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In the theory of automorphic functions, holomorphic ones are particularly rich 
in arithmetic applications, although they are merely a part of the whole space of 
C°°-class modular forms. The analogy between the theory of C°°-class modular 
forms and that of /?-adic ones recently becomes a prevalent idea; thus, one may 
naturally expect the existence of some special class of /7-adic modular forms 
which is as rich in arithmetic structure as the holomorphic counterpart. This 
paper is intended to present a candidate for such a class of /?-adic modular forms 
in the case of GL2 over Q and to explain the reason why we believe that it is the 
right one. 

Our approach is representation theoretic. As in the theory of Jacquet and 
Langlands in the complex case, we consider the Hecke algebra A which is the 
subalgebra of the endomorphism algebra of the space of /?-adic modular forms 
generated topologically by Hecke operators T(n). We then construct a certain 
idempotent e as a /7-adic limit of powers of T(p) in this algebra A, which gives 
the projection to the special subspace already mentioned. The Hecke algebra 
AOTd = e A for this special space plays, in our theory for GL2, the role of the 
algebra A = Z^[[Z]] in the Iwasawa theory for the cyclotomic Z^-extensions, 
and, naturally, Aord has a canonical A-algebra structure. With each irreducible 
component of Spec(/f o r d), we can associate a Galois representation into GL2 with 
coefficients in the function field of the irreducible component. The infinite 
algebraic extension corresponding to the kernel of this representation is the object 
in our theory replacing the cyclotomic Z^-extensions. On the other hand, by 
virtue of Shimura's theory of algebraicity for the special values of zeta functions 
of modular forms, we are able to construct several /?-adic L-functions on the 
spectrum of each irreducible component of Spec(/lord). Thus, what is awaited for 
further research is the study of the direct arithmetic relation between the Galois 
representation and the /?-adic L-function attached to each irreducible component 
of Spec(/ford). 

1. We begin with the definition of Hecke algebras. Let N be a positive integer, 
and put T^N) = {(a

c
 b
d) G S L 2 ( Z ) | C = Omod N, a = d= 1 mod AT}. For each 

positive integer k, let S^T^N)) denote the space of holomorphic cusp forms on 
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the upper half plane £ of weight k with respect to I\(N). Each element / in 
SfrÇr^N)) has the following type of Fourier expansion: 

00 

f(z) = E a(n,f)qn (q = exp(2w/z), z G $ ) 
«=i 

for complex constants a(n,f). By means of this, we may embed Sk(Ti(N)) into 
the power series ring C[[q]]. One may then give a rational structure on S^T^N)) 
through defining the ̂ -rational subspace ^(T1(N); A) for each subalgebra A of 
C by S^T^N); A) = S^T^N^nAHq]]. For each integer / prime to N, by 
choosing (a

c
 b

d)G SL2(Z) with the congruence: c = OmodN and d = /modN, 
we can let / act on S^T^N)) via 

/(«-'*-/(£#)<« + ')-
Then the Hecke operator T(n) is defined as an endomorphism of S^T^N)) by 

a(m,f\T{n))= £ la{mn/l\ f\ </» (l.l) 
/ |m,/|n 

(/,AT) = 1 

(see [6, (3.5.12)]). Then ^(^( iV); >4) is stable under T(n) and (/>. The Hecke 
algebra Ak{Ti{N)\ Z) is by definition the subalgebra of Endc(SA:(ri(A^))) 
generated over Z by T(n) for all n. For general commutative algebra A, we 
simply put A^T^N); A) = A^T^N); Z)®XA. We let Q^ for each rational 
prime p denote an algebraic closure of the /?-adic field Q^. Let Q be the algebraic 
closure of Q in C. We fix for each p an embedding of Q into Qp. Thus any 
algebraic number a G Q can be considered uniquely as a /?-adic number as well 
as a complex number. Let | \p (resp. | |) denote the absolute value of Q^ (resp. C). 
We put Sk(Tx(N)\ Qp) = S^T^N); Q) ®Q Q^ which is naturally a subspace of 
QP[[q]l For each subalgebra A of Q,, put S^T^N); A) = S^T^N); Qp) n 
A[[q)]. 

Now we shall define a pairing 

< , >: A^N); A) X S^T^N); A)-+A by (h,f) = a(l,f\h). 

