3. Lecture 3: Non-vanishing modulo p of L-values

We construct an \mathbb{F} -valued measure ($\mathbb{F} = \overline{\mathbb{F}}_p$) over the anti-cyclotomic class group $Cl_{\infty} = \varprojlim_n Cl_n$ modulo \mathfrak{l}^{∞} whose integral against a character χ is the Hecke *L*-value $L(0, \chi^{-1}\lambda)$ (up to a period). The idea is to use Hecke relation of the Eisenstein series translated into a distribution relation on the profinite group Cl_{∞} and density of CM points.

3.1. Arithmetic Hecke characters. Let M be an imaginary quadratic field. Each integral linear combination $k \cdot i_{\infty} + j \cdot c \in \mathbb{Z}[\operatorname{Gal}(M/\mathbb{Q})]$ is regarded as a character of T by $x \mapsto i_{\infty}(x)^k c(x)^j$. We fix an arithmetic Hecke character λ of infinity type $(k \cdot i_{\infty} + \kappa(i_{\infty} - c))$ for integers k and κ . Originally λ is defined as an ideal character with $\lambda(\alpha) = \alpha^{-k-\kappa(1-c)}$ if $\alpha \equiv 1 \mod \mathfrak{C}$ for its conductor ideal \mathfrak{C} .

For each prime \mathfrak{L} of M, we choose its local generator $\varpi_{\mathfrak{L}} \in M$ so that $\mathfrak{LO}_{(\mathfrak{L})} = (\varpi_{\mathfrak{L}})$, where

$$\mathfrak{O}_{(\mathfrak{L})} = \left\{ \frac{b}{a} \Big| a, b \in \mathfrak{O}, \ a\mathfrak{O} + \mathfrak{L} = \mathfrak{O} \right\}$$
 (the localization at \mathfrak{L}).

We write $\mathfrak{O}_{\mathfrak{L}}$ for the completion $\mathfrak{O}_{\mathfrak{L}} = \lim_{\mathfrak{m}} \mathfrak{O}/\mathfrak{L}^n$ and $M_{\mathfrak{L}} = \mathfrak{O}_{\mathfrak{L}} \otimes_{\mathfrak{O}} M$. Recall the adele ring of M as an M-subalgebra in the product $\prod_{\mathfrak{L}} M_{\mathfrak{L}}$ made up of $x^{(\infty)} = (x_{\mathfrak{L}})_{\mathfrak{L}}$ with $x_{\mathfrak{L}} \in \mathfrak{O}_{\mathfrak{L}}$ except for finitely many prime ideals \mathfrak{L} , and $M_{\mathbb{A}} = M_{\mathbb{A}}^{(\infty)} \times \mathbb{C}$. Embedding $M \subset M_{\mathfrak{L}}$ naturally and in \mathbb{C} by i_{∞} , we regard $M_{\mathbb{A}}$ as an M-algebra by the diagonal embedding

$$M \ni \xi \mapsto (\xi, \dots, \overset{\mathfrak{L}}{\xi}, \dots, \xi) \in M_{\mathbb{A}}.$$

The infinity component of $x \in M_{\mathbb{A}}$ is written as x_{∞} . Put

$$M_{\mathbb{A}}^{(\mathfrak{C}\infty)} = \{ x \in M_{\mathbb{A}}^{(\infty)} | x_{\mathfrak{L}} = 1 \text{ if } \mathfrak{L} \supset \mathfrak{C} \},\$$

and $U(\mathfrak{C}) = \{x \in \widehat{\mathfrak{O}}^{\times} | x \equiv 1 \mod \widehat{\mathfrak{C}}\}$ for an ideal $0 \neq \mathfrak{C} \subset \mathfrak{O}$. Write $U(\mathfrak{C})^{(\mathfrak{C})} = U(\mathfrak{C}) \cap (M_{\mathbb{A}}^{(\mathfrak{C}\infty)})^{\times}$ and $U(\mathfrak{C}) = U(\mathfrak{C})_{\mathfrak{C}} \times U(\mathfrak{C})^{(\mathfrak{C})}$.

Exercise 3.1. Let $\mathcal{I}(\mathfrak{C})$ be group of fractional ideals of M prime to \mathfrak{C} . Prove an isomorphism $\mathcal{I}(\mathfrak{C}) \cong (M^{(\mathfrak{C}\infty)}_{\mathbb{A}})^{\times}/U(\mathfrak{C})^{(\mathfrak{C})}$ of groups sending each prime ideal \mathfrak{L} to the element in $(M^{(\mathfrak{C}\infty)}_{\mathbb{A}})^{\times}$, written still $\varpi_{\mathfrak{L}}$, whose \mathfrak{L} -component is equal to $\varpi_{\mathfrak{L}}$ and all other components are 1.

By the above exercise, identifying $(M^{(\mathfrak{C}\infty)}_{\mathbb{A}})^{\times}/U(\mathfrak{C})^{(\mathfrak{C})}$ with $\mathcal{I}(\mathfrak{C})$, we may regard λ as a character of $(M^{(\mathfrak{C}\infty)}_{\mathbb{A}})^{\times}/U(\mathfrak{C})^{(\mathfrak{C})}$. We can then extend λ to a character of $M^{\times} \setminus M^{\times}_{\mathbb{A}}$ in the following way for a place v.

Definition 3.2. For a place v, put $\lambda(\alpha xu) = u_v^{k \cdot i_v + \kappa(i_v - ci_v)}\lambda(x) \in \mathbb{C}_v^{\times}$ for $\alpha \in M^{\times}$, $u \in U(\mathfrak{C})M_{\infty}^{\times}$ and $x \in (M_{\mathbb{A}}^{(v\mathfrak{C})})^{\times}$, where $\mathbb{C}_v = \mathbb{C}$ or $\overline{\mathbb{Q}}_p$ according as $v = \infty$ or a prime p. If v = p, we write the character obtained as $\widehat{\lambda} : M^{\times} \setminus M^{\times}_{\mathbb{A}} \to \overline{\mathbb{Q}}_{p}^{\times}$ and if $v = \infty$, we simply write it as λ .

Because of this definition, $k \cdot i_v + \kappa(i_v - c)$ appears as the exponent at v; so, it is called ∞ -type of λ and p-type of $\hat{\lambda}$. The p-adic character $\hat{\lambda}$ is called the p-adic avatar of λ (and its construction was originally due to Weil).

Exercise 3.3. Let $Cl(\mathfrak{C}p^{\infty}) = \lim_{n} Cl(\mathfrak{C}p^n)$ as profinite compact group and $U(\mathfrak{C}p^{\infty}) = \bigcap_n U(\mathfrak{C}p^n)$. Then prove that (i) $M^{\times} \setminus M^{\times}_{\mathbb{A}^{(\infty)}} / U(\mathfrak{C}p^n) \cong Cl(\mathfrak{C}p^n)$ as compact group if $n \leq \infty$ and (ii) $\widehat{\lambda}$ factors through $Cl(\mathfrak{C}p^{\infty})$.

Regarding λ as an idele character of $M^{\times}_{\mathbb{A}}$, we assume $\lambda(x_{\infty}) = x_{\infty}^{ki_{\infty}+\kappa(i_{\infty}-ci_{\infty})}$ for $x_{\infty} \in T(\mathbb{R})$. As before fixing two odd primes $p \neq l$, we assume the following three conditions for simplicity (more general cases are treated in [H07]):

(ct) $k \ge 2$ and $\kappa \ge 0$ (\Rightarrow criticality at s = 0 for $L(s, \lambda)$).

(ol) The conductor \mathfrak{C} of λ is trivial; i.e., $\mathfrak{C} = 1$ and $p \geq 5$.

3.2. Degeneration operators. Let $\mathfrak{l} = (l)$ (l > 0) be a prime ideal in \mathbb{Z} . Consider the covariant classification functors defined over the category of $\mathbb{Z}[\frac{1}{6l}]$ -algebras:

$$\mathcal{P}_{\Gamma_0(\mathfrak{l})}(A) = \left[(E, C, \omega)_{/A} \right] \text{ and } \mathcal{P}(A) = \left[(E, \omega)_{/A} \right],$$

where $[\cdot] = \{\cdot\}/\cong$ and C is a cyclic subgroup in E of order \mathfrak{l} . Since $\mathfrak{l}A = A$, we may consider the following morphism of functors $[\mathfrak{l}] : \mathcal{P}_{\Gamma_0(\mathfrak{l})}(A) \to \mathcal{P}(A)$ sending $(E, C, \omega)_{/A}$ to $(E/C, (\pi^*)^{-1}\omega)_{/A}$ for the projection $\pi : E \to E/C$. Plainly $[\mathfrak{l}]$ is a morphism of functors; so, by pull back, we get the degeneration morphism $[\mathfrak{l}] : G_k(1; A) \to G_k(\Gamma_0(\mathfrak{l}); A)$ given by $f|[\mathfrak{l}](E, C, \omega) = f(E/C, (\pi^*)^{-1}\omega)$. Adding level p^{∞} -structure $\phi_p : \mu_{p^{\infty}} \hookrightarrow E$, we get the corresponding map $[\mathfrak{l}] : V(1; B) \to V_{\Gamma_0(\mathfrak{l})/B}$.

Exercise 3.4. Prove $f|[\mathfrak{l}](q) = f(\operatorname{Tate}(q^l), \frac{1}{l}\omega_{can}) = l^k \cdot f(q^l).$

3.3. Hecke operators. We define an operator $T(\mathfrak{l}) : G_k(1;B) \to G_k(1;B)$ for a prime $\mathfrak{l} = (l)$ with l > 0 invertible in B by

$$f|T(\mathfrak{l})(E,\omega) = \frac{1}{l} \sum_{C} (E/C, (\pi^*)^{-1}\omega),$$

where C runs over all cyclic subgroup of order l. Similarly we define $U(\mathfrak{l}): G_k(\Gamma_0(\mathfrak{l}); B) \to G_k(\Gamma_0(\mathfrak{l}); B)$ by

$$f|U(\mathfrak{l})(E,C',\omega) = \frac{1}{l} \sum_{C} (E/C, \pi(C') = (C+C')/C', (\pi^*)^{-1}\omega),$$

where C runs over all cyclic subgroup of order l different from C'.

