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Each rational elliptic curve E/@ IS QSSOCi-
ated to a Hecke eigenform fg of level (V)
for a suitable positive integer N in the fol-
lowing way (Shimura/Taniyama conjecture):

o Lookat TiE = |im E[I"] (Q) (Tate mod-
ule for a prime 1), where E[I"](Q) =
{zr ¢ E(Q)|I"x = 0},

e The absolute Galois group Gal(Q/Q) acts
on it, and for the inertia group at an-
other prime p # [,

TiE? = {x € T)E|ox = x Vo € I} 2! 7,

depending on p with ranky T)E'» = 2
for almost all p.

e The Frobenius element Frob, has its
characteristic polynomial independent of
[

®p(X) = det(1 — Frobp|,, pr,X) € Z[X].

1



e Make the Hl—part of Hasse—Weil L-function
L(s,E) by

L(s, E) _chp(p—S) e Z ann 5.

e Make a Fourier series convergent on
H={z€ClIm(z) > 0}:

f(z) = io: an exp(2minz) (Im(z) > 0).
n=1

e Then f(2EY) = f(2)(cz 4 d)? for all
<‘C‘g) € SL>(Z) with Nlc for a posi-
tive integer N called the level (weight
2 modular form).



This can be generalized to any system

{p1 © V(py) £ F?}, of [-adic odd Galois rep-
resentations, where [ runs over prime ideals
of a number field F. Then

oo

Hdet(l—p[(FroprV(p )Ipp_s)_l = > an(p)n™?
[
p n=1
gives rise to a modular form
oo
fp="3" an(p) exp(2minz)
n=1

which satisfies f(az+ ) = (d) f(2)(cz + d)¥
as before for an mteger k > 0 and a Dirich-
let character iy modulo the level N.

For a number field K C Q, the field

K(ap(n)in=1,2,...)

is called the Hecke field, which is one of the
most mysterious series of number fields.
One can simplify the question, fixing one
prime p, and consider a simple extension
K (ap(p)) or for a family of systems of [-adic
Galois representations F = {p}, we could
think of K(ap(p)),cr, and ask

how Dbig this field is?



§1. Notation

To define the family F we study, we intro-
duce some notation. Fix

e An odd prime p > 2;
e a positive integer N (p{1 N);
e two field embeddings C «— Q — Q,,.

Consider the space of cusp form

Skt1 = Skr1(To(Np™TH),9) (r>0)
of weight “k 4 1" with Nebentypus .

Let the rings

Z[y] c C and Zply] C Q,
be generated by ¥(n) (n=1,2,...) over Z

and Zy.

The Hecke algebra over Z is
h=Z][T(n)|n =1,2,--] C End(Sg41.4)-
Put hk—|—1,¢ =h ®Z[¢] Zp[¢].

Sometimes our T'(p) is written as U(p) as
the level is divisible by p.



32. Big Hecke algebra

The ordinary part h{’#;  C hpq1,y is the
maximal ring direct summand on which
U(p) is invertible; so,

ord _ _ i n!
h?"®=e-h for e—nIL)mOOU(p) :

Let ¥1 = ¢ xXthe tame p-part of . Then,
we have a unique ‘big’ Hecke algebra h =

hm such that

e h is free of finite rank over Zy[[T]] with
T(n) €h (n=1,2,...; T(p) = U(p))
elety=1+p Ifk>1ande:Z; — pyo

IS a character,

h/(1+T — ()e(Vh =2 hdH Ly

for ¢ = Ywl™F, sending T(n) to T(n),
where w is the Teichmuller character.



§3. Galois representation

Each irreducible component

Spec(l) C Spec(h)

has a Galois representation

p1 - Gal(Q/Q) — GL(2)

with coefficients in I (or its quotient field)
such that

Tr(pr(Froby)) = a(l)

(for the image a(l) in 1 of T'(1)) for almost
all primes ¢. Usually py has values in GLo (1),
and we suppose this for simplicity.