(1.2a) 

Then we see from (1.1) 

(T(n), / ) = a(n,f) for each positive integer n. (1.2b) 

If A is one of the rings Z, Q^, or C, then the pairing (1.2a) induces 

Hom^S^N); A), A) = ^(N); A), 

Hom^ir^N); A), A) = S^T^N); A). 

To each common eigenform / of all Hecke operators T(n) in S^T^N)), we 
associate a C-algebra homomorphism X: Ak(Ti(N)\ C) -> C by f\h = X(h)f. 
Note that 

x(r(n))<r(i),/> = (r(H),/> = «(«,/) . 
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Thus if / is nontrivial, then ( r ( l ) , / ) # 0. Dividing / by ( T ( 1 ) , / ) , we may 
assume that ( T ( 1 ) , / ) = a(l,f) = 1. Common eigenforms of T(n) under this 
normalization will be called normalized eigenforms. We say that two normalized 
eigenforms / and g are associated if / and g belong to the same eigenvalues of 
T(l) except for finitely many primes /. In the class of normalized eigenforms 
associated with a given / , there exists a unique one contained in Sk(Tx(C)) with 
the smallest C [5], which is called primitive. The level C of the primitive form 
associated with / is called the conductor of / and will be written as C(f). Let A 
be a subring of Q^ or C. We denote by B the field Q^ or C according as A c Q^ 
or A c C. If X: A^T^N); A) -> B is an ^4-algebra homomorphism, the restric­
tion of X to A^T^N); Z) has values in Q n A since A^T^N); Z) is free of finite 
rank over Z by (1.3). Thus we can extend X to a C-algebra homomorphism Xc: 
Ak(Tx(N)\ C) -> C. By the duality (1.3), we can find fx e S^T^N)) so that 
( A , / ) = Xc(h). Especially, we know from (1.2b) that fx(z) = T%=lX(T(n))qn, 
and then fx is a normalized eigenform. Therefore, for each subalgebra A of C or 
Q^, the correspondence X •-> fx induces a bijection 

H o m ^ a i g ( > ^ ( r i ( A 0 ; .4), B) = [normalizedeigenforms in S^T^N))}. (1.4) 

Let X: A^T^N); A) -> B be an yl-algebra homomorphism and / be the 
corresponding normalized eigenform. Then there exists a Dirichlet character i//: 
(Z/ATZ)*-» Q such that f\(l) = ^{l)lk~2f. This character i// is called the 
character of / or X. 

Now we fix a prime p and a finite extension K/Qp in Q^. Let & be the /?-adic 
integer ring of K. By (1.3), A^T^N); 0) is free of finite rank over & and is then 
a product of complete local rings R. Let 1R denote the idempotent of R, and 
define an idempotent eN G A^T^N); 0) by the sum of 1R over the local rings R 
on which the image oiT(p) is invertible. Then 

4i"'(T1(N);(!)) = eN4k(T1(N);(!>) 

is the maximal direct summand of A^T^N); 6) on which the image of T(p) is 
invertible. The idempotent eN can be explicitly given as a /?-adic limit: eN = 
ÌÀmn->OQ

T(pyn{pm~V) G ^k(Ti(N)l ß) f o r a suitable positive integer m. If X is 
an 0-algebra homomorphism of A^^^N); 0) into Q^, we know that 
\X(T(p))\p = 1. Thus the correspondence (1.4) induces a bijection: 

HomffHdg(^r,(r1(JV);(P),Q,) (1.5) 

= { normalized eigenforms in S^T^N)) with \a(p, f) \p = 1 j . 

