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3. LECTURE 3: NON-VANISHING MODULO p OF L—VALUES

We construct an F-valued measure (F = F,) over the anti-cyclotomic
class group Cly = !Eln Cl,, modulo [*° whose integral against a char-
acter  is the Hecke L—value L(0, x~*\) (up to a period). The idea is to
use Hecke relation of the Eisenstein series translated into a distribution
relation on the profinite group Cl,, and density of CM points.

3.1. Arithmetic Hecke characters. Let M be an imaginary qua-
dratic field. Each integral linear combination k-is+j-c € Z[Gal(M/Q)]
is regarded as a character of T' by x + i (7)*c(x)’. We fix an arith-
metic Hecke character \ of infinity type (k - i + K(ice — ¢)) for in-
tegers k and k. Originally A is defined as an ideal character with
Ma) = a7 #01=9) if ¢ =1 mod € for its conductor ideal €.

For each prime £ of M, we choose its local generator we € M so
that £0(¢) = (we), where

b
O = {5

We write D¢ for the completion D¢ = linn O/L" and Mg = De®p M.
Recall the adele ring of M as an M-subalgebra in the product [[o Mg
made up of 2(®) = (z¢)¢ with 2¢ € O¢ except for finitely many prime
ideals £, and M, = Méoo) x C. Embedding M C Mg naturally and in
C by 100, we regard My as an M-algebra by the diagonal embedding

a,be O, aD+ L= D} (the localization at £).

e
M>3E&E—(&...,8...,8) € My.
The infinity component of x € M, is written as z,,. Put
M) = {z e M|z, =1 if £ ¢},

and U(€) = {z € 55><|£L’ =1 mod /@} for an ideal 0 # € C . Write
U(@)® = U(€) N (M) and U(€) = U(€)e x U(€)@.

Exercise 3.1. Let Z(€) be group of fractional ideals of M prime to
¢. Prove an isomorphism I (&) = (Méﬁm))X/U(G)(¢) of groups sending

each prime ideal £ to the element in (Mégoo))x, written still wge, whose

L-component is equal to wge and all other components are 1.

By the above exercise, identifying (Ml(foo))x/U(@)(@ with Z(€), we
may regard A as a character of (]\/fl(foo))X JU(€)®. We can then extend
A to a character of M*\ M in the following way for a place v.

Definition 3.2. For a plave v, put AM(axu) = u’i'i“%(i“_d”))\(z) e Cx
forao € M*, u € U(@)MZ and x € (M,(;Q))X, where C, = C or Q,
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according as v = oo or a prime p. If v = p, we write the character
obtained as A : M>*\M; — @; and if v = 00, we simply write it as \.

Because of this definition, & - i, + k(i, — ¢) appears as the exponent
at v; so, it is called oco-type of A and p-type of A. The p-adic character

\ is called the p-adic avatar of A (and its construction was originally
due to Weil).

Exercise 3.3. Let Cl(€p™) = lim Cl(Cp") as profinite compact group
and U(€p>) = (N, U(&p"). Then prove that (i) M*\M /., /U(Cp") =
Cl(Cp") as compact group if n < oo and (i) h) factors through Cl(Ep>).

Regarding A as an idele character of M), we assume (o) =
ghioetrlico=eioo) g1 1 € T(R). As before fixing two odd primes p # [,
we assume the following three conditions for simplicity (more general
cases are treated in [H07)):

(ct) k> 2 and Kk > 0 (= criticality at s =0 for L(s, \)).

(ol) The conductor € of X is trivial; i.e., € =1 and p > 5.

3.2. Degeneration operators. Let [ = (I) (I > 0) be a prime ideal
in Z. Consider the covariant classification functors defined over the
category of Z[é]-algebras:

Prom(A) = [(E,C, w)/A} and P(A) = [(E,w)/A},

where [-] = {-}/ = and C'is a cyclic subgroup in E of order [. Since [4 =
A, we may consider the following morphism of functors [[] : Pp,(A) —
P(A) sending (E,C,w)a to (E/C,(7*)'w) 4 for the projection 7 :
E — E/C. Plainly [[] is a morphism of functors; so, by pull back,
we get the degeneration morphism [[] : Gi(1; A) — Gi(I'o(l); A) given
by fI[|(E,C,w) = f(E/C,(7*)"'w). Adding level p>®-structure ¢, :
fpe — E, we get the corresponding map [[] : V(1; B) — Vi B

Exercise 3.4. Prove f|[l](¢) = f(Tate(q"), %wcan) =15 f(q).