Exercise 3.5. Write q-expansion of modular forms f at the infinity, *i.e.*, at $(\text{Tate}(q), C_{can}, \omega_{can})$ as $f(q) = \sum_{n} a(n, f)q^{n}$. Then prove

$$a(n, f|T(\mathfrak{l})) = a(nl, f) + l^{k-1}a(\frac{n}{l}, f)$$
 and $a(n, f|U(\mathfrak{l})) = a(nl, f).$

3.4. Eisenstein series. We are going to define an optimal Eisenstein series whose special values at CM points interpolate the values $L(0, \lambda\chi)$ for anticyclotomic characters χ of finite order.

For any even positive integer k > 0, we can now define the Eisenstein series E_k . We define the value $E_k(L)$ for $L \in Lat = \{\mathbb{Z}w_1 + \mathbb{Z}w_2 \subset \mathbb{C} | \operatorname{Im}(w_1/w_2) > 0\}$ by

(3.1)
$$E_k(\underline{L}) = (-1)^k \Gamma(k+s) \sum_{w \in L/\mathbb{Z}^{\times}} \frac{1}{w^k |w|^{2s}} \Big|_{s=0}.$$

Here " \sum' " indicates that we are excluding w = 0 from the summation. This type of series is convergent when the real part of s is sufficiently large and can be continued to a meromorphic function well defined at s = 0 (as long as either $k \ge 4$; see [LFE] §2.5 for analytic continuation).

Lemma 3.6. If $4 \leq k \in 2\mathbb{Z}$, the function E_k gives an element in $G_k(1;\mathbb{C})$, whose q-expansion at the cusp ∞ is given by

(3.2)
$$E_k(q) = 2^{-1}\zeta(1-k) + \sum_{\substack{0 < n \in \mathbb{Z} \ (a,b) \in (\mathbb{Z} \times \mathbb{Z})/\mathbb{Z}^{\times} \\ ab=n}} \frac{a}{|a|} a^{k-1} q^n.$$

When k = 2, $E_k(z)$ is non-holomorphic and its Fourier expansion contains an extra term $\frac{c}{2i \operatorname{Im}(z)}$ for a constant c in addition to the above holomorphic q-expansion.

From the effect of $T(\mathfrak{l})$ and $U(\mathfrak{l})$ on q-expansion, we verify easily the following lemma.

Lemma 3.7. For a prime l = (l), we have

(3.3)
$$E_k | T(\mathfrak{l}) = (1 + l^{k-1}) E_k$$

On the elliptic curve side, $(\mathfrak{l})(E,\omega) = (E \otimes_{\mathbb{Z}} \mathfrak{l},\omega')$, where as an fppf abelian sheaf, $E \otimes_{\mathbb{Z}} \mathfrak{l}$ is the sheafication of $A \mapsto E \otimes_{\mathbb{Z}} \mathfrak{l}(R) = E(R) \otimes_{\mathbb{Z}} \mathfrak{l}$. Tensoring E with the exact sequence $0 \to \mathfrak{l} \to \mathbb{Z} \to \mathbb{Z}/\mathfrak{l} \to 0$ (of constant abelian fppf sheaves), since E is a divisible fppf abelian sheaf, $E \otimes_{\mathbb{Z}} \mathbb{Z}/\mathfrak{l} = 0$, and we get

$$0 \to \operatorname{Tor}_1(E, \mathbb{Z}/\mathfrak{l}) \to E \otimes_{\mathbb{Z}} \mathfrak{l} \to E \to 0$$

is exact. Since \mathbb{Z} is a principal ideal domain, $\operatorname{Tor}_1(E, \mathbb{Z}/\mathfrak{l}) \cong E[\mathfrak{l}] =$ E[l]; so, we have a commutative diagram:

Multiplication by l induces $E \cong E \otimes_{\mathbb{Z}} \mathfrak{l}$, which acts on ω by $\omega \mapsto l\omega =:$ ω' . On the lattice side, $\mathbb{C}/L \otimes_{\mathbb{Z}} \mathfrak{l} = \mathbb{C}/\mathfrak{l}L$; so, it is given by multiplication $L \mapsto lL$. For modular form f, we define $f|(\mathfrak{l})(E,\omega) = f((\mathfrak{l})(E,\omega))$.

Exercise 3.8. Let \mathfrak{l} be a prime outside \mathfrak{f} . Suppose that $\mathfrak{l} = (l)$ for a positive $l \in \mathbb{Q}$. Let $\mathbb{E}'_k = E_k - l^{-1}E_k|[\mathfrak{l}]$ and $\mathbb{E}_k = E_k - E_k|(\mathfrak{l})|[\mathfrak{l}]$. Then prove

- (1) $\mathbb{E}'_k | U(\mathfrak{l}) = \mathbb{E}'_k,$ (2) $\mathbb{E}_k | U(\mathfrak{l}) = l^{k-1} \mathbb{E}_k,$
- (3) Even if E_2 is non-holomorphic, \mathbb{E}_2 is holomorphic.

Remark 3.9. By $a(n, df) = n \cdot a(n, f)$, the Hecke operator $T(\mathfrak{l})$ and $U(\mathfrak{l})$ satisfies $T(\mathfrak{l}) \circ d = l \cdot d \circ T(\mathfrak{l})$ and $T(\mathfrak{l}) \circ d = l \cdot d \circ T(\mathfrak{l})$ for the Katz differential operator d. Thus for $\mathbb{E}(\lambda) = d^{\kappa} \mathbb{E}_k$ and $\mathbb{E}'(\lambda) = d^{\kappa} \mathbb{E}'_k$, we have under the notation of Lemma 3.8

(3.4)
$$\mathbb{E}'(\lambda)|U(\mathfrak{l}) = l^{\kappa}\mathbb{E}'(\lambda), \quad \mathbb{E}(\lambda)|U(\mathfrak{l}) = l^{k-1+\kappa}\mathbb{E}(\lambda).$$

3.5. Anticyclotomic Hecke *L*-functions. Pick a prime \mathfrak{l} of \mathfrak{O} . Define the order $\mathfrak{O}_n = \mathbb{Z} + \mathfrak{l}^n \mathfrak{O}$ of conductor \mathfrak{l}^n . We determine the type of Hecke *L*-function obtained by values of Eisenstein series at CM points. The result (equivalent to the one presented here) is explained well in H. Yoshida [LAP] V.3.2.

Exercise 3.10. *Prove the identity:*

$$\{non-proper \mathfrak{O}_{n+1}-ideals\} = \{\mathfrak{la}|\mathfrak{a} \text{ is an } \mathfrak{O}_n-ideal\}.$$

We admit

Proposition 3.11. Let I_n be the group of all proper fractional \mathfrak{O}_n ideals. Associating to each \mathfrak{O}_{n+1} -ideal \mathfrak{a} the \mathfrak{O}_n -ideal $\mathfrak{O}_n\mathfrak{a}$, we get the following homomorphism of groups $\pi_n: I_{n+1} \to I_n$. The homomorphism π is surjective, and the kernel of π is isomorphic to $\mathfrak{O}_{n,\mathfrak{l}}^{\times}/\mathfrak{O}_{n+1,\mathfrak{l}}^{\times}$. We have the following exact sequence:

$$1 \to \mathfrak{O}_{n,\mathfrak{l}}^{\times}/\mathfrak{O}_{n+1,\mathfrak{l}}^{\times}\mathfrak{O}_{n}^{\times} \to Cl_{n+1} \to Cl_{n} \to 1.$$

Let χ be a character of the group of fractional proper ideals of \mathfrak{O}_n . By the above proposition, χ gives rise to a unique character of the full group of fractional ideals of M. Put $N(\mathfrak{a}) = [\mathfrak{O}_n : \mathfrak{a}] = [\mathfrak{O} : \mathfrak{O}\mathfrak{a}]$. We then define a formal L-function:

(3.5)
$$L^{n}(s,\chi) = \sum_{\mathfrak{a} \subset \mathfrak{O}_{n}} \chi(\mathfrak{a}) N(\mathfrak{a})^{-s},$$

where \mathfrak{a} runs over all proper \mathfrak{O}_n -ideals. We write $L(s,\chi)$ for $L^0(s,\chi)$, which is the classical Hecke *L*-function. This *L*-function depends on *n*, because the set of proper \mathfrak{O}_n -ideals depends on *n*. However L^0 and L^n are only different at Euler I-factor.

Since Cl_{∞} is almost pro-*l* group, all finite order characters of Cl_{∞} has values in $\mathcal{W}[\mu_{p^m}]$ if every element of the finite *p*-Sylow subgroup of Cl_{∞} is killed by p^m . Replacing W be $W[\mu_{p^m}] = W(\overline{\mathbb{F}}_p)[\mu_{p^m}]$, we write hereafter \mathcal{W} for $i_p^{-1}(W(\overline{\mathbb{F}}_p)[\mu_{p^m}])$. We will prove, assuming $\mathfrak{C} = 1$, the following theorem at the very end of this chapter after long preparation (a proof in the general case where $\mathfrak{C} \neq 1$ can be found in [H07]):

Theorem 3.12. Let p be an odd prime splitting in M/\mathbb{Q} . Let λ be a Hecke character of M of conductor 1 and of infinity type $k+\kappa(1-c)$ with $k \geq 2$. Suppose (ct) and (ol) in §3.1. Then $\frac{\pi^{\kappa}\Gamma_{\Sigma}(k+\kappa)L^{(1)}(0,\chi^{-1}\lambda)}{\Omega_{\infty}^{k+2\kappa}} \in \mathcal{W}$ for all finite order characters $\chi : Cl_{\infty} \to \mathcal{W}^{\times}$ with nontrivial conductor. Moreover, except for finitely many characters χ in Cl_{∞} , we have

$$\frac{\pi^{\kappa}\Gamma(k+\kappa)L^{(l)}(0,\nu^{-1}\chi^{-1}\lambda)}{\Omega_{\infty}^{k+2\kappa}} \not\equiv 0 \mod \mathfrak{m}_{\mathcal{W}}.$$

