_{\mathfrak{l}} = R_{E,\mathfrak{l}}^{\times}$ if \mathfrak{l} ramifies in B_F .

For the moment we work with the B^{\times} -version. With each $P \in \operatorname{Spec}(\mathbb{T}_F)(K)$ regarded as a K-algebra homomorphism $P : \mathbb{T}_F \to K$, we can now attach a unique semi-simple p-adic Galois representation $\rho = \rho_P : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(K)$ such that

- (G1) ρ is unramified outside Np and {primes ramified in B}, crystalline of Hodge-Tate weight $(n_{\sigma}+1, 0)$ at each p-adic place σ and det $(\rho(Frob_{\mathfrak{l}})) = N(\mathfrak{l})\varepsilon_{+}(Frob_{\mathfrak{l}});$
- (G2) If \mathfrak{l} ramifies in B_F , $\rho|_{D_{\mathfrak{l}}} \cong \begin{pmatrix} \alpha \mathcal{N} \\ 0 \\ \alpha \end{pmatrix}$, where \mathcal{N} is the *p*-adic cyclotomic character;
- (G3) $\rho|_{I_{\mathfrak{l}}} \cong \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon_{\mathfrak{l}} \end{pmatrix}$ for all $\mathfrak{l}|N$.

For all primes \mathfrak{l} in (G1), we have $\operatorname{Tr}(\rho_P(Frob_{\mathfrak{l}})) = P(T(\mathfrak{l}))$, and this characterizes ρ_P by P. As for the B_1 -version, $P \in \operatorname{Spec}(\mathbb{T}_F)(K)$ parameterizes a projective representation satisfying the conditions (G1-3) after taking "modulo center". We expect

(L_F) All irreducible ρ : Gal($\overline{\mathbb{Q}}/F$) \rightarrow GL₂(K) (resp. ρ : Gal($\overline{\mathbb{Q}}/F$) \rightarrow PGL₂(K) for the B₁-version) satisfying (G1-3) (resp. (G1-3) modulo center) are modular.

Based on this expectation, starting with ρ_P for $P \in \operatorname{Spec}(\mathbb{T}_E)(K)$, Langlands predicted the existence of $\widehat{P} \in \operatorname{Spec}(\mathbb{T}_F)(K)$ such that $\rho_{\widehat{P}} \cong \rho_P|_{\operatorname{Gal}(\overline{\mathbb{Q}}/F)}$. To prove the existence of \widehat{P} is the problem of base-change. Langlands solved this question if G is soluble. By the solution of Serre's mod p modularity conjecture, $(L_{\mathbb{Q}})$ is valid.

Define the inner conjugate $\rho_P^{\tau}(\sigma) = \rho_P(\tilde{\tau}\sigma\tilde{\tau}^{-1})$ taking an extension $\tilde{\tau}$ of $\tau \in G$. Then we have $\rho_{\tau(P)} \cong \rho_P^{\tau}$. For the B^{\times} -version, if $H^2(G, \mathbb{Z}/2\mathbb{Z})$ vanishes and P is fixed by G, ρ_P extends to a Galois representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/E)$ with determinant $\varepsilon_{E+}\mathcal{N}$ for the *p*-adic cyclotomic character \mathcal{N} (I. Schur). The extension is unique, if $H^1(G, \mathbb{Z}/2\mathbb{Z}) = 0$. We call G simply 2-connected if $H^j(G, \mathbb{Z}/2\mathbb{Z}) = 0$ for j = 1, 2. For the B^{\times} -version, suppose that G is simply 2-connected (for example, groups of odd order and $SL_2(\mathbb{F})$ for finite field \mathbb{F} with $|\mathbb{F}| \geq 5$ is simply 2-connected). For the B_1 -version, no condition on G is necessary. Again by Schur, any projective Ginvariant representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$ extends uniquely to a projective representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/E)$ with prescribed determinant character module center.