3.3. Hecke operators. We define an operator 7'([) : Gi(1; B) —
Gi(1; B) for a prime [ = (I) with { > 0 invertible in B by

AITWE,w) = 7 S (E/C, () ),
C

where C' runs over all cyclic subgroup of order /. Similarly we define
U(0) : Ge(T'o(1); B) — Gi(I'o(1); B) by

AUME, ' w) = % Y (E/Cn(C) = (C+C) /T (x") " w),
C
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where C runs over all cyclic subgroup of order [ different from C".

Exercise 3.5. Write g-expansion of modular forms f at the infinity,
i.e., at (Tate(q), Cean, wean) as f(q) =, aln, f)g". Then prove

a(n, f|T(1) = a(nl, ) + lk_la(%,f) and a(n, flU(1)) = a(nl, f).

3.4. Eisenstein series. We are going to define an optimal Eisenstein
series whose special values at CM points interpolate the values L(0, Ax)
for anticyclotomic characters y of finite order.

For any even positive integer k£ > 0, we can now define the Eisenstein
series . We define the value Ei(L) for L € Lat = {Zw; + Zws C
C|Im(wq /wy) > 0} by

(3.1) Ei(L) = (~1)FT(k+5) >

weLJZX

1

,wk|,w|2s

s=0 ’

Here “>_" indicates that we are excluding w = 0 from the summation.
This type of series is convergent when the real part of s is sufficiently
large and can be continued to a meromorphic function well defined at
s =0 (as long as either k > 4; see [LFE] §2.5 for analytic continuation).

Lemma 3.6. If 4 < k € 27, the function Ej gives an element in
Gr(1;C), whose q—expansion at the cusp oo is given by

(3.2) Ei(q) = 27" +y Y %ak_lq".

0<n€Z (a,b)e(ZXZ)/Z*
ab=n
When k = 2, Ex(z) is non holomorphic and its Fourier expansion con-

tains an extra term Mm(z for a constant ¢ in addition to the above

holomorphic q-expansion.

From the effect of T'(I) and U(l) on g-expansion, we verify easily the
following lemma.

Lemma 3.7. For a prime [ = (1), we have
(3.3) E,T(l) = (1+1"")Ey,

On the elliptic curve side, ([)(E,w) = (F ®z [,w'), where as an fppf
abelian sheaf, F'®z [ is the sheafication of A — E®z(R) = E(R)®z1.
Tensoring E with the exact sequence 0 — [ — Z — Z/l — 0 (of
constant abelian fppf sheaves), since E is a divisible fppf abelian sheaf,
E ®77Z/1=0, and we get

0 — Tory (K, Z/) - E®z1l— FE —0
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is exact. Since Z is a principal ideal domain, Tori(F,Z/l) = E|l] =
Ell]; so, we have a commutative diagram:

Tor(E,Z/I) —— E®zl —— E

| | 1
Multiplication by [ induces ' = E ®z [, which acts on w by w — lw =:
w’. On the lattice side, C/L®yzl = C/IL; so, it is given by multiplication
L — L. For modular form f, we define f|(I)(E,w) = f((I)(E,w)).

Exercise 3.8. Let | be a prime outside §f. Suppose that [ = () for a
positive | € Q. Let B} = Ej, — I Ei|[1] and By, = E), — Ex|(D)|[l]. Then
prove

(1) EU(1) = K,

(2) Ex|U(1) = I*'Ey,

(3) Ewven if E5 is non-holomorphic, Es is holomorphic.

Remark 3.9. By a(n,df) = n - a(n, f), the Hecke operator T'(l) and
U(l) satisfies T(I)od =1-doT(l) and T([)od = [ -d o T(l) for the
Katz differential operator d. Thus for E(\) = d"E; and E'(\) = d"E;,
we have under the notation of Lemma 3.8

(3.4) EO\|U() = KE'(\), EOW)|U(1) = FHE().

3.5. Anticyclotomic Hecke L—functions. Pick a prime [ of 9. De-
fine the order ,, = Z + ["O of conductor [". We determine the type of
Hecke L—function obtained by values of Eisenstein series at CM points.
The result (equivalent to the one presented here) is explained well in
H. Yoshida [LAP] V.3.2.

Exercise 3.10. Prove the identity:
{non-proper O,1-ideals} = {lala is an O, ~ideal}.
We admit

Proposition 3.11. Let I, be the group of all proper fractional £,,—
ideals. Associating to each 9,1 —ideal a the O,—ideal O,a, we get the
following homomorphism of groups m, : I,+1 — I,. The homomorphism
™ is surjective, and the kernel of 7 is isomorphic to O /Oy, We
have the following exact sequence:

1— DQI/DX O — Clyyy — Cl, — 1.

n+1,0
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Let x be a character of the group of fractional proper ideals of O,,.
By the above proposition, x gives rise to a unique character of the full
group of fractional ideals of M. Put N(a) =[O, : a] = [O : Oa]. We
then define a formal L—function:

(3.5) L'(sx) = 3 x(@)N(@™,

ClCDn

where a runs over all proper O,—ideals. We write L(s, x) for L%(s, x),
which is the classical Hecke L—function. This L—function depends on
n, because the set of proper 9, ~ideals depends on n. However L° and
L™ are only different at Euler [-factor.