3.6. Values at CM points. We take a proper \mathfrak{O}_{n+1} -ideal \mathfrak{a} for $n \geq 0$, and regard it as a lattice in \mathbb{C} by $a \mapsto i_{\infty}(a)$. We suppose that $\mathfrak{a}_p = \mathfrak{O}_p = \mathfrak{O}_p \oplus \mathfrak{O}_{\overline{p}}$. This implies $H^0(E(\mathfrak{O}), \Omega_{E(\mathfrak{O})/\mathcal{W}}) = H^0(E(\mathfrak{a}), \Omega_{E(\mathfrak{a})/\mathcal{W}})$ as $E(\mathfrak{a})$ and $E(\mathfrak{O})$ are isogenous by an isogeny of degree prime to p. Then a generator $\omega(\mathfrak{O})$ of $H^0(E(\mathfrak{O}), \Omega_{E(\mathfrak{O})/\mathcal{W}})$ gives us $\omega(\mathfrak{a})$ which generates $H^0(E(\mathfrak{a}), \Omega_{E(\mathfrak{a})/\mathcal{W}})$. We have fixed $\phi_p(\mathfrak{O}) : \mu_{p^{\infty}} \cong E(\mathfrak{O})[\mathfrak{p}^{\infty}]$, and this identification $\mathfrak{a}_p = \mathfrak{O}_p = \mathfrak{O}_p \oplus \mathfrak{O}_{\overline{p}}$ induces $\phi_p(\mathfrak{a}) : \mu_{p^{\infty}} \cong$ $E(\mathfrak{a})[\mathfrak{p}^{\infty}]$. Then $\mathfrak{a}_{\mathfrak{l}} \cong \mathfrak{O}_{n+1,\mathfrak{l}} = \mathbb{Z}_l + \mathfrak{l}^{n+1}\mathfrak{O}_{\mathfrak{l}}$, and hence $\mathfrak{a}\mathfrak{O}_n \supset \mathfrak{a}$. The subgroup $C(\mathfrak{a}) = \mathfrak{a}\mathfrak{O}_n/\mathfrak{a}$ in $E(\mathfrak{a})(\mathbb{C}) = \mathbb{C}/i_{\infty}(\mathfrak{a})$ gives a canonical cyclic subgroup $C(\mathfrak{a}) \subset E(\mathfrak{a})$ of order l (defined over \mathcal{W}). Write $\omega_{\infty}(\mathfrak{a}) = du$ for the variable $u \in \mathbb{C}$. For a p-adic modular form f of the form $d^{\kappa}g$ for classical $g \in G_k(\Gamma_0(\mathfrak{l}); \mathcal{W})$, we have by Theorem 2.12

$$\frac{d^{\kappa}f(x(\mathfrak{a}),\phi_p(\mathfrak{a}))}{\Omega_p^{k+2\kappa}} = \delta_k^{\kappa}f(x(\mathfrak{a}),\omega(\mathfrak{a})) = \frac{\delta_k^{\kappa}f(x(\mathfrak{a}),\omega_{\infty}(\mathfrak{a}))}{\Omega_{\infty}^{k+2\kappa}}.$$

Here $x(\mathfrak{a})$ is the test object: $x(\mathfrak{a}) = (E(\mathfrak{a}), C(\mathfrak{a}))_{/\mathcal{W}} \in X_0(\mathfrak{l})(\mathcal{W}).$

We write $c_0 = (-1)^k \frac{\pi^{\kappa} \Gamma(k+\kappa)}{\operatorname{Im}(\delta)^{\kappa} \sqrt{D} \Omega_{\infty}^{k+2\kappa}}$ with $2\delta = \sqrt{-D}$. Here $\Gamma(s)$ is the Euler's Gamma function. By definition, we find, for $e = [\mathfrak{O}_{n+1}^{\times} : \mathbb{Z}^{\times}]$ (which is equal to 1 if n > 0),

$$(c_{0}e)^{-1}\delta_{k}^{\kappa}E_{k}(x(\mathfrak{a}),\omega(\mathfrak{a}))$$

$$=\sum_{w\in\mathfrak{a}/\mathfrak{O}_{n+1}^{\times}}'\frac{1}{w^{k+\kappa(1-c)}N_{M/\mathbb{Q}}(w)^{s}}\Big|_{s=0}$$

$$=\sum_{w\in\mathfrak{a}/\mathfrak{O}_{n+1}^{\times}}\frac{\lambda(w^{(\infty)})^{-1}}{N_{M/\mathbb{Q}}(w)^{s}}\Big|_{s=0}$$

$$=\sum_{w\in\mathfrak{a}/\mathfrak{O}_{n+1}^{\times}}\frac{\lambda(w)}{N_{M/\mathbb{Q}}(w)^{s}}\Big|_{s=0}$$

$$=\lambda(\mathfrak{a})N_{M/\mathbb{Q}}(\mathfrak{a}^{-1})^{s}\sum_{w\mathfrak{a}^{-1}\subset\mathfrak{O}_{n+1}}\frac{\lambda(w\mathfrak{a}^{-1})}{N_{M/\mathbb{Q}}(w\mathfrak{a}^{-1})^{s}}\Big|_{s=0}$$

$$=\lambda(\mathfrak{a})L_{[\mathfrak{a}^{-1}]}^{n+1}(0,\lambda),$$

where for the ideal class $[\mathfrak{a}^{-1}] \in Cl_{n+1}$ represented by a proper \mathfrak{O}_{n+1} -ideal \mathfrak{a}^{-1} ,

$$L^{n+1}_{[\mathfrak{a}^{-1}]}(s,\lambda) = \sum_{\mathfrak{b}\in[\mathfrak{a}^{-1}]} \lambda(\mathfrak{b}) N_{M/\mathbb{Q}}(\mathfrak{b})^{-s}$$

is the partial *L*-function of the class $[\mathfrak{a}^{-1}]$ for \mathfrak{b} running over all \mathfrak{O}_{n+1} proper integral ideals prime to \mathfrak{C} in the class $[\mathfrak{a}^{-1}]$. In the second line of (3.6), we regard λ as an idele character and in the other lines as an ideal character. For an idele a with $a\widehat{\mathfrak{O}} = \mathfrak{a}\widehat{\mathfrak{O}}$, we have $\lambda(a^{(\infty)}) = \lambda(\mathfrak{a})$ and $\widehat{\lambda}(a^{(p)}) = \widehat{\lambda}(\mathfrak{a})$.

We put $\mathbb{E}(\lambda) = d^{\kappa} \mathbb{E}_k$ and $\mathbb{E}'(\lambda) = d^{\kappa} \mathbb{E}'_k$ as in Remark 3.9. We want to evaluate $\mathbb{E}(\lambda)$ and $\mathbb{E}'(\lambda)$ at $x = (x(\mathfrak{a}), \omega(\mathfrak{a}))$. Thus we write, for example, $\mathbb{E}(\lambda)$ and $\mathbb{E}'(\lambda)$ for $\mathbb{E}(\lambda)$ and $\mathbb{E}'(\lambda)$. Then by definition and Theorem 2.12, we have for $x = (x(\mathfrak{a}), \omega(\mathfrak{a}))$

(3.7)
$$\mathbb{E}'(\lambda)(x) = \delta_k^{\kappa} E_k(x) - l^{-1} \delta_k^{\kappa} E_k(x(\mathfrak{a}\mathfrak{O}_n), \omega(\mathfrak{a}\mathfrak{O}_n))$$
$$\mathbb{E}(\lambda)(x) = \delta_k^{\kappa} E_k(x) - \delta_k^{\kappa} E_k(x(\mathfrak{a}\mathfrak{O}_n), \omega(\mathfrak{a}\mathfrak{O}_n)).$$

because $C(\mathfrak{a}) = \mathfrak{a}\mathfrak{O}_n/\mathfrak{a}$ and hence $[\mathfrak{l}](x(\mathfrak{a})) = x(\mathfrak{a}\mathfrak{O}_n)$.

To simplify the notation, write $\phi([\mathfrak{a}]) = \widehat{\lambda}(\mathfrak{a})^{-1}\phi(x(\mathfrak{a}),\omega(\mathfrak{a}))$. By Exercise 2.4, for $\phi = \mathbb{E}(\lambda)$ and $\mathbb{E}'(\lambda)$, the value $\phi([\mathfrak{a}])$ only depends on the ideal class $[\mathfrak{a}]$ but not the individual \mathfrak{a} . The formula (3.7) combined with (3.6) shows, for a proper \mathfrak{O}_{n+1} -ideal \mathfrak{a} ,

(3.8)
$$e^{-1}\mathbb{E}'(\lambda)([\mathfrak{a}]) = c_0 \left(L^{n+1}_{[\mathfrak{a}^{-1}]}(0,\lambda) - l^{-1}L^n_{[\mathfrak{a}^{-1}\mathfrak{O}_n]}(0,\lambda) \right)$$
$$e^{-1}\mathbb{E}(\lambda)([\mathfrak{a}]) = c_0 \left(L^{n+1}_{[\mathfrak{a}^{-1}]}(0,\lambda) - \lambda(\mathfrak{l})L^n_{[\mathfrak{l}^{-1}\mathfrak{a}^{-1}\mathfrak{O}_n]}(0,\lambda) \right)$$

where $e = [\mathfrak{O}^{\times} : \mathbb{Z}^{\times}]$. For a primitive character $\chi : Cl_f \to \mathcal{W}^{\times}$

