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1. Quaternion class sets

Pick a quaternion algebra B over a totally real field E and suppose that Bσ =
B ⊗E,σ R ∼= H (the Hamilton quaternion algebra) for all embeddings σ : E ↪→ R. To
avoid complication from automorphically induced representations from GL(1) over
a CM quadratic extension over E, we assume that B ramifies at some finite places.
Take a totally real Galois extension F/E with integer ring O and Galois group G =
Gal(F/E). Suppose we have a G-invariant maximal order RF of BF = B ⊗Q F .
An nonzero right RF -submodule A ⊂ BF of finite type is called a fractional right
RF -ideal. We can think of an equivalence between right fractional RF -ideals A and
B of BF . In other words, A ∼ B ⇔ A = αaB for α ∈ B×

F and a O-ideal a. The
resulting G-set C0,F of equivalence classes is a finite set (not a group, because A−1

is a left ideal). We do not have a good definition of the norm map of C0,F → C0,E

for BF = B ⊗Q F and BE = B ⊗Q E. Since BE ⊂ BF naturally, we still have a G-
equivariant map ιF/E : C0,E → C0,F as long as we choose maximal orders compatibly:
RE = RF ∩ B.

2. Hecke operators

Write MF for the space of functions f : C0,F → K for a (fixed) algebraically closed
field K. Then we have Hecke operators T (n) for nonzero O-ideals n defined by

f |T (n)(a) =
∑

x

f(ax) (x runs over right ideals with reduced norm n).

The space MF has inner product 〈f, g〉 =
∑

x∈C0,F
f(x)g(x) invariant under the action

of G and for which T (n) is self-adjoint. By the Jacquet-Langlands correspondence,
MF as a Hecke module is equivalent to a subspace of Hilbert modular forms over F
of weight 2.

We write TF for the K-subalgebra of End(MF ) generated by Hecke operators.
If K is of characteristic 0, TF is a commutative semi-simple algebra, and MF

∼=
HomK(TF ,K) as TF -modules (the multiplicity 1 theorem). Indeed, pick a K-linear
form λ : MF → K which does not kill any common eigenform under the action of TF ,
the pairing 〈T, f〉 = λ(f |T ) gives the duality. If F/E is a Galois extension with Galois
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group G and RF is G-invariant, we can make this isomorphism G-equivariant (taking
G-invariant λ). Here G acts on TF by T (n) 7→ T (nσ−1

) and f by f(x) 7→ f(xσ).
If TF is semi-simple, by trace pairing, HomK(TF ,K) ∼= TF as (TF , G)-module; so,
K[C0,F ] ∼= MF

∼= TF as K[G]-modules.
In adelic language, regarding B× as an algebraic group so that B×(A) = (B⊗A A)×

for a Q-algebra A, we can identify canonically C0,F with B×(F )\B×(F
(∞)
A )/Z(F

(∞)
A )R̂×

F

for R̂F = RF ⊗Z Ẑ with Ẑ =
∏

p Zp and the center Z ⊂ B×. Let U =
∏

l Ul ⊂ R̂×
F

be a subgroup of finite index (Ul ⊂ B×Fl), l running over primes of F ). We

consider the ray U -class set C0,F (U) = B×(F )\B×(F
(∞)
A /Z(F

(∞)
A )U and a char-

acter ε : U · Z(F
(∞)
A ) → K× (with finite order ε|U). We have an isomorphism

C0,F
∼= C0,F (R̂×

F ).
Put U1 = Ker(ε : U → K×), and let I = Homalg(O,K) and suppose |I| = [F : Q].

