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Each rational elliptic curve E/Q is associ-

ated to a Hecke eigenform fE of level Γ0(N)

for a suitable positive integer N in the fol-

lowing way (Shimura/Taniyama conjecture):

• Look at TlE = lim←−nE[ln](Q) (Tate mod-

ule for a prime l), where E[ln](Q) =

{x ∈ E(Q)|lnx = 0};

• The absolute Galois group Gal(Q/Q) acts

on it, and for the inertia group at an-

other prime p 6= l,

TlE
Ip = {x ∈ TlE|σx = x ∀σ ∈ Ip}

∼=






0

Zl
Z2
l

depending on p with rankZl
TlE

Ip = 2

for almost all p.

• The Frobenius element Frobp has its

characteristic polynomial independent of

l

Φp(X) = det(1− Frobp|TlEIp
X) ∈ Z[X].
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• Make the H1–part of Hasse–Weil L-function

L(s,E) by

L(s,E) =
∏

p
Φp(p

−s)−1 =
∞∑

n=1

ann
−s.

• Make a Fourier series convergent on

H = {z ∈ C| Im(z) > 0}:

f(z) =
∞∑

n=1

an exp(2πinz) (Im(z) > 0).

• Then f(az+b
cz+d) = f(z)(cz + d)2 for all

(
a b
c d

)
∈ SL2(Z) with N |c for a posi-

tive integer N called the level (weight

2 modular form).



This can be generalized to any system

{ρl � V (ρl)
∼= F2

l
}l of l-adic odd Galois rep-

resentations, where l runs over prime ideals

of a number field F . Then

∏

p
det(1−ρl(Frobp)|V (ρl)

Ipp
−s)−1 =

∞∑

n=1

an(ρ)n
−s

gives rise to a modular form

fρ =
∞∑

n=1

an(ρ) exp(2πinz)

which satisfies f(az+b
cz+d) = ψ(d)f(z)(cz+ d)k

as before for an integer k > 0 and a Dirich-

let character ψ modulo the level N .

For a number field K ⊂ Q, the field

K(aρ(n)|n = 1,2, . . . )

is called the Hecke field, which is one of the

most mysterious series of number fields.

One can simplify the question, fixing one
prime p, and consider a simple extension

K(aρ(p)) or for a family of systems of l-adic

Galois representations F = {ρ}, we could
think of K(aρ(p))ρ∈F , and ask

how big this field is?



§1. Notation

To define the family F we study, we intro-

duce some notation. Fix

• An odd prime p > 2;

• a positive integer N (p - N);

• two field embeddings C←↩ Q ↪→ Qp.

Consider the space of cusp form

Sk+1,ψ = Sk+1(Γ0(Np
r+1), ψ) (r ≥ 0)

of weight “k+ 1” with Nebentypus ψ.

Let the rings

Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp

be generated by ψ(n) (n = 1,2, . . . ) over Z
and Zp.

The Hecke algebra over Z is

h = Z[ψ][T(n)|n = 1,2, · · · ] ⊂ End(Sk+1,ψ).

Put hk+1,ψ = h⊗Z[ψ] Zp[ψ].

Sometimes our T(p) is written as U(p) as

the level is divisible by p.



§2. Big Hecke algebra

The ordinary part hordk+1,ψ ⊂ hk+1,ψ is the

maximal ring direct summand on which

U(p) is invertible; so,

hord = e · h for e = lim
n→∞

U(p)n!.

Let ψ1 = ψN×the tame p-part of ψ. Then,

we have a unique ‘big’ Hecke algebra h =

hψ1
such that

• h is free of finite rank over Zp[[T ]] with

T(n) ∈ h (n = 1,2, . . . ; T(p) = U(p))

• Let γ = 1 + p. If k ≥ 1 and ε : Z×p → µp∞

is a character,

h/(1 + T − ψ(γ)ε(γ)γk)h ∼= hordk+1,εψk

for ψk := ψ1ω
1−k, sending T(n) to T(n),

where ω is the Teichmüller character.



§3. Galois representation

Each irreducible component

Spec(I) ⊂ Spec(h)

has a Galois representation

ρI : Gal(Q/Q)→ GL(2)

with coefficients in I (or its quotient field)

such that

Tr(ρI(Frobl)) = a(l)

(for the image a(l) in I of T(l)) for almost

all primes `. Usually ρI has values in GL2(I),

and we suppose this for simplicity.