(3.9)
$$L^{n}(s,\lambda\chi) = \sum_{\mathfrak{a}} \lambda\chi(\mathfrak{a}) N_{M/\mathbb{Q}}(\mathfrak{a})^{-s},$$

where \mathfrak{a} runs over all proper ideals in \mathfrak{O}_n prime to \mathfrak{l}^f and $N_{M/\mathbb{Q}}(\mathfrak{a}) = [\mathfrak{O}_n : \mathfrak{a}]$. For each primitive character $\chi : Cl_f \to \overline{\mathbb{Q}}^{\times}$, taking n = f, by a similar but more involved computation using (3.7), we have

$$(3.10)$$

$$e^{-1} \sum_{[\mathfrak{a}] \in Cl_{n+1}} \chi(\mathfrak{a}) \mathbb{E}'(\lambda)([\mathfrak{a}]) = c_0 \cdot \left(L^{n+1}(0, \lambda \chi^{-1}) - L^n(0, \lambda \chi^{-1}) \right)$$

$$e^{-1} \sum_{[\mathfrak{a}] \in Cl_{n+1}} \chi(\mathfrak{a}) \mathbb{E}(\lambda)([\mathfrak{a}]) = c_0 \cdot \left(L^{n+1}(0, \lambda \chi^{-1}) - \lambda \chi^{-1}(\mathfrak{l})l \cdot L^n(0, \lambda \chi^{-1}) \right)$$

We define a possibly imprimitive *L*-function

$$L^{(\mathfrak{l})}(s,\chi^{-1}\lambda) = L_{\mathfrak{l}}(s,\chi^{-1}\lambda)L^{0}(s,\chi^{-1}\lambda)$$

removing the l-Euler factor. Combining all these formulas with the computation of $L^n(s, \chi^{-1}\lambda)$ in [LAP] V.3.2, we find

(3.11)
$$e^{-1} \sum_{[\mathfrak{a}] \in Cl_{n+1}} \chi(\mathfrak{a}) \mathbb{E}(\lambda)([\mathfrak{a}]) = c_0 \cdot L^{(\mathfrak{l})}(0, \chi^{-1}\lambda),$$

and up to *p*-units,

(3.12)
$$e^{-1} \sum_{[\mathfrak{a}] \in Cl_{n+1}} \chi(\mathfrak{a}) \mathbb{E}'(\lambda)([\mathfrak{a}]) = c_0 \cdot L^{(\mathfrak{l})}(0, \chi^{-1}\lambda) \text{ if } f > 0.$$

By Theorems 2.5 and 2.12, we have proven that all these values are algebraic in $\overline{\mathbb{Q}}$ and actually integral over \mathcal{W} :

Theorem 3.13. Let $c_0 = (-1)^k \frac{\pi^{\kappa} \Gamma(k+\kappa)}{\operatorname{Im}(\delta)^{\kappa} \sqrt{D} \Omega_{\infty}^{k+2\kappa}}$ for integers k > 0 and $\kappa \ge 0$. Then the value of (3.11) is in \mathcal{W} if f > 0 and $p \ge 5$ or $\kappa > 0$.

This follows from the fact that $\mathbb{E}(\lambda)$ has \mathcal{W} -integral q-expansion (i.e., no constant term) if either $k \neq 2$ or $\kappa > 0$. If $\kappa = 0$ and k = 2, the constant term $2^{-1}(1-l)\zeta(-1)$ of $\mathbb{E}'(\lambda)$ is p-integral under the condition: $p \geq 5$. so, the result is clear from the formula (3.12) and Theorems 2.5 and 2.12.

3.7. Construction of a modular measure. Let R = W or $\mathbb{F} = \overline{\mathbb{F}}_p$. Let $f \in V_{\Gamma_0(\mathfrak{l})/R}$ be a normalized Hecke eigenform (here normalization means that f|T(n) = a(n, f)f, $f|U(\mathfrak{l}) = a(l, f)f$ and $f(q) = \sum_{n=0}^{\infty} a(n, f)q^n$). A typical example of f can be given as follows: Take a modular form g in $G_k(\Gamma_0(\mathfrak{l}); R)$ for $R = \mathbb{F}$. Put $f = d^{\kappa}g$ for the differential operator d^{κ} in 2.2. We write $f(x(\mathfrak{a}))$ for the value of at $x(\mathfrak{a})$. The Hecke operator $U(\mathfrak{l})$ takes the space $V(\Gamma_0(\mathfrak{l}); R)$ into $V(\Gamma_0(\mathfrak{l}); R)$. We regard $U(\mathfrak{l})$ as an operator acting on $V(\Gamma_0(\mathfrak{l}); W)$. Suppose that $g|U(\mathfrak{l}) = a \cdot g$ with $a \in W^{\times}$; so, $f|U(\mathfrak{l}) = l^{\kappa}a \cdot f$ for the positive generator l of \mathfrak{l} (see Remark 3.9). The Eisenstein series $\mathbb{E}(\lambda)$ satisfies this condition by Lemma 3.8.

Choosing a basis $w = (w_1, w_2)$ of $\widehat{\mathfrak{O}} = \mathfrak{O} \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$, identify the full Tate module $T(E(\mathfrak{O})_{/\overline{\mathbb{Q}}}) = \lim_{N} E(\mathfrak{O})[N] = \widehat{\mathfrak{O}}$ with $\widehat{\mathbb{Z}}^2$ by $\widehat{\mathbb{Z}} \ni (a, b) \mapsto aw_1 + bw_2 \in T(E(\mathfrak{O}))$, getting a level structure: $\mathbb{Q}^2 \otimes_{\mathbb{Q}} \mathbb{A}^{(p\infty)} \cong V^{(p)}(E(\mathfrak{O})) := T(E(\mathfrak{O}) \otimes_{\mathbb{Z}} \mathbb{Q}$ defined over \mathcal{W} . Elliptic curves $E_{/A}$ with such level structure $\eta^{(p)} : (\mathbb{A}^{(p\infty)})^2 \cong V^{(p)}(E)$ is classified by $Sh^{(p)}(A) = \lim_{p \not \models N} Y(N)_{/\mathbb{Q}}$ up to prime-to-p isogenies; i.e., if $\phi : E \to E'_{/A}$ is an isogeny with degree prime-to-p with $\phi \circ \eta^{(p)} = \eta'^{(p)}$ gives a unique point $x \in Sh^{(p)}(A)$ such that $(\mathbf{E}, \boldsymbol{\eta}^{(p)}) \times_{Sh^{(p)}} x = (E, \eta^{(p)})$ for the universal couple $(\mathbf{E}, \boldsymbol{\eta}^{(p)})_{/Sh^{(p)}}$. The Shimura curve $Sh^{(p)}_{/\mathcal{W}}$ has a right action of $GL_2(\mathbb{A}^{(p\infty)})$ by $\eta^{(p)} \mapsto \eta^{(p)} \circ g$ (Shimura's global reciprocity). Choose the basis w satisfying the following two conditions:

(B) $w_{1,\mathfrak{l}} = 1$ and $\mathfrak{O}_{\mathfrak{l}} = \mathbb{Z}_{\mathfrak{l}}[w_{2,\mathfrak{l}}].$

Let \mathfrak{a} be a proper \mathfrak{O}_n -ideal (for $\mathfrak{O}_n = \mathbb{Z} + \mathfrak{l}^n \mathfrak{O}$) prime to \mathfrak{f} . Write $l_{\mathfrak{l}} = (1, \ldots, 1, \overset{\mathfrak{l}}{l}, 1, \ldots, 1) \in \mathbb{A}^{\times}$. Then $(w_1, l_{\mathfrak{l}}^n w_2)$ is a base of $\widehat{\mathfrak{O}}_n$ and gives a level structure $\eta^{(p)}(\mathfrak{O}_n) : \mathbb{Q}^2 \otimes_{\mathbb{Q}} \mathbb{A}^{(p\infty)} \cong V^{(p)}(E(\mathfrak{O}_n))$. We also write $l_{\mathfrak{l}}$ for $l \in \mathbb{Z}_{\mathfrak{l}}$ (if we want to avoid confusion). We choose a complete representative set $A = \{a_1, \ldots, a_H\} \subset M^{\times}_{\mathbb{A}}$ so that $M^{\times}_{\mathbb{A}} = \bigcup_{j=1}^H M^{\times}a_j\widehat{\mathfrak{O}}_n^{\times}M^{\times}_{\infty}$. Then $\mathfrak{a}\widehat{\mathfrak{O}}_n = \alpha a_j\widehat{\mathfrak{O}}_n$ for $\alpha \in M^{\times}$ for some index j. We then define $\eta^{(p)}(\mathfrak{a}) = \alpha a_j\eta^{(p)}(\mathfrak{O}_n)$. The small ambiguity of the choice of α does not cause any trouble.

Write $x(\mathfrak{a}) = (E(\mathfrak{a}), C(\mathfrak{a}), \omega(\mathfrak{a}))_{/\mathcal{W}}$ (for $C(\mathfrak{a}) = \eta^{(p)}(\mathfrak{a}\widehat{\mathfrak{D}}_{n-1}/\mathfrak{a}) = \mathfrak{a}\mathfrak{D}_{n-1}/\mathfrak{a} \subset E(\mathfrak{a})$). This is a test object of level $\Gamma_0(\mathfrak{l})$ and is the image of $x(\mathfrak{a})$ in $X_0(\mathfrak{l})$. We pick a subgroup $C \subset E(\mathfrak{D}_n)$ such that $C \cong \mathbb{Z}/\mathfrak{l}^m$ (m > 0) but $C \cap C(\mathfrak{D}_n) = \{0\}$. Since \mathcal{W} is strictly henselian (i.e., $\mathcal{W}/\mathfrak{m}_{\mathcal{W}} = \overline{\mathbb{F}}_p = \mathbb{F}$) and $\mathfrak{l} \nmid p, E(\mathfrak{O}_n)[\mathfrak{l}^m]$ is a constant étale group scheme isomorphic to $(\mathbb{Z}/\mathfrak{l})^2$; so, making the quotient $E(\mathfrak{O}_n)/C$ is easy

(see [GME] §1.8.3). Then we define $x(\mathfrak{O}_n)/C$ by

$$\left(\frac{E(\mathfrak{O}_n)}{C}, \frac{C+C(\mathfrak{O}_n)}{C}, (\pi^*)^{-1}\omega(\mathfrak{O}_n)\right)$$

for the projection map $\pi : E(\mathfrak{O}_n) \twoheadrightarrow E(\mathfrak{O}_n)/C$.

