ON A GENERALIZATION OF THE CONJECTURE OF
MAZUR–TATE–TEITELBAUM

HARUZO HIDA

Abstract. We propose a generalization of the conjecture of Mazur-Tate-Teitelbaum (predicting an exact shape of the \(p \)-adic \(L \)-invariant of rational Tate curves (which is now a theorem of Greenberg-Stevens) to the symmetric powers of motivic two dimensional odd Galois representations over totally real fields. At \(p \)-adic places where the motive is multiplicative, the \(L \)-invariant is conjectured to have the same shape as predicted by them. Then we prove our conjecture assuming a precise ring theoretic structure of the universal infinitesimal Galois deformation ring of the symmetric power.

1. The conjectures

Let \(p \) be an odd prime and \(F \) be a totally real field of degree \(d < \infty \) with integer ring \(O \). Order the prime factors of \(p \) as \(p_1, \ldots, p_j \). In this talk, we describe the computation of Greenberg’s \(L \)-invariant \(\mathcal{L}_{n,m} \) (at \(s = m \)) of the symmetric \(n \)-th powers \(\rho_n \) of the Tate module \(T_pE \) for an elliptic curve \(E/F \) with multiplicative reduction at \(p_j|p > 2 \) for \(j = 1, 2, \ldots, b \) and ordinary good reduction at \(p_j|p > j > b \). Greenberg and also myself in different ways proved under some assumptions, for the number \(e \) of vanishing modifying Euler \(p \)-factors at \(m \) for \(m \) critical for \(\rho_n \), the characteristic power series \(L_p(s, \rho_n) \) of \(\text{Sel}_{F,\infty}(\rho_n \otimes \mathbb{Q}_p / \mathbb{Z}_p) \) for the cyclotomic \(\mathbb{Z}_p \)-extension \(F_\infty/F \) vanishes of order \(\geq e \) at \(s = m \):

\[
\lim_{s \to m} \frac{L_p(s, \rho_n)}{(s - m)^e} \sim \mathcal{L}(\rho_{n,m})|\#(\text{Sel}_F(\rho_n \otimes \mathbb{Q}_p / \mathbb{Z}_p))|_p^{-1},
\]

where \(\sim \) means up to unites.

Write \(F_i \) for \(F_{p_i} \), \(E(F_i) = F_i^{\times} / q_i^\mathbb{Z} \) for \(i \leq b \), \(Q_i = \text{N}_{F_i / \mathbb{Q}_p}(q_i) \), and \(\Gamma_i = \mathcal{N}(\text{Gal}(F_i/F_i)) \cap (1 + p\mathbb{Z}_p) \) for the \(p \)-adic cyclotomic character \(\mathcal{N} \). We assume throughout the talk that \(E \) does not have complex multiplication. Take an algebraic closure \(\overline{F} \) of \(F \). Writing \(\rho_0 : \text{Gal}(\overline{F}/F) \to GL_2(\mathbb{Q}_p) \) for the Galois representation on \(T_pE \), put \(\rho_n = \rho_{n,0} = \text{Sym}^{\otimes n}(\rho_0) \) and \(\rho_{n,m} = \rho_n(-m) = \rho_n \otimes \text{det}(\rho_0)^{-m} \). Note that \(\rho_{E/D_p} \sim \begin{pmatrix} \beta_p & * \\ 0 & \alpha_p \end{pmatrix} \) \((D_p = \text{Gal}(\overline{F}_p / F_p)) \) with unramified \(\alpha_p \) at each prime factor \(p \)|\(p \). Let \(S_{n,m} \) be the set of prime ideals of \(O \) where \(\rho_{n,m} \) ramifies. Consider \(J_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). We then define \(J_n = \text{Sym}^{\otimes n}(J_1) \). Define an algebraic group \(G_n \) over \(\mathbb{Z}_p \) by

\[
G_n(R) = \{ \xi \in GL_{n+1}(R) | ^t \xi J_n \xi = v(\xi) J_n \} \quad (\text{for } \mathbb{Z}_p\text{-algebras } R)
\]

Date: July 2, 2008.
A conference talk at Irsee (Germany) on 6/30/08. The author is partially supported by the NSF grant: DMS 0244401, DMS 0456252 and DMS 0753991.
with the similitude homomorphism $\nu : G_n \to \mathbb{G}_m$. Then G_n is a quasi-split orthogonal or symplectic group according as n is even or odd. The representation $\rho_{n,0}$ of $\text{Gal}(\overline{F}/F)$ factors through $G_n(K) \subset GL_{n+1}(K)$.

