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4. Lecture 4: CM Components of the ‘Big’ Hecke Algebra

As described above, we get the non-vanishing/non-triviality theo-
rems out of spreading out an invariant over to a bigger geometric object,
i.e., the multiplicative group and Shimura variety. Here we describe a
method using the spectrum of Hecke algebra as the bigger geometric
object. This often work with non CM components.

First, we give here an axiomatic definition of the cuspidal ‘big’ ordi-
nary Hecke algebra h necessary to state our objectives without proof.
After this is done, we give a precise definition of the CM components.

Fix a prime p and for simplicity, assume p ≥ 5. Consider the space
of cusp forms Sk+1(Γ0(Np

r+1), ψ) with (p - N, r ≥ 0). These spaces
are defined in [IAT] §3.5 under the same notation. In the rest of this
series of lectures, we write the weight of modular form as k + 1 since
the l-Frobenius eigenvalue has absolute value lk/2 for the Galois repre-
sentation of a cusp form f of weight k + 1.

Let the ring Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated by the values ψ
over Z and Zp, respectively. The Hecke algebra over Z[ψ] is

h = Z[ψ][T (n)|n= 1, 2, · · · ] ⊂ End(Sk+1(Γ0(Np
r+1), ψ)).

We put hk+1,ψ = hk+1,ψ/W = h ⊗Z[ψ] W for a p-adic discrete valuation

ring W ⊂ Qp containing Zp[ψ]. Sometimes our T (p) is written as U(p)
as the level is divisible by p. The ordinary part hk+1,ψ/W ⊂ hk+1,ψ/W is
the maximal ring direct summand on which U(p) is invertible. In other
words, limn→∞ U(p)n! converges p-adically in hk+1,ψ/W to the idempo-
tent e of hk+1,ψ/W = e · hk+1,ψ/W .

Exercise 4.1. Let A be a p-adically complete algebra, and suppose that
A is of finite type as a module over Zp. Prove that limn→∞ an! for any
a ∈ A exists in A giving an idempotent of A.

Let ψ1 = ψN × the tame p-part of ψ. Then we have a unique ‘big’
Hecke algebra h = hψ1/W characterized by the following two conditions:

(1) h is free of finite rank over Λ := W [[T ]] with T (n) ∈ h,
(2) if k ≥ 1 and ε : Z×

p → µp∞(W ) is a character, as W -algebras,

h/(1 + T − ψ(γ)ε(γ)γk)h ∼= hk+1,εψk
(γ = 1 + p) for ψk := ψ1ω

1−k,

sending T (n) to T (n), where ω is the Teichmüller character.

We take an irreducible component Spec(I) ⊂ Spec(h) (thus I is a
torsion-free algebra over Λ and is a Λ-module of finite type).

A (normalized) Hecke eigenform in Gk+1(Γ0(Np
r+1), ψ) has slope

α ∈ Q if f |U(p) = a · f with |a|p = p−α. We simply put α = ∞ if
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a = 0. Since limn→∞ an! = 1 ⇔ α = 0, the algebra hk+1,εψk
acts non-

trivially on a Hecke eigen cusp form f in Sk+1(Γ0(N), εψk; Qp) if and
only if f has slope 0. A slope 0 form is also called an ordinary from.
An important consequence of the above two facts is

(B) The number of slope 0 Hecke eigenforms of level Npr+1, of
weight k+1 and of a given character ψ modulo Npr+1 is bounded
independent of k, r and ψ.

If f has slope 0, λ : h → Qp given by f |T = λ(T )f for T ∈ h factors
through hk+1,ψ and f =

∑∞

n=1 a(n, f)qn =
∑∞

n=1 λ(T (n))qn. Thus the
number of slope 0 forms with Neben character ψ is less than or equal
to rankW hk+1,ψ = rankΛ hψ1

independent of r and ε. The Hecke field
of f is Q(f) = Q(λ(n)|n = 1, 2, . . . ).

Each point P ∈ Spec(h) has a 2-dimensional (semi-simple) Galois
representation ρP (of Gal(Q/Q)) with coefficients in the residue field
κ(P ) of P such that Tr(ρP (Frobl)) = (T (l) mod P ) for almost all
primes ` (see [GME] §4.2 for the construction of the Galois represen-
tation). In particular, I carries a Galois representation ρI with

Tr(ρI(Frobl)) = a(l) (for the image a(l) in I of T (l)).

If a prime divisor P of Spec(I) contains (1 + T − εψk(γ)γ
k) with

k ≥ 1, regarding it as a W -algebra homomorphism (P : I → Qp) ∈
Spec(I)(Qp), we get a Hecke eigenform fP ∈ Sk+1(Γ0(Np

r(P )+1), εψk)

with fP |T (n) = aP(n)fP for aP (n) = P (a(n)) ∈ Qp for all n. Such a P
is called arithmetic if k ≥ 1, and we write εP = ε, ψP = εψk, r(P ) = r
and k(P ) = k for such a P . Thus I gives rise to a slope 0 analytic fam-
ily of modular forms FI = {fP |arithemtic P ∈ Spec(I)(Qp)} and Galois

representations {ρP}P∈Spec(I)(Qp). For a ∈ I, we write aP ∈ Qp for P (a).

Describing ρP , we have written Tr(ρP (Frobl)) = (T (l) mod P ). The
precise meaning of this is, for primes l - Np,

(4.1) Tr(ρP (Frobl)) = a(l)P and det(ρP (Frobl)) = ψP (l)lk(P ).

We call a Galois representation ρ CM if there exists an open subgroup
G ⊂ Gal(Q/Q) such that the semi-simplification (ρ|G)ss has abelian
image over G. We call I a CM component if ρI has CM.