Since Cl, is almost pro-I group, all finite order characters of Cl
has values in W|u,m| if every element of the finite p-Sylow subgroup of
Cly is killed by p™. Replacing W be W [jym| = W (F,)[pym], we write
hereafter W for i (W (F,)[ppm]). We will prove, assuming € = 1, the
following theorem at the very end of this chapter after long preparation
(a proof in the general case where € # 1 can be found in [HOT7]):

Theorem 3.12. Let p be an odd prime splitting in M/Q. Let \ be a
Hecke character of M of conductor 1 and of infinity type k+r(1—c) with

k > 2. Suppose (ct) and (ol) in §3.1. Then T s+ LOOXTN) ¢y for

k+2
Qkt2e

all finite order characters x : Cly — W™ with nontrivial conductor.
Moreover, except for finitely many characters x in Cly,, we have
7T (k + &) LO(0, v~ 7IN)
QI&){—Z&

Z (0 mod myy.

3.6. Values at CM points. We take a proper 9,,,1-ideal a for n > 0,
and regard it as a lattice in C by a +— i (a). We suppose that a, =
Dp = Dp D Dﬁ. This implies HO(E(D), QE(D)/W) = HO(E(CL), QE(Q)/W)
as E(a) and E(D) are isogenous by an isogeny of degree prime to
p. Then a generator w(9O) of HY(E(D), Qpo)w) gives us w(a) which
generates H°(E(a), Qg w). We have fixed ¢,(9) : ppee = E(O)[p™],
and this identification a, = O, = O, & Op induces ¢p(a) : prpe =
E(a)[p*]. Then a; = 9,11 = Z; + "™ Oy, and hence aO,, D a. The
subgroup C'(a) = a9, /ain E(a)(C) = C/i(a) gives a canonical cyclic
subgroup C(a) C E(a) of order [ (defined over W). Write ws(a) = du
for the variable u € C. For a p—adic modular form f of the form d*g
for classical g € Gi(To(l); W), we have by Theorem 2.12

TIED (a0 wla)) = B0

Here z(a) is the test object: x(a) = (E(a),C(a))mw € Xo(H(W).
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We write ¢y = (—1)14% with 20 = v/—D. Here I'(s) is the

Euler’s Gamma function. By definition, we find, for e = [, : Z*]
(which is equal to 1 if n > 0),

(coe) ™65 Ex(w(a), w(a))

! 1
= Z whktr(l—c) NM/Q(w)s

wea/O)

/ )\(w(oo))_l

s=0

(3.6)

= )\(G)L?a—ﬂ] (07 )‘)7

where for the ideal class [a™!] € Cl,,,; represented by a proper 9,41

ideal a™!,

L?aﬂ] 5,\) Z A(b)Nasg(b)

bela—1]

is the partial L—function of the class [a™!] for b running over all 9,1
proper integral ideals prime to € in the class [a™!]. In the second line
of (3.6), we regard A as an idele character and in the other lines as an
ideal character. For an idele a with a9 = a9, we have Ma®)) = X\a)
and A(a®) = A(a).

We put E(A) = d"Ej, and E'(\) = d"E}, as in Remark 3.9. We want
to evaluate E(A) and E'(\) at © = (z(a),w(a)). Thus we write, for
example, E(A\) and E'(\) for E(A) and E'(A). Then by definition and
Theorem 2.12, we have for x = (z(a),w(a))

E'(\)(z) = §FEx(x) — 1767 Er(2(a9,), w(a,))

(3.7) E(\)(x) = 05 Er(z) — 67 Ex(z(a,), w(a,)).

because C'(a) = a9, /a and hence [[|(z(a)) = 2(aD,).

