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2. Lecture 2: Values of modular forms at CM points

To extend the result of the previous section to Hecke L-values of
imaginary quadratic fields, we recall modular forms and CM periods.

2.1. Elliptic modular forms. What are modular forms? In the eas-
iest cases of elliptic modular forms, if we write w = t(w1, w2) lin-
early independent complex numbers (with Im(z) > 0 (z = w1/w2)),
a weight k modular form is a holomorphic function f of w satisfying
f (( a b

c d ) w) = f(w) and f(aw) = a−kf(w) for a ∈ C× as everybody
knows. We want to prove algebraicity and integrality of the value f(w)
when w is a basis of an imaginary quadratic field (up to a canonical pe-
riod), and this can be generalized to Hilbert modular case and beyond
(see [AAF]). This is due to Damerell, Weil, Shimura and Katz.

To do this, we need to give algebraic interpretation of modular form
(see [AME], [GME] and [PAF] Chapter 2). Pick two linearly indepen-
dent numbers w = (w1, w2) ∈ C2. Writing u for the variable on C, the
quotient C/Lw for Lw = Zw1 + Zw2 gives rise to a pair (E, ω) of ellip-
tic curves and the differential ω = du of first kind (nowhere vanishing
differential). Indeed, E(C) ∼= C/Lw, and we can embed E into P2 via
u 7→ (x(u), y(u), 1) ∈ P2(C) by Weierstrass ℘-functions

x(u) = ℘(u; Lw) =
1

u2
+

∑

0 6=l∈Lw

{
1

(u− l)2
− 1

l2

}
=

1

u2
+

g2

20
u2+

g3

28
u4+· · ·

and y = dx
du

, where g2(w) = 60
∑

0 6=l∈Lw
l−4 and g3(w) = 140

∑
0 6=l∈Lw

l−6.

Then the relation is y2 = 4x3 − g2x − g3 and ω = du = dx
y

. The pair

w can be recovered by ω so that wi =
∫

γi
ω for a basis (γ1, γ2) of

H1(E(C), Z).
Conversely, start with a pair (E, ω)/A defined over a ring A made

of an elliptic curve (a smooth curve of genus 1 with a specific point
0 = 0E ∈ E(A)) and a nowhere vanishing differential ω. Then take a
parameter u around 0 so that ω = du. Write [0] for the relative Cartier
divisor given by 0. Since the line bundle L(m[0]) (made of meromorphic
function having pole at 0 of order at most m) is free of rank m if m > 0
(by the existence of ω), we can find x ∈ H0(E,L(2[0])) having a pole of
order 2 whose Laurent expansion has its leading term u−2. If 6−1 ∈ A,
there is a unique way of normalizing x so that y2 = 4x3− g2x− g3 for a
unique pair (g2 = g2(E, ω), g3 = g3(E, ω)) ∈ A2. Since E/A is smooth,
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this pair (g2, g3) has to satisfy ∆ = g3
2 − 27g2

3 ∈ A×. This shows

P(A) = {(E, ω)/A}/ ∼=1 to 1 and onto↔ {(g2, g3) ∈ A2|∆ ∈ A×}

= Homalg(Z[
1

6
, g2, g3,

1

∆
], A) = Spec(Z[

1

6
, g2, g3,

1

∆
])(A).

Since all these functions g2, g3 and ∆ has Fourier expansions in Z[ 1
6
][[q]]

for q = exp(2πiz), we can think of the Tate curve

Tate(q) = Proj(Z[
1

6
][[q]][x, y, z]/(y2z − (4x3 − g2(q)xz2 − g3(q)z

3)).

As shown by Tate, Tate(q)(Qp[[q]])⊃ (Qp[[q]])
×/qZ, we have a natural

inclusion φcan,N : µN ↪→ Tate(q)[N ]. The Tate curve also has a canon-
ical differential ωcan = dx

y
. The Tate curve is an elliptic curve over

Z[ 1
6
][[q]][q−1] because q|∆. Let B be a Z[ 1

6
]-algebra. This motivate the

following algebraic definition (cf. [GME] 2.6.5) of B-integral elliptic
modular forms of level Γ1(N) as functions of (E, φN : µN ↪→ E[N ], ω)
satisfying

(G0) f assigns a value f((E, φN , ω)/A) ∈ A for any triple (E, φN , ω)/A

defined over an B-algebra A. Here A is also a variable.
(G1) f((E, φN , ω)/A) ∈ A depends only on the isomorphism class of

(E, φN , ω)/A.
(G2) If ϕ : A→ A′ is an B-algebra homomorphism, we have

f((E, φN , ω)A ⊗A′) = ϕ(f((E, φN , ω)/A).