We have a p-adic L-function

Lp = Lp(Ad(ρI)) := Lp(1, Ad(ρI)) = Lp(1, ρ
sym⊗2
I ⊗ det(ρI)

−1) ∈ I

interpolating

Lp(P ) := P (Lp) = (Lp mod P ) =
L(1, Ad(ρP ))

period
for all arithemtic P .
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Writing Spec(h) = Spec(I) ∪ Spec(X) for the complement X, we have
(under a mild assumption)

Spec(I)∩Spec(X) = Spec(I⊗hX) ∼= Spec(I/(Lp)) (a congruence criterion).

The assumptions are that the connected component of Spec(h) con-
taining Spec(I) is a Gorenstein scheme and that Spec(I) is normal (see
[H10c] §3.1 for more explanation).

If we interpolate L-values including the cyclotomic variable, i.e, adding
a variable s interpolating L(s, Ad(ρP )) moving s, we need to multi-
ply the L-value by a nontrivial modifying Euler p-factor. For this en-
larged two variable adjoint L-function, the modifying factor vanishes
at s = 1; so, Lp(s, Ad(ρI)) has an exceptional zero at s = 1, and for an

L-invariant 0 6= Lan(Ad(ρI)) ∈ I[ 1
p
], we expect to have L′

p(1, Ad(ρI))
?
=

Lan(Ad(ρI))Lp (in the style of Mazur–Tate–Teitelbaum). Greenberg
proposed a definition of a number L(Ad(ρP )) conjectured to be equal
to Lan(Ad(ρP )) for arithmetic P . We can interpolate Greenberg’s L-
invariant L(Ad(ρP )) over arithemtic P to get a function L(Ad(ρI)) 6= 0
in I[ 1

p
] so that L(Ad(ρI))(P ) = L(Ad(ρP )) for all arithmetic P .

4.1. Is characterizing CM component important? Here is a list
of such characterizations (possibly conjectural):

• A cuspidal I has CM⇔ cuspidal I is a CM component ⇔ there
exist an imaginary quadratic field M = Q[

√
−D] in which p

splits into pp and a character Ψ = ΨI : GM = Gal(Q/M) → Ĩ×

of conductor cp∞ for an ideal c with ccDM |N such that ρI
∼=

IndQ
M Ψ, where DM is the discriminant of M and Spec(̃I) is the

normalization of Spec(I). This should be well known; see [H11]

(CM1–3) in §1. This implies Lp = Lp(Ψ
−)L(0,

(
M/Q

)
), where

Ψ−(σ) = Ψ(cσc−1σ−1) for complex conjugation c, and Lp(Ψ
−)

is the anticyclotomic Katz p-adic L-function associated to Ψ−.
This is a base of the proof by Mazur/Tilouine (e.g., [T89] and
[MT90]) of the anticyclotomic main conjecture, different from
the one given by Rubin [Ru91] and [Ru94] via Euler system.
• I has CM ⇔ ρP has CM for a single arithmetic prime P . By

Ribet [Ri85], if ρP has CM, ρP has complex multiplication or
Eisenstein. Then P has to be on a CM component or on an
Eisenstein component(see [H10d] Sections 3 and 4).
• I has CM ⇔ ρI mod p has CM. This is almost equivalent to

the vanishing of the Iwasawa µ-invariant for Lp(Ψ
−) (which is

known if c is made up of primes split over Q; see [H10a] and
[H10b]). This is a main result in [H10d].
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• (Strong vertical conjecture in [H11]) Consider the field Vr(I) ⊂
Q generated by aP (p) for all arithmetic P with level ≤ Npr+1

for a fixed r ≥ 0. Then I has CM ⇔ [Vr(I) : Q] < ∞. This
was a question of L. Clozel asked to me in the early 1990s.
This holds true if the family contains some weight 2 cusp form
whose abelian variety has good ordinary reduction modulo p
or more generally a weight k ≥ 2 cusp form whose motive is
potentially crystalline ordinary at p (see Theorem 5.2). Here a
crystalline motive is ordinary if its Newton polygon of the crys-
talline Frobenius coincides with the Hodge polygon. By apply-
ing this crystalline-ordinary criterion, the family F∆ containing
Ramanujan’s ∆-function has V0(I) of infinite degree over Q.
• (Strong horizontal theorem in [H11]) Fix k ≥ 1 and consider the

field Hk(I) generated by aP (p) over Q(µp∞) for all arithmetic
P with a fixed weight k ≥ 1. Then I has CM ⇔ [Hk(I) :
Q(µp∞)] <∞ (see Theorem 4.2).
• ρI restricted to the decomposition group at p is completely

reducible ⇔ I has CM. This is the result of Ghate–Vatsal in
[GV05].
• For cuspidal I, L(Ad(ρI)) is a constant function over Spf(I) if

and only if I is a CM component. This is a corollary of Strong
horizontal theorem (see my Sapporo lecture for an outline and
details can be found in [H10c]).
• (Conjecture/Question) Does a cuspidal component I have CM

by an imaginary quadratic field M if

L(Ad(fP )) = logp(p) (up to algebraic numbers)

for one arithmetic P for a prime factor p of p inM? Here taking
a high power ph = (α), logp(p) = 1

h
logp(α) for the Iwasawa

logarithm logp.

All statements seem to have good arithmetic consequences, and these
examples convinced the author importance of giving as many charac-
terizations of CM components as possible.

4.2. Horizontal theorem. Here is what we prove in this section:

Theorem 4.2. Pick an infinite set A of arithmetic points P with fixed
weight k(P ) = k ≥ 1. Write HA(I) ⊂ Hk(I) for the field generated
over K := Q(µp∞) by {aP (p)}P∈A. Then the field HA(I) is a finite
extension of K if and only if I has CM. Moreover if I is not CM,

lim sup
P∈A

[K(aP (p)) : K] =∞.
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We prepare a lemma:

Lemma 4.3. Let F be a slope 0 p-adic analytic family of Hecke eigen-
forms with coefficients in I. Then we have

(1) Fix 0 ≤ r < ∞. Let K = Q. Then the degree [K(fP ) :
K(aP (p))] for arithmetic P with r(P ) ≤ r is bounded inde-
pendently of P ,

(2) Let K = Q(µp∞) and fix k ≥ 1. Then the degree [K(fP ) :
K(aP (p))] for arithmetic P with k(P ) = k is bounded indepen-
dently of P .