Lemma 3.14. We have

$$x(\mathfrak{O}_n)/C = x(\mathfrak{a}_C) \in \mathcal{M}_{\Gamma_0(\mathfrak{l})}(\mathcal{W})$$

for a proper \mathfrak{O}_{n+m} -ideal $\mathfrak{a} = \mathfrak{a}_C \supset \mathfrak{O}_n$ with $(\mathfrak{a}\mathfrak{a}^c) = \mathfrak{l}^{-2m}$, and for $u \in \mathbb{Z}_{\mathfrak{l}}^{\times}$ we have

(3.13)
$$x(\mathfrak{a}_C) = x(\mathfrak{O}_n)/C = x(\mathfrak{O}_{m+n}) \left| \begin{pmatrix} 1 & \frac{u}{l_1^m} \\ 0 & 1 \end{pmatrix} \right|.$$

Proof. Write simply η for $\eta^{(p)}$. The base of $\mathfrak{O}_{n,\mathfrak{l}}$ is given by $\alpha_n{}^t(1, w_2)$ for $\alpha_n = \begin{pmatrix} 1 & 0 \\ 0 & l_{\mathfrak{l}}^n \end{pmatrix}$ with a prime element $l_{\mathfrak{l}}$ of $\mathbb{Z}_{\mathfrak{l}}$. The action on level structure $\eta \mapsto \eta \circ g$ induces the action $\widehat{L}^{(p)} \mapsto g^{-1}\widehat{L}^{(p)}$ for $\widehat{\mathbb{Z}}$ -lattices, as $\widehat{L}^{(p)} = \eta^{-1}(TE^{(p)}) \mapsto (\eta \circ g)^{-1}(TE^{(p)}) = g^{-1}\widehat{L}^{(p)}$. Thus we find that $\alpha_n^{-1}(x(\mathfrak{O})) = x(\mathfrak{O}_n)$ and $\alpha_1^{-1}(x(\mathfrak{O}_{n-1})) = x(\mathfrak{O}_n)$. Since the general case of m > 1 follows by iteration of the formula in the case of m = 1, we suppose m = 1. Then the formula becomes, for a suitable $u \in \mathbb{Z}_{\mathfrak{l}}^{\times}$

(3.14)
$$l_{\mathfrak{l}}^{-1}(x(\mathfrak{a})) = x(l\mathfrak{a}) = x(\mathfrak{O}_{n+1}) \left| \begin{pmatrix} 1 & \frac{u}{l_{\mathfrak{l}}} \\ 0 & 1 \end{pmatrix} \right|$$

if $x(\mathfrak{a}) = x(\mathfrak{O}_n)/C$ for C as above. To see this, note that the base of $l_{\mathfrak{l}}\mathfrak{a}_{\mathfrak{l}}$ is given by

$$\begin{pmatrix} 1-l_{l}^{n}uw_{2}\\ l_{l}^{n+1}w_{2} \end{pmatrix} = \begin{pmatrix} 1 & \frac{-u}{l_{l}}\\ 0 & 1 \end{pmatrix} \alpha_{n+1} \begin{pmatrix} 1\\ w_{2} \end{pmatrix}.$$

Thus $\mathfrak{a}_{\mathfrak{l}}/\mathfrak{O}_n$ is generated by $\frac{1-ul_{\mathfrak{l}}^n w_2}{l_{\mathfrak{l}}} \mod \mathfrak{O}_{n,\mathfrak{l}}$ which gives the subgroup C for a suitable choice of u. Since $l^{(l)} \in \mathbb{Z}^{\times}$, the acton of $l_{\mathfrak{l}}$ is equivalent to the action of $l \in Z(\mathbb{Q})$ which is trivial; so, we forget $l_{\mathfrak{l}}$ in (3.14). \Box

For each proper \mathfrak{O}_n -ideal \mathfrak{a} , we have an embedding $\rho_{\mathfrak{a}} : M^{\times}_{\mathbb{A}^{(p\infty)}} \to GL_2(\mathbb{A}^{(p\infty)})$ given by $\alpha \eta^{(p)}(\mathfrak{a}) = \eta^{(p)}(\mathfrak{a}) \circ \rho_{\mathfrak{a}}(\alpha)$. Since $\det(\rho_{\mathfrak{a}}(\alpha)) = \alpha \alpha^c \gg 0$, $\alpha \in \mathfrak{O}^{\times}_{(p)}$ acts on $Sh^{(p)}$ through $\rho_{\mathfrak{a}}(\alpha) \in G(\mathbb{A})$. We have

$$\rho_{\mathfrak{a}}(\alpha)(x(\mathfrak{a})) = (E(\mathfrak{a}), \eta^{(p)}(\mathfrak{a})\rho_{\mathfrak{a}}(\alpha)) = (E(\alpha\mathfrak{a}), \eta^{(p)}(\alpha\mathfrak{a}))$$

for the prime-to-p isogeny $\alpha \in \operatorname{End}_{\mathbb{Z}}(E(\mathfrak{a})) = \mathfrak{O}_{(p)}$. Thus $\mathfrak{O}_{(p)}^{\times}$ acts on $Sh^{(p)}$ fixing the point $x(\mathfrak{a})$. We find $\rho(\alpha)^*\omega(\mathfrak{a}) = \alpha\omega(\mathfrak{a})$ and

$$g(x(\alpha \mathfrak{a}), \alpha \omega(\mathfrak{a})) = g(\rho(\alpha)(x(\mathfrak{a}), \omega(\mathfrak{a}))) = \alpha^{-k}g(x(\mathfrak{a}), \omega(\mathfrak{a})).$$

From this, we conclude

$$f(x(\alpha \mathfrak{a}), \alpha \omega(\mathfrak{a})) = f(\rho(\alpha)(x(\mathfrak{a}), \omega(\mathfrak{a}))) = \alpha^{-k - \kappa(1-c)} f(x(\mathfrak{a}), \omega(\mathfrak{a})),$$

because the effect of the differential operator d is identical with that of δ at the CM point $x(\mathfrak{a})$ by Theorem 2.12. Since

$$\widehat{\lambda}(\alpha \mathfrak{a}) = \alpha^{-k - \kappa(1 - c)} \widehat{\lambda}(\mathfrak{a}),$$

the value $\widehat{\lambda}(\mathfrak{a})^{-1} f(x(\mathfrak{a}), \omega(\mathfrak{a}))$ is independent of the representative set $A = \{a_j\}$ for Cl_n . Defining, for a proper \mathfrak{O}_n -ideal \mathfrak{a} prime to p,

(3.15)
$$f([\mathfrak{a}]) = \widehat{\lambda}(\mathfrak{a})^{-1} f(x(\mathfrak{a}), \omega(\mathfrak{a})),$$

we find that $f([\mathfrak{a}])$ only depends on the proper ideal class $[\mathfrak{a}] \in Cl_n$.

We write $x(\mathfrak{a}_u) = x(\mathfrak{a})|\alpha_1^{-1}\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$. Then \mathfrak{a}_u depends only on umod \mathfrak{l} , and $\{\mathfrak{a}_u\}_{u \mod \mathfrak{l}}$ gives a complete representative set for proper \mathfrak{O}_{n+1} -ideal classes which project down to the ideal class $[\mathfrak{a}] \in Cl_n$. Since $\mathfrak{a}_u \mathfrak{O}_n = l^{-1}\mathfrak{a}$, we find $\widehat{\lambda}(\mathfrak{a}_u) = \widehat{\lambda}(\mathfrak{l})^{-1}\widehat{\lambda}(\mathfrak{a})$. Recalling $f|U(\mathfrak{l}) = l^{\kappa}a \cdot f$, we have

(3.16)
$$l^{\kappa}a \cdot f([\mathfrak{a}]) = \widehat{\lambda}(\mathfrak{a})^{-1}f|U(\mathfrak{l})(x(\mathfrak{a})) = \frac{1}{\widehat{\lambda}(\mathfrak{l})l} \sum_{u \mod \mathfrak{l}} f([\mathfrak{a}_u]).$$

Definition 3.15. For a continuous function $\phi : Cl_{\infty} \to \mathbb{F}$, taking n > 0 so that ϕ factors through Cl_n , we define a measure φ_f on Cl_{∞} with values in \mathbb{F} by

(3.17)
$$\int_{Cl_{\infty}} \phi d\varphi_f = b^{-n} \sum_{\mathfrak{a} \in Cl_n} \phi(\mathfrak{a}^{-1}) f([\mathfrak{a}]) \quad (\text{for } b = l^{\kappa+1} a \widehat{\lambda}(\mathfrak{l})).$$