(G3) f((E, φN , a · ω)/A) = a−kf(E, φN , ω) for a ∈ A×.

(G4) f(q) = f((Tate(q), α◦φcan,N, ωcan)/A[[q1/N ]][q−1/N ]) ∈ A[[q1/N]] for
any automorphism α ∈ Autgp scheme(Tate(q)[N ]/A[[q1/N ]][q−1/N ]).

The space of modular forms will be written as Gk(N ; B) = Gk(Γ1(N); B).
By definition, Gk(1; B) =

⊕
4a+6b=k Bga

2g
b
3, and Gk(N, Z[ 1

6
]) ⊗ C =

Gk(N, C). Also, if f ∈ Gk(N, C), f(q) with q = exp(2πz) gives the
Fourier expansion of f at the cusp ∞.

Fix a prime p ≥ 5 and a positive integer N prime to p. We call a
Zp-algebra A a p-adic algebra if A = lim←−n

A/pnA. Thus Zp is a p-adic
algebra but Qp is not. Take a p-adic algebra B. The space of B-
integral p-adic modular form V (B) = VΓ1(N)(B) is a collection of rules
f assigning a value f((E, φp : µp∞ ↪→ E[p∞], φN)/A) ∈ A for p-adic
B-algebras A satisfying the following condition:

(V0) f assigns a value f((E, φp, φN)/A) ∈ A for any couple (E, φp, φN )/A

defined over a p-adic B-algebra A. Here A is also a variable.
(V1) f((E, φp, φN)/A) ∈ A depends only on the isomorphism class of

(E, φp, φN)/A.
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(V2) If ϕ : A → A′ is an B-algebra homomorphism continuous
under the p-adic topology, we have f((E, φp, φN )A ⊗ A′) =
ϕ(f((E, φp, φN)/A).

(V3) f(q) = f((Tate(q), φcan,p, α ◦ φcan,N)/B[[q1/N ]][q−1/N ]) ∈ B[[q1/N]].
for any automorphism α ∈ Autgp scheme(Tate(q)[N ]/B[[q1/N]][q−1/N ]).

By definition, V (B) is a p-adic B-algebra.
Since the knowledge of µp∞/Zp = lim−→n

µpn/Zp is equivalent to the

knowledge of Ĝm/Zp = Spf(lim←−n
Zp[t, t

−1]/(tn − 1)), φp : µp∞ ↪→ E

induces an identification φ̂p : Ĝm
∼= Ê = lim←−n

E[pn]◦. Since Ĝm has

a canonical differential dt
t
, φ̂p induces a nowhere vanishing differential

ωp = φ̂p,∗
dt
t
. Thus f ∈ Gk(p

n; B) can be regarded as a p-adic modular
form by f((E, φp, φN)/A) = f(E, φp|µpn , φN , ωp) ∈ A. Thus we have
a canonical B-linear map Gk(N ; B) → V (B). The following fact is
called the q-expansion principle (following from the two facts that the
irreducibility of the Igusa curve over Fp and the existence of the Tate
curve; see [PAF] 3.2.8 and [GME] 2.5):

(Q0) f(q) = 0 ⇐⇒ f = 0 for any f in V (B) or in Gk(Npn; B). In
particular, Gk(Npn; B) → V (B) is an injection, and functions
in the image satisfies f(E, a · φp, φN ) = a−kf(E, φp, φN ) for
a ∈ Z×

p .
(Q1) Let fn ∈ V (B) be a sequence. Then fn converges p-adically

in V (B) ⇐⇒ fn(q) converges p-adically in B[[q]] ⇐⇒
fn((E, φp, φN))/A) converges p-adically for all (E, φp, φN))/A
and all p-adic B-algebra A.