Proof. If σ ∈ Gal(Q/K[ψ1, ω]) fix aP (p), fσP is still ordinary Hecke
eigenforms of the same level and the same Neben character. The num-
ber of such forms is bounded by rankZp[[T ]] h. Thus

[K(fP ) : K(aP (p))] ≤ [K[ψ1, ω] : K] rankZp[[T ]] h.

�

Hereafter we fix A and assume that [HA(I) : K] < ∞ for K :=
Q(µp∞). We try to prove that I has CM. Put K(fP ) = K[aP (n);n =
1, 2, . . . ] ⊂ Q. For a prime l outside Np, let A(l) be a root of det(X −
ρI(Frobl)) = 0. Then αl,P := AP (l) is a root of X2 − aP (l)X +
ψk(l)l

k(P ) = 0. If l = p, we put A(l) = a(l). Fix l. Extending I,
we assume that A(l) ∈ I. By the lemma, LP = K[αl,P ] has bounded
degree over K independent of l and P for all P ∈ A; so, l is tamely
ramified in LP /K for l � 0.

4.3. Weil number. We start preparing for a proof of the theorem. In
this section, we gather some results on Weil numbers. For a prime l, a
Weil l-number α ∈ C of integer weight k ≥ 0 satisfies

(1) α is an algebraic integer; (2) |ασ| = lk/2 for all σ ∈ Gal(Q/Q).

Here is an example of natural appearance of Weil numbers. For
any Hecke eigenform f ∈ Sk+1(Γ0(Np

r+1), ψ) with f |T (l) = alf , if l
is prime to Np, then the roots of X2 − alX + ψ(l)lk = 0 are Weil
numbers of weight k. When k = 1 (that is, for weight 2 cusp forms),
the Hasse–Weil conjecture for X1(N) and the Ramanujan–Petersson
conjecture were proven by Shimura by computing L(s,X1(N)) as a
product of L(s, f) for Hecke eigenforms of weight 2 on X1(N) via the
roots α, β of X2−alX+ψ(l)l = 0 (see [Sh58] and [IAT] §7.5) and then
reducing the proof of |α| = |β| = √p to the work of Weil for curves.
For higher weight modular forms, Deligne went a similar path to prove
the Ramanujan–Petersson conjecture, reducing it to his proof of Weil’s
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conjecture for the fiber product

k−2︷ ︸︸ ︷
E×X E×X · · · ×X E (see [D69] and

also [Sc90]). Thus one expects to have Weil number of weight k even for
Hecke eigenvalues of U(p) for a cusp form of weight k+1 ≥ 2, as “old”
Hecke eigenform level p added to the original level p - N has α or β as
U(p)-eigenvalue. This is not always true for eigenforms properly of level
Npr+1 (r ≥ 0) called primitive forms. For example, if pr+1 is bigger

than the p-conductor of ψ, then ap could be 0 or ±
√
ψ0(p)p

(k−1)/2 for
the primitive character associated to ψ if ψ is imprimitive at p; so, Weil
number of weight k − 1).

On the other hand, if ψ has p-conductor pr+1 (with r ≥ 0), writing
f |U(p) = ap · f , ap is a Weil number of weight k. This fact can be
found in [MFM] Theorem 4.6.17). In this case, the proof is elementary
without recourse to arithmetic geometry.

By these facts, Weil numbers have intimate relation to Diophantine
geometry; so, it is natural to ask how often we find such numbers in a
given algebraic number field of finite or infinite degree over Q. This is
what we study here. Here are two easy lemmas:

Lemma 4.4. Let K/Q be a finite extension of Q in C stable under the
“complex conjugation” c (so, write c ∈ Aut(K) for the field automor-
phism induced by the complex conjugation). If for any field embedding
σ : K ↪→ C, we have c ◦ σ = σ ◦ c, K is a totally imaginary quadratic
extension of a totally real field (in short, a CM field). In particular, if
α is a Weil number, Q(α) is contained in a CM field.

Here is another lemma due to Kronecker:

Lemma 4.5. If ζ is a Weil number of weight 0, then there exists a
positive integer N such that ζN = 1.

The proof is left to the reader. We call two nonzero algebraic num-
bers a and b equivalent (written as a ∼ b) if a/b is a root of unity.

Lemma 4.6. Let K be a finite field extension of Q(µp∞) inside Q.
Then for a given prime l and weight k ≥ 0, there are only finitely
many Weil l-numbers of weight k in K up to equivalence. If K =
Q(µp∞) and there is only one prime in Z[µp∞ ] above (l) (for example,
if l = p), any Weil l-number of weight k is equivalent to (l∗)k/2 (as long
as (l∗)k/2 ∈ Q[µp∞]), where l∗ = (−1)(l−1)/2l if l is odd, and l∗ = 2 if
l = 2.

An analytic result of Loxton confirms that, up to equivalence, there
are only finitely many Weil l-numbers of a given weight in the maximal
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abelian extension Qab of Q (see [L74] Lemma 7). We now give an
algebraic proof.

Proof. The decomposition group of each prime l is of finite index in
Gal(K/Q) (identifying Gal(K/Q) ∼= Z×

p by the p-adic cyclotomic char-
acter, the decomposition group is generated by l if l 6= p, and oth-
erwise l = p, p is fully ramified in Q[µp∞]; see [ICF] Chapter 2); so,
there are only finitely many primes L of Z[µp∞ ] above (l). Thus for
a Weil l-number α of weight k, there are only finitely many possibil-
ities of prime factorization of (α) if l 6= p. If (α) = (β) for two Weil
l-numbers α, β, then α/β is a Weil number of weight 0; so, α ∼ β by
Kronecker’s theorem (Lemma 4.5). If there is only one prime over l in

Z[µp∞], any Weil l-number of weight k is equivalent to (l∗)k/2, as long
as (l∗)k/2 ∈ Q[µp∞]. Thus the result follows from this if K = Q(µp∞).