3.8. Non-triviality of the modular measure. The non-triviality of the measure φ_f is proven in [H04] Theorems 3.2 and 3.3. To recall the result in [H04], we recall a functorial action (introduced earlier) on p-adic modular forms, commuting with $U(\mathfrak{l})$. Let \mathfrak{q} be a prime ideal of \mathbb{Q} different from \mathfrak{l} . For a test object (E,η) of level $\Gamma_0(\mathfrak{l}\mathfrak{q})$, the \mathfrak{q} -part $\eta_{\mathfrak{q}}$ of η is a subgroup $C \cong \mathbb{Z}/\mathfrak{q}$ in E. Then we can construct canonically $[\mathbf{q}](E,\eta) = (E',\eta')$ with E' = E/C. If \mathbf{q} splits into $\mathfrak{Q}\overline{\mathfrak{Q}}$ in M/\mathbb{Q} , choosing $\eta_{\mathfrak{q}}$ induced by $E(\mathfrak{a})[\mathfrak{q}^{\infty}] \cong M_{\mathfrak{Q}}/\mathfrak{O}_{\mathfrak{Q}} \times M_{\overline{\mathfrak{Q}}}/\mathfrak{O}_{\overline{\mathfrak{Q}}} \cong$ $\mathbb{Q}_{\mathfrak{q}}/\mathbb{Z}_{\mathfrak{q}} \times \mathbb{Q}_{\mathfrak{q}}/\mathbb{Z}_{\mathfrak{q}}$, we always have a level $\Gamma_0(\mathfrak{q})$ -structure $C = E(\mathfrak{a})[\mathfrak{Q}_n]$ for $\mathfrak{Q}_n = \mathfrak{Q} \cap \mathfrak{O}_n$ on $E(\mathfrak{a})$ induced by the choice of the factor \mathfrak{Q} . Then $[\mathfrak{q}](E(\mathfrak{a})) = E(\mathfrak{a}\mathfrak{Q}_n^{-1})$ for a proper \mathfrak{O}_n -ideal \mathfrak{a} , as $\mathfrak{Q}_n^{-1}\mathfrak{a}/\mathfrak{a} \cong C$ by $\eta_\mathfrak{q}$ (so, $E(\mathfrak{a})/C = E(\mathfrak{a})/(\mathfrak{a}\mathfrak{Q}_n^{-1}/\mathfrak{a}) = E(\mathfrak{a}\mathfrak{Q}_n^{-1})$). When \mathfrak{q} ramifies in M/\mathbb{Q} as $\mathfrak{q} = \mathfrak{Q}^2$, $E(\mathfrak{a})$ has a subgroup $C = E(\mathfrak{a})[\mathfrak{Q}_n]$ isomorphic to \mathbb{Z}/\mathfrak{q} ; so, we can still define $[\mathbf{q}](E(\mathbf{a})) = E(\mathbf{a} \mathfrak{Q}_n^{-1})$. The effect of $[\mathbf{q}]$ on the q-expansion at the infinity cusp is computed in $\S3.2$ and is given by a unit multiple of the q-expansion of f at the Tate curve $Tate(q^{\varpi})$ for a positive generator ϖ of \mathfrak{q} . The operator $[\mathfrak{q}]$ corresponds to the action of $g = \begin{pmatrix} 1 & 0 \\ 0 & \varpi_{\mathfrak{q}}^{-1} \end{pmatrix} \in GL_2(\mathbb{Q}_{\mathfrak{q}})$. In §3.2, we saw that $[\mathfrak{q}]$ induces a linear map well defined on $V_{\Gamma_0(\mathfrak{l})/R}$ into $V_{\Gamma_0(\mathfrak{l}\mathfrak{q})/R}$.

We fix a decomposition $Cl_{\infty} = \Gamma \times \Delta$ for a finite group Δ and a torsion-free subgroup Γ . Since each fractional \mathfrak{D} -ideal \mathfrak{A} prime to \mathfrak{l} defines a class $[\mathfrak{A}]$ in Cl_{∞} , we can embed the ideal group of fractional ideals prime to \mathfrak{l} into Cl_{∞} . We write Cl^{alg} for its image.

Exercise 3.16. (1) Complex conjugation acts on $z \in Cl_{\infty}$ by $z \mapsto z^{-1}$.

- (2) The intersection $\Delta^{alg} = \Delta \cap Cl^{alg}$ is represented by square-free products of prime ideals of M ramified over \mathbb{Q} . In other words, Δ^{alg} is isomorphic to the ambiguous class group of M.
- (3) The quotient $Cl_{\infty}/\Gamma\Delta^{alg}$ has a complete representative set in the set of prime ideals split over \mathbb{Q} (prime to \mathfrak{l}).
- (4) Write $[\mathfrak{Q}]_{\Gamma}$ (resp. $[\mathfrak{Q}]_{\Delta}$) for the projection of $[\mathfrak{Q}] \in Cl^{alg}$ to Γ (resp. to Δ). If $[\mathfrak{Q}]_{\Delta} \notin [\mathfrak{Q}']_{\Delta} \Delta^{alg}$, then $[\mathfrak{Q}]_{\Gamma} / [\mathfrak{Q}']_{\Gamma} \notin Cl^{alg}$.

We choose a complete representative set $\{\mathfrak{R}^{-1} | \mathfrak{r} \in \mathcal{R}\}$ for Δ^{alg} such that the set \mathcal{R} is a subset of the set of all square-free product of primes in \mathbb{Q} ramifying in M/\mathbb{Q} , and \mathfrak{R} is a unique ideal in M with $\mathfrak{R}^2 = \mathfrak{r}$. The set $\{\mathfrak{R} | \mathfrak{r} \in \mathcal{R}\}$ is a complete representative set for 2-torsion elements in the class group Cl_0 of \mathfrak{O} (i.e., the ambiguous classes). We fix a character $\nu : \Delta \to \mathbb{F}^{\times}$, and define

(3.18)
$$f_{\nu} = \sum_{\mathfrak{r}\in\mathcal{R}} \widehat{\lambda}\nu^{-1}(\mathfrak{R})f|[\mathfrak{r}].$$

Choose a complete representative set \mathcal{Q} for $Cl_{\infty}/\Gamma\Delta^{alg}$ made of primes of M split over \mathbb{Q} outside $p\mathfrak{l}$. Since Cl^{alg} is dense in Cl_{∞} , we can choose $\mathfrak{Q} \in \mathcal{Q}$ whose projection to Γ is whatever close to 1 under the profinite topology (this remark will be useful later). We choose $\eta_n^{(p)}$ out of the base (w_1, w_2) of \mathfrak{D}_n so that at $\mathfrak{q} = \mathfrak{Q} \cap \mathbb{Q}$, $w_1 = (1, 0) \in$ $\mathfrak{D}_{\mathfrak{Q}} \times \mathfrak{D}_{\mathfrak{Q}^c} = \mathfrak{D}_{\mathfrak{q}}$ and $w_2 = (0, 1) \in \mathfrak{D}_{\mathfrak{Q}} \times \mathfrak{D}_{\mathfrak{Q}^c} = \mathfrak{D}_{\mathfrak{q}}$. Since all operators $[\mathfrak{q}]$ and $[\mathfrak{r}]$ involved in this definition commutes with $U(\mathfrak{l}), f_{\nu}|[\mathfrak{q}]$ is still an eigenform of $U(\mathfrak{l})$ with the same eigenvalue as f. Thus in particular, we have a measure $\varphi_{f_{\nu}}$. We project it to Γ along ν which produces a measure φ_{f}^{ν} on Γ explicitly given by

$$\int_{\Gamma} \phi d\varphi_f^{\nu} = \sum_{\mathfrak{Q} \in \mathcal{Q}} \widehat{\lambda} \nu^{-1}(\mathfrak{Q}) \int_{\Gamma} \phi |\mathfrak{Q} d\varphi_{f_{\nu}|[\mathfrak{q}]},$$

where $\phi|\mathfrak{Q}(y) = \phi(y[\mathfrak{Q}]_{\Gamma}^{-1})$ for the projection $[\mathfrak{Q}]_{\Gamma}$ in Γ of $[\mathfrak{Q}] \in Cl_{\infty}$.

Lemma 3.17. If $\chi : Cl_{\infty} \to \mathbb{F}^{\times}$ is a character with $\chi|_{\Delta} = \nu$, we have

$$\int_{\Gamma} \chi d\varphi_f^{\nu} = \int_{Cl_{\infty}} \chi d\varphi_f.$$

Proof. Write $\Gamma_{f,n}$ for the image of Γ in Cl_n . For proper \mathfrak{O}_n -ideal \mathfrak{a} , by the above definition of these operators,

$$f|[\mathfrak{r}]|[\mathfrak{q}]([\mathfrak{a}]) = \widehat{\lambda}(\mathfrak{a})^{-1} f(x(\mathfrak{Q}^{-1}\mathfrak{R}^{-1}\mathfrak{a}), \omega(\mathfrak{Q}^{-1}\mathfrak{R}^{-1}\mathfrak{a})).$$

For sufficiently large n, χ factors through Cl_n . Since $\chi = \nu$ on Δ , we have

$$\begin{split} \int_{\Gamma} \chi d\varphi_{f}^{\nu} &= \sum_{\mathfrak{Q} \in \mathcal{Q}} \sum_{\mathfrak{r} \in \mathcal{R}} \sum_{\mathfrak{a} \in \Gamma_{f,n}} \widehat{\lambda} \chi^{-1}(\mathfrak{QRa}) f|[\mathfrak{r}]|[\mathfrak{q}]([\mathfrak{a}]) \\ &= \sum_{\mathfrak{a},\mathfrak{Q},\mathfrak{r}} \chi(\mathfrak{QRa}) f([\mathfrak{Q}^{-1}\mathfrak{R}^{-1}\mathfrak{a}]) = \int_{Cl_{\infty}} \chi d\varphi_{f}, \\ Cl_{\infty} &= ||_{\mathfrak{Q},\mathfrak{R}} [\mathfrak{Q}^{-1}\mathfrak{R}^{-1}]\Gamma. \end{split}$$

because $Cl_{\infty} = \bigsqcup_{\mathfrak{Q},\mathfrak{R}} [\mathfrak{Q}^{-1}\mathfrak{R}^{-1}] \Gamma.$

In the next couple of sections, we prove the following result (given in [H04] as Theorems 3.2 and 3.3):

Theorem 3.18. Fix a character $\nu : \Delta \to \mathbb{F}^{\times}$, and define f_{ν} as in (3.18). If f satisfies the following condition:

(H) for any given integer r > 0 and any congruence class $u \in (\mathbb{Z}/l^r\mathbb{Z})^{\times}$, there exists $0 \leq \xi \in u$ such that $a(\xi, f_{\nu}) \neq 0$,

then non-vanishing $\int_{Cl_{\infty}} \nu \chi d\varphi_f \neq 0$ holds except for finitely many characters $\chi : \Gamma \to \mu_{l^{\infty}}(\mathbb{F})$.

3.9. Preliminary to the proof of Theorem 3.18. We regard f as a function of $Cl^{(\infty)} = \bigsqcup_n Cl_n$ (embedded into $Sh^{(p)}$ over $X_0(\mathfrak{l})$ by $\mathfrak{a} \mapsto x(\mathfrak{a})$). By (3.16), we have, for an integer n > m,

(3.19)
$$\sum_{[\mathfrak{a}]\in Cl_n, \ \mathfrak{a}\mapsto [\mathfrak{A}]\in Cl_m} f([\mathfrak{a}]) = (\widehat{\lambda}(\mathfrak{l})l)^{n-m} f|U(\mathfrak{l}^{n-m})([\mathfrak{A}]),$$

where $[\mathfrak{a}]$ runs over all classes in Cl_n which project down to $[\mathfrak{A}] \in Cl_m$.