We regard P ¢ Spec(ﬂ)(@p) as an algebra
homomorphism P : I — @p, and we put

pp = Popr: Gal(Q/Q) — GL2(Qp).



34. Analytic family

A point P of Spec(I)(Q,) is called

arithmetic

if P(14+T — epp(y)7*) = 0 for £ > 1 and
e . Z;; — Upoo.

If P is arithmetic, we have a Hecke eigen-
form fp € Sk_|_1(I‘O(Np"“(P)),e¢k) such that

fP|T(n) — a’P(n)fP (n — 1727' . )
f_or ap(n) ;= P(a(n)) = (a(n) mod P) €
Qp-

We write ep = ¢ and k(P) = k for such a
P.

Thus I gives rise to an analytic family

F1 = {fplarithemtic P € Spec(I)}.



§5. CM component and CM family

We call a Galois representation p CM if
there exists an open subgroup G C Gal(Q/Q)
such that the semi-simplification (p|z)®® has
abelian image over G.

We call I a CM component if py is CM.

If I is a CM component, it is known that
for an imaginary quadratic field M in which
p splits, there exists a Galois character ¢ :
Gal(Q/M) — I¥ such that py = Ind% ©.

If pp = Ind% op for some arithmetic point
P, Iisa CM component.



6. A theorem on Hecke fields

Pick an infinite set A of arithmetic points
P with fixed weight k(P) = k > 1. Write
H 4(I) C Q for the field generated over Q(up)
by {ap(p)}pca. Here is what we can prove:

Theorem 1 (H-theorem). The field H 4(I)
is a finite extension of Q(uy) if and only
if I is CM. Moreover

lim sup[Q(upee)(ap(p)) @ Q(upee))] = oo.
PcA

Assume that [H 4(I) : Q(up>)] < co. We try
to prove that I has CM. The converse is
an easy application of Galois deformation
theory.



7. Number of eigenforms bounded

We start preparing to give a proof of the
theorem. Put K(fp) = Klap(n);n=1,2,...]
inside Q.

Lemma 1 (Bounded degree). The degree

[Q(pp) (fP) + Qlupe)(ap(p))]

for arithmetic P with fixed k(P) > 1 is
bounded (basically by rankZp[[T]] h) inde-
pendently of P.

For a prime [ outside Np, let

A(l) = a root of det(X — pr(Frob;)) = 0.
Then oy p := P(A(l)) € Q, is a root of

X2 —ap()X + ()P = 0.

If ] = p, we put A(l) = a(l). Fix l. Ex-
tending I, we assume that A(l) € I. By the
lemma, if [Q(upee) (ap(p)) : Qup=)] < B for
Bindependentof P € A, Kp = Q(pp~)(oq p)
has bounded degree over Q(uy=) indepen-
dent of [ and P for all P € A.



§8. Weil numbers

For a prime [, a Weil I-number a € C of
integer weight k£ > 0O satisfies

(1) « is an algebraic integer;
(2) |a?| = 1¥/2 for all o € Gal(Q/Q).

The number of Weil [-numbers of a given
weight k in Q(up<) is finite up to roots of
unity, as we have only finitely many possi-
bility of its prime factorization. Indeed, if [
is either inert or ramified fully in Q(up=)/Q,
weight k Weil I-number is (at most) 1¥/2 up
to roots of unity.



89. Finiteness proposition

Two nonzero numbers a and b equivalent
if a/bis a root of unity. Let K be the set of
all extensions of Q[u,~] of degree d < oo
inside Q whose ramification at [ is tame.
Here is a slight improvement:

Proposition 1 (Finiteness Proposition). We
have only finitely many Weil l-numbers of
a given weight in the set-theoretic union
Ukek, £ up to equivalence.

