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2. LECTURE 2: VALUES OF MODULAR FORMS AT CM POINTS

To extend the result of the previous section to Hecke L-values of
imaginary quadratic fields, we recall modular forms and CM periods.

2.1. Elliptic modular forms. What are modular forms? In the eas-
iest cases of elliptic modular forms, if we write w = *(w;,ws) lin-
early independent complex numbers (with Im(z) > 0 (z = w;/w,)),
a weight £ modular form is a holomorphic function f of w satisfying
f((¢)w) = f(w) and f(aw) = a % f(w) for a € C* as everybody
knows. We want to prove algebraicity and integrality of the value f(w)
when w is a basis of an imaginary quadratic field (up to a canonical pe-
riod), and this can be generalized to Hilbert modular case and beyond
(see [AAF]). This is due to Damerell, Weil, Shimura and Katz.

To do this, we need to give algebraic interpretation of modular form
(see [AME], [GME] and [PAF] Chapter 2). Pick two linearly indepen-
dent numbers w = (w1, ws) € C?. Writing u for the variable on C, the
quotient C/L,, for L,, = Zw; + Zw, gives rise to a pair (F,w) of ellip-
tic curves and the differential w = du of first kind (nowhere vanishing
differential). Indeed, E(C) = C/L,,, and we can embed E into P? via
u— (z(u),y(u),1) € P*(C) by Weierstrass gp-functions

. 1 1 1 L 92 2 93 4
z(u) = p(u; L) = ;4‘ Z {m—l—z} = g—l—%u —l-%u +---

and y = g—z, where go(w) = 60 ZO#GLUJ [=* and g3(w) = 140 ZO#GLUJ 175,
Then the relation is y? = 423 — go2 — ¢g3 and w = du = d?m. The pair
w can be recovered by w so that w; = f%w for a basis (y1,72) of
Conversely, start with a pair (E,w)/4 defined over a ring A made
of an elliptic curve (a smooth curve of genus 1 with a specific point
0 =0g € E(A)) and a nowhere vanishing differential w. Then take a
parameter u around 0 so that w = du. Write [0] for the relative Cartier
divisor given by 0. Since the line bundle £(m[0]) (made of meromorphic
function having pole at 0 of order at most m) is free of rank m if m > 0
(by the existence of w), we can find z € H°(E, £(2[0])) having a pole of
order 2 whose Laurent expansion has its leading term u 2. If 67! € A,
there is a unique way of normalizing x so that y? = 423 — gz — g3 for a
unique pair (g2 = ¢2(E,w), g3 = g3(E,w)) € A% Since E,4 is smooth,
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this pair (go, g3) has to satisfy A = g5 — 27¢2 € A*. This shows

P(A) = {(B,w)/a}/ =" T8I0 () g5) € A%|A € A%}
1 1 1 1

- Homalg(Z[6>g2>g3> ZL A) = SpeC(Z[6>g2>g3> Z])(A)

Since all these functions ga, g3 and A has Fourier expansions in Z([z]{[¢]]
for ¢ = exp(2miz), we can think of the Tate curve

Tate(q) = Proj(Z[é]Hq]][:v, y, 2]/ (y°z — (42° — ga(q)x2* — g3(q)2°)).

As shown by Tate, Tate(q)(Q,[[¢]]) D (Q,[[¢]])*/¢*, we have a natural
inclusion ¢ean n : un < Tate(q)[N]. The Tate curve also has a canon-

ical differential weq, = df. The Tate curve is an elliptic curve over

Z[¢][lql]lg™"] because g|A. Let B be a Z[3]-algebra. This motivate the
following algebraic definition (cf. [GME] 2.6.5) of B-integral elliptic
modular forms of level I'y(N) as functions of (E, ¢n : un — E[N],w)
satisfying
(GO) f assigns a value f((E, ¢n,w),/a) € A for any triple (E, ¢n,w)/a
defined over an B-algebra A. Here A is also a variable.
(G1) f((E,¢n,w)/a) € A depends only on the isomorphism class of
(E> ¢N> w)/A-
(G2) If p : A — A’ is an B-algebra homomorphism, we have

.f((E> ¢N>w)A ® A/) = QO(f((E, ¢N>w)/A)'