To simplify the notation, write ¢([a]) = A(a) 'é(x(a),w(a)). By
Exercise 2.4, for ¢ = E(A) and E'()), the value ¢([a]) only depends on
the ideal class [a] but not the individual a. The formula (3.7) combined
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with (3.6) shows, for a proper 9,,,1-ideal a,
e TE (A ([a]) = co (L?aﬂ](o, N) = 17 L (0, A))
BN ([a]) = o (L0, 0) = A L1109, (0,)
where e = [O* : Z*]. For a primitive character x : Cl; — W*

(3.9) L™(s, ) = > Ax(a)Nagg(a) ™,

(3.8)

where a runs over all proper ideals in O, prime to [/ and Ny g(a) =
[O,, : a]. For each primitive character x : Cly — Q”, taking n = f, by
a similar but more involved computation using (3.7), we have

(3.10)

e Y X@EW([a]) = co- (L™H(O0,M ) = L0, M 7))

[aeClyi1
et Y X(@EW([a]) = o (L0, ) = A THOL- L0, A7) -
[aeClyi+1

We define a possibly imprimitive L—function
LO(s,x7'A) = Li(s, x "N L(s,x7'\)

removing the [-Euler factor. Combining all these formulas with the
computation of L"(s,x *\) in [LAP] V.3.2, we find

(3.11) e Y X(@EW([a]) = o - LU0, x ),

[deClyi1

and up to p-units,

(3.12) e Z x(@E' V) ([a]) = co - L0, x71N) if f > 0.

[aeClyi1

By Theorems 2.5 and 2.12, we have proven that all these values are
algebraic in Q and actually integral over W:

Theorem 3.13. Let ¢y = (—1)'“@;;“#5%% for integers k > 0 and
k > 0. Then the value of (3.11) isin W if f >0 andp >5 or k > 0.

This follows from the fact that E(\) has W-integral g-expansion (i.e.,
no constant term) if either k # 2 or k > 0. If Kk = 0 and k& = 2, the
constant term 27 (1—1)((—1) of E’()\) is p-integral under the condition:
p > 5. so, the result is clear from the formula (3.12) and Theorems 2.5
and 2.12.
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3.7. Construction of a modular measure. Let R =W or F =T,
Let f € Vr,y/r be a normalized Hecke eigenform (here normaliza-
tion means that f|T'(n) = a(n, f)f, fIUWN) = a(l, f)f and f(q) =
Yoo oa(n, f)g"). A typical example of f can be given as follows: Take
a modular form g in Gi(I'o(l); R) for R = F. Put f = d*g for the dif-
ferential operator d” in 2.2. We write f(z(a)) for the value of at z(a).
The Hecke operator U([) takes the space V(I'g(l); R) into V (I'g(); R).
We regard U([) as an operator acting on V(Ig(l); W). Suppose that
glU(l) = a-g with a € W*; so, flU(l) = ["a - f for the positive gen-
erator [ of [ (see Remark 3.9). The Eisenstein series E(\) satisfies this
condition by Lemma 3.8.

Choosing a basis w = (wy, ws) of O=9 ®Z 1dent1fy the full Tate
module T(E(D) 5) = lim E(O)[N] = O Wlth 72 by Z > (a,b) —
aw; + bwy, € T(E(D)), getting a level structure: Q? ®g AP>) =
VEP(E(D)) == T(E(D) ®2 Q defined over W. Elliptic curves E,4
with such level structute n® : (AP*)2 = V®)/(E) is classified by
ShP)(A) = li_mp)fNY(N)/Q up to prime-to-p isogenies; i.e., if ¢ : £ —

E;A is an isogeny with degree prime-to-p with ¢ o n® = n’(p) gives a

unique point z € Sh®)(A) such that (E, ")) x g, x = (£,n®) for the
universal couple (E,n®) /shw - The Shimura curve S h%)v has a right

action of GLy(A®P>®) by n® s n® o g (Shimura’s global reciprocity).
Choose the basis w satisfying the following two conditions:

(B) Wy = 1 and D[ = Z[['UJQJ].

Let a be a proper O,-ideal (for 9, = Z + ["O) prime to f. Write

Iy = (1,...,1,;,1...,1) € A*. Then (wy,l[ws) is a base of 9, and
gives a level structure n®(9,) : Q? ®g AP = V)(E(D,)). We
also write [{ for [ € Z; (if we want to avoid confusion). We choose a
complete representative set A = {al, ...,ag} C MJ so that M =

|_|J L MXaJD M. Then aO, = anD for a € M* for some index

j. We then define 7" (a) = aa;n®(9,). The small ambiguity of the
choice of a does not cause any trouble. R

Write z(a) = (E(a),C(a),w(a))w (for C(a) = n®(aD,_1/a) =
a9,_1/a C E(a)). This is a test object of level I'y(l) and is the image
of z(a) in Xy(I). We pick a subgroup C' C E(9,,) such that C = Z/I™
(m > 0) but C' N C(OD,) = {0}. Since W is strictly henselian (i.e.,
W/my = F, = F) and [ { p, E(D,)[I"™] is a constant étale group
scheme isomorphic to (Z/1)?; so, making the quotient E(9,,)/C is easy
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(see [GME] §1.8.3). Then we define z(9,,)/C by
E©On) C+COn) .
(F2L S ) a0
for the projection map 7 : F(9,) — E(9,)/C.
Lemma 3.14. We have
£(92)/C = #{a) € My, (W)

for a proper O, .m—ideal a = ac D O, with (aa®)
u € Z; we have

(3.13) 2(ac) = 2(9)/C = (D)l (7).