(Q2) If B0 is a Z[ 1
6
]-algebra p-adically dense in B, Gk(Np∞; B0) =⋃

n Gk(Npn; B0) is p-adically dense in V (B) for any k ≥ 2.
(Q3) If f ∈ V (B)⊗Z Q and f(q) ∈ B[[q]], then f ∈ V (B), assuming

B is flat over Zp.

An elliptic curve E/A is said to have complex multiplication if End(E/A)
contains an order O′ of the integer ring O of an imaginary quadratic
field M ⊂ C. An order of O means a subring of finite index. If
E(C) = C/Lw has complex multiplication, for O′ = {α ∈ M |α · Lw ⊂
Lw}, O′ · Lw ⊂ Lw, thus we have a representation ρ : M× ↪→ GL2(Q)
such that αw = ρ(α)w for α ∈ M×. Since ρ(α)(z) = az+b

cz+d
(ρ(α) =

( a b
c d )) and z = w1/w2 corresponds to the same elliptic curve, we have

ρ(α)(z) = z. Suppose that E has complex multiplication by O′. Then
by the finiteness of isomorphism class over C of CM elliptic curves, E
is defined over a number field K, and by a result of Serre–Tate E is
defined over a valuation ring V ⊂ W of K of residual characteristic p.
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For an ideal m ⊂ O′, we can think of the kernel of multiplication by m:

E[m](A) = {x ∈ E(A)|mx = 0} =
⋂

α∈m

E[α](A).

For the moment, we suppose further p splits into a product of two
primes pp in O′ (so Op = O′

p). Let E[p∞] =
⋃

n E[pn]. Then we may
assume that E[p∞]/V is isomorphic to µp∞ after extending scalar to the

strict henselizationW ⊂ Q of V; so, we have φ = φp : µp∞
∼= E[p∞]. If

p = pp in O but not in O′ (so, O′ is an order of conductor divisible by

p), we just assume that E has an isogeny E ′ π−→ E defined overW such
that E ′ has complex multiplication by O and Ker(π) ∩ E ′[p∞] = 0.
Under this setting, φ′ : µp∞

∼= E ′[p∞] induces φ = φp = π ◦ φ′
p :

µp∞ ↪→ E[p∞]. We study later in details the sheaf ΩE/W of differen-
tials on the scheme E. An important point is that its global sections
H0(E, ΩE/W) is a free W-module of rank 1. Pick ω ∈ H0(E, ΩE/W) so
that H0(E, ΩE/W) =Wω. As explained above, we fix two embeddings
φp : µp∞/W ↪→ E[p∞]/W and E(C) = C/i∞(a) for a fractional ideal
a ⊃ O′. In this case, we write E = E(a). Thus we may assume that
a = Z + Zz (z ∈ M×). Let W = lim←−n

W/pnW. Then we have two

numbers Ω∞ ∈ C× and Ωp ∈ W× such that

ω = Ω∞du = Ωpφ̂p,∗
dt

t
.

We have the following fact basically from definition:

Theorem 2.1. Let f ∈ Gk(Γ1(Npn);W). Write fp ∈ VΓ1(N)(W ) (resp.
f∞ ∈ Gk(Γ1(Npn); C)) the corresponding p-adic modular form (resp.
the corresponding holomorphic modular form). If (E = E(a), ω)/W has
complex multiplication by O in which p splits, we have

f∞(z)

Ωk
∞

=
f∞(E, φN , du)

Ωk
∞

=
fp(E, φN , φ̂p,∗

dt
t
)

Ωk
p

= f(E, φN , ω) ∈ W.

The theorem is stated for modular forms on Γ1(Npn) though we only
explained those of level Γ1(p

r).

Remark 2.2. Replacing W by its quotient field, the assertion of the
theorem is valid if f = h

g
finite at (E, φN , du) for h ∈ Gk+k′ (Γ1(Npn);W)

and g ∈ Gk′(Γ1(Npn);W) for an obvious reason.

Remark 2.3. To have well defined p-adic period Ωp, a key point here
is to have a canonical φp : µp∞ ↪→ E[p∞] for a CM elliptic curve E
not E having multiplication by the full integer ring O. Indeed, we give
a canonical φp even if E(C) = C/i∞(a) for a lattice a in M with ap
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not equal to Op. Then the above theorem is valid intact over a finite
extension W ′/W for such E(a) defined over W ′ as is clear form the
proof. The minimum ring W ′ is given by W[µpn ] for n depending on
how far ap differs from Op. So we state the result afterward including
E(a).