(G?)) f((E>¢N7a : w)/A) = a_k.f(E>¢N>w) for a € A%
(G4) f(q) = f((Tate(Q)a Q0 Pean, N wcan)/A[[ql/N]][qfl/N]) S A[[ql/NH for
any automorphism o € Auty, SChomO(Tate(q)[N]/A[[ql/N”[qfl/N]).
The space of modular forms will be written as G (N; B) = G(I'1(N); B).
By definition, Gi(1; B) = @, g1 B939s, and Gi(N,Z[}]) ® C =
Gr(N,C). Also, if f € Gx(N,C), f(q) with ¢ = exp(27z) gives the
Fourier expansion of f at the cusp oc.

Fix a prime p > 5 and a positive integer N prime to p. We call a
Z,-algebra A a p-adic algebra if A = @n A/p*A. Thus Z, is a p-adic
algebra but Q, is not. Take a p-adic algebra B. The space of B-
integral p-adic modular form V(B) = Vp, (n)(B) is a collection of rules
[ assigning a value f((E,¢, : pipe — E[p™], én)/a) € A for p-adic
B-algebras A satisfying the following condition:

(VO) f assigns avalue f((E, ¢p, dn)/a) € A for any couple (E, ¢, on)/a
defined over a p-adic B-algebra A. Here A is also a variable.

(V1) f((E, ¢p, dn)a) € A depends only on the isomorphism class of
(E> ¢;D> ¢N)/A-
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(V2) If ¢ : A — A’ is an B-algebra homomorphism continuous
under the p-adic topology, we have f((E,¢p, én)a ® A') =
P (f((E, ¢p, On) a)-

(V3) f(q) = f((Tate(q), Peanp, @ © ¢can,N)/B[[q1/N]][qfl/N]) € B[[ql/NH'
for any automorphism o € Autgp scheme(Tate(q) [N]/B[[ql/N”[qfl/N]).

By definition, V' (B) is a p-adic B-algebra.
Since the knowledge of fipe/z, = lim fipn/z, is equivalent to the

knowledge of @m/zp = Spf(lim Z[t,t7]/(t" = 1)), ¢p : ppe — E
induces an identification QAS;,, G @ B = lim E[p"]°. Since G,n has
a canonical differential %, QAS;,, induces a nowhere vanishing differential

Wy = Am%. Thus f € Gi(p"; B) can be regarded as a p-adic modular
form by f((E> ¢P> ¢N)/A) = f(E> ¢P|Hpn>¢N>wp) € A ThU_S we have
a canonical B-linear map Gi(N;B) — V(B). The following fact is
called the g-expansion principle (following from the two facts that the
irreducibility of the Igusa curve over IF, and the existence of the Tate
curve; see [PAF] 3.2.8 and [GME] 2.5):

(Q0) f(q) =0 < f=0forany fin V(B) or in Gx(Np"; B). In
particular, Gi(Np™; B) — V(B) is an injection, and functions
in the image satisfies f(E,a - ¢p, dn) = a*f(E, ¢y, dn) for
a €.

(Q1) Let f, € V(B) be a sequence. Then f, converges p-adically
in V(B) <= fu(q) converges p-adically in B[[q]] <=
Fa((E, 63, 63))/A) converges pradically for all (E, ¢y, éx))/A
and all p-adic B-algebra A.

(Q2) If By is a Z[§]-algebra p-adically dense in B, Gy(Np™; By) =
U,, Gx(Np™; By) is p-adically dense in V(B) for any k > 2.

(Q3) If f € V(B)®zQ and f(q) € B|[[q]], then f € V(B), assuming
B is flat over Z,.