Let W (l, k) (resp. WK(l, k)) be a complete set of representatives of
Weil l-numbers in Q(µp∞) (resp. in K) of weight k under the equiv-
alence. By the above argument, W (l, k) is a finite set, and we want
to prove that WK(l, k) is finite. Write d = [K : Q(µp∞)]. If α ∈ K
is such a Weil l-number, then NK/Q(µp∞)(α) is equivalent to a number
in W (l, kd). Thus NK/Q(µp∞) induces a map N : WK(l, k)→ W (l, dk).
Write L for the field generated by elements in W (l, dk). Then L/Q
is a finite abelian extension in Q(µp∞). Since no prime completely
splits in Q(µp∞), the decomposition subgroup D of l in Gal(K/Q) is
an open subgroup of finite index. Thus there are only finitely many
valuations v of K with v(l) = 1. Let V be the set of valuations v of
K with v(l) = 1, which is a finite set. For v ∈ V and α ∈ WK(l, k),
v(α) ∈ [0, k]∩d−1v(L), because NK/Q(µp∞)(α) is in W (l, dk) up to roots

of unity. Let V :=
∏

v∈V ([0, k] ∩ d−1v(L)), which is a finite set. We
have a map ordl : WK(l, k) → V sending α to ordl(α) = (v(α))v∈V . If
ordl(α) = ordl(β) (α, β ∈ WK(l, k)), then α/β is an algebraic integer
with complex absolute value |(α/β)σ| = 1 for all σ ∈ Gal(Q/Q); so, by
Kronecker’s theorem (Lemma 4.5), α ∼ β. Thus ordl is an injection,
proving the finiteness of WK(l, k). �

To prove an improvement of the above fact, we first state a lemma:

Lemma 4.7. Let K = Ql[µp∞ ] inside Ql, and let Kt/K (resp. Kur/K)
be the maximal tamely l-ramified extension (resp. the maximal unram-
ified extension inside Kt). Then we have Kt has the l-inertia group
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isomorphic to Ẑ(l)(1), where Ẑ(l)(1) = lim←−l-N µN (Ql) as Gal(Kur/Ql)-

modules, and we have

(4.2) Gal(Kt/K) ∼=
{

Ẑ(p) n Ẑ(l)(1) if l 6= p,

Ẑ n Ẑ(l)(1) if l = p

a semi-direct product with Gal(Kt/K) . Ẑ(l)(1), and

Gal(Kur/K) ∼=
{

Ẑ(p) if l 6= p,

Ẑ if l = p.

In particular, for a given d > 0, there are finitely many extensions in
Kt/K of degree ≤ d.

A proof can be found in [MFG] §3.2.5.
Proposition 4.8. Let Kd be the set of all finite extensions of Q[µp∞]
of fixed degree d inside Q whose ramification at l is tame (i.e., the
ramification index over Q[µp∞] is prime to l). Then there are only
finitely many Weil l-numbers of a given weight, up to equivalence, in
the set-theoretic union

⋃
L∈Kd

L in Q.

The point of the proof is as follows. Writing K = Q[µp∞] and Kl =
K ⊗Q Ql, by tameness, there are only finitely many isomorphism class
of K ⊗Q Ql-algebras Ll = L ⊗Q Ql for L ∈ Kd. Thus we only need to
prove finiteness for Weil numbers of a given weight contained in a fixed
isomorphism class of Ll. We look at the universal composite Ll ⊗Kl

Ll
which is a product of fields indexed by l-adic nonequivalent normalized
valuations v1, . . . , vn. Indeed, for any composite X of two copies of Ll
embedded as Kl-algebras inside a commutative semi-simpleKl-algebra,
a ⊗ b 7→ a · b ∈ X extends to a surjective algebra homomorphism
Ll ⊗Kl

Ll → X by the universality of tensor product. Considering
Ll ⊗Kl

Ll, we can think of any possible composite containing α and
β. Another important point is the the simple components of Ll ⊗Kl

Ll
are indexed by equivalence classes of valuations vis (see [BCM] VI.8).
These facts in mind, consider a tuple

V (α) = (v1(α⊗ 1), . . . , vn(α⊗ 1), v1(1⊗ α), . . . , vn(1⊗ α)).

If α ∼ β, we have V (α) = V (β). The tuple V (α) determines the prime
factorization of (α) in any possible composite K(α, β); so, if V (α) =
V (β), (α) = (β) in K(α, β); so, by Kronecker’s theorem (Lemma 4.5),
α ∼ β. Since there are only finitely many possibilities of V (α), there
are only finitely many classes.

It is not very difficult to prove
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Lemma 4.9. Let K? be one of KL, KG and Kd. Suppose K? 6= ∅. Then
the group of roots of unity in the composite L of L for L ∈ K? in Q
contains µp∞(K) as a subgroup of finite index.

By this lemma, we can replace the equivalent α ∼ β by finer one
α ≈ β requiring α/β ∈ µp∞, and still the finer equivalence classes in
the union

⋃
L∈Kd

L of Weil l-numbers of a given weight is finite.

4.4. A rigidity lemma. We start with a rigidity lemma:

Lemma 4.10. Let Φ(T ) ∈ W [[T ]]. If there is an infinite subset Ω ⊂
µp∞(K) such that Φ(ζ − 1) ∈ µp∞(Qp) for all ζ ∈ Ω, then there exists

ζ0 ∈ µp∞(W ) and s ∈ Zp such that ζ−1
0 Φ(T ) = (1+T )s =

∑∞

n=0

(
s
n

)
T n.