We regard P ∈ Spec(I)(Qp) as an algebra

homomorphism P : I → Qp, and we put

ρP = P ◦ ρI : Gal(Q/Q)→ GL2(Qp).



§4. Analytic family

A point P of Spec(I)(Qp) is called

arithmetic

if P (1 + T − εψk(γ)γ
k) = 0 for k ≥ 1 and

ε : Z×p → µp∞.

If P is arithmetic, we have a Hecke eigen-

form fP ∈ Sk+1(Γ0(Np
r(P)), εψk) such that

fP |T(n) = aP(n)fP (n = 1,2, . . . )

for aP(n) := P (a(n)) = (a(n) mod P ) ∈

Qp.

We write εP = ε and k(P ) = k for such a

P .

Thus I gives rise to an analytic family

FI = {fP |arithemtic P ∈ Spec(I)}.



§5. CM component and CM family

We call a Galois representation ρ CM if

there exists an open subgroup G ⊂ Gal(Q/Q)

such that the semi-simplification (ρ|G)ss has

abelian image over G.

We call I a CM component if ρI is CM.

If I is a CM component, it is known that

for an imaginary quadratic field M in which

p splits, there exists a Galois character ϕ :

Gal(Q/M)→ I× such that ρI
∼= IndQ

M ϕ.

If ρP
∼= Ind

Q
M ϕP for some arithmetic point

P , I is a CM component.



§6. A theorem on Hecke fields

Pick an infinite set A of arithmetic points

P with fixed weight k(P ) = k ≥ 1. Write

HA(I) ⊂ Q for the field generated over Q(µp∞)

by {aP(p)}P∈A. Here is what we can prove:

Theorem 1 (H-theorem). The field HA(I)

is a finite extension of Q(µp∞) if and only

if I is CM. Moreover

lim sup
P∈A

[Q(µp∞)(aP (p)) : Q(µp∞))] =∞.

Assume that [HA(I) : Q(µp∞)] <∞. We try

to prove that I has CM. The converse is

an easy application of Galois deformation

theory.



§7. Number of eigenforms bounded

We start preparing to give a proof of the

theorem. Put K(fP ) = K[aP(n);n = 1,2, . . . ]

inside Q.

Lemma 1 (Bounded degree). The degree

[Q(µp∞)(fP ) : Q(µp∞)(aP (p))]

for arithmetic P with fixed k(P ) ≥ 1 is

bounded (basically by rankZp[[T ]] h) inde-

pendently of P .

For a prime l outside Np, let

A(l) = a root of det(X − ρI(Frobl)) = 0.

Then αl,P := P (A(l)) ∈ Qp is a root of

X2 − aP(l)X + ψk(l)l
k(P) = 0.

If l = p, we put A(l) = a(l). Fix l. Ex-

tending I, we assume that A(l) ∈ I. By the

lemma, if [Q(µp∞)(aP(p)) : Q(µp∞)] < B for

B independent of P ∈ A, KP = Q(µp∞)(αl,P )

has bounded degree over Q(µp∞) indepen-

dent of l and P for all P ∈ A.



§8. Weil numbers

For a prime l, a Weil l-number α ∈ C of

integer weight k ≥ 0 satisfies

(1) α is an algebraic integer;

(2) |ασ|= lk/2 for all σ ∈ Gal(Q/Q).

The number of Weil l-numbers of a given

weight k in Q(µp∞) is finite up to roots of

unity, as we have only finitely many possi-

bility of its prime factorization. Indeed, if l

is either inert or ramified fully in Q(µp∞)/Q,

weight k Weil l-number is (at most) lk/2 up

to roots of unity.



§9. Finiteness proposition

Two nonzero numbers a and b equivalent

if a/b is a root of unity. Let Kd be the set of

all extensions of Q[µp∞] of degree d < ∞

inside Q whose ramification at l is tame.

Here is a slight improvement:

Proposition 1 (Finiteness Proposition).We

have only finitely many Weil l-numbers of

a given weight in the set-theoretic union
⋃
K∈Kd

K up to equivalence.

The proof is an elementary but subtle anal-

ysis of prime decomposition of the Weil

number. Tameness is assumed since in that

case, there are only finitely many isomor-

phism classes of K ⊗Q Ql for K ∈ Kd, and

one can consider the prime factorization in

a fixed algebra K⊗Q Ql picking one isomor-

phism class.