= [72™ and for

01
Proof. Write simply 7 for n®. The base of 9, is given by a,*(1,w;)
for o, = ((1] l%) with a prime element [; of Z;. The action on level

structure 7 — nog induces the action L® »—>Ag_1f(p) for Z—lattices,
as L) = n Y (TE®P) - (no g) " (TE®) = g~ L. Thus we find that
o, (2(0D)) = 2(9,) and a7 '(2(D,-1)) = 2(O,). Since the general

case of m > 1 follows by iteration of the formula in the case of m =1,

we suppose m = 1. Then the formula becomes, for a suitable u € Z[

(3.14) 17 (a(@)) = w(ia) = 2(Ou)| ()
if z(a) = z(9,,)/C for C as above. To see this, note that the base of

liar is given by
11— uwe 1 =u 1
= 1
< l;hLle ) <0 1‘ Qn+1 (wg ) :

1—ulPwe

Thus a;/9,, is generated by — mod 9, which gives the subgroup
C for a suitable choice of u. Since V) € ZX, the acton of [ is equivalent
to the action of [ € Z(Q) which is trivial; so, we forget [ in (3.14). O

For each proper 9,-ideal a, we have an embedding p, : M g(poo) —

G Ly(AP®)) given by an®(a) = 7 (a) o ps(a). Since det(pq(a)) =
aa® >0, a € D(Xp) acts on Sh®) through ps(a) € G(A). We have
pa(@)(z(a) = (B(a),n"(a)pa(a)) = (E(aa),n® (aa))
for the prime-to-p isogeny o € Endz(E(a)) = O(,). Thus O acts on
Sh{P) fixing the point x(a). We find p(a)*w(a) = aw(a) and
g(z(aa), aw(a)) = g(p(a)(z(a),w(a))) = a "g(z(a),w(a)).
From this, we conclude

f(z(aa),aw(a)) = f(p(a)(2(a),w(®)) = a7 f(z(a), w(a)),
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because the effect of the differential operator d is identical with that of
d at the CM point z(a) by Theorem 2.12. Since

Maa) = a F1=9X(q),

the value X(a)_lf(:z(a), w(a)) is independent of the representative set
A ={a;} for Cl,. Defining, for a proper O, -ideal a prime to p,

(3.15) f([a]) = Ma) ™ f(x(a), w(a)),

we find that f([a]) only depends on the proper ideal class [a] € C1,,.
We write z(a,) = z(a)|a;’ ((1] ?) Then a, depends only on u
mod [, and {a,}, mod 1 gives a complete representative set for proper
On1-ideal classes which project down to the ideal class [a] € Cl,.
Since a,9, = ['a, we find A(ay) = AMI)~'A(a). Recalling f|U(I) =
["a - f, we have

(316)  la- f([a]) = A(a)" fIU(1)(x(a) = > e

Definition 3.15. For a continuous function ¢ : Cly, — F, taking
n > 0 so that ¢ factors through Cl,, we define a measure w5 on Clu
with values in F by

(3.17) pdop =b" > o(a ) f([a]) (for b=1"""aA(1)).

Cloo acClp

3.8. Non-triviality of the modular measure. The non-triviality
of the measure ¢y is proven in [H04] Theorems 3.2 and 3.3. To recall
the result in [HO4|, we recall a functorial action (introduced earlier)
on p-adic modular forms, commuting with U(l). Let q be a prime
ideal of Q different from [. For a test object (E,n) of level I'y(lq), the
g-part ng of n is a subgroup C' = Z/q in E. Then we can construct
canonically [q](E,n) = (E',) with B/ = E/C. If q splits into QQ
in M/Q, choosing 14 induced by E(a)[q>®] = Mqg/Oq X Mg/Og =
Qq/Zq x Qq/Zq, we always have a level I'g(q)-structure C' = E(a)[Q,)]
for 2, =QNY, on E(a) induced by the choice of the factor Q. Then
[q)(E(a)) = E(af,') for a proper O,-ideal a, as Q,'a/a = C by n,
(so, E(a)/C = E(a)/(aQ;'/a) = E(aQ;!)). When q ramifies in M/Q
as ¢ = Q7 F(a) has a subgroup C' = E(a)[Q,] isomorphic to Z/q;
so, we can still define [q](F(a)) = E(aQ;'). The effect of [g] on the
g—expansion at the infinity cusp is computed in §3.2 and is given by a
unit multiple of the g—expansion of f at the Tate curve Tate(¢%) for a
positive generator w of q. The operator [q] corresponds to the action
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0w,

of g = (1 01) € GLy(Qg). In §3.2, we saw that [q] induces a linear

map well defined on Vi )/ into Vi (iq)/r-

We fix a decomposition Cl,, = I' X A for a finite group A and a
torsion-free subgroup I'. Since each fractional D—ideal A prime to [
defines a class [] in Clo, we can embed the ideal group of fractional
ideals prime to [ into Cls. We write C1% for its image.