Note that R⊗OK ∼= M2(K)I (and we fix this identification); so, we may choose a ratio-
nal place v so that Rv ⊗Ov K ∼= M2(K)I and hence we have a natural homomorphism
σ : Rv → M2(K) extending σ ∈ I. Let Z[I] be the free module generated by I. For
each n =

∑
σ nσσ ∈ Z[I] with nσ ≥ 0, we consider space L(n;K) of K-polynomials in

(Xσ, Yσ)σ∈I homogeneous of degree nσ with respect to the pair (Xσ, Yσ). Regarding
f ∈ L(n;K) as a function on W := (K2)I 3 (xσ, yσ) 7→ f(xσ, yσ) ∈ K, we consider
the space Mn,F (U, ε) of functions

f : B×(F )\B×(FA) → L(n;K) with f(xu; (xσ, yσ)) = ε(zu)f(x; (xσ, yσ)σ(uv)
−1)

for all u ∈ UB×(R) and z ∈ Z(FA). If U is sufficiently small,

dimK Mn,F (U, ε) = |Cn,F (U)|

for Cn,F (U) = C0,F (U) × {0 ≤ j ≤ n}, because dimK L(n;K) = |{0 ≤ j ≤ n}|.
Decompose U1gU1 =

⊔
i giU1, and define a linear operator on Mn,F (U, ε) by

f |[U1gU1](x;w) =
∑

i

f(xgi;w).

This operator is a generalization of T (n).
For a prime l of F , if Ul ( (RF ⊗O Ol)

×, we call l is in the level of U , and write
S for the set of primes either in the level of U or l|v. We write as L(n, ε;K) the
Z(FA)U -module L(n;K) with the action zu · f := ε(zu)f(xσ, yσ)σ(uv)

−1). We write
Tn,F (U) for the subalgebra of EndK(Mn,F (U, ε)) generated over K by the operators

[U1gU1] for all g ∈ B×(F
(S)
A ) (F

(S)
A : adeles outside S and ∞). We write T (l) = [U1gU1]

if l 6∈ S, g ∈ Rl and N(g)O = l.
Let B1 = Ker(N : B× → Gm/E) for the reduced norm map N . In the above

definition, we can replace every groups (B×, U, Z) by (B1, B1(F
(∞)
A ) ∩ U,Z ∩ B1)

and obtain a B1-version of corresponding spaces and Hecke algebras. We use same
notation also for the B1-version, and if necessary, we explicitly indicate with which
version we are working.
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3. A conjecture on Galois permutation representations

Suppose F/E is a Galois extension with Galois group G. Then G acts on BF =

B⊗Q F through the right factor F . We choose an open compact subgroup U ⊂ R̂×
F so

that it is stable under G. We suppose ε(uτ) = ε(u) and nτ = n (through permutation
of I). Then the Galois group G naturally acts on the finite set Cn,F (U) by

(x, j)σ = (xσ, jσ) (x ∈ Cn,F (U) and 0 ≤ j ≤ n)

and on Mn,F (U, ε) by the pull back left action: τ · f(x; (xσ, yσ)) = f(xτ ; (xστ , yστ )).
Since Tn,F (U) acts on Mn,F (U, ε), we can let τ ∈ G act on Tn,F (U) from the left

by [U1gU1]
σ = [U1g

σ−1
U1] (thus T (l)σ = T (lσ

−1
)). Thus G acts on the finite set

Spec(Tn,F (U))(K) = HomK-alg(Tn,F (U),K) from the right canonically. We have the
following conjecture made long ago.

Conjecture 3.1. Suppose nτ = n for all τ ∈ G. If we are working with the B×-
version of Tn,F and Cn,F (U), we suppose that |G| is odd (we do not suppose any
condition on G for the B1-version). Then there exists a G-equivariant surjection
ι : Cn,F (U) � Spec(Tn,F (U))(K). If we suppose

(H1) Tn,F (U) is semi-simple and dimK Tn,F (U) = dimK Mn,F (U, ε),

(H2) Γg = (U · Z(FA)) ∩ gG(F )g−1 acts trivially on L(n, ε;K) for all g ∈ G(F
(∞)
A )

for G = B× or B1,

then ι is a bijection.

The assumptions (H1) are the multiplicity one statement of the action of Tn,F (U).
So if we choose ε well so that the conductor of ε match the level of U of Γ0-type,
(H1) holds if K is of characteristic 0 (by the classical multiplicity one theorem for
B× and by Ramakirishnan’s multiplicity one theorem for SL(2) if we work with the
B1-version). For such (U, ε), (H1) holds for almost all characteristic p > 0. The
assumption (H2) holds for all U sufficiently small.