2. Hereafter we suppose that p > 5 and AT is prime to p. If r > s > 1, we have 
by (1.1) a commutative diagram for all n: 

S^iNp*); A) -* S^iNp'); A) 

lT(n) lT(n) (2.1) 

S^T^Np'); A) - S^iNp'); A) 

where the horizontal arrows are the natural inclusion. Then the restriction of each 
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operator in Ak(T1(Npr)\ A) to the subspace S^T^Np*); A) is again contained in 
Ak(Tx(Nps); A); thus, we have a surjective ^-algebra homomorphism: 

^(r1(JVp r); A) -> A^T^Nf); A) for each pair r > s>\. (2.2a) 

Since T(p) is sent to T(p) by (2.2a), the image of eNpr under (2.2a) coincides 
with eNpS, and (2.2a) induces 

KA{UW)\ a>) -» ̂ ( r i ( ^ ) ; *)• (2-2t>) 
We shall take the hmits: 

Ak{Np^; 0) = hm Ak{Tx{Np')\ &), e = hm eNp, e /ft(#/>»; 0), 

^ ( JVp 0 0 ; 0) = ^ t ( i y p - ; <P) = hm ^ ( r ^ J t y ' ) ; 0) , 

00 

Sk(Np">;6>) = \J S^Np'); 0) in 0[[q]]. 

We define a /?-adic norm on Sk(Np°°', 0) by 

l / I ^ S u p X i f , / ) ^ . 

Let Sk(Np°°; 6) be the completion of Sk(Np°°', 0) under this norm. By 
continuity, Ak(Np°°; 0) naturally acts on Sk(Np°°; &). Put SZrâ(Np°°; &) = 
Sk(Np°°; 0)\e. Then the duality (1.3) extends to the following (topological and 
also algebraic) duality [3]: 

Hom,(Sk(Np'°; &), &) » Ak(Np°°; &), 

Hom^S^iNp00; 0), <S) = Af^Np00; &). 

Therefore we can formulate results for the structure of the space of /?-adic 
modular forms in terms of the Hecke algebras without refering to the space, 
which we shall do in the rest of the paper. 

Define a semigroup 3? b y ^ = {/£ Z\(l,Np) = 1} and a compact group Z by 
Z = \imr(Z/NprZ)x. We consider ^ as a sub-semigroup of Z. We know from 
(1.1) that the homomorphism of semigroup: «3T3 / »-» (/) has values in 
Ak(T1(Npr); 0) for each r > 1 and is continuous under the topology induced 
from Z. By continuity, we extend this homomorphism to Z as a continuous 
character with values in Ak(T1(Npr); 0) and hence obtain a continuous char­
acter: Z -> Ak(Np°°\ (D). We can naturally identify Z with T X (Z/NpZ)x, 
where T = I\ and Tr = [x £ Zp\x = lmod/ZZ^}. We shall define continuous 
group algebras by J / = ]imr&[(Z/NprZ)x] and A = A^ = lim, &[T/T,]. By the 
universality of continuous group algebras, we have canonical 0-algebra homomor­
phisms: J / - > Ak(Np°°; 0) and A -> Ak(Np°°; 0). The following fact is essen­
tially due to Shimura. 

THEOREM 2.1. For each k^2,we have canonical stf-algebra isomorphisms 

&k{Np«>; 0) s A2(Np°°; 0) and 4^(Np°°; 0) s A?ä(Np°"; 0), 

which take T(m) of weight kto T(m) of weight 2 for allm. 
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A proof of this fact for 4£rd(A/?°°; 0) is given in [2, Theorem 1.1]. By this 
theorem and (2.3), the space Sk(Np°°; &) is also independent of k > 2. We write 
A(N; 0) for the universal Hecke algebra defined by the theorem and AOTd(N; &) 
for eA(N\ 0). 

We write [y] for the image of y G T under the natural embedding of T into A. 
When we consider y G T as an element of Zp, hence, as an element in the 
coefficient ring 0 of A, we simply write it as 7 G A. We fix a topological 
generator u of T and define an element of A by con r = [upr ]- unpr~ (n, r G Z, 
r > 1). Then A/coM rA is the maximal quotient of A on which Tr acts via the 
character: Tr 3 y •-> yn e &, For each n > 0 and r ^ 1, we have by definition a 
surjective A-algebra homomorphism pny. A(N; &) -> An+2(T1(Npr); &) which 
sends T(m) in A(N\ 6) to T(m) in i „ + 2 ( r i ( ^ r ) ; ö ) - T h e following result 
determines the structure of AOTd(N; 0): 

THEOREM 2.2. The A-algebra Aord(N; 0) is free of finite rank over A. Moreover, 
for each pair of integers n > 0 andr ^ 1, pn r induces a A-algebra isomorphism 

4«*{N; 0) ®A A/<on,rA = A$2{Tx(Np')\ 0), 

which sends T(m) toT(m) for all m. 