An elliptic curve E/, is said to have complex multiplication if End(E, )
contains an order 9’ of the integer ring O of an imaginary quadratic
field M C C. An order of © means a subring of finite index. If
E(C) = C/L,, has complex multiplication, for O’ = {a € M|a - L,, C
Ly}, O+ L, C Ly, thus we have a representation p : M* — GLy(Q)
such that aw = p(a)w for a € M*. Since p(a)(z) = gjis (pla) =
(2%)) and z = wy /w, corresponds to the same elliptic curve, we have
p(a)(z) = z. Suppose that E has complex multiplication by £’. Then
by the finiteness of isomorphism class over C of CM elliptic curves, E
is defined over a number field K, and by a result of Serre-Tate FE is

defined over a valuation ring U C W of K of residual characteristic p.
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For an ideal m C ©’, we can think of the kernel of multiplication by m:

E[m](A) = {x € E(A)|jmz = 0} = (] Ela](A).
acm

For the moment, we suppose further p splits into a product of two
primes pp in O’ (so O, = O)). Let E[p>~] = J, E[p"]. Then we may
assume that E[p] /gy is isomorphic to jy~ after extending scalar to the
strict henselization W C Q of ; so, we have ¢ = ¢, : piye0 = E[p*]. If
p = pp in O but not in O’ (so, O’ is an order of conductor divisible by
p), we just assume that E has an isogeny E' = E defined over W such
that E’ has complex multiplication by © and Ker(r) N E'[p>] = 0.
Under this setting, ¢ : py = E'[p*] induces ¢ = ¢, = mo ¢, :
ppe — E[p>]. We study later in details the sheaf Q5 of differen-
tials on the scheme E. An important point is that its global sections
HY(E, Qg ) is a free W-module of rank 1. Pick w € H(E, Qg /w) so
that H(E, Qpw) = Ww. As explained above, we fix two embeddings
bp  ppeyw — Ep™]y and E(C) = C/i(a) for a fractional ideal
a D ' In this case, we write £ = FE(a). Thus we may assume that
a=2Z+2Zz(z € M*). Let W = lim W/p"W. Then we have two
numbers 2, € C* and €2, € W* such that

w = Qdu = Qp$p7*%.

We have the following fact basically from definition:

Theorem 2.1. Let f € Gip(I''(Np™); W). Write f, € Vo, (v (W) (resp.
foo € Gi(I'1(Np™);C)) the corresponding p-adic modular form (resp.
the corresponding holomorphic modular form). If (E = E(a),w) w has
complex multiplication by O in which p splits, we have

fool2)  foo(BE,bn,du)  fol B 0N, dpelt)
Ok - Ok - Q’; -

f(E>¢N>w) eEW.

The theorem is stated for modular forms on I'; (Np™) though we only
explained those of level I'1(p").

Remark 2.2. Replacing W by its quotient field, the assertion of the
theorem is valid if f = g finite at (F, ¢n, du) for h € Gy (C1(Np™); W)
and g € G (I'1(Np™); W) for an obvious reason.

Remark 2.3. To have well defined p-adic period 2, a key point here
is to have a canonical ¢, : pp~ — E[p>] for a CM elliptic curve E
not £ having multiplication by the full integer ring 9. Indeed, we give
a canonical ¢, even if E(C) = C/ix(a) for a lattice a in M with a,
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not equal to O,. Then the above theorem is valid intact over a finite
extension W /W for such E(a) defined over W' as is clear form the
proof. The minimum ring W' is given by W/u,»| for n depending on
how far a, differs from ©,. So we state the result afterward including
E(a).

2.2. Invariant differential operators. Shimura studied the effect on
modular forms of the following differential operators on the upper half
complex plane § indexed by k € Z:

1 0 k
2.1 ==\t —F— d 0 = Orqor—2- - Ok,
( ) k 27'('\/—_1 (82’ 2y\/_—1) al k k+2 2 k
where r € Z with r > 0. For more details of these operators, see [LFE]
10.1. Here are easy identities:

Exercise 2.4. Show the following formulas:

(1) Oki(fg) = gowf + faug.
(2) 61 (flea) = (0}.f)|k+arce for a holomorphic function f: $ — C,
where

flra(z) = det(@)*? f(a(2))(cz +d)~*

for a = (%) with positive determinant.

Therefore if f € Gi(I'1(N); C), 0;.(f) satisfies 0}.(f)|kt+2-7 = 05(f) for
all v € I'1 (V). Although 6;(f) is not a holomorphic function, defining

Or(f)(w) = wy ™6 (f)(2),

we have a well-defined homogeneous modular form. In this sense, 6(f)
is a real-analytic modular form on I'1 (V) of weight k + 2r.