Let K/\mathbb{Q}_p be a finite extension with p-adic integer ring W. Start with $\rho_{n,0}$ and consider the deformation ring (R_n, ρ_n) which is universal among the following deformations: Galois representations $\rho_A : \text{Gal}(\overline{F}/F) \to G_n(A)$ for Artinian local K-algebras A with residue field $K = A/m_A$ (for the maximal ideal m_A of A) such that

(Kn1) unramified outside $S_{n,0}$, ∞ and p;

(Kn2) for all prime factors p of p, $\rho_A|_{D_p} \cong \begin{pmatrix} \alpha_{0,A,p} & * & \cdots & * \\ 0 & \alpha_{1,A,p} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{n,A,p} \end{pmatrix}$ with $\alpha_{j,A,p} \equiv \beta_p^{n-j} \alpha_p^j$ mod m_A and $\alpha_{j,A,p}|_{D_p}$ ($j = 0, 1, \ldots, n$) factoring through $\text{Gal}(F_p[\mu_p^\infty]/F_p)$;

(Kn3) $\nu \circ \rho_A = \nu \circ \rho_{n,0} = \det(\rho_0)^n$ in A;

(Kn4) $\rho_A \equiv \rho_{n,0}$ mod m_A.

Since $\rho_{n,0}$ is absolutely irreducible and all $\alpha_p^i, \beta_p^{n-i}$ for $i = 0, 1, \ldots, n$ are distinct, the deformation problem specified by (Kn1–4) is representable by a universal couple (R_n, ρ_n). In other words, for any ρ_A as above, there exists a unique K-algebra homomorphism $\varphi : R_n \to A$ such that $\varphi \circ \rho_n \approx \rho_A$. Here $\rho \approx \rho'$ if and only if $\rho' = \rho x^p - 1$ for $x \in G_n(A)$ whose image in $G_n(A/m_A)$ is trivial. The representation ρ is said to be strictly equivalent to ρ' if $\rho \approx \rho'$. Often we fix $n > 0$ and write simply (R, ρ) for (R_n, ρ_n).

Write now

$$\rho_n|_{D_p} \cong \begin{pmatrix} \delta_{0,p} & * & \cdots & * \\ 0 & \delta_{1,p} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \delta_{n,p} \end{pmatrix}$$

with $\delta_{j,p} \equiv \beta_p^{n-j} \alpha_p^j$ mod m_n (for $m_n = m_{R_n}$). Let Γ_p be the maximal torsion-free quotient of the inertia group of $Gal(F_p[\mu_p^\infty]/F_p)$. Then the character $\hat{\delta}_{j,p} := \delta_{j,p}(\beta_p^{n-j} \alpha_p^j)^{-1}$ restricted to the p-inertia subgroup I_p factors through Γ_p, giving rise to an algebra structure of R_n over $W[[\Gamma_p]]$. Take the product $\Gamma = \prod_{p \mid \mathfrak{n}} \Gamma_p$ of $n + 1$ copies of Γ_p over all prime factors p of p in F. We write general elements of Γ as $x = (x_{j,p})_{j,p}$ with $x_{j,p}$ in the j-th component Γ_p in Γ ($j = 0, 1, \ldots, n$). Consider the character $\hat{\delta} : \Gamma \to R_n^\times$ given by $\hat{\delta}(x) = \prod_{j=0}^n \prod_{p \mid \mathfrak{n}_{j,p}} \hat{\delta}_{j,p}(x_{j,p})$. Choosing a generator $\gamma_i = \gamma_p$ (for $p = p_i$) of the topologically cyclic group Γ_p, we identify $W[[\Gamma]]$ with a power series ring $W[[X_{j,p}]]_{j,p}$ by associating the generator $\gamma_j := \gamma_{p_j}$ of the j-th component Γ_{p_j} of Γ with $1 + X_{j,p}$. The character $\hat{\delta} : \Gamma \to R_n^\times$ extends uniquely to an algebra homomorphism $\hat{\delta} : W[[X_{j,p}]]_{j,p} \to R_n$ by the universality of the (continuous) group ring $W[[\Gamma]]$. Thus R_n is naturally an algebra over $K[[X_{j,p}]]_{j,p}$.

Conjecture 1.1. Suppose that n is odd. Then R_n is isomorphic to the power series ring $K[[X_{j,p}]]_{1 \leq j \leq n, j \text{ odd}}$ of E variables for $E = g_{n+1}^2$.

Remark 1.2.

1. If $n = 1$ and $F = \mathbb{Q}$, this conjecture: $R_1 = K[[X_1]]$ follows from Serre’s $mod\ p$ modularity conjecture (proven by Khare/Wintenberger/Kisin). Let
\(\overline{\rho}_0 = (\rho_0 \mod m_{W}) \). By Taylor's potential modularity of \(\rho_0 \) with additional assumptions that \(\mathrm{Im}(\overline{\rho}_0) \) is nonsoluble, we can prove this conjecture for \(n = 1 \) (via modularity theorems of Fujiwara, Kisin and Chen).