For the proof, see [1] and [2]. When it is unlikely to cause misunderstanding, we 
simply write A0Td for AOTd(N; 0). By the universality of the continuous group 
ring, each continuous character £: T -> Q^ can be extended to an ^-algebra 
homomorphism P^\ A -> Q ,̂. When £(y) = y"e(y) for a nonnegative integer n 
and a finite order character e: T -> Q, we write PnE for P%. Let J£? be the 
quotient field of A, and we fix an algebraic closure <£? of <£?. We consider Qp as a 
subfield of S£. Let Jf be a finite extension of JSf in J^. We denote by J the 
integral closure of A in Jf. Then J is known to be free of finite rank over A. Put 
%(J) = Homö?.alg(y, Q^), and let Œ^J) denote the subset of &(J) consisting 
of all ^-algebra homomorphisms . / -» Q^ whose restriction to A is of the form 
Pn e for some 0 < « G Z and some finite order character e: T -> Q. When 
J= A, #XA) = (JC G Qp\\x\p < 1} via P -> P([u]) - 1 G Q^, and in general 
6C(J) is a covering space of £"(A). For each P G ^ a l g(»/), we define n(P) G Z 
and e^: T -> Q by P | A = Pn(P)iEp. The order of eP is written as pr^P)~l. Any 
element F oi J may be regarded as a /?-adic analytic function F: 2£(J)-+ Qp 

whose value at P G #*(./) is given by P(F) G Q^. 

Now we consider X G HomA_alg(>ford, «£?), the combination of X with the 
canonical character: Z -> 4ord gives a continuous character of Z and induces a 
Dirichlet character i//: (Z/A/?Z)x-> Q since Z = T X (Z/NpZ)x. This character 
/̂ is called the character of X. Since AOTd is of finite rank over A, we can find a 

finite extension JT such that X(AOTd) c J. The integral closure of & in */ is of 
finite rank over 0. When it coincides with 0, we say that X is defined over 0. 
Changing K by its finite extension, if necessary, we may (and will) assume 

X is defined over 0. (2.4) 
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For each P G VC^J), we consider the composition XP = P ° X: AOTd -> Qp. 
Since P ^ p ^ p j ) = 0, XP factors through Aorà/o>thrA

ord = A^T^Np"); G) 
for n = n(P) and r = r(P). Then by (1.5) there is a unique normalized eigen­
form fP in S ,„ (P)+2(r i(A^ r (p))) with ^-expansion: fP - E~ = 1 X P ( r (m))^ m . This 
form is called the ordinary form belonging to X at P G SC^{J)m The character of 
fp (or Xp) is given by Ep\pw~n(p\ where ;// is the character of X and <o is the 
Teichmüller character. More generally, we say that a normalized eigenform 
/ G Sk(T1(Npr)) is ordinary if r > 1 and |a(/?, / ) | = 1. This notion is intrinsic 
(i.e. independent of r) because of (2.1). When /0 is a normalized eigenform in 
S^T^N)) (k > 2) with \a(p,f0)\p = 1, there is a unique ordinary form / G 
S^T^Np)) such that a(n,f) = a(n,f0) for all « prime to p. This form / is 
called the ordinary form associated with /0. By abusing the language, we say that 
/ 0 belongs to X if the associated ordinary form / belongs to X. The following fact 
is obvious from Theorem 2.2: 

(2.5) Each ordinary form f G Sk(T1(Npr)) belongs to some A-algebra homomor­
phism X: AOTd(N\ G)-*&. 

Let J be another positive integer prime to p. We say that two A-algebra 
homomorphisms X: AOTd(N\ G)-*& and /x: Aord(J\ &)-+& are associated if 
X(T(l)) = /x(T(/)) except for finitely many primes /. 

THEOREM 2.3. Let X: Aord(N\ G)-* J? be a A-algebra homomorphism. In the 
class of all A-algebra homomorphisms associated with X, there is a unique X0: 
AOTd(C\ G)-+& with the smallest level C. 

The homomorphism X0 satisfying the condition of Theorem 2.3 is called 
primitive and the level C of X0 will be called the conductor of X. 