An important point Shimura found is that the differential operator
preserves rationality property at CM points of (arithmetic) modular
forms, although it does not preserve holomorphy. Here we call z € § a
CM point if z € H Nis(M) for an imaginary quadratic field M. Then
a=i(Z+7Zz) C M is a lattice, and we have a CM elliptic curve E(a)
with multiplication by O(a) = {a € M|aa C a} as in Remark 2.3. We
shall describe the rationality. Here is the rationality result of Shimura
[Sh75]:

Theorem 2.5 (G. Shimura). Let the notation be as above; in particu-
lar, z is a CM point of ). For f € G(I'1(N);Q), we have

T o T E' , , -
(S) Oifoo)(2) _ (OR)(EN), Ox,du) 5

k+2r k+2r
Qoo Qoo
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In this theorem, z is just a CM point, and it is nothing to do with
the prime p we have chosen. Thus we do not need to assume that the
prime p split in the imaginary quadraric field M = Q|z].

Proof. We follow the argument of Shimura in [Sh75]. Since

(GRS (E, ¢, du) = wy " (5.f)(2) = (01.f)(2)

for z = wi/wy € H (and we = 1), we need to show % € Q

When r = 0, the result follows from Theorem 2.1. We have p
M* — GL2(Q) given by (%) = p(a) (i) for « € M\ Q. Then
p(a)(z) = z. Writing p(a) = (2%), we have cz +d = a. Apply d
to flep(a) = fh (putting h = (f|xp(«))/f), by Exercise 2.4, we have
0k f)|kr2p(a) = (dxf)h + f(doh). Specializing this equality at z and
assuming det(p(a)) = N(a) = 1, we have

a2 (0f)(2) = (O f)|kr2p(@)(2) = (O f)(2)h(2) + f(2)(6oh) ()
= (0rf)(z)a™" + f(2)(doh)(2),
because h(z) = (flrp())(2)/f(2) = a™*. As a? # 1, we have

(6:F)(2) = a®(a™ = )71 f(2) (6oh) (2).
Note that dgh is a meromorphic modular form of weight 2 defined over
Q by the g-expansion principle. Thus M € Q (Remark 2.2), and

this proves the result when r = 1. We repeatlng this process r times.
By the Leibnitz formula, 6;(fh) = > ., (1)o5 f65~°h. Form this we
get

0<s<r

Evaluating this at z, we finally get

— r T—S S
22 @NE =atar =07 T (D) e N e
0<s<r s
Note that dsh = 05 'doh, and as we have already observed, doh is a

meromorphic Q-rational modular form finite at z. Then by the induc-
tion hypothesis, we get the desired rationality. ([l

Remark 2.6. Choosing g € Gi1o,(I'1(IV); W) with ¢g(z) # 0 under the
notation of the above proof, Shimura actually proved in [Sh75] that
opf(2)
9(2)

€ Q, which is equivalent to the above theorem by Theorem 2.1.
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Remark 2.7. For a given f € G,(I'1(N); Q) as above, defining the
transformation equation

U

P, = I  &X=1flen) ==X,
~ET1 (N)\SL(Z) =0
we have a; € Gra_ja(1;W). Thus_aj = Qj(92,93) for an isobaric
polynomial Q; with coefficients in Q. If (F,w) is defined by y* =
4$3 - 92(E>w)$ - 93(E>w)> .f(E> ¢N> ¢p>w) satisfies

Z Qj(92(E,w), g3(E,w)) X7 = 0.

Thus this gives an algorithm to compute the value f(E,dn, ¢p,w).
Once we know the value f(E, ¢n, ¢p, w) = W, we can then com-
5p(f(2)

k+2
QFf2r

pute following the above proof (in particular, the induction

process).

2.3. p-Adic differential operators. On V (W), we have a more stan-
dard differential operator d = dg whose effect on g-expansion is

d(z anq") = Znanq".

An elementary construction of d can be given as follows. Pick f €
Gr(T'1(N); W) C Gg(I'1(N);C). Then for any function ¢ : Z/p"Z —
W, we define its Fourier transform ¢* : Z/p"Z — W by ¢*(z) =
> uezyprz P(w)e(zu/p"), where e(x) = exp(2miz).