Hereafter, we assume (H1–2). Since Tn,F (U) is commutative semi-simple, Tn,F (U) ∼=
K[Spec(Tn,F (U))(K)] as K[G]-modules. As described in an exercise in Serre’s book
on linear representations of finite groups (II.13, Exercise 13.5), if char(K) = 0,

K[Spec(Tn,F (U))(K)] ∼= Mn,F (U, ε) = K[Cn,F (U)] as G-modules

⇒ Spec(Tn,F (U))(K) ∼= Cn,F (U) as H-sets for all cyclic subgroups H ⊂ G.

Since Tn,F (U) ∼= Mn,F (U, ε) as G-modules, as already stated, we have

Theorem 3.2. Assume char(K) = 0 or char(K) > |Cn,F (U)|. If G is cyclic, the
conjecture holds.

As for this theorem, even for the B×-version, we do not need to assume that G has
odd order.
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4. Galois representations

Pick a sufficiently large prime p and take K = Qp. The prime p is large enough
so that any mod p modular Galois representations lifts to K-representations (Wiles-
Taylor). We suppose that RF is stable under G, which is equivalent to

(dd) if B ramifies at a prime ` of E, BF ramifies at all prime factors of `.

Let UE = UG, and suppose that U is of type Γ0(N) for an O-ideal N outside ramified
primes for B (at each ramified primes for B, Ul is the unique maximal compact
subgroup). For simplicity,we suppose ε(z ( a b

cN d )) = ε+(z)ε(d) for z ∈ Z(FA) and
( a b

cN d ) ∈ Γ0(N)N . We suppose ε = εE ◦ NF/E for a similar character εE of UE.
Write TE = Tn,E(UE) for (UE = UG, εE), for a fixed (U, ε) satisfying the assump-

tions (H1–2) of the conjecture. The assumption (H1) and (H2) in the conjecture
implies Ul = R×

F,l if l ramifies in BF .
For the moment we work with the B×-version. With each P ∈ Spec(TF )(K)

regarded as a K-algebra homomorphism P : TF → K, we can now attach a unique
semi-simple p-adic Galois representation ρ = ρP : Gal(Q/F ) → GL2(K) such that

(G1) ρ is unramified outside Np and {primes ramified in B}, crystalline of Hodge-
Tate weight (nσ+1, 0) at each p-adic place σ and det(ρ(Frobl)) = N(l)ε+(Frobl);

(G2) If l ramifies in BF , ρ|Dl
∼= ( αN ∗

0 α ), where N is the p-adic cyclotomic character;
(G3) ρ|Il

∼=
(

1 0
0 εl

)
for all l|N .

For all primes l in (G1), we have Tr(ρP (Frobl)) = P (T (l)), and this characterizes ρP

by P . As for the B1-version, P ∈ Spec(TF )(K) parameterizes a projective represen-
tation satisfying the conditions (G1–3) after taking “modulo center”. We expect

(LF ) All irreducible ρ : Gal(Q/F ) → GL2(K) (resp. ρ : Gal(Q/F ) → PGL2(K) for
the B1-version) satisfying (G1–3) (resp. (G1–3) modulo center) are modular.

Based on this expectation, starting with ρP for P ∈ Spec(TE)(K), Langlands pre-

dicted the existence of P̂ ∈ Spec(TF )(K) such that ρP̂
∼= ρP |Gal(Q/F ). To prove the

existence of P̂ is the problem of base-change. Langlands solved this question if G is
soluble. By the solution of Serre’s mod p modularity conjecture, (LQ) is valid.

Define the inner conjugate ρτ
P (σ) = ρP (τ̃στ̃−1) taking an extension τ̃ of τ ∈ G.