THEOREM 2.4. If an ordinary form f G Sk(T1(Npr)\ G) has conductor divisible by 
N and k > 2, then there is a unique X G HomA_alg(/?

ord(AT; G\ 3?) defined over G 
to which f belongs. The homomorphism X as above is primitive and has conductor N. 
Conversely, suppose that X G HomA_a]g(>?ord(A^; &), Jt) is primitive and is of 
conductor N. Then the conductor of each ordinary form belonging to X is divisible by 
N. Moreover, let \p be the character of X and typ be its restriction to (Z/pZ)x. 
Then the ordinary form fP belonging to X at P G ^^(J) is primitive and is of 
conductor Npr(pi unless epi/^w -"^ is trivial. 

For the proofs of Theorem 2.3 and Theorem 2.4, see [3]. 

3. By a result of Deligne, one can attach to £ G Homö?.alg(/fÄ:(ri(A^/); G), Qp) 
a simple representation TT(£): Gal(Q/Q) -> GL2(Q/?), which is characterized by 

(3.1a) TT(£) is unramified outside Np. 
(3.1b) Let Of be the Frobenius element of Gal(Q/Q) for each prime I outside Np. 

Then we have that det(l - T K £ ) ( ° / ) * ) = 1 - è(T(l))X + I£((l))X2. 
We shall attach to each A-algebra homomorphism X: Aovd(N\ G) -» J f a 
representation TT(X): Gal(Q/Q) -> GL 2 (J f ) which interpolates /?-adically the 
Deligne representation 7r(Xp) as in (3.1) for all P G 3Talg( J). A representation 
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TT: Gal(Q/Q) -> GL2( J f ) is said to be continuous if the following conditions are 
satisfied: 

(3.2a) there exists an J-submodule L of Jf 2 stable under m such that L ®^ Jf= 
Jf 2 and L is of finite type over J\ 

(3.2b) the representation TT: Gal(Q/Q) -> Aut^(L) is continuous under the 
m-adic topology for the maximal ideal m of J. 

THEOREM 3.1. For each A-algebra homomorphism X: AOTd(N; G) -» Jf, there 
exists a unique representation IT(X): Gal(Q/Q) -> GL2(Jf ) characterized by 

(3.3a) 7r(X) is continuous and simple; 
(3.3b) TT(X) is unramified outside Np\ 
(3.3c) for the Frobenius element or, for each prime I outside Np, we have that 

det(l - v(XXoi)X) = 1 - \(T(l))X+ lX((l))X2. 

For the proof, see [2]. For each prime ideal 9 of J, let 4(&>) be the quotient 
field of J/&. We say that a representation %\ Gal(Q/Q) -> G L 2 ( / ( ^ ) ) is a 
residual representation modulo 9 of a continuous representation TT: Gal(Q/Q) 
-> GL2( J f ) if Tr is semisimple and the characteristic polynomial of TT((T) is the 
reduction of that of ir(a) modulo & for every a G Gal(Q/Q). We write the 
residual representation % modulo 9 as IT mod 9. When ir: Gal(Q/Q) -» GL2( Jf ) 
is continuous, we now see the existence of the residual representation TT mod P for 
each P G #"(./) . Let L be the ./lattice of Jf2 stable under 7r as in (3.2a). Since 
the localization Jp of J at P is a discrete valuation ring, LP = L ®jJP is free 
of rank 2 over ./p. Therefore TT induces a representation 7r: Gal(Q/Q) -> 
GL 2 (>p) . Then TT mod P is given by the semisimplification of P ° TT: 

Gal(Q/Q) i GL2(J^p) ^ GL a(Q,). 

By condition (3.3c), ir(X) modP is equivalent to 7r(Xp) for all P G 3C^%(J). 
This is why we think that the representation TT(X) is a /7-adic interpolation of the 
Deligne representations TT(XP). Since we may assume that 7r(XP) has values in 
GL 2 (0 ' ) for a valuation ring G' finite over G, 7r(XP) has its residual representa­
tion modulo fc for the maximal ideal fc of &'. The representation TT(XP) moafc 
can be identified with the residual representation of IT(X) modulo the maximal 
ideal m of J. Thus 

(3.4) The residual representation ?r(X) mod*« exists [4]. 
It should be noted that Mazur and Wiles [4] have shown that the image of TT(X) 

contains SL2(AZ ) for X: AOTd(l; Zp) -> A z if the image of TT(X) moàm 
contains SL2(Z//?Z). (This condition is verified, for example, if the unique 
normalized eigenform A = qT\™=1(l - qn)24 G 5'12(SL2(Z)) belongs to X and 
p # 11, 23, and 691.) 