Exercise 2.8. Prove (¢*)"(z) = p"¢(—x).
We define
(2.3) floz)=p" 3 S (-u)fle+ ).

u mod Z/p"Z P
Then we have (3, anq")|9) = 32, ¢(n)ang" € Gi(I1(Np™); W).

Exercise 2.9. Define ¢|z(u) = ¢(zu) for v € (Z/p"Z)*. For f €

G(T1(N); C), prove that (f|d)[xy = (flsn)|(dlad™) if v = (2]) €
[1(N)NTo(p*). In particular f|¢ € Gp(T'1(N);C).

Then choosing ¢, : Z/p"Z — W so that ¢, (u) = v mod p"W, the
g-expansion lim,,_(f|¢,) converges p-adically to the g-expansion of
df. By the limit principle, G (p°; W) is dense in V (W), we have a
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unique df € V(W). Thus d"f(FE, Apﬁk%) € W is well defined. The
effect of d” on the g—expansion of a modular form is given by

(2.4) d’ Z a(n)q" = Z a(n)n"q".

n n

We can let a € Z) acts on f € V(R) by
fla(E, dn. dp) = fI (G .21) (B, dn.dp) = [(E,a- ).
Lemma 2.10. If f € Gx(I'1(N); W), then we have
@HI(E20)=a2(df) foracZ).

Proof. We can approximate p-adically (8(191) by an element v, €
['1(N) N To(p*) so that v, = ¢ mod p"My(Z,). By Exercise 2.9,

df|a = nh_{go flonlkm = a " nh_{go f|7n|(¢n|a2) = a_k_zdf

because ¢,(u) =u mod p"W. Then iterating this formula r times, we
get the formula in the lemma. O

The above action of a (or g € T1(Z,)) is the local one concentrated at
p (as ¢y is intact), where T} (A) is the subgroup of SLs(A) made of di-
agonal matrices for any ring A. We have a global action f — f|y
for v € G(Z,)). Since 7 change the level structure ¢y, the defi-
nition is more involved. For that, we actually need to extend level
structure to the prime-to-p Tate module n® : (AP*))? = V#)(E) =

<1i—nlp1’m E[m]) ®z Q so that we can let v act by n® — n® o~. This is
tantamount to introducing the structure of Shimura curve. Define

(@ Np(@)(E, ¢p,n') := (d" [)(E, ¢y 0 cap,n® 0 pP ().
Here we just note the following fact:

Lemma 2.11. Recall an elliptic curve E(a) with complex multiplication
by an imaginary quadratic field M in which p splits into (p) = pp.

Define p : D(Xp) — G(Z, x AP>®)) by alP) o n® = n® o p(a) and

ppla) = <ao'“ QOF). Then for f € Gi(Ty(Np™); W), if N(a) = 1, we
have d(f|p(a)) = ag(df|p(a)) and
(" F)lp(e))(B(a), by, n™)) = 72 - & f(E(a), 6, n'™)).

Proof. By deformation theory of E(a), the differential operator d com-
mutes with the action n® +— 1P og for g € SLy(AP>®)). Then the effect
of d on the operation f — f|p(a) can be computed by Lemma 2.10.
Note that (E(a), ¢, 0 ap,n® o pP(a)) 2= (E(a), ¢p,n*)) by complex
multiplication. 0
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Katz interpreted the differential operator d in terms of the Gauss-
Manin connection of the universal elliptic curve over the modular curve
X1 () and gave a purely algebro-geometric definition of the operator d”
acting on V(R) for any p-adic W-algebra R (see Katz’s paper [K78al).
Since his definition of d" is purely algebro-geometric, it is valid for
classical modular forms and p—adic modular forms at the same time.
An important formula given in [K78a] (2.6.7) is as follows.

Theorem 2.12 (N. Katz). Let the notation and the assumption be as
in Theorem 2.1; in particular, E(a)  is a CM elliptic curve associated
to a lattice a C M for an imaginary quadratic field M in which p splits,
where W' is a discrete valuation ring finite flat over W over which E(a)
is defined. For f € Gi(p™;W'), we have

g CDEDrg)  GHED )y,

If a is a fractional ideal of O, we can take W = W as explained ear-
lier. We can always find a nowhere vanishing differential w in Qg q

as W' is a discrete valuation ring, and as before w = Q,¢,.%. We give
here a proof similar to the argument which proves Theorem 2.5.