§10. A rigidity lemma

Let W be a p-adic valuation ring finite flat

over Zp and Φ(T) ∈W [[T ]]. Regard Φ as a

function of t = 1 + T ; so, Φ(1) = Φ|T=0.

We start with a lemma whose characteristic

p version was studied by Chai:

Lemma 2 (Rigidity). Suppose that there

is an infinite subset Ω ⊂ µp∞(K) such that

Φ(Ω) ⊂ µp∞. Then there exist ζ0 ∈ µp∞ and

s ∈ Zp such that ζ−1
0 Φ(t) = ts =

∑∞
n=0

(
s
n

)
Tn.

Note here that if

Z ⊂ Ĝm × Ĝm = Spf( ̂W [t, t−1, t′, t′−1])

is a formal subtorus, it is defined by the

equation t = t′s for s ∈ Qp. Thus we need

to prove that the graph of the function

t 7→ Φ(t) in Ĝm× Ĝm is a formal subtorus.

Fo simplicity, assume Φ(1) = 1 (so ζ0 = 1)

in the following proof.



§11. Proof of the rigidity lemma.

Step 1: Regard Φ as a morphism of formal

schemes Ĝm→ Ĝm.

Step 2: For any σ in an open subgroup

1 + pmZp ⊂ Gal(W [µp∞]/W ) ⊂ Z×p , we have

Φ(ζz) = Φ(ζσ) = σ(Φ(ζ)) = Φ(ζ)z; so,

Φ(tz) = Φ(t)z

if ζσ = ζz for the value z ∈ 1+pmZp of the

cyclotomic character at σ.

Step 3: The graph Z of t 7→ Φ(t) in Ĝm × Ĝm

is therefore stable under (t, t′) 7→ (tz, t′z) for

z = 1 + pmZp.

Step 4: Pick a point (t0, t
′
0 = Φ(t0)) of

infinite order in Z, then

(t
1+pmz
0 , t′0

1+pmz
) = (t0, t

′
0)(t0, t

′
0)
pmz ∈ Z

for all z ∈ Zp. Thus Z has to be a coset of

a formal subgroup generated by (t0, t
′
0)
pm.

Since (1,1) ∈ Z, Z is a formal torus, and

we find s ∈ Zp with Φ(t) = ts.



§12. Frobenius eigenvalues

Suppose [HA(I) : Q(µp∞)] < ∞. This im-

plies KP = Q(µp∞)(αl,P ) has bounded de-

gree over Q(µp∞); so, for primes l� 0, l is

tamely ramified in KP (the tameness as-

sumption in Finiteness Proposition).

Proposition 2 (Eigenvalue formula).There

exists a Weil l-number α1 of weight 1 and

a root of unity ζ0 such that

A(P ) = αl,P = ζ0〈α1〉
k(P)−1

for all arithmetic P ; in other words,

A(T ) = ζ0(1 + T )s

for s =
logp(α1)

logp(γ)
.



§13. Proof of eigenvalue formula

We give a sketch of a proof assuming I =

W [[T ]]. By Finiteness proposition, we have

only a finite number of Weil l-numbers of

weight k in
⋃
P∈AKP up to multiplication

by roots of unity, and hence

A(P ) for P ∈ A hits one of such Weil

l-number α of weight k infinitely many

times, up to roots of unity.

After a suitable variable change T 7→ Y =

γ−k(1+T)−1 and division by a Weil num-

ber, A(Y ) satisfies the assumption of the

rigidity lemma. We have

A(Y ) = ζα(1 + Y )s1

for s1 ∈ Zp, and A(T) = ζ0(1 + T)s. From

this, it is not difficult to determine s as

stated in the proposition.



§14. Abelian image lemma

Consider the endomorphism σs : (1 + T) 7→

(1 + T)s =
∑∞
n=0

(
s
n

)
Tn of a power series

ring W [[T ]] for s ∈ Zp. Let A be an in-

tegral domain over W [[T ]] of characteristic

different from 2. Assume that the endo-

morphism σ2 on W [[T ]] extends to an en-

domorphism σ of A.

Lemma 3 (Abelian image). Take a contin-

uous representation ρ : Gal(Q/F )→ GL2(A)

for a field F ⊂ Q, and put ρσ := σ ◦ ρ. If

Tr(ρσ) = Tr(ρ2). Then ρ is absolutely

reducible over the quotient field Q of A.