4. Finally, we shall refer to the result for /7-adic L-functions. Let J be another 
positive integer prime to p. For two normalized eigenforms / G S^T^Np1')) and 
g G S^T^Jp*)), we shall define algebraic numbers ah ßh af

h ßj for each prime / 
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by 

ta(n,f)n-s=U[(l-^rs)^-ßrs)]~\ 
n - 1 / 

Ë a(n, g)n-* = U [(l - «'//"')(! ~ fl'"')] "'• 
n - 1 / 

Let t// be the character of / and $ be the primitive character which induces i//. 
Then we define 

9(*J) = n[(i - ^(0«?/-')(i - f(0«A/-')(i - *(')#/-')]-1> 

s(',/,g) = n[(i - «#«;/—)(i - a,ß;i-){i - A«;r')(i - M''-')]-1-

We denote by ^ ( . s , / , g) the Euler product obtained from 3)(s, f, g) by exclud­
ing its Euler ^-factor. These L-functions can be continued to meromorphic 
functions of s G C, and their algebraicity at certain integer points (for details, see 
below) is shown by Shimura [7] for the latter series and by Sturm [8] for the 
former. If / is primitive, we can define a canonical transcendental factor 
£/„( /) G C x [2, §10; 3, §4] independent of p such that ^(kjyU^f) and 
@(m>f> g)/n2m~K~kU00(f) for K < m < k are algebraic numbers (U^f) is 
independent of g). If ÏÏ: Gal(Q/Q) -» GL2(Q/7) (resp. ß') denotes the Deligne 
representation as in (3.1) associated with / (resp. g) and ß denotes the con-
tragredient representation of ß, then, up to finitely many Euler factors, B(s, f, g) 
is the zeta function of ß ® ß': Gal(Q/Q) -> GL4(Q ) and @(s,f) corresponds 
to the unique three-dimensional subrepresentation of ß ® ß. 

Let X: Aord(N\ G) -» J be a primitive A-algebra homomorphism defined over 
G. Let 9t be the unique local ring of AOTd(N\ G) through which X factors. We 
suppose 

H o m A ( ^ , A ) s Ä as ^-modules. (4.1) 

This condition can be verified when TT(X) mod m is simple for the maximal ideal 
m of J and when the restriction \jjp of the character i// of X to (Z/pZ)x is 
nontrivial and different from w"1 [4, 9]. For example, if the discriminant function 
A G S12(SL2(Z)) belongs to X, (4.1) is satisfied if p ¥= 11, 691. By the multiplica­
tion in J, we have a natural ^algebra homomorphism: J®KJ-^> J. Combining 
X <8> id: ^ ®A J-> J®A J with this morphism, we can extend X to an ^algebra 
homomorphism of 9t®KJ onto J>, which we denote by X. We can then 
decompose ^ ®A J f = Jf © sé as an algebra direct sum such that the projection of 
0t ®A J to the first factor Jf coincides with X. Let ffi(sé) be the projected image 
of &t%KJ in sé. Then we have the diagonal map 5: 0t ®A . / -» J^© ^ ( J / ) . 

Under the assumption (4.1), we can find O ^ ^ e i so that Coker(S) = J/HJ 
as J-modules. The function # : #"(*/) -> Q^ is determined up to unit factors in 
J. Let \p be the character of X, and write the p-psnt of i// as <ofl for 0 < a < p — 1. 
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THEOREM 4.1. Suppose (4.1) and that a ¥= 0 or N = 1. Let fP be the ordinary 
form belonging to X at P G X^(J). Then we can find Up(fP) G Qp with \Up(fP)\p 

= 1 such that 

H(P) = ®{n{P) + 2, fP)/UMp)Up(fP). 

A part of this result is given in [2] and [3], and the proof in}i the general case 
will be given in a forthcoming paper. 