By the assumption, for s ∈ Z×
p sufficiently close to 1, ζ 7→ ζs is

an automorphism of W [[µp∞]] over W ; so, Φ(ζs − 1) = Φ(ζ − 1)s ⇔
Φ(ts − 1) = Φ(t− 1)s (t = 1 + T ), and the power series is the desired
form as stated in a remark of Chai [C03] Remark 6.6.1 (iv). Here is an
elementary proof supplied to me by Kiran Kedlaya (a proof following
Chai can be found in [H11] §5).
Proof. Making variable change T 7→ ζ−1

1 (T + 1) − 1 for a ζ1 ∈ Ω (re-
placing W by its finite extension if necessary), we may replace Ω by
ζ−1
1 Ω 3 1; so, rewriting ζ−1

1 Ω as Ω, we may assume that 1 ∈ Ω. Note
t = 1⇔ T = 0.

Write the valuation of W as v (and use the same symbol v for an
extension of v to W [µp∞]). Normalize v so that v(p) = 1. We are trying
to show that Φ(T ) = (1+T )sζ ′ for some s ∈ Zp and some p-power root
of unity ζ ′. Anyway, we write Φ(0) = ζ ′ ∈ µp∞(Qp). Replacing Φ by

ζ ′−1Φ (and extending the scalar to a finite extension of W if necessary),
we may assume that Φ(0) = 1.

Suppose that Φ(T ) 6∈W (non-constant). Write Φ(T )−1 =
∑∞

i=1 aiT
i.

Since W is a DVR, there is a least index j > 0 for which v(aj) is mini-
mized. For ε sufficiently small, if v(τ ) = ε, then v(Φ(τ )−1) = v(aj)+jε.
In particular, for ζ a p-power root of unity, taking τ = ζ − 1, we have
v(ζ − 1) = p−m/(p − 1) for some non-negative integer m, so we have
infinitely many relations of the form jp−m/(p−1)+v(aj) = p−n/(p−1).
Then, we have m → ∞ ⇒ n → ∞ (by continuity and non-constancy
of τ 7→ Φ(τ )); so, taking limits under m→∞ yields v(aj) = 0. Also, j
must be a power of p, say j = ph, and for m large we have n = m− h.

Since v(aj) = 0, aj mod mW is in F×. For the moment, assume
F = Fp. That is, aj reduces to an integer b0 coprime to p in the
residue field of W . We can thus replace Φ(T ) by Φ1(T ) defined by
Φ(T ) = Φ1(T ) × (1 + T )s for some s (namely s = b0j = b0p

h0 for
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h0 := h) so as to increase the least index j for which v(aj) = 0. Indeed,

writing Φ(T ) =
∑j

n=0 anT
n + T j+1f(T ) with f(T ) ∈W [[T ]], we have

j∑

n=0

anT
n ≡ 1+ b0T

ph0 ≡ (1+T p
h0

)b0 ≡ (1+T )s mod (mW +(T j+1)).

we have Φ1(T ) ≡ 1 + T j+1f(T )(1 + T )−s ≡ 1 mod (mW + (T j+1)).
Thus if we write j1 for the j for this new Φ1, j1 > j, and j1 = ph1

with h1 > h0 and aj1 ≡ b1 mod mW for b1 ∈ Z. Repeating this, for
s =

∑
∞

k=0 bkp
hk ∈ Zp, Φ(T )/(1 + T )s − 1 =

∑
n=1 anT

n no longer
has a least j with minimal v(aj); so, Φ(T )/(1 + T )s = 1, and we get
Φ(T ) = (1 + T )s.

Suppose now that F 6= Fp. We have the Frobenius automorphism φ
fixing Zp[µp∞] ⊂ W [µp∞]. Letting φ acts on power series by (

∑
n anT

n)φ =∑
n a

φ
nT

n, we find Φφ(tφ) = Φ(t)φ. Since Φ(ζ − 1) is a p-power root of
unity for ζ in a infinite set Ω ⊂ µp∞, we have Φφ(ζ−1) = Φφ(ζφ−1) =

Φ(ζ − 1)φ = Φ(ζ − 1). Since Ω ⊂ Ĝm is Zariski dense, we find that
Φφ = Φ, which shows Φ ∈W φ[[T ]] for the subring W φ fixed by φ. Note
that the residue field of W φ is Fp, and the earlier argument applies to
Φ ∈W φ[[T ]]. �

Extending I to its integral closure, we assume that I is integrally

closed. For a prime l, we write H(l)
A (I) for the subfield generated by

αl,P ∈ Q for all P ∈ A. We simply write HA(I) = H(p)
A (I). Recall

LP = Q[µp∞][αl,P ].

Proposition 4.11. Fix a rational prime l - N tamely ramified in

LP/Q[µp∞ ] for all P ∈ A. Suppose [H(l)
A

(I) : Q(µp∞)] < ∞. Then,
for W = I∩Qp, we have A(l) in W [[T ]][t1/p

n

]∩ I (t = 1 + T ) for some
0 ≤ n ∈ Z, and there exists a Weil l-number α1 of weight 1 and a root
of unity ζ0 such that AP (l) = αl,P = ζ0(εP (γ))logp(α1)/ logp(γ)〈α1〉k(P ) for

all arithmetic P ; in other words, A(l)(T ) = ζ0(1 + T )s for s =
logp(α1)

logp(γ)
.