2.2. Invariant differential operators. Shimura studied the effect on
modular forms of the following differential operators on the upper half
complex plane H indexed by k ∈ Z:

(2.1) δk =
1

2π
√
−1

(
∂

∂z
+

k

2y
√
−1

)
and δr

k = δk+2r−2 · · · δk,

where r ∈ Z with r ≥ 0. For more details of these operators, see [LFE]
10.1. Here are easy identities:

Exercise 2.4. Show the following formulas:

(1) δk+l(fg) = gδkf + fδlg.
(2) δr

k(f |kα) = (δr
kf)|k+2rα for a holomorphic function f : H → C,

where

f |kα(z) = det(α)k/2f(α(z))(cz + d)−k

for α = ( a b
c d ) with positive determinant.

Therefore if f ∈ Gk(Γ1(N); C), δr
k(f) satisfies δr

k(f)|k+2rγ = δr
k(f) for

all γ ∈ Γ1(N). Although δr
k(f) is not a holomorphic function, defining

δr
k(f)(w) = w−k−2r

2 δr
k(f)(z),

we have a well-defined homogeneous modular form. In this sense, δr
k(f)

is a real-analytic modular form on Γ1(N) of weight k + 2r.
An important point Shimura found is that the differential operator

preserves rationality property at CM points of (arithmetic) modular
forms, although it does not preserve holomorphy. Here we call z ∈ H a
CM point if z ∈ H ∩ i∞(M) for an imaginary quadratic field M . Then
a = i−1

∞ (Z+Zz) ⊂ M is a lattice, and we have a CM elliptic curve E(a)
with multiplication by O(a) = {α ∈M |αa ⊂ a} as in Remark 2.3. We
shall describe the rationality. Here is the rationality result of Shimura
[Sh75]:

Theorem 2.5 (G. Shimura). Let the notation be as above; in particu-
lar, z is a CM point of H. For f ∈ Gk(Γ1(N); Q), we have

(S)
(δr

kf∞)(z)

Ωk+2r
∞

=
(δr

kf)(E(a), φN , du)

Ωk+2r
∞

∈ Q.
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In this theorem, z is just a CM point, and it is nothing to do with
the prime p we have chosen. Thus we do not need to assume that the
prime p split in the imaginary quadraric field M = Q[z].

Proof. We follow the argument of Shimura in [Sh75]. Since

(δr
kf)(E, φN , du) = w−k−2r

2 (δr
kf)(z) = (δr

kf)(z)

for z = w1/w2 ∈ H (and w2 = 1), we need to show
(δr

kf)(z)

Ωk+2r
∞

∈ Q.

When r = 0, the result follows from Theorem 2.1. We have ρ :
M× ↪→ GL2(Q) given by ( zα

α ) = ρ(α) ( z
1 ) for α ∈ M \ Q. Then

ρ(α)(z) = z. Writing ρ(α) = ( a b
c d ), we have cz + d = α. Apply δk

to f |kρ(α) = fh (putting h = (f |kρ(α))/f), by Exercise 2.4, we have
(δkf)|k+2ρ(α) = (δkf)h + f(δ0h). Specializing this equality at z and
assuming det(ρ(α)) = N(α) = 1, we have

α−k−2(δkf)(z) = (δkf)|k+2ρ(α)(z) = (δkf)(z)h(z) + f(z)(δ0h)(z)

= (δkf)(z)α−k + f(z)(δ0h)(z),

because h(z) = (f |kρ(α))(z)/f(z) = α−k. As α2 6= 1, we have

(δkf)(z) = αk(α−2 − 1)−1f(z)(δ0h)(z).

Note that δ0h is a meromorphic modular form of weight 2 defined over

Q by the q-expansion principle. Thus δ0h(z)
Ω2

∞

∈ Q (Remark 2.2), and

this proves the result when r = 1. We repeating this process r times.
By the Leibnitz formula, δr

k(fh) =
∑

0≤s≤r

(
r
s

)
δs
kfδr−s

0 h. Form this we
get

δr
k(f)|k+2rρ(α) = (δr

kf)h +
∑

0<s≤r

(
r

s

)
(δr−s

k f)(δs
0h).