The proof is an elementary but subtle anal-
ysis of prime decomposition of the Weil
number. Tameness is assumed since in that
case, there are only finitely many isomor-
phism classes of K 0) Q; for K € K4, and
one can consider the prime factorization in
a fixed algebra K®@Ql picking one isomor-
phism class.



§10. A rigidity lemma

Let W be a p-adic valuation ring finite flat
over Zp and ®(T) € WI[T]]. Regard & as a
function of t = 1+ T; so, ®(1) = P|p—p.
We start with a lemma whose characteristic
p version was studied by Chai:

Lemma 2 (Rigidity). Suppose that there
is an infinite subset Q C ppoo(K) such that
P(€2) C pupoe. Then there exist (g € pyo and
s € Zp such that (g1 (t) = t° = 10 (;)T’n.

n=0

Note here that if

7 C G X G = SpF(W[t,t=1, ¢, ¢~ 1))
iIs a formal subtorus, it is defined by the
equation t = t'° for s € Q. Thus we need
to prove that the graph of the function
t — ®d(¢) in Gm x G is a formal subtorus.
Fo simplicity, assume ®(1) =1 (so (o =1)
in the following proof.



311. Proof of the rigidity lemma.

Step 1: Regard & as a morphism of formal
schemes G, — Gyp,.

Step 2: For any o in an open subgroup
1+ p"Zp C Gal(W[ppo] /W) C Z;, we have
(%) = P(¢7) = a(P(¢)) = P(¢)?; so,

S (1) = D(1)?

if (¢ = (¢~ for the value z € 1 4+p"Z;, of the
cyclotomic character at o.

Step 3. Thegraph Z oft — ®(¢t) in @m X @m
is therefore stable under (¢,t') — (t?,t'*) for
z =14 p"Zyp.

Step 4: Pick a point (tg,t5 = P(tp)) of
infinite order in Z, then

A TPE TPy = (10, ) (b0, th)P " € Z

for all z € Zp Thus Z has to be a coset of
a formal subgroup generated by (to,t )"

Since (1,1) € Z, Z is a formal torus, and
we find s € Z, with ®(t) = t°. [ ]



§12. Frobenius eigenvalues

Suppose [H () : Q(up=)] < oco. This im-
plies Kp = Q(upee)(a; p) has bounded de-
gree over Q(up~); so, for primes I > 0, [ is
tamely ramified in Kp (the tameness as-
sumption in Finiteness Proposition).

Proposition 2 (Eigenvalue formula). There
exists a Weil [-number a1 of weight 1 and
a root of unity (g such that

A(P) = oy p = Colag)F)1
for all arithmetic P; in other words,

A(T) = (1 +T)°

log,(aq)

for s = T0d,(7)



§13. Proof of eigenvalue formula

We give a sketch of a proof assuming I =
WI[T]]. By Finiteness proposition, we have
only a finite number of Weil [-numbers of
weight k in Upcgq Kp up to multiplication
by roots of unity, and hence

A(P) for P € A hits one of such Waeil
[-number a of weight £k infinitely many
times, up to roots of unity.

After a suitable variable change T'— Y =
~~k(1+T)—1 and division by a Weil num-
ber, A(Y) satisfies the assumption of the

rigidity lemma. We have

AY) = Ca(1 +Y)72

for s1 € Zp, and A(T) = (o(1 +T)%. From
this, it is not difficult to determine s as
stated in the proposition. [ ]



314. Abelian image lemma

Consider the endomorphism os: (1 +7T) —
(147T) =322, <fL)T” of a power series
ring WI[T]] for s € Z,. Let A be an in-
tegral domain over W{[T]] of characteristic
different from 2. Assume that the endo-
morphism o> on W|[[T]] extends to an en-

domorphism o of A.

Lemma 3 (Abelian image). Take a contin-
uous representation p : Gal(Q/F) — GL>(A)
for a field F C Q, and put p° := cop. If
Tr(p®) = Tr(p2). Then p is absolutely
reducible over the quotient field ) of A.