Proof. In this lecture, we give a proof assuming I = Λ = W [[T ]], refer-
ring to [H11] of Proposition 5.2 for a proof dealing with the general case.
Let A = A(l). By Proposition 4.8 (and a remark after Lemma 4.9), we
have only a finite number of Weil l-numbers of weight k in

⋃
P∈A

LP up
to multiplication by roots of unity in µp∞(K), and hence AP for P ∈ A
hits one of such Weil l-number α of weight k infinitely many times, up
to p-power order roots of unity, unless the automorphic representation
generated by fP is Steinberg at l 6= p. If fP0

is Steinberg at l 6= p for
one arithmetic P0, then l is a factor of N ; so, this case is excluded by
our assumption l - N (though this case can be also treated; see [H11]
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Proposition 5.2). The automorphic representation generated by fP for
arithmetic P has l-component in principal series if l - N or k(P ) > 2
(as Steinberg case for p is limited to k(P ) = 1, otherwise, as already
explained, the U(p) eigenvalue is p(k(P )−1)/2 up to roots of unity or 0
which is not a p-adic unit, against ordinarity at p).

After a variable change T 7→ Y = γ−k(1+T )−1, we haveA(Y )|Y=0 =
A(T )|T=γk−1. Note that |α|p = 1. Let Ω1 = {εP (γ)|P ∈ A} which is
an infinite set in µp∞(K). Let Φ(Y ) := α−1A(Y ) = α−1A(γ−k(1 +
T ) − 1) ∈ W [[Y ]]. The subset Ω of Ω1 made up of ζ ∈ Ω1 such that
Φ(ζ − 1) ∈ µp∞(K) is an infinite set. Then Φ satisfies the assumption
of Lemma 4.10, and for a root of unity ζ, we have A(Y ) = ζα(1 +Y )s1

for s1 ∈ Zp, and A(T ) = ζα(γ−k(1 + T ))s1. Let T = ζ ′γk
′ − 1 for

ζ ′ ∈ µp∞(K). Then A(ζ ′γk
′ − 1) = ζα(ζ ′γ−k+k

′

)s1 , which is equal to a
Weil l-number of weight k′ − 1. To get the expression of s as in the
proposition, take k′ > 1. Then

α1 :=
A(γk

′ − 1)

A(γk′−1 − 1)
=

ζα(ζ ′γ−k+k
′

)s1

ζα(ζ ′γ−k+k′−1)s1
= γs1 ,

which is an algebraic number α1 independent of k′. Note that for k′ > 1,
α1 is a ratio of Weil l-numbers of weight k′− 1 and k′, and hence α1 is

not a root of unity. Thus we have s1 =
logp(α1)

logp(γ)
. We now equate

ζζαγ
logp(α)/ logp(γ)(γ−k(1 + T ))logp(α1)/ logp(γ) = ζ0(1 + T )logp(α1)/ logp(γ),

where α = ζαγ
logp(α)/ logp(γ) for roots ζα and ζ0 of unity. By putting

T = 0, we get

ζζαγ
logp(α)/ logp(γ)−k(logp(α1)/ logp(γ)) = ζ0,

which shows

ζ0 = ζζα and ks1 = logp(α)/ logp(γ).

We conclude α1 = k
√
〈α〉 for 〈α〉 = αζ−1

α , which is a Weil l-number of
weight 1. �

4.5. Proof of Theorem 4.2. Consider the W -algebra endomorphism
σs : (1 + T ) 7→ (1 + T )s =

∑∞

n=0

(
s
n

)
T n of Λ for s ∈ Zp.

Lemma 4.12. Let A be an integral domain over Λ. Assume that σ2 ∈
Aut(Λ/W ) extends to an endomorphism σ of A. Let ρ : Gal(Q/F ) →
GL2(A) be a continuous representation for a field F ⊂ Q, and put
ρσ := σ ◦ ρ. If Tr(ρσ) = Tr(ρ2). Then ρ is absolutely reducible over the
quotient field Q of A.



ARITHMETIC INVARIANT AND GEOMETRY 48

Proof. Suppose that ρ is absolutely irreducible over Q, and try to get
absurdity. We have the identity Tr(ρσ) = Tr(ρ2) = Tr(ρsym⊗2)−det(ρ)
for the symmetric second tensor representation ρsym⊗2 of ρ. Over Q,
by absolute irreducibility, we have the identity of semi-simplification:
(ρsym⊗2)ss ∼= ρσ ⊕ det(ρ). Tensoring det(ρ)−1, we get Ad(ρ)ss ∼= (ρσ ⊗
det(ρ)−1)⊕1. SinceAd(ρ) is self-dual, we have 1 ↪→ Ad(ρ) as Gal(Q/F )-
modules. In other words, we have a non-trivial element 0 6= φ ∈
EndA[H ](ρ) for H = Gal(Q/F (ρI)) such that Tr(φ) = 0. Since ρ is
absolutely irreducible, φ has to be a scalar multiplication by z ∈ A×

by Schur’s lemma; so, Tr(φ) = 2z 6= 0, a contradiction (unless A has
characteristic 2 which is impossible as p > 2). �

Here is a well known lemma called Steinitz’s theorem:

Lemma 4.13. Let Q be a field with a field automorphism σ and Q be
an algebraic closure of Q. Then σ extends to an automorphism of Q.

Let Q be now the field of fractions of I and fix an algebraic closure
Q of Q. We need one more fact from ring theory.

Lemma 4.14. Suppose I is isomorphic to one variable power series
ring ΛX := W [[X]]. If L ⊂ V be a ΛX-submodule of finite type spanning

V over Q, then the intersection L̃ of all ΛX-free submodules of V of
rank equal to dimV is free ΛX-module of rank equal to dimV .

We call L̃ the reflexive closure of L (cf. [BCM] VII.4.2).

Proof of Theorem 4.2. For simplicity, we assume that I ∼= ΛX =
W [[X]] (see [H11] §6 for the treatment in general). The Galois repre-
sentation ρI : Gal(Q/Q) → GL2(Q) is continuous and hence has com-
pact image. Then Im(ρI) · I2 is a compact set covered by finitely many
open subsets λiI2 with λi ∈ Q× as the neighborhoods of 0 in M2(Q) is
given by {λ ·Λ2}λ∈Q×. Thus L =

∑
σ∈Gal(Q/Q) ρI(σ)I2 is a I-submodule

of finite type of V = Q2 spanning V over Q. Take the reflexive closure

L̃. For σ ∈ Gal(Q/Q), ρ̃I(σ)L = ρI(σ)L̃ as L̃ is uniquely determined

by L; so, L̃ is stable under the Galois action. By Lemma 4.14, L̃ is free
I-module of rank 2; so, writing ρI in a matrix form, we may assume
that ρI has values in GL2(I).