(2) One can conjecture the same assertion starting with a more general \(\rho_0 : \text{Gal}(F/F) \to \text{GL}_2(W) \) satisfying

(a) its image contains an open subgroup of \(\text{SL}_2(\mathbb{Z}_p) \);
(b) it is a member of a strictly compatible system;
(c) its restriction to \(D_p \) is equivalent to \(\begin{pmatrix} \beta_p & 0 \\ \alpha_p & 1 \end{pmatrix} \);
(d) \(\alpha_p \) and \(\beta_p \) factors through \(\Gamma_p \);
(e) up to finite order characters, \(\alpha_p = N'^{k_p} \) and \(\beta_p = N'^{k'_p} \) with \(k_p > k'_p \) for each \(p \mid I_p \), where \(N' \) is the \(p \)-adic cyclotomic character.

(3) Note that \(G_3 \cong \text{GSp}(4) \) is the spin cover of \(G_4 = \text{GO}(2, 3) \). Some progress has been made by A. Genestier and J. Tilouine towards the "R = T" theorem for \(\text{GSp}(4) \)-Hecke algebras (for \(F = \mathbb{Q} \)), there is a good prospect to get a proof of Conjecture 1.1 when \(n = 3 \) and 4. Further, when \(F = \mathbb{Q} \), in view of the recent results of Clozel–Harris–Taylor and Taylor (in the paper proving the Sato–Tate conjecture for Tate curves), one would be able to treat general \(n \) in future not so far away.

We propose the following generalization of a conjecture of Mazur–Tate–Teitelbaum:

Conjecture 1.3. Recall \(Q_i = \mathbb{N}_{F_i/\mathbb{Q}_p}(q_i) \). Suppose criticality at 1 of the symmetric power motive \(\text{Sym}^{\otimes n}(M) \otimes \det(M)^{-m} \) for the motive \(M := H_1(E) \) with Tate twist by an integer \(m \). Then if \(\rho_{n,m} \) has an exceptional zero at \(s = 1 \), we have

\[
\mathcal{L}(\rho_{n,m}) = \begin{cases}
\left(\prod_{i=1}^{b} \frac{\log_p(Q_i)}{\text{ord}_p(Q_i)} \right) \mathcal{L}(m) & \text{for } \mathcal{L}(m) \in K^\times \text{ if } n = 2m \text{ with odd } m \ (e = g), \\
\prod_{i=1}^{b} \frac{\log_p(Q_i)}{\text{ord}_p(Q_i)} & \text{if } n \neq 2m \ (e = b).
\end{cases}
\]

We have \(\mathcal{L}(m) = 1 \) if \(b = g \), and the value \(\mathcal{L}(1) \) when \(b < g \) is given by

\[
\mathcal{L}(1) = \det \left(\frac{\partial \delta_{1,p,([p, F_i])}}{\partial X_{1,p_j}} \right)_{i>b, j>b} \bigg|_{X=0} \prod_{i>b} \frac{\log_p(\gamma_i)}{[F_i : \mathbb{Q}_p] \alpha_i([p, F_i])}
\]

for the local Artin symbol \([p, F_i] \), where we regard \(\gamma_i \) as an element of \(\mathbb{Z}_p^\times \) where we regard \(\gamma_i \) as an element of \(\mathbb{Z}_p^\times \) by the cyclotomic character \(N \) to have \(\log_p(\gamma_i) \in \mathbb{Q}_p \).

Again, we could have started with a more general \(\rho_0 \) and could have made a similar conjecture.

Theorem 1.4. Conjecture 1.1 implies Conjecture 1.3 for Greenberg's \(\mathcal{L} \)-invariant.

2. Sketch of Proof

Let \(S_n \) be the derived group of \(G_n \), and consider the Lie algebra \(\mathfrak{s}_n \) of \(S_n \). Then \(\sigma \in \text{Gal}(\overline{F}/F) \) acts on \(\mathfrak{s}_n \) by \(X \mapsto \rho_n(\sigma)X\rho_n(\sigma)^{-1} \). Write this Galois module as \(\text{Ad}(\rho_n) \). Then

\[
\text{Ad}(\rho_n) \cong \bigoplus_{j \text{ odd}, 1 \leq j \leq n} \rho_{2j,j}.
\]
Let us write m_n for the maximal ideal of R_n. Then in the standard manner, we get the following identity of the (modified) Selmer group of Greenberg:

Lemma 2.1. Suppose Conjecture 1.1. Then canonically

$$\text{Sel}^{\text{qc}}_F(\text{Ad}(\rho_n)) \cong \text{Hom}_{\mathbb{Q}_p}(m_n/m_n^2, \mathbb{Q}_p) = \bigoplus_{j: \text{odd}, 1 \leq j \leq n} \bigoplus_{p \mid p} \mathbb{Q}_p \cdot dX_{j,p} \cong \bigoplus_{j: \text{odd}, 1 \leq j \leq n} \text{Sel}^{\text{qc}}_F(\rho_{2j,j}),$$

and we have $\dim_K \text{Sel}^{\text{qc}}_F(\rho_{2j,j}) = g = |\{p|p\}|$ and $\text{Sel}_F(\rho_{2j,j}) = 0$ for odd j with $1 \leq j \leq n$.

The tangent space of $\text{Spf}(R_n)$ is given by $\text{Sel}^{\text{qc}}_F(\text{Ad}(\rho_n))$ by a general nonsense. The Selmer cocycles are given by $c_{j,p} = \left(\frac{\partial \rho_n}{\partial X_{j,p}} \bigg|_{X=0} \right) \rho_n^{-1}$. Here Greenberg’s Selmer group over an extension M/F is given in the following way: We have a p-adic Hodge filtration on $\rho_{n,m}$ such that on $\mathcal{F}_p^{i}/\mathcal{F}_p^{i+1}$, D_p act by \mathcal{N}^i. Let $\mathcal{F}_p^{+} = \mathcal{F}_p^{1}$ and $\mathcal{F}_p^{-} = \mathcal{F}_p^{0}$. We put

$$L_p = \text{Ker}(\text{Res} : H^1(M_p, \rho_{n,m}) \to H^1(I_p, \frac{\rho_{n,m}}{\mathcal{F}_p^+})), $$

and for primes q outside p

$$L_q = \text{Ker}(\text{Res} : H^1(M_q, \rho_{n,m}) \to H^1(I_q, \rho_{n,m})).$$

Then

$$\text{Sel}_M(\rho_{n,m}) = \text{Ker}(H^1(M, \rho_{n,m}) \to \prod_{\text{all primes } l} \frac{H^1(M_l, \rho_{n,m})}{L_l}).$$

We define the “locally cyclotomic” Selmer group $\text{Sel}^{\text{qc}}_M(\rho_{n,m})$ replacing L_p by

$$L_p^{\text{qc}}(V) = \text{Ker}(\text{Res} : H^1(M_p, \rho_{n,m}) \to H^1(I_p, \frac{\rho_{n,m}}{\mathcal{F}_p^+})), $$

where $I_{p,\infty}$ is the inertia group of $\text{Gal}(\overline{M_p}/M_p[p^{\infty}])$.

Take a basis of cocycles $\{c_p\}_{p|p}$ representing $\text{Sel}^{\text{qc}}_F(\rho_{2m,m})$ over K (indexed by $\{p|p\}$). Write $a_p : D_p \to K$ for $c_p \mod \mathcal{F}_p^{+} \rho_{2m,m}$ regarded as a homomorphism (identifying $\mathcal{F}_p^{-} \rho_{2m,m}/\mathcal{F}_p^{+} \rho_{2m,m}$ with the trivial D_p-module K). We now have two $e \times e$ matrices with coefficients in K: $A_m = (a_p([p, F_p]))_{i,j}$ and $B_m = (\log_p(\gamma_p)^{-1} a_p([\gamma_p, F_p]))_{i,j}$. We can see fairly easily that Conjecture 1.1 for $\rho_{n,0}$ with all odd $1 \leq n \leq m$ implies that B_m is invertible. Then Greenberg’s \mathcal{L}-invariant is defined by

$$\mathcal{L}(\rho_{2m,m}) = \mathcal{L}(\text{Ind}^Q_F \rho_{2m,m}) = \text{det}(A_m B_m^{-1}).$$

The determinant $\text{det}(A_m B_m^{-1})$ is independent of the choice of the basis $\{c_p\}_p$. We also have the relation $\delta_{i,p} \delta_{n-i,p} = N^n$ for $i = 0, 1, \ldots, n$. Then $\{dX_{j,p} \mapsto c_{j,p}\}_{j: \text{odd}, p|p}$ is a basis of $\bigoplus_{j: \text{odd}, 0 < j \leq n} \text{Sel}^{\text{qc}}_F(\rho_{2j,j})$. Using the explicit form of $c_{j,p}$ projected down to $\rho_{2m,m}$ for odd $0 < m \leq n$, we can compute the \mathcal{L}-invariant in the form described in the theorem. See the following paper for details:

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CA 90095-1555, U.S.A.