Heuristically, the assumption implies that

the square map: σ 7→ ρ2(σ) is still a repre-

sentation ρσ; so, it has to have an abelian

image. Since any automorphism of the

quotient field Q of Zp[[T ]] extends to its

algebraic closure Q ⊃ I, we can apply the

above lemma to ρI.



§15. Proof of the theorem. Suppose

[HA(I) : Q(µp∞)] <∞.

Step 1: We have [KP : Q(µp∞)] bounded

independent of l; so, if l� 0, KP is at most

tamely ramified.

Step 2: By Eigenvalue formula, we have

Tr(ρ(Frobl)) = ζ(1 + T)a + ζ ′(1 + T)a
′
for

two roots of unity ζ, ζ ′ and a, a′ ∈ Qp.

Step 3: Not too difficult to show that the

order of ζ, ζ ′ is bounded independent of l.

Step 4: Let mN = mN
I

+ (T) and ρ = ρI

mod mN for N � 0 and F be the splitting

field of ρ; so, taking N � 0, we may assume

Tr(ρ(Frob
f
l )) = (1 + T)fa + (1 + T)fa

′

for all l� 0 as long as Frob
f
l ∈ Gal(Q/F ).

Step 5: This shows

Tr(σs ◦ ρ) = Tr(ρs)

over G = Gal(Q/F ). Then by the above

lemma, ρss|G is abelian, and hence I is CM.



§16. p-Adic L-function

Recall of adjoint L-functions and L-invariant

to state an application.

We have one variable Lp ∈ I characterized

by

Lp := Lp(1, Ad(ρI)) = Lp(1, ρ
sym⊗2
I

⊗det(ρI)
−1)

and

Lp(P ) := P (Lp) =
L(1, Ad(fP))

period

for all arithemtic P .



§17. Congruence criterion and L-invariant

If Spec(h) = Spec(I)∪Spec(X) for the com-

plement X, (under a mild assumption)

Spec(I)∩Spec(X) = Spec(I⊗hX) ∼= Spec(
I

(Lp)
)

Adding the cyclotomic variable, because of

the modifying Euler p-factor,

Lp(s, Ad(ρI)) has exceptional zero

at 1,

and for an analytic L-invariant 0 6= Lan(Ad(ρI))

in I[1p ], we expect to have

L′p(s, Ad(ρI))|s=1
?
= Lan(Ad(ρI))Lp.



§18. An application

The adjoint p-adic L-function Lp(s,Ad(fP ))

has an exceptional zero at s = 1 com-

ing from modifying Euler p-factor. Green-

berg proposed Galois cohomological def-

inition of an L-invariant L(Ad(fP )), and

we have the following formula in IMRN 59

(2004) 3177–3189: for c = −2 logp(γ) and

a = a(p),

L(Ad(fP )) = c · a−1t
da

dt
|
t=γk(P)εP(γ)

.

Thus P → L(Ad(fP )) is interpolated over

Spec(I) as an analytic function.

Theorem 2 (Constancy). P → L(Ad(fP ))

is constant if and only if ρI has CM.

By this, P 7→ L(Ad(fP )) is non-constant for

non CM component; so, non-zero except

for finitely many P .



§19. Proof of the constancy theorem

For simplicity, assume I = W [[T ]]. Fix

weight k(P ) ≥ 1. Suppose L(Ad(fP )) is

constant.

Step 1: By assumption, a−1tdadt = s ∈ W

for a(t) = a(p)(t). Thus tdadt = s · a.

Step 2: Putting b(x) = logp ◦a(expp(x))

(for x = logp(t)), as dx = dt
t , by chain rule,

db

dx
=
da

dx

db

da
=
da

dx

d logp(a)

da
= s · a ·

1

a
= s.

Step 3: b is a linear function of x:

logp(a) = sx+c⇔ a = C expp(s·logp(t)) = Cts.

Step 4:Taking Φ(t) := ts, we find Φ(tz) =

Φ(t)z for z ∈ Zp. By the rigidity lemma and

its proof, we conclude s ∈ Zp.

Step 5: Thus [HA(I) : Q(µp∞)] <∞. Then

by the H-theorem, we conclude that F is a

CM family. The converse is easy.