Now let ju: Aord(J; G) -* J be another primitive A-algebra homomorphism 
defined over G. For each Q G X^(J), we denote by gQ the ordinary form 
belonging to /x at Q. Put, for each finite order character x'. Z* -> Q and complex 
conjugation p, 

OO 0 0 

f\x= ExW«(»,/k", /"= !>(«,/) V ( / e c y j ) . 
« = 1 w = l 

If / is a modular form, / | x and fp are again modular forms. We write the 
restriction of the character of /x (resp. X) to (Z/pZ)x (resp. (Z/NZ)X) as co6 for 
0 < b < p - 1 (resp. i//0). Put, for each triple (P, ß , Ä) G ^ ( J ^ ) 2 X 5'a]g(A), 

k = n(P) + 2, m = n(R), j = 2 + 2m + n(Q), 

v = r(Q) + 2r(R), r = r(P), 

and 

t(P,Q,R) = 2 -^ ->( /^ ) y "~^(^ )<J ) (A^ /C)" 1 C- 1 Ar- 1 - / : / 2 / w + / c / 2 

x[N,J]l-m+u-k)/2p'r+^-^/2T(j - m)T(m + l)T(k)~\ 

where [N, J] is the least common multiple of AT and / , C is the conductor of ^0, 
<f> is the Euler function, and T(x) is the gamma function. For each primitive form 
/ G Sk(Ti(M))> w e d e f i n e a constant W(f) with |W(/) | = 1 by the first Fourier 
coefficient of M~k/2f(-l/Mz)z~k. Let J ^ J ^ A (resp. J®QJ) be the 
^-adic completion of./ ^QJ%(5 A (resp. J>%GJ). Any element F ^J>%Qjk>0A 
can be regarded as a /?-adic analytic function F: X(J) X X(J) X #"( A) -> Q^. 

THEOREM 4.2. Let the assumption and the notation be as in Theorem 4.1 for X. 
Then for each integer 0 < c < p — 1, we have a unique p-adic L-function D G 
Sè0Sèô A such that for (P, Q, R) G X^f) X ̂ r

a l g(^) X ^ ( A ) , 

D(P,QiR) - , ( p i ö i Ä ) f l ( , j , r v ^ 
w Uoo\Jp)Up\Jp) 

if 0 < «(A) < «(P) - «(g) , w " ^ 1 * eßw*, eÄcoc * 1, W coa£p # 1. 

The condition for characters eP, eQ, eR, co0, co6, and coc is not necessary for the 
evaluation of D(P,Q,R), but without this assumption, a new type of Euler 
/^-factor appears in the right-hand side of the formula and the result becomes a 
little more complicated. If one wants to interpolate the value 3) without the 
modification at the Euler ^-factor, there appears a singularity for the ^-adic 
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L-function obtained: 

THEOREM 4.3. Put t(P, Q) = t(P,Q, P 0 t) for ( P , g ) G X^J)2, where i is the 
identity character of T. Let the assumption and the notation be as in Theorem 4.1 
for X. Let X, Y ^J®eJ be the functions on X(J)2 defined by X(P,Q) = 
w" ( P ) £p(w)- l and Y(P,Q) = u"(QhQ(u) - 1 on X^(J)2. Then we have a 
uniquep-adic L-function A on X(J)2 such that 

(Ï)(X- 7 ) A G / ê , / 5 

(ü) 

A(P,ô) = t(p,Q)a(p,fPy^-r^-MfPrMfQ) 
®{n(Q) + 2,fP,f%) 

X 
^-»<nuMp)u{fp) 

ifn(P) > n(Q) > 0 and ePua ¥= 1, eßcofl i= 1, 
( i i i ) ( ( X - Y)A)(P,Q)\p^Q = (l^Y(P))(p-l)p-\\og{u))H(P), 

where H G J is as in Theorem 4.1 and log(w) is the p-adic logarithm of the 
generator u G T. 

For the proof, see [3, Theorem 10.1]. The above formula (iii) is the /?-adic 
analogue of the well known residue formula of the complex case: 

Rfi s , .^ , / , / ' ) = r(fc)-V-222*-V+1«>(;\0(/,/) 
for each normalized eigenform / G S^T^N)), where 

i2 
( / , / ) = / \f(z)\2yk-2dxdy 

(see [7, (2.5)]). 
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