Heuristically, the assumption implies that
the square map: o — p2(o) is still a repre-
sentation p?; so, it has to have an abelian
image. Since any automorphism of the
quotient field Q of Zp[[T]] extends to its
algebraic closure Q D I, we can apply the
above lemma to py.



§15. Proof of the theorem. Suppose
[HA(I) : Q(ppee)] < oo.

Step 1: We have [Kp : Q(up>)] bounded
independent of [; so, if Il > 0, Kp is at most
tamely ramified.

Step 2: By Eigenvalue formula, we r)ave
Tr(p(Frob)) = ¢(14+T)*+ {'(1 4+ T)* for
two roots of unity ¢,¢’ and a,d’ € Qp.

Step 3: Not too difficult to show that the
order of ¢, ¢’ is bounded independent of I.

Step 4: Let my = m{¥ + (T) and p = gy
mod my for N > 0 and F' be the splitting
field of p; so, taking N > 0, we may assume

Tr(p(Frob)) = (1 +T)f* + (1 + 1)7
for all [ > 0 as long as F’roblf c Gal(Q/F).

Step 5: This shows

Tr(osop) = Tr(p°)

over G = Gal(Q/F). Then by the above
lemma, p®%|4 is abelian, and hence I is CM.

L]



§16. p-Adic L-function

Recall of adjoint L-functions and L-invariant
to state an application.

We have one variable L, € 1 characterized
by

2 _
Lp := Lp(1, Ad(pp)) = Lp(lap]?ym@) ®det(p) 1)

and

L(1,Ad(fp))
period

Ly(P) := P(Lp) =

for all arithemtic P.



§17. Congruence criterion and L-invariant

If Spec(h) = Spec(I)uSpec(X) for the com-
plement X, (under a mild assumption)

I
(Lp)
Adding the cyclotomic variable, because of
the modifying Euler p-factor,

Spec(I)NSpec(X) = Spec(Iw,X) = Spec( )

Ly(s, Ad(pp)) has exceptional zero
at 1,

and for an analytic £L-invariant 0 #= L (Ad(py))

in I[[%], we expect to have

Lo(s, Ad(pp))|s=1 = LY (Ad(p1)) Lp.



§18. An application

The adjoint p-adic L-function Ly (s, Ad(fp))
has an exceptional zero at s = 1 com-
ing from modifying Euler p-factor. Green-
berg proposed Galois cohomological def-
inition of an L-invariant L(Ad(fp)), and
we have the following formula in IMRN 59
(2004) 3177-3189: for ¢ = —2log,(vy) and
a = a(p),

da

L(Ad(fp)) = ¢ a™ Tl k(P p(y):

Thus P — L(Ad(fp)) is interpolated over
Spec(l) as an analytic function.

Theorem 2 (Constancy). P — L(Ad(fp))
is constant if and only if py has CM.

By this, P +— L(Ad(fp)) is non-constant for
non CM component; so, non-zero except
for finitely many P.



§19. Proof of the constancy theorem
For simplicity, assume I = W/|[[T]]. Fix
weight k(P) > 1. Suppose L(Ad(fp)) is
constant.

Step 1: By assumption, a_lt% =sec W
for a(t) = a(p)(t). Thus t% =s-a.

Step 2: Putting b(x) = logy,oa(expy(z))
(for z = log,(t)), as dz = %, by chain rule,

db da db da d Ing(a,)
= — = Ss-q:-
dx dx da dx da a

Step 3: b is a linear function of x:

log,(a) = sz+c < a = Cexpy(slogy(t)) = Ct°.

Step 4:Taking d(t) :=t%, we find ©(t%) =
P (t)? for z € Zp. By the rigidity lemma and
its proof, we conclude s € Zy.

Step 5: Thus [H4(I) : Q(up)] < 0co. Then
by the H-theorem, we conclude that F is a
CM family. The converse is easy.