Evaluating this at z, we finally get

(2.2) (δr
kf)(z) = αk(α−2r − 1)−1

∑

0<s≤r

(
r

s

)
(δr−s

k f)(z)(δs
0h)(z).

Note that δs
0h = δs−1

2 δ0h, and as we have already observed, δ0h is a
meromorphic Q-rational modular form finite at z. Then by the induc-
tion hypothesis, we get the desired rationality. �

Remark 2.6. Choosing g ∈ Gk+2r(Γ1(N);W) with g(z) 6= 0 under the
notation of the above proof, Shimura actually proved in [Sh75] that
δr
kf(z)

g(z)
∈ Q, which is equivalent to the above theorem by Theorem 2.1.
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Remark 2.7. For a given f ∈ Gk(Γ1(N); Q) as above, defining the
transformation equation

P (X, f) =
∏

γ∈Γ1(N)\SL2(Z)

(X − f |kγ) =

d∑

j=0

aj(z)Xj ,

we have aj ∈ Gkd−jd(1;W). Thus aj = Qj(g2, g3) for an isobaric

polynomial Qj with coefficients in Q. If (E, ω) is defined by y2 =
4x3 − g2(E, ω)x− g3(E, ω), f(E, φN , φp, ω) satisfies

d∑

j=0

Qj(g2(E, ω), g3(E, ω))Xj = 0.

Thus this gives an algorithm to compute the value f(E, φN , φp, ω).

Once we know the value f(E, φN , φp, ω) = f(E,φN,du)
Ωk

∞

, we can then com-

pute
δr
k(f(z))

Ωk+2r
∞

following the above proof (in particular, the induction

process).

2.3. p-Adic differential operators. On V (W ), we have a more stan-
dard differential operator d = δ0 whose effect on q-expansion is

d(
∑

n

anq
n) =

∑

n

nanqn.

An elementary construction of d can be given as follows. Pick f ∈
Gk(Γ1(N);W) ⊂ Gk(Γ1(N); C). Then for any function φ : Z/prZ →
W, we define its Fourier transform φ∗ : Z/prZ → W by φ∗(x) =∑

u∈Z/prZ φ(u)e(xu/pr), where e(x) = exp(2πix).

Exercise 2.8. Prove (φ∗)∗(x) = prφ(−x).

We define

(2.3) f |φ(z) = p−r
∑

u mod Z/prZ

φ∗(−u)f(z +
u

pr
).

Then we have (
∑

n anq
n)|φ) =

∑
n φ(n)anq

n ∈ Gk(Γ1(Np2r);W).

Exercise 2.9. Define φ|x(u) = φ(xu) for x ∈ (Z/prZ)×. For f ∈
Gk(Γ1(N); C), prove that (f |φ)|kγ = (f |kγ)|(φ|ad−1) if γ = ( a b

c d ) ∈
Γ1(N) ∩ Γ0(p

2r). In particular f |φ ∈ Gk(Γ1(N); C).

Then choosing φn : Z/pnZ → W so that φn(u) ≡ u mod pnW, the
q-expansion limn→∞(f |φn) converges p-adically to the q-expansion of
df . By the limit principle, Gk(p

∞;W) is dense in V (W ), we have a
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unique df ∈ V (W ). Thus drf(E, φ̂p,∗
dt
t
) ∈ W is well defined. The

effect of dr on the q–expansion of a modular form is given by

(2.4) dr
∑

n

a(n)qn =
∑

n

a(n)nrqn.

We can let a ∈ Z×
p acts on f ∈ V (R) by

f |a(E, φN , φp) = f |
(

a 0
0 a−1

)
(E, φN , φp) = f(E, a · φp).

Lemma 2.10. If f ∈ Gk(Γ1(N);W), then we have

(drf)|
(

a 0
0 a−1

)
= a−k−2r(drf) for a ∈ Z×

p .