We suppose that $f|U(\mathfrak{l}) = (a/\widehat{\lambda}(\mathfrak{l})l)f$ with a unit $a \in A$. For each function $\phi : Cl_{\infty} \to A$ factoring through Cl_m , we define

(3.20)
$$\int_{Cl_{\infty}} \phi d\varphi_f = a^{-m} \sum_{\mathfrak{a} \in Cl_m} \phi(\mathfrak{a}^{-1}) f([\mathfrak{a}]).$$

Classical modular forms are actually defined over a number field; so, we assume that f is defined over the localization \mathcal{V} of the integer ring in a number field K containing M over which $E(\mathfrak{a})$ for each class $[\mathfrak{a}] \in Cl_0$ is defined. We write $\mathcal{P}|p$ for the prime ideal of the p-integral closure $\widetilde{\mathcal{V}}$ of \mathcal{V} in $\overline{\mathbb{Q}}$ corresponding to $i_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$. More generally, if $f = d^{\kappa}g$ for a classical modular form g integral over \mathcal{V} , the value $f([\mathfrak{a}])$ is algebraic, abelian over M and \mathcal{P} -integral over \mathcal{V} by a result of Shimura and Katz (see Theorem 2.5 and Theorem 2.12).

Let $f = d^{\kappa}g$ for $g \in G_k(\Gamma_0(\mathfrak{l}); \mathcal{V})$. Suppose $f|U(\mathfrak{l}) = (a/l)f$ for a giving a unit of $\widetilde{\mathcal{V}}/\mathcal{P}$. For the moment, let φ be the measure associated to f with values in R = W for a finite extension W of $W(\overline{\mathbb{F}}_p)$ containing \mathcal{V} . We have a well defined measure $\varphi \mod \mathcal{P}$. Let K_f be the field generated by $f([\mathfrak{a}])$ over $K[\mu_{l^{\infty}}]$. Then K_f/K is an abelian extension unramified outside l, and we have the Frobenius element $\sigma_{\mathfrak{b}} \in \operatorname{Gal}(K_f/K)$ (that is, the image of \mathfrak{b} under the Artin reciprocity map) for each ideal \mathfrak{b} of K prime to l. By Shimura's CM reciprocity law, we find for $\sigma = \sigma_{\mathfrak{b}}$, $x(\mathfrak{a})^{\sigma} = x(N(\mathfrak{b})^{-1}\mathfrak{a})$ for the norm $N : K \to M$. From this, if we extend K further if necessary, we see $f([\mathfrak{a}])^{\sigma} = f([N(\mathfrak{b})^{-1}\mathfrak{a}])$ for any ideal \mathfrak{b} . We then have

(3.21)
$$\sigma \cdot \left(\int_{Cl_{\infty}} \phi(x) d\varphi_f(x) \right) = \int_{Cl_{\infty}} \sigma \circ \phi(N(\mathfrak{b})x) d\varphi_f(x),$$

where $N(\mathfrak{b})$ is the norm of \mathfrak{b} over M.

We now assume that $R = \mathbb{F} = W/\mathfrak{m}_W = \widetilde{\mathcal{V}}/\mathcal{P}$ and regard the measure φ_f as having values in \mathbb{F} . Then (3.21) shows that if ϕ is a character χ of Cl_{∞} , for $\sigma \in \operatorname{Gal}(\mathbb{F}/\mathbb{F}_{p^r})$ ($\mathbb{F}_{p^r} = \mathcal{V}/\mathcal{P} \cap \mathcal{V}$),

(3.22)
$$\int_{Cl_{\infty}} \chi(x) d\varphi_f(x) = 0 \iff \int_{Cl_{\infty}} \sigma \circ \chi(x) d\varphi_f(x) = 0.$$

Decompose Cl_{∞} into a product of the maximal torsion-free *l*-profinite subgroup Γ and a finite group Δ .

Let \mathbb{F}_q be the finite subfield of \mathbb{F} generated by all $l|\Delta|$ -th roots of unity over the field \mathbb{F}_{p^r} of rationality of f and λ . For any finite extension \mathbb{F}'/\mathbb{F}_q , we consider the trace map: $\operatorname{Tr}_{\mathbb{F}'/\mathbb{F}_q}(\xi) = \sum_{\sigma \in \operatorname{Gal}(\mathbb{F}'/\mathbb{F}_q)} \sigma(\xi)$ for $\xi \in \mathbb{F}'$. If $\chi : Cl_n \to \mathbb{F}^{\times}$ is a character, $d := [\operatorname{Im}(\chi) : \operatorname{Im}(\chi) \cap \mathbb{F}_q^{\times}]$ is not divisible by p (as $|\mathbb{F}_{p^m}^{\times}| = p^m - 1 \not\equiv 0 \mod p$). Thus $d \in \mathbb{F}^{\times}$, and (3.23)

$$\int_{Cl_{\infty}} \operatorname{Tr}_{\mathbb{F}_q(\chi)/\mathbb{F}_q} \circ \chi(y^{-1}x) d\varphi_f(x) = \frac{d}{a^n} \sum_{\mathfrak{a} \in Cl_n: \chi(\mathfrak{a} y^{-1}) \in \mathbb{F}_q} \chi(y^{-1}\mathfrak{a}) f([\mathfrak{a}]),$$

because, by Exercise 1.5, for an *l*-power root of unity $\zeta \in \mu_{l^n} - \mu_l$,

$$\operatorname{Tr}_{\mathbb{F}_q(\mu_{l^n})/\mathbb{F}_q}(\zeta^s) = \begin{cases} l^{n-m}\zeta^s & \text{if } \zeta^s \in \mathbb{F}_q \text{ and } \mathbb{F}_q \cap \mu_{l^{\infty}}(\mathbb{F}) = \mu_{l^m}(\mathbb{F}) \\ 0 & \text{otherwise.} \end{cases}$$

Suppose $\int_{Cl_{\infty}} \chi(x) d\varphi_f(x) = 0$ for an infinite set \mathcal{X} of characters χ . For sufficiently large m, we always find a character $\chi \in \mathcal{X}$ such that $\operatorname{Ker}(\chi) \subset \Gamma^{l^m}$. Then writing $\operatorname{Ker}(\chi) = \Gamma^{l^n}$ for $n \geq m$, we have the vanishing from (3.22)

$$\int_{Cl_{\infty}} \sigma \circ \chi d\varphi_f = 0 \text{ for all } \sigma \in \operatorname{Gal}(\mathbb{F}/\mathbb{F}_q).$$

This combined with (3.23), we find $\sum_{y \in \chi^{-1}(\mathbb{F}_q^{\times})} \chi(y\mathfrak{a}) f(y[\mathfrak{a}]) = 0$ for all $\mathfrak{a} \in \Gamma_n$, where Γ_n is the image of Γ in Cl_n .

3.10. **Proof of Theorem 3.18.** We write $\mathbb{F}_p[f]$ for the minimal field of definition of $f \in V(\mathbb{F})$ (i.e., the field generated by $a(\xi, f) \in \mathbb{F}$ for all $0 \leq \xi \in \mathbb{Z}$). Similarly $\mathbb{F}_p[\lambda]$ (resp. $\mathbb{F}_p[\nu]$) is the subfield of \mathbb{F} generated by the values $\widehat{\lambda}([\mathfrak{a}]) \mod \mathcal{P}$ (resp. $\nu([\mathfrak{a}])$) for all $[\mathfrak{a}] \in C^{alg}$. Define $\mathbb{F}_p[f, \lambda, \nu]$ by the composite of these fields and $\mathbb{F}_p[\mu_l]$. Note that $\mathbb{F}_p[f, \lambda, \nu]$ is a finite extension of \mathbb{F}_p as f is mod p reduction of some classical modular form of some weight ≥ 2 . Define $1 \leq r = r(\nu) \in \mathbb{Z}$ by $|\mu_{l^{\infty}}(\mathbb{F}_p[f, \lambda, \nu])| = l^r$.

By definition, the projection $\{[\mathfrak{Q}]_{\Gamma}\}_{\mathfrak{Q}\in\mathcal{Q}}$ of $[\mathfrak{Q}]$ in Γ are all distinct in Cl_{∞}/C^{alg} . By Lemma 3.17, we need to prove that the integral $\int_{\Gamma} \chi d\varphi_{f}^{\nu}$ vanishes only for finitely many characters χ of Γ . Suppose by absurdity that the integral vanishes for characters χ in an infinite set \mathcal{X} .

Let $\Gamma(n) = \Gamma^{l^{n-r}} / \Gamma^{l^n}$ for $r = r(\nu)$. By applying (3.23) to a character in \mathcal{X} with $\operatorname{Ker}(\chi) = \Gamma^{l^n}$, we find

(3.24)
$$\sum_{\mathfrak{Q}\in\mathcal{Q}}\nu(\mathfrak{Q})^{-1}\sum_{\mathfrak{a}\in y\chi^{-1}(\mu_{l^{r}})}\chi(\mathfrak{a})f_{\nu}([\mathfrak{a}\mathfrak{Q}^{-1}][\mathfrak{Q}]_{\Gamma})=0.$$

Fix $\mathfrak{Q} \in \mathcal{Q}$. By Lemma 3.14, $\{x(\mathfrak{a}) | [\mathfrak{a}] \in y\chi^{-1}(\mu_{l^r})\}$ is given by $\alpha(\frac{u}{l_l^r})(x(\mathfrak{a}_0))$ for any member $\mathfrak{a}_0 \in y\chi^{-1}(\mu_{p^r})$, where