Exercise 3.16. (1) Complex conjugation acts on z € Cly, by z +—

271

(2) The intersection A% = AN CI% is represented by square-free
products of prime ideals of M ramified over Q. In other words,
A9 is isomorphic to the ambiguous class group of M.

(3) The quotient Cly/TAY has a complete representative set in
the set of prime ideals split over Q (prime to |).

(4) Write [Q)r (resp. [Q]a) for the projection of [Q] € Cl% to T
(resp. to A). If [Q)a & [Q]aAY, then [Q]r/[Qr & C19.

We choose a complete representative set {R~!r € R} for A% such
that the set R is a subset of the set of all square-free product of primes
in Q ramifying in M/Q, and R is a unique ideal in M with R* = t. The
set {R|t € R} is a complete representative set for 2—torsion elements
in the class group Cly of O (i.e., the ambiguous classes). We fix a
character v : A — F*, and define

(3.18) fo=> W (R fI[x)-

te€R

Choose a complete representative set Q for Cly, /T A% made of primes
of M split over Q outside pl. Since C1% is dense in Cls, we can
choose Q € Q whose projection to I' is whatever close to 1 under the

profinite topology (this remark will be useful later). We choose m(Lp )

out of the base (wy,ws) of f)n so that at ¢ = QNQ, w; = (1,0) €
DX OVqe = Vg and wy = (0,1) € Oq x Ogqe = Oy. Since all operators
[q] and [t] involved in this definition commutes with U(l), f,|[q] is still
an eigenform of U(I) with the same eigenvalue as f. Thus in particular,
we have a measure ¢yr,. We project it to I' along v which produces a
measure ¢ on I' explicitly given by

/F pdei =" Q) /F ¢|Qdey, g,

Q€9

where ¢|Q(y) = ¢(y[Q];") for the projection [Q]r in T of [Q] € Cl..
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Lemma 3.17. If x : Clo, — F* is a character with x|a = v, we have

/ xdy'y = / xdpy-.
T Cloo

Proof. Write Iy, for the image of I' in C'l,,. For proper O,,~ideal a, by
the above definition of these operators,

flllla)(a]) = A(a) ™" f(2(Q 'R a), w(Q 'R a)).
For sufficiently large n, x factors through C1,. Since y = v on A, we

have
/ vt = SO % ST Ayt (@mia) £ [a] [a))
r NEQeR acl'y
— —1ypn—1 — d
> (@R ) /C ey
because Clo, = | |5 Q'R O

In the next couple of sections, we prove the following result (given
in [HO4] as Theorems 3.2 and 3.3):

Theorem 3.18. Fiz a character v : A — F*, and define f, as in
(3.18). If f satisfies the following condition:

(H) for any given integer v > 0 and any congruence class u €
(ZJI"Z)*, there exists 0 < & € u such that a(&, f,) # 0,

then non-vanishing |, o Vxdey # 0 holds except for finitely many char-
acters x : I' — pys ().
3.9. Preliminary to the proof of Theorem 3.18. We regard f

as a function of C1* = | | Cl, (embedded into Sh® over X;(I) by
a— z(a)). By (3.16), we have, for an integer n > m,

(3.19) > f(la]) = OO FlUE=)([2A)),
[aeCly, a—[AeClm

where [a] runs over all classes in Cl,, which project down to [] € Cl,,.

We suppose that f|U(l) = (a/X([)l)f with a unit a € A. For each
function ¢ : C'l,, — A factoring through C1,,, we define

(3.20) ¢dpy=a™™ Y d(a™")f([a]),
Cloo aEClm
(Classical modular forms are actually defined over a number field;
so, we assume that f is defined over the localization V' of the integer
ring in a number field K containing M over which E(a) for each class
[a] € Cly is defined. We write P|p for the prime ideal of the p-integral



ARITHMETIC INVARIANT AND GEOMETRY 33

closure V of V in Q corresponding to i, : Q — @p. More generally,
if f = d"g for a classical modular form ¢ integral over V, the value
f([a]) is algebraic, abelian over M and P-integral over V by a result
of Shimura and Katz (see Theorem 2.5 and Theorem 2.12).