Proof. We can approximate p-adically
(

a 0
0 a−1

)
by an element γn ∈

Γ1(N) ∩ Γ0(p
2n) so that γn ≡ g mod pnM2(Zp). By Exercise 2.9,

df |a = lim
n→∞

f |φn|kγn = a−k lim
n→∞

f |γn|(φn|a2) = a−k−2df

because φn(u) ≡ u mod pnW. Then iterating this formula r times, we
get the formula in the lemma. �

The above action of a (or g ∈ T1(Zp)) is the local one concentrated at
p (as φN is intact), where T1(A) is the subgroup of SL2(A) made of di-
agonal matrices for any ring A. We have a global action f 7→ f |γ
for γ ∈ G(Z(p)). Since γ change the level structure φN , the defi-
nition is more involved. For that, we actually need to extend level
structure to the prime-to-p Tate module η(p) : (A(p∞))2 ∼= V (p)(E) =(
lim←−p-m

E[m]
)
⊗Z Q so that we can let γ act by η(p) 7→ η(p) ◦ γ. This is

tantamount to introducing the structure of Shimura curve. Define

(drf)|ρ(α)(E, φp, η
(p)) := (drf)(E, φp ◦ αp, η

(p) ◦ ρ(p)(α)).

Here we just note the following fact:

Lemma 2.11. Recall an elliptic curve E(a) with complex multiplication
by an imaginary quadratic field M in which p splits into (p) = pp.
Define ρ : O×

(p) ↪→ G(Zp × A(p∞)) by α(p) ◦ η(p) = η(p) ◦ ρ(α) and

ρp(α) =
(

αp 0
0 αp

)
. Then for f ∈ Gk(Γ1(Npm);W), if N(α) = 1, we

have d(f |ρ(α)) = α2
p(df |ρ(α)) and

((drf)|ρ(α))(E(a), φp, η
(p)) = α−k−2r

p · drf(E(a), φp, η
(p)).

Proof. By deformation theory of E(a), the differential operator d com-
mutes with the action η(p) 7→ η(p)◦g for g ∈ SL2(A

(p∞)). Then the effect
of d on the operation f 7→ f |ρ(α) can be computed by Lemma 2.10.
Note that (E(a), φp ◦ αp, η

(p) ◦ ρ(p)(α)) ∼= (E(a), φp, η
(p)) by complex

multiplication. �
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Katz interpreted the differential operator d in terms of the Gauss-
Manin connection of the universal elliptic curve over the modular curve
X1(N) and gave a purely algebro-geometric definition of the operator dr

acting on V (R) for any p-adic W -algebra R (see Katz’s paper [K78a]).
Since his definition of dr is purely algebro-geometric, it is valid for
classical modular forms and p–adic modular forms at the same time.
An important formula given in [K78a] (2.6.7) is as follows.

Theorem 2.12 (N. Katz). Let the notation and the assumption be as
in Theorem 2.1; in particular, E(a)/W ′ is a CM elliptic curve associated
to a lattice a ⊂M for an imaginary quadratic field M in which p splits,
whereW ′ is a discrete valuation ring finite flat overW over which E(a)
is defined. For f ∈ Gk(p

n;W ′), we have

(K)
(drf)(E(a), φN , φp)

Ωk+2r
p

=
(δr

kf)(E(a), φN , du)

Ωk+2r
∞

∈ W ′.

If a is a fractional ideal of O, we can takeW ′ =W as explained ear-
lier. We can always find a nowhere vanishing differential ω in ΩE(a)/W ′

asW ′ is a discrete valuation ring, and as before ω = Ωpφ̂p,∗
dt
t
. We give

here a proof similar to the argument which proves Theorem 2.5.

Proof. We use the notation introduced in the proof of Theorem 2.5; so,
a = i−1

∞ (Z + Zz) for z ∈ H. We take ±1 6= α ∈M×) with αα = 1. Let
E = E(a).

After identifying algebro-geometric forms and analytic ones by q-

expansions via the fixed two embeddings Cp
ip←− W ′ i∞−→ C, we see that

d = 1
2πi

∂
∂z

. We write A = A(N ; Q) =
⋃

k{ f
g
|f, g ∈ Gk(Γ1(N); Q)}.

Thus for meromorphic functions h(x) ∈ A, we have,

d(h◦ρ(α)) =
1

2πi

∂h(ρ(α)(z))

∂z
= α−2 1

2πi

∂h

∂z
((ρ(α)(z)) = α−2(dh)◦ρ(α).