Then we have ρτ(P )
∼= ρτ

P . For the B×-version, if H2(G, Z/2Z) vanishes and P is

fixed by G, ρP extends to a Galois representation of Gal(Q/E) with determinant
εE+N for the p-adic cyclotomic character N (I. Schur). The extension is unique, if
H1(G, Z/2Z) = 0. We call G simply 2-connected if Hj(G, Z/2Z) = 0 for j = 1, 2.
For the B×-version,, suppose that G is simply 2-connected (for example, groups of
odd order and SL2(F) for finite field F with |F| ≥ 5 is simply 2-connected). For
the B1-version, no condition on G is necessary. Again by Schur, any projective G-
invariant representation of Gal(Q/F ) extends uniquely to a projective representation
of Gal(Q/E) with prescribed determinant character module center.

Two finite G-sets X and Y are equivalent if and only if |XH | = |Y H | for all sub-
groups H. We know, as explained quoting Exercise 13.5 of Serre’s book, |Cn,F (U)H| =
|Spec(TF )(K)H | for all cyclic subgroups H.
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We can easily count |Cn,F (U)H| = |Cn,F H (UF H )| (up to an explicit 2-power), and
assuming Conjecture 3.1, we get for H ⊂ G

(4.1) |Spec(TF )(K)H | Conjecture 3.1
= |Cn,F (U)H | = |Cn,F H (UF H )| = |Spec(TF H )(K)|

up to an explicit 2-power. If H ⊂ G is 2-simply connected, then

(4.2) |Spec(TF )(K)H| = #{ρP : H-invariant} = |Spec(TF H )(K)|
up to explicit 2-power. The associated projective representation ρP : Gal(Q/F ) →
PGL2(Qp) (that is, ρP modulo center) always extends to a unique projective repre-

sentation of Gal(Q/Q). Thus

Theorem 4.1. Suppose Conjecture 3.1 and (L?) for ? = E or F for a sufficiently
large p. Then {ρP}P∈Spec(TE)(K) has a base-change lift to F . In particular, if G is odd
cyclic and E = Q, we have base-change of {ρP }P∈Spec(TQ)(K) to {ρP̂}P̂∈Spec(TQ)(K)G.

Of course, the second assertion is a theorem of Langlands. We can go reverse, since
we know base-change by Langlands for soluble subgroups H ⊂ G.

Theorem 4.2. If G is soluble, Conjecture 3.1 holds for K of characteristic 0.

As a more concrete (but non-soluble) example, we can offer

Theorem 4.3. Suppose that G = Gal(F/Q) ∼= SL2(Fp) or A5. If B/Q ramifies only
at one prime in the set {2, 3, 5, 7, 11, 13, 17, 19, 23}, the conjecture for the B1-version

holds for (U, ε) = (R̂×
F ,1) and K of characteristic 0.

Here is a sketch of proof. For A5 or SL2(F5), any proper subgroup H ( G is
soluble; so, |Spec(TF )(K)H | = |CH

0,F |. Thus we need to show

|Spec(TF )(K)G| = |CG
0,F | = |C0,Q|.

By (LQ), |Spec(TF )(K)G| ≤ |C0,Q| and

|C0,Q| =





1 if p = 2, 3, 5, 7, 13,

2 if p = 11, 17, 19

3 if p = 23

for p as above. The constant function 1 on B1(FA) gives rise to an element in
Spec(TF )(K)G; so, |Spec(TF )(K)G| ≥ 1, and this settles the case where |C0,Q| = 1.
As for p = 11, we showed that ∆(z)1/12∆(11z)1/12 ∈ S2(Γ0(11)) can be lifted to any
totally real field linearly disjoint from Q[

√
131] in my paper with Maeda (in the Orga

Taussky-Todd memorial volume in 1998 from Pacific journal of mathematics), though
we assumed that F is unramified at 13 · 131 in the paper (but the method works just
under the linear disjointness because of the progress (made after 1998) of the tech-
niques used). Thus if p = 11, we have 2 ≤ |Spec(TF )(K)G| = |CG

0,F | = |C0,Q| = 2.
The case of other primes listed above can be treated similarly.
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