Proof. We use the notation introduced in the proof of Theorem 2.5; so,
a=i(Z+Zz) for z € $. We take +1 # o € M*) with aa = 1. Let
E = E(a).

After identifying algebro-geometric forms and analytic ones by ¢-

expansions via the fixed two embeddings C, MRS VYARER C, we see that

d= 2. Wewite A = AN:Q) = UdLIf.g € GUII(V): D)}

i 0z
Thus for meromorphic functions h(x) € A, we have,

dhop(0)) = 5= PADED _ oo LI (0) ) = 0= amyop(a).

271 211 0z

Since dh = g1/g2 for g1 € Grya(I1(N); W) and go € G(I'1(N); W)
for sufficiently large k, we have (Remark 2.2)

dh)(E, dn, byt o
(dh)( 0.0 ) (ah)(B. éw,) € T

(2.5)

5 dt
Since % = f(E,¢n,,w) € W, we first show
P

(d"f)(E, on, ) _ (Orf)(E, On, du) g

k+2r k+2r
Q Ok
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by induction on r. When r = 0, this follows from Theorem 2.1. To treat
r >0, take f € Gx(T'1(N); W), and define h € A by flp(a) = fh as
in the proof of Theorem 2.5.

Apply d to flxp(a) = fh, we have (df)|k+2p(c) = (df)h + f(dh).
Specializing this equality at (E, ¢n,w), we get from Lemma 2.11
a " 2df (B, ¢, ¢p)) = (df )ks2p(Q)) (B, b, bp)

= (df)(E, on, op)M(E) + f(E, ¢n, ¢p)(dh)(E, dn, ¢p)-
Since h(E) = (f1xp(@)) (B, o, 6,)/ (B, o, 6y) = a~, we have
(df)(E, én, dp) = Oék( - 1)_1f(z)(dh)(E>¢N>¢p)-
E.9N, ¢p t
QZ
result when » = 1. We repeat this process r times. By the Leibnitz
formula, we have d"(fh) = > ..., (")d* fd"*h. Form this we get

d'(f)lesarpla) = (& f)h+ Y ()d “f)(dh).

0<s<r

Thus we have again proved ) ¢ Q, and also this proves the

ok

Evaluating this at (E, ¢n, ¢,), we get for C' = m

@IE 0,0 = C Y (1)@ .o ) (I, 6.0,
0<s<r

Dividing by Q:+2", we finally get
(@) (B én,0p) _ . 3 () (@ F)(E, ¢, ¢p) (R)(E, o, dp)

Qk+2r Qk+2r—2s Q2s
p p

0<s<r

By the induction hypothesis, we have, for s > 0,
(dr—sf) (E> ¢N> ¢10) o (512_8./:) (E> ¢N> dU)

QI;+2T—2S Qlég—2r—2s ’
(d*h) (B, ¢ns ¢p)  (d°'dh)(E, dn, dp) (85 'dR)(E O, du)
Qgs - Qgs - Q2s

Replacing each term as above by the corresponding archimedean term,
we recover the right-hand-side of (2.2) divided by Q2. Then by the
induction hypothesis, we get the desired identity:

(d"f)(E, ¢n, ¢p) _ Opf)(E, dn, du)

k+2r k+2r
Q QF

inside Q. Since the left-hand-side of the above identity is in the comple-
tion W of i,(W’) in C,, we conclude the identity in W' =i (W’). O
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Remark 2.13. We note that this process of proving algebraicity and
p-integrality applies to Hilbert modular forms and beyond after an ap-
propriate adjustment (as Shimura’s argument proving Theorem 2.5 has
been generalized to unitary /symplectic Shimura varieties by himself in
[AAF] Chapter III). Therefore, the use of Gauss-Manin connection to
study this type of algebraicity is not necessary (though is more concep-
tual). In particular, if a, # O, the proof via Gauss-Manin connection
is more involved, because one needs to make scalar extension of the
ring of definition of E(9O) to split the Hodge-filtration on H},5(F(a))
in an appropriate manner (see [K78a] (2.4.2)). We note that [K78a]
does cover the case a, # O,.