Since dh = g1/g2 for g1 ∈ Gk+2(Γ1(N);W ′) and g2 ∈ Gk(Γ1(N);W ′)
for sufficiently large k, we have (Remark 2.2)

(2.5)
(dh)(E, φN , φ̂p,∗

dt
t
)

Ω2
p

= (dh)(E, φN , ω) ∈ Q.

Since
f(E,bφp,∗

dt
t

)

Ωk
p

= f(E, φN , , ω) ∈ W ′, we first show

(drf)(E, φN , φp)

Ωk+2r
p

=
(δr

kf)(E, φN , du)

Ωk+2r
∞

∈ Q
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by induction on r. When r = 0, this follows from Theorem 2.1. To treat
r > 0, take f ∈ Gk(Γ1(N);W ′), and define h ∈ A by f |kρ(α) = fh as
in the proof of Theorem 2.5.

Apply d to f |kρ(α) = fh, we have (df)|k+2ρ(α) = (df)h + f(dh).
Specializing this equality at (E, φN , ω), we get from Lemma 2.11

α−k−2(df(E, φN , φp)) = ((df)|k+2ρ(α))(E, φN , φp)

= (df)(E, φN , φp)h(E) + f(E, φN , φp)(dh)(E, φN , φp).

Since h(E) = (f |kρ(α))(E, φN , φp)/f(E, φN , φp) = α−k, we have

(df)(E, φN , φp) = αk(α−2 − 1)−1f(z)(dh)(E, φN , φp).

Thus we have again proved
dh(E,φN ,bφp,∗

dt
t

))

Ω2
p

∈ Q, and also this proves the

result when r = 1. We repeat this process r times. By the Leibnitz
formula, we have dr(fh) =

∑
0≤s≤r

(
r
s

)
dsfdr−sh. Form this we get

dr(f)|k+2rρ(α) = (drf)h +
∑

0<s≤r

(
r

s

)
(dr−sf)(dsh).

Evaluating this at (E, φN , φp), we get for C = αk

(α−2r−1)

(drf)(E, φN , φp) = C ·
∑

0<s≤r

(
r

s

)
(dr−sf)(E, φN , φp)(d

sh)(E, φN , φp).

Dividing by Ωk+2r
p , we finally get

(drf)(E, φN , φp)

Ωk+2r
p

= C ·
∑

0<s≤r

(
r

s

)
(dr−sf)(E, φN , φp)

Ωk+2r−2s
p

(dsh)(E, φN , φp)

Ω2s
p

.

By the induction hypothesis, we have, for s > 0,

(dr−sf)(E, φN , φp)

Ωk+2r−2s
p

=
(δr−s

k f)(E, φN , du)

Ωk+2r−2s
∞

,

(dsh)(E, φN , φp)

Ω2s
p

=
(ds−1dh)(E, φN , φp)

Ω2s
p

=
(δs−1

2 dh)(E, φN , du)

Ω2s
∞

.

Replacing each term as above by the corresponding archimedean term,
we recover the right-hand-side of (2.2) divided by Ωk+2r

∞ . Then by the
induction hypothesis, we get the desired identity:

(drf)(E, φN , φp)

Ωk+2r
p

=
(δr

kf)(E, φN , du)

Ωk+2r
∞

inside Q. Since the left-hand-side of the above identity is in the comple-
tion W ′ of ip(W ′) in Cp, we conclude the identity inW ′ = i−1

p (W ′). �
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Remark 2.13. We note that this process of proving algebraicity and
p-integrality applies to Hilbert modular forms and beyond after an ap-
propriate adjustment (as Shimura’s argument proving Theorem 2.5 has
been generalized to unitary/symplectic Shimura varieties by himself in
[AAF] Chapter III). Therefore, the use of Gauss–Manin connection to
study this type of algebraicity is not necessary (though is more concep-
tual). In particular, if ap 6= Op, the proof via Gauss–Manin connection
is more involved, because one needs to make scalar extension of the
ring of definition of E(O) to split the Hodge-filtration on H1

DR(E(a))
in an appropriate manner (see [K78a] (2.4.2)). We note that [K78a]
does cover the case ap 6= Op.