Let K := Q(µp∞) and LP = K(αl,P ) for a prime l. We need to
prove that [HA(I) : K] < ∞⇒ F has CM; so, let us suppose [HA(I) :
K] < ∞. For each arithmetic P with k(P ) = k, by Lemma 4.3,
[K(fP ) : K(aP (p))] < d for a positive integer d independent of P . Thus
[LP : K] < 2d[HA(I) : K] for each prime l. Therefore, any odd prime
l > 2d[HA(I) : K] is at most tamely ramified in LP/K. Take such an
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odd prime l > 2d[HA(I) : K] prime toNp. Let ρ : Gal(Q/Q)→ GL2(I)
be the Galois representation associated to F . Thus by Proposition 4.11,
we have Tr(ρ(Frobl)) = ζ(1 + T )a + ζ ′(1 + T )a

′

for two roots of unity
ζ, ζ ′ and a, a′ ∈ Qp.

Take an arithmetic P0 ∈ Spec(I)(Qp) to see the order of ζ is bounded

independent of l. Let α be a root of det(X − ρP0
(Frobl)) = 0 in Qp.

Then [Q(fP0
, α) : Q(fP0

)] ≤ 2. Write m = [Q(fP0
) : Q], ζ = ζpζ

(p) with
ζp ∈ µp∞ and ζ(p) of order prime to p. Write R for the integer ring of
Q(fP0

, α); so, 2m ≥ dimFp R/pR. Since (1+T )s ≡ 1 mod mI, the order

of ζ(p) is bounded by p2m. Note that P0((1+T )a) = (1+T )a mod P0 is
in a finite extension L of Qp depending only on the denominator pn of a.

For example, if P0 contains (1+T )−γk, L ⊂ Qp[γ
a] = Qp[

pn
√

(1 + p)] ⊂
Qp[

pB
√

(1 + p)] for γ = 1 + p, where B > 0 is an integer such that apB

abd a′pB is in Zp (which can be chosen independently of l) . We have
ζp ∈ L[ζp] whose degree is bounded by 2m[L : Qp]; so, the order of ζp
is also bounded independent of l. Replacing W by its finite extension,
we may assume that all such roots of unity are in W .

Let mN = mN
I + (T ) and ρ = ρ mod mN for a sufficiently large

N and F be the splitting field of ρ. We have Tr(ρ(Frobl)) = ζf (1 +

T )fa + ζ ′f(1 + T )fa
′

and ρ(Frobl) ≡ 1 mod mN (so ζf ≡ 1 mod mN )
for a prime l|l of F of residual degree f . Since ζf ≡ 1 mod mN ,

by taking N large, we may assume that ζf = ζ ′f = 1. This shows
Tr(σs(ρ(Frobl))) = Tr(ρ(Frobl)

s) for all 0 6= s ∈ Zp. Thus by Cheb-

otarev density theorem, we get Tr(σs◦ρ) = Tr(ρs) over G = Gal(Q/F ).
In Lemma 4.12, take A = Q (so, σ2 ∈ Aut(Λ) extends to an automor-
phism of Q by Lemma 4.13 and the lemma is applicable). Then ρss|G
is abelian, and hence I has CM.

We give here an outline of the proof of converse and referring to
the research article [H11] for details. Suppose that F = FI has CM;
so, it has complex multiplication by an imaginary quadratic extension
M/Q in Q as explained in §4.1. We then find a continuous character

Ψ : Gal(Q/M) → Ĩ× with ρI
∼= IndQ

M Ψ for the normalization Ĩ of
I. By Galois deformation theory, we show that ΨP = Ψ mod P for
the arithmetic P of weight k is associated to a Hecke character λP
of conductor at most Np∞ such that ΨP (Frobl) = λP (l) for primes
l - Np and λP ((α)) = ζαk up to roots of unity ζ ∈ µmp∞ for a bounded
m. Thus choosing a complete representative set {aj}j=1,...,h of ideal
classes of M , taking a generator αj of ahj , we find that Q(µp∞)(fP ) ⊂
Q(αl,P )k(P )=k,l:non-inert ⊂ Q(µp∞h)[α

1/h
j |j = 1, . . . , h] which is a finite

extension of Q[µp∞] containing Hk(I).
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Now we prove, unless F has complex multiplication

lim sup
P∈A

[K(a(p, fP )) : K] =∞.

Indeed, if lim supP [K(a(p, fP )) : K] < ∞, the index [LP : K] (P ∈ A)
is bounded for A ∈ I as in Proposition 4.11. Thus we can still apply
the above proof and conclude that F has complex multiplication. �

5. Vertical Version

Let F = FI = {fP =
∑∞

n=1 a(n, fP )qn}P∈Spec(I)(Qp) be a cuspidal p-

adic analytic family of p-ordinary Hecke eigen cusp forms of slope 0.
Let QV,r(F) be the subfield of Q generated by a(n, fP ) for all n and
all arithmetic P ∈ Spec(I)(Qp) with r(P ) ≤ r. In the early 1990s,
L. Clozel asked the author if (or when) the Hecke field QV,r(F) for
a finite r is a finite extension of Q. At the time, for a scarcity of
examples, my answer was “probably” that it is finite if and only if the
family contains a CM theta series (i.e., a binary theta series) of weight
k(P ) ≥ 2. The following “vertical” conjecture is a slightly stronger
version of our thought at the time:

Conjecture 5.1. Let A be an infinite set of arithmetic points with
bounded level r(P ) ≤ r for a fixed r ≥ 0. Let VA(I) be the field generated
over Q by {αp,P}P∈A, where P runs over all arithmetic points with
Im(εP ) ⊂ µpr for a fixed r. Then the field VA(I) is a finite extension
of Q for a fixed r < ∞ if and only if fP is a CM theta series for an
arithmetic P with k(P ) ≥ 1.