Let f = d"g for g € G(L'o(l); V). Suppose f|U(l) = (a/l)f for a giv-
ing a unit of VV/P. For the moment, let ¢ be the measure associated to
f with values in R = W for a finite extension W of W (F,) containing
V. We have a well defined measure ¢ mod P. Let K be the field gen-
erated by f([a]) over K|[jy~]. Then K;/K is an abelian extension un-
ramified outside [, and we have the Frobenius element o, € Gal(K;/K)
(that is, the image of b under the Artin reciprocity map) for each ideal
b of K prime to (. By Shimura’s CM reciprocity law, we find for o = oy,
r(a)’ = 2(N(b)~ta) for the norm N : K — M. From this, if we extend
K further if necessary, we see f([a])? = f([N(b)"'a]) for any ideal b.
We then have

(3.21) o—-( n <a:>dsof<z>)= [ oot ez,

where N(b) is the norm of b over M.

We now assume that R = F = W/my = V/P and regard the mea-
sure ¢ as having values in F. Then (3.21) shows that if ¢ is a character
X of Clw, for o € Gal(F/F,r) (Fpr =V/PNYV),

(3.22) /cz X(x)dps(z) =0 <= ; oo x(z)dps(x) =0.
Decompose Cly, into a product of the maximal torsion-free [—profinite
subgroup I' and a finite group A.

Let F, be the finite subfield of F generated by all [|A|-th roots of
unity over the field IF,» of rationality of f and A\. For any finite extension
F'/F,, we consider the trace map: Trwr,(§) = - ccamw s, o(§) for
¢ el. If x: Cl, — F* is a character, d := [Im(x) : Im(x) NF,] is
not divisible by p (as [Fjn| = p™ —1# 0 mod p). Thus d € F*, and
(3.23)

d

Tre,o/m, © X w)dgs() = — > x(y'a)f([a]),

oo a€Clyx(ay—1)€eFR,

because, by Exercise 1.5, for an [-power root of unity ¢ € pyn — g,

s [m=mes it ¢¢ e Fyand F, Ny (F) = pym (F
Tr]Fq(uzn)/qu(C): {0 ¢ ¢ g g N e (F) = puym (F)

otherwise.
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Suppose [, x(z)dps(xr) = 0 for an infinite set X' of characters y.
For sufficiently large m, we always find a character y € X such that
Ker(y) c T". Then writing Ker(y) = I''" for n > m, we have the
vanishing from (3.22)

/ ogoxdpy=0 forall o € Gal(F/F,).
Clo

This combined with (3.23), we find Zyex,l(]F;) x(ya)f(y[a])) = 0 for
all a € I'),, where I',, is the image of I" in C'l,,.

3.10. Proof of Theorem 3.18. We write [, [f] for the minimal field
of definition of f € V(IF) (i.e., the field generated by a(§, f) € F for
all 0 < ¢ € Z). Similarly F,[\] (resp. F,[v]) is the subfield of F
generated by the values X([a]) mod P (resp. v([a])) for all [a] € C.
Define F,[f, A, v] by the composite of these fields and F,[1]. Note that
F,[f, A\, v] is a finite extension of I, as f is mod p reduction of some
classical modular form of some weight > 2. Define 1 < r =r(v) € Z
by | (Fp[f, A, v])| =1

By definition, the projection {[Q]r}qco of [Q] in I' are all distinct in
Cly/C%. By Lemma 3.17, we need to prove that the integral fr xd’
vanishes only for finitely many characters x of I'. Suppose by absurdity
that the integral vanishes for characters y in an infinite set X.

Let ['(n) =T " /T for r = r(v). By applying (3.23) to a character
in X with Ker(y) =I'"", we find

(3.24) v > x(@)f([aQ Q) = 0.
QeQ acyx 1 (wr)

Fix Q € Q. By Lemma 3.14, {z(a)|[a] € yx '(wr)} is given by
o ) z(ag)) for any member ag € yx ' (u,r), where

(3-25) a(t) =(51)-
Actually a — u mod [" gives a bijection of yx~*(u-) onto O/I". We
write the element a corresponding to u as a(7r)ag. This shows, choosing
[
a primitive {"~th root of unity ¢ = exp(27i/l") and a, € yx*(r) so
that x(a(5r)a,) = ¢* for an integer 0 < v < [” prime to [ (independent
[
of y), the inner sum of (3.24) is equal to
uv U -
> ot (a2l
v mod [" !