Two finite G-sets X and Y are equivalent if and only if $|X^H| = |Y^H|$ for all subgroups H. We know, as explained quoting Exercise 13.5 of Serre's book, $|C_{n,F}(U)^H| = |\operatorname{Spec}(\mathbb{T}_F)(K)^H|$ for all cyclic subgroups H. We can easily count $|C_{n,F}(U)^H| = |C_{n,F^H}(U_{F^H})|$ (up to an explicit 2-power), and assuming Conjecture 3.1, we get for $H \subset G$

(4.1)
$$|\operatorname{Spec}(\mathbb{T}_F)(K)^H| \stackrel{\operatorname{Conjecture 3.1}}{=} |C_{n,F}(U)^H| = |C_{n,F^H}(U_{F^H})| = |\operatorname{Spec}(\mathbb{T}_{F^H})(K)|$$

up to an explicit 2-power. If $H \subset G$ is 2-simply connected, then

(4.2)
$$|\operatorname{Spec}(\mathbb{T}_F)(K)^H| = \#\{\rho_P : H\text{-invariant}\} = |\operatorname{Spec}(\mathbb{T}_{F^H})(K)|$$

up to explicit 2-power. The associated projective representation $\overline{\rho}_P : \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to PGL_2(\overline{\mathbb{Q}}_p)$ (that is, ρ_P modulo center) always extends to a unique projective representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Thus

Theorem 4.1. Suppose Conjecture 3.1 and (L_?) for ? = E or F for a sufficiently large p. Then $\{\rho_P\}_{P\in \operatorname{Spec}(\mathbb{T}_E)(K)}$ has a base-change lift to F. In particular, if G is odd cyclic and $E = \mathbb{Q}$, we have base-change of $\{\rho_P\}_{P\in \operatorname{Spec}(\mathbb{T}_{Q})(K)}$ to $\{\rho_{\widehat{P}}\}_{\widehat{P}\in \operatorname{Spec}(\mathbb{T}_{Q})(K)}^G$.

Of course, the second assertion is a theorem of Langlands. We can go reverse, since we know base-change by Langlands for soluble subgroups $H \subset G$.

Theorem 4.2. If G is soluble, Conjecture 3.1 holds for K of characteristic 0.

As a more concrete (but non-soluble) example, we can offer

Theorem 4.3. Suppose that $G = \text{Gal}(F/\mathbb{Q}) \cong SL_2(\mathbb{F}_p)$ or A_5 . If $B_{/\mathbb{Q}}$ ramifies only at one prime in the set $\{2, 3, 5, 7, 11, 13, 17, 19, 23\}$, the conjecture for the B_1 -version holds for $(U, \varepsilon) = (\widehat{R}_F^{\times}, \mathbf{1})$ and K of characteristic 0.

Here is a sketch of proof. For A_5 or $SL_2(\mathbb{F}_5)$, any proper subgroup $H \subsetneq G$ is soluble; so, $|\operatorname{Spec}(\mathbb{T}_F)(K)^H| = |C_{0,F}^H|$. Thus we need to show

$$|\operatorname{Spec}(\mathbb{T}_F)(K)^G| = |C_{0,F}^G| = |C_{0,Q}|$$

By $(L_{\mathbb{Q}})$, $|\operatorname{Spec}(\mathbb{T}_F)(K)^G| \leq |C_{0,\mathbb{Q}}|$ and

$$|C_{0,\mathbb{Q}}| = \begin{cases} 1 & \text{if } p = 2, 3, 5, 7, 13\\ 2 & \text{if } p = 11, 17, 19\\ 3 & \text{if } p = 23 \end{cases}$$

for p as above. The constant function 1 on $B_1(F_{\mathbb{A}})$ gives rise to an element in $\operatorname{Spec}(\mathbb{T}_F)(K)^G$; so, $|\operatorname{Spec}(\mathbb{T}_F)(K)^G| \geq 1$, and this settles the case where $|C_{0,\mathbb{Q}}| = 1$. As for p = 11, we showed that $\Delta(z)^{1/12}\Delta(11z)^{1/12} \in S_2(\Gamma_0(11))$ can be lifted to any totally real field linearly disjoint from $\mathbb{Q}[\sqrt{131}]$ in my paper with Maeda (in the Orga Taussky-Todd memorial volume in 1998 from Pacific journal of mathematics), though we assumed that F is unramified at $13 \cdot 131$ in the paper (but the method works just under the linear disjointness because of the progress (made after 1998) of the techniques used). Thus if p = 11, we have $2 \leq |\operatorname{Spec}(\mathbb{T}_F)(K)^G| = |C_{0,F}^G| = |C_{0,Q}| = 2$. The case of other primes listed above can be treated similarly.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES CA 90095-1555, U.S.A.