Pick a prime l different from p and write V (l)
A

(I) for the field generated
by {αl,P , βl,P} for all P ∈ A, where P runs over all points in A.

We give an outline of a proof in [H11] of

Theorem 5.2 (Vertical theorem). Let r be a non-negative integer. For
an infinite set A of arithmetic points P with bounded level r(P ) ≤ r
for an r ≥ 0, assume that VA(I) is a finite extension of Q. If there
exists an arithmetic point P0 ∈ A with k(P0) ≥ 1 such that

(1) α0 = aP0
(p) is a Weil number,

(2) Σα0
=

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) is generated by α0 over Q.

Then I has complex multiplication.
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5.1. Results towards the vertical conjecture. Let Ar be the set
of all arithmetic points of Spec(I)(Qp) with r(P ) ≤ r.

Proposition 5.3. Let F = {fP}P∈Spec(I)(Qp) be a p-adic analytic family

of classical p-ordinary Hecke eigenforms and A ⊂ Spec(I)(Qp) be an
infinite set of arithmetic points P with r(P ) ≤ r for a fixed r ≥ 0.
Assume that for P0 ∈ A

(1) α0 = aP0
(p) is a Weil number,

(2) Σα0
=

{
σ : Q(α0) ↪→ Q

∣∣|ip(ασ0)| = 1
}

is a CM type of Q(α0),
(3) VA(I) = Q(α0) is generated by α0 over Q.

Then there exist a Weil p-number α of weight 1 with |ip(α)|p = 1 such
that a(p, fP ) = ζ(εP (γ))logp(α)/ logp(γ)〈α〉k(P ) for a root of unity ζ for all
arithmetic P with k(P ) ≥ 1, where 〈α〉 = expp(logp(ip(α))) for the
Iwasawa logarithm logp.

Proof. In this lecture, to simply the argument, we only deal with the
case where M := VA(I) is an imaginary quadratic field and r = 0 (see
[H11] Proposition 7.2 for the general case). Take P ∈ A with k(P ) > 1.
Then αp,P is a Weil number of weight k(P ) > 1 with |αp,P |p = 1. Thus
(p) has to split in M ; so, (p) = pp in M . Thus Σαp,P

is made of single
element ι = ip|M , and for each k, there exists at most one Weil number
αk ∈ M of weight k (up to roots of unity in M) such that |αk|p = 1.

In M , (αk) = p
k for the prime ideal p of M corresponding to ip|M . Fix

such a k. Taking a k-th root α = k
√
αk, we have αl = αl up to roots of

unity for all l as (αl) = p
l.

Since A is an infinite set, there exists an infinite sequence in A
P1, P2, · · · , Pn, . . .

with increasing weight k(P1) < k(P2) < · · · such that

(aPj
(p)) = p

k(Pj )

for all j > 0. Put

〈α〉 = exp(
1

k(P0)
logp(a(p, fP0

)) = exp(logp(α)).

Since (aPj
(p)) = p

(k(Pj)), aPj
(p)/〈α〉k(Pj ) is a Weil number of weight 0,

that is, it is an algebraic integer with all its conjugates having absolute
value 1. Then by Kronecker’s theorem, we find aPj

(p) = ζPj
〈α〉k(Pj ) for

a root of unity ζPj
. Note that 〈α〉 is contained in a finite extension

M ′/M . Since there are finitely many roots of unity in M ′, we have
only finitely many possibilities of ζPj

. Therefore, replacing {Pj}j by



ARITHMETIC INVARIANT AND GEOMETRY 52

its subsequence, we find an infinite sequence P1, P2, · · · , Pn, · · · of in-
creasing weights such that aPj

(p) = ζ〈α〉k(Pj ) for all j = 1, 2, . . . for
a fixed root of unity ζ. We have a power series Φα(T ) ∈ W [[T ]] with
coefficients in a discrete valuation ring W finite flat over Zp such that
Φα(γ

k − 1) = ζ〈α〉k for all integers k. Since F is an ordinary family,
there exists an element A ∈ I such that a(p, fP ) = (A mod P ) for
all height 1 prime P of I containing (1 + T − γk(P )). Thus we find
A ≡ Φα mod Pj for infinitely many distinct primes Pj ; so, A = Φα, as
desired. �

5.2. Proof of the vertical theorem. Suppose that VA(I) is a finite
extension and the existence of an arithmetic point P0 as in the the-
orem. Therefore the assumption (2) of Proposition 5.3 is met. By
Proposition 5.3, we find a Weil number α of weight 1 and a power
series Φα(T ) ∈ W [[T ]] such that a(p, fP ) = Φα(εP (γ)γk(P ) − 1) =
ζ(εP (γ))logp(α)/ logp(γ)〈α〉k(P ) for all arithmetic P , where ζ is a root of
unity independent of P ; in short, a(p) = Φα ∈ W [[T ]] ⊂ I. Then,
for the entire set B of arithmetic points P with k(P ) = 1, we find
HB(I) ⊂ Q(µp∞(p−1))(ζ, α) which is a finite extension of Q(µp∞). Then
by the horizontal theorem, I has complex multiplication. The converse
is easier (in the same manner as in the proof of Theorem 4.2; see [H11]
§4 for more details). This finishes the proof of Theorem 5.2.

We could make the following conjecture:

Conjecture 5.4. Let A ⊂ Spec(I)(Qp) be an infinite set of arithmetic
points P with bounded level r(P ) ≤ r. Suppose that I does not have
complex multiplication. Then we have

lim sup
P∈A

[Q(a(p, fP)) : Q] =∞.