The choice of v depends on x. Since X is infinite, we can choose an
infinite subset X’ of & for which v is independent of the element in A”.
Then write n; for the integers given by I''7 = Ker(y) for x € X’ (in
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increasing order), and define = to be the set of points x(a) for a € Cl,,
with [aO,,] = [Oy,] in Cl,,. Define also hq = >, _ 4 C“”fy|a(%),

because (3.24) is now the sum:

> v(9) " hal[d]([a][Qr) =0,

Q€9

where ¢ = QN F. If necessary, as we remarked already, we reselect the
representative set Q so that [Q|r € Ker(Clo — Cl,,,). This is possible
because {[Qy] € I'|Q ~ A} for all split primes is dense by Chebotarev-
density, where £ ~ 20 means the class of £ is equal to the class of 2 in
Cls/TAY%. Take 9,9’ in Q. Then by Exercise 3.16 (4), [Q]r/[Q]r €
Ol < Q = Q'. Thus we may apply Corollary 3.21 in the following
section to the following set of functions: {[a] — hql[q]([a][Q]r)}. By
the corollary, if hg|[q] # 0 for one £, the above sum is nonzero as
a function of [a]; so, this implies that hg[q] = 0. By g-expansion
principle, we conclude hq = 0 (as h|[q](¢) = h(¢¥) for the positive
generator w of q).

However, since we have f,| ((1] %) = > o<eer U&, f)¢4 gt for ¢ =
exp(zﬁi), the g—expansion coefficient a(£, hq) of hq is given by a(¢, f,)
if £ = —v mod " and vanishes otherwise. This is a contradiction

against the assumption (H).

3.11. Linear independence. Fix a positive integer n; > 0. We create
complete representative set R, for Ker(Cl,, — Cl,,) by a(3)(2(On,))
(for a(t) as in (3.25)) by choosing suitable integers 0 < u < {". Choose
an infinite sequence n := 0 < n; < ng < --- < Ny, < --- of positive
integers. Take a geometrically irreducible component Vi C S h%) con-
taining x(9,,), where Sh%) = Sh®) xy, F. Since V is affine, we can
write V' = Spec(Oy) for Oy = H°(V,Oy). Sometimes we just write
O = Oy if confusion is unlikely. Define

= | J{z(@) eV]ae R, } C V.

j=1

[1]
[1]

n

Since SLy(A®>)) keeps V' (by Shimura’s global reciprocity), z(a) as
above always resides in one component V.

Let F = F= denote the F-algebra of functions ¢ : = — PY(F) = F U
{oo} with |¢71(0)| < oo and ¢~ (c0)| < co. The profinite class group
C = C,, :=Ker(Cly — Cly,,) acts on F by translation: f(z)— f(xy)
(y € Cly). In particular, o € O,y with trivial [(o)] € Cl,, acts on
Z and such « is p-adically dense in O). For f € F(V)*, for each
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r = z(a) € Z, expanding f into a Laurent series f(t) = > a,t" €
F[[¢]][t7!] with leading nonzero term a,,t™ (m € Z), we may define
oo ifm <0,
f(xz(a)) =< ap ifm=0,
0 ifm>0.

By Zariski density of Zin V = V/(]P‘?), we can embed into F the function
field F(V') of V.

Exercise 3.19. Why is = Zariski dense in V¢ Why does density imply
injectivisty of F(V') into F?

We will prove the following analogue of Sinnott’s theorem later if
time allows.

Proposition 3.20. Take a finite set A = {v1,...,vm} C Cy, inject-
ing into Cloo/CIl99. Then the subset = = {(2(5(a))scalz(a) € =}
1s Zariski dense in the product V/ﬁ of A copies of Vig. This im-
plies that the fields vi(F(V)), ...,y (F(V)) are linearly disjoint over
F in Fz, where v(F(V)) is the image of F(V) C F wunder the ac-

tion of v € Cy,. In other words, we have injectivity of the map

N@ @Y : Oy @ Oy ®p--- R Oy — F sending fL @ -+ @ fm
to an element in F given by x(a) — []; f;(z(v;a)).

The linear independence applied to the global sections of a modular
line bundle (regarded as sitting inside the function field) yields the
following result:

Corollary 3.21. Let the notation and the assumption be as in Propo-
sition 3.20. Let w* be a modular line bundle over the Igusa tower Ig/p
over Vyg. Then for a finite set A C Cly, injectiong into Cloo/C1% and
a set {ss € HO(I,w")}sea of non-constant global sections ss of w* finite
at =, the functions ssod (6 € A) are linearly independent in F=.

Choosing one nonzero section s (different from constant multiple of
any of sss) and replacing ss by ss/s, which is a modular function, we
can bring the situation in the case of modular functions which is taken
care of by the above theorem.

3.12. I-Adic Eisenstein measure modulo p. We apply Theorem 3.18
to the Eisenstein series E(\) in (3.4) for the Hecke character \ fixed in
3.1. We can easily check (H) in Theorem 3.18 for f = E(\) mod myy,
and get Theorem 3.12.