(3.25)
$$\alpha(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Actually $\mathbf{a} \mapsto u \mod \mathfrak{l}^r$ gives a bijection of $y\chi^{-1}(\mu_{l^r})$ onto O/\mathfrak{l}^r . We write the element \mathbf{a} corresponding to u as $\alpha(\frac{u}{l_l^r})\mathbf{a}_0$. This shows, choosing a primitive l^r -th root of unity $\zeta = \exp(2\pi i/l^r)$ and $\mathbf{a}_y \in y\chi^{-1}(\mu_{l^r})$ so that $\chi(\alpha(\frac{u}{l_l^r})\mathbf{a}_y) = \zeta^{uv}$ for an integer $0 < v < l^r$ prime to l (independent of y), the inner sum of (3.24) is equal to

$$\sum_{\iota \mod \mathfrak{l}^r} \zeta^{uv}(f_{\iota} | \alpha(\frac{u}{l_{\mathfrak{l}}^r}))([\mathfrak{a}_y \mathfrak{Q}^{-1}][\mathfrak{Q}]_{\Gamma}).$$

The choice of v depends on χ . Since \mathcal{X} is infinite, we can choose an infinite subset \mathcal{X}' of \mathcal{X} for which v is independent of the element in \mathcal{X}' . Then write n_i for the integers given by $\Gamma^{l^{n_j}} = \operatorname{Ker}(\chi)$ for $\chi \in \mathcal{X}'$ (in increasing order), and define Ξ to be the set of points $x(\mathfrak{a})$ for $\mathfrak{a} \in Cl_{n_j}$ with $[\mathfrak{a}\mathfrak{O}_{n_1}] = [\mathfrak{O}_{n_1}]$ in Cl_{n_1} . Define also $h_{\mathfrak{Q}} = \sum_{u \mod \mathfrak{l}^r} \zeta^{uv} f_{\nu} | \alpha(\frac{u}{l_{\mathfrak{l}}^r})$, because (3.24) is now the sum:

$$\sum_{\mathfrak{Q}\in\mathcal{Q}}\nu(\mathfrak{Q})^{-1}h_{\mathfrak{Q}}|[\mathfrak{q}]([\mathfrak{a}][\mathfrak{Q}]_{\Gamma})=0,$$

where $\mathbf{q} = \mathfrak{Q} \cap F$. If necessary, as we remarked already, we reselect the representative set \mathcal{Q} so that $[\mathfrak{Q}]_{\Gamma} \in \operatorname{Ker}(Cl_{\infty} \to Cl_{n_1})$. This is possible because $\{[\mathfrak{Q}_f] \in \Gamma | \mathfrak{Q} \sim \mathfrak{A}\}$ for all split primes is dense by Chebotarevdensity, where $\mathfrak{Q} \sim \mathfrak{A}$ means the class of \mathfrak{Q} is equal to the class of \mathfrak{A} in $Cl_{\infty}/\Gamma\Delta^{alg}$. Take $\mathfrak{Q}, \mathfrak{Q}'$ in \mathcal{Q} . Then by Exercise 3.16 (4), $[\mathfrak{Q}]_{\Gamma}/[\mathfrak{Q}']_{\Gamma} \in$ $Cl^{alg} \Leftrightarrow \mathfrak{Q} = \mathfrak{Q}'$. Thus we may apply Corollary 3.21 in the following section to the following set of functions: $\{[\mathfrak{a}] \mapsto h_{\mathfrak{Q}} | [\mathfrak{q}]([\mathfrak{a}][\mathfrak{Q}]_{\Gamma})\}$. By the corollary, if $h_{\mathfrak{Q}} | [\mathfrak{q}] \neq 0$ for one \mathfrak{Q} , the above sum is nonzero as a function of $[\mathfrak{a}]$; so, this implies that $h_{\mathfrak{Q}}[\mathfrak{q}] = 0$. By *q*-expansion principle, we conclude $h_{\mathfrak{Q}} = 0$ (as $h | [\mathfrak{q}](q) = h(q^{\varpi})$ for the positive generator ϖ of \mathfrak{q}).

However, since we have $f_{\nu} | \begin{pmatrix} 1 & \frac{u}{l^r} \\ 0 & 1 \end{pmatrix} = \sum_{0 \leq \xi \in \mathbb{Z}} a(\xi, f_{\nu}) \zeta^u q^{\xi}$ for $\zeta = \exp(\frac{2\pi i}{l^r})$, the *q*-expansion coefficient $a(\xi, h_{\mathfrak{Q}})$ of $h_{\mathfrak{Q}}$ is given by $a(\xi, f_{\nu})$ if $\xi \equiv -v \mod \mathfrak{l}^r$ and vanishes otherwise. This is a contradiction against the assumption (H).

3.11. Linear independence. Fix a positive integer $n_1 > 0$. We create complete representative set R_n for $\operatorname{Ker}(Cl_n \to Cl_{n_1})$ by $\alpha(\frac{u}{l^n})(x(\mathfrak{O}_{n_1}))$ (for $\alpha(t)$ as in (3.25)) by choosing suitable integers $0 < u < l^n$. Choose an infinite sequence $\underline{n} := 0 < n_1 < n_2 < \cdots < n_m < \cdots$ of positive integers. Take a geometrically irreducible component $V_{/\mathbb{F}} \subset Sh_{/\mathbb{F}}^{(p)}$ containing $x(\mathfrak{O}_n)$, where $Sh_{/\mathbb{F}}^{(p)} = Sh^{(p)} \times_{\mathcal{W}} \mathbb{F}$. Since V is affine, we can write $V = \operatorname{Spec}(O_V)$ for $O_V = H^0(V, \mathcal{O}_V)$. Sometimes we just write $O = O_V$ if confusion is unlikely. Define

$$\Xi_{\underline{n}} = \Xi = \bigcup_{j=1}^{\infty} \{ x(\mathfrak{a}) \in V | \mathfrak{a} \in R_{n_j} \} \subset V.$$

Since $SL_2(\mathbb{A}^{(p\infty)})$ keeps V (by Shimura's global reciprocity), $x(\mathfrak{a})$ as above always resides in one component V.

Let $\mathcal{F} = \mathcal{F}_{\Xi}$ denote the \mathbb{F} -algebra of functions $\phi : \Xi \to \mathbf{P}^1(\mathbb{F}) = \mathbb{F} \sqcup$ $\{\infty\}$ with $|\phi^{-1}(0)| < \infty$ and $|\phi^{-1}(\infty)| < \infty$. The profinite class group $C = C_{n_1} := \operatorname{Ker}(Cl_{\infty} \to Cl_{n_1})$ acts on \mathcal{F} by translation: $f(x) \mapsto f(xy)$ $(y \in Cl_{\infty})$. In particular, $\alpha \in \mathfrak{O}_{(p)}$ with trivial $[(\alpha)] \in Cl_{n_1}$ acts on Ξ and such α is *p*-adically dense in \mathfrak{O}_p^{\times} . For $f \in \mathbb{F}(V)^{\times}$, for each $x = x(\mathfrak{a}) \in \Xi$, expanding f into a Laurent series $f(t) = \sum_n a_n t^n \in \mathbb{F}[[t]][t^{-1}]$ with leading nonzero term $a_m t^m$ $(m \in \mathbb{Z})$, we may define

$$f(x(\mathfrak{a})) = \begin{cases} \infty & \text{if } m < 0, \\ a_0 & \text{if } m = 0, \\ 0 & \text{if } m > 0. \end{cases}$$

By Zariski density of Ξ in $V = V_{/\mathbb{F}}^{(p)}$, we can embed into \mathcal{F} the function field $\mathbb{F}(V)$ of V.

Exercise 3.19. Why is Ξ Zariski dense in V? Why does density imply injectivisty of $\mathbb{F}(V)$ into \mathcal{F} ?

We will prove the following analogue of Sinnott's theorem later if time allows.

Proposition 3.20. Take a finite set $\Delta = \{\gamma_1, \ldots, \gamma_m\} \subset C_{n_1}$ injecting into Cl_{∞}/Cl^{alg} . Then the subset $\widetilde{\Xi} := \{(x(\delta(\mathfrak{a}))_{\delta \in \Delta} | x(\mathfrak{a}) \in \Xi\}$ is Zariski dense in the product $V_{/\mathbb{F}}^{\Delta}$ of Δ copies of $V_{/\mathbb{F}}$. This implies that the fields $\gamma_1(\mathbb{F}(V)), \ldots, \gamma_m(\mathbb{F}(V))$ are linearly disjoint over \mathbb{F} in \mathcal{F}_{Ξ} , where $\gamma(\mathbb{F}(V))$ is the image of $\mathbb{F}(V) \subset \mathcal{F}$ under the action of $\gamma \in C_{n_1}$. In other words, we have injectivity of the map $\gamma_1 \otimes \cdots \otimes \gamma_m : O_V \otimes_{\mathbb{F}} O_V \otimes_{\mathbb{F}} \cdots \otimes_{\mathbb{F}} O_V \to \mathcal{F}$ sending $f_1 \otimes \cdots \otimes f_m$ to an element in \mathcal{F} given by $x(\mathfrak{a}) \mapsto \prod_j f_j(x(\gamma_j \mathfrak{a}))$.

The linear independence applied to the global sections of a modular line bundle (regarded as sitting inside the function field) yields the following result:

Corollary 3.21. Let the notation and the assumption be as in Proposition 3.20. Let $\underline{\omega}^k$ be a modular line bundle over the Igusa tower $Ig_{/\mathbb{F}}$ over $V_{/\mathbb{F}}$. Then for a finite set $\Delta \subset Cl_{\infty}$ injection into Cl_{∞}/Cl^{alg} and a set $\{s_{\delta} \in H^0(I, \underline{\omega}^k)\}_{\delta \in \Delta}$ of non-constant global sections s_{δ} of $\underline{\omega}^k$ finite at Ξ , the functions $s_{\delta} \circ \delta$ ($\delta \in \Delta$) are linearly independent in \mathcal{F}_{Ξ} .

Choosing one nonzero section s (different from constant multiple of any of $s_{\delta s}$) and replacing s_{δ} by s_{δ}/s , which is a modular function, we can bring the situation in the case of modular functions which is taken care of by the above theorem.

3.12. I-Adic Eisenstein measure modulo p. We apply Theorem 3.18 to the Eisenstein series $\mathbb{E}(\lambda)$ in (3.4) for the Hecke character λ fixed in 3.1. We can easily check (H) in Theorem 3.18 for $f = \mathbb{E}(\lambda) \mod \mathfrak{m}_W$ and get Theorem 3.12.