Katz p-adic L-functions, congruence modules and deformation of Galois representations

H. HIDA* AND J. TILOUINE

0. Although the two-variable main conjecture for imaginary quadratic fields has been successfully proven by Rubin [R] using brilliant ideas found by Thaine and Kolyvagin, we still have some interest in studying the new proof of a special case of the conjecture, i.e., the anticyclotomic case given by Mazur and the second named author of the present article ([M-T], [T1]). Its interest lies firstly in surprizing amenability of the method to the case of CM fields in place of imaginary quadratic fields and secondly in its possible relevance for non-abelian cases. In this short note, we begin with a short summary of the result in [M-T] and [T1] concerning the Iwasawa theory for imaginary quadratic fields, and after that, we shall give a very brief sketch of how one can generalize every step of the proof to the general CM-case. At the end, coming back to the original imaginary quadratic case, we remove some restriction of one of the main result in [M-T]. The idea for this slight amelioration to [M-T] is to consider deformations of Galois representations not only over finite fields but over any finite extension of Q_p . Throughout the paper, we assume that p > 2.

1. Let M be an imaginary quadratic field and p be an odd prime which splits in M; i.e., $p = \overline{p}p(p \neq \overline{p})$. We always fix the algebraic closures \overline{Q} and \overline{Q}_p and embeddings of \overline{Q} into \mathbb{C} and \overline{Q}_p . Any algebraic number field will be considered to be inside \overline{Q} . Suppose the factor p of p is compatible with this embedding M into \overline{Q}_p . The scheme of the new proof of the main conjecture for the anti-cyclotomic \mathbb{Z}_p -tower of M consists in proving two divisibility theorems between the following three power series:

$$(1.1) L^-|H|Iw^-,$$

where

^{*} The first named author is supported in part by an NSF grant

- (i) L^- is the Katz-Yager *p*-adic *L*-function (which interpolates *p*-adically Hurwitz-Damerell numbers) projected to one branch of the anticyclotomic line of the imaginary quadratic field M;
- (ii) H is the characteristic power series of the congruence module attached to M (and the branch in (i)) constructed via the theory of Hecke algebras for $GL(2)/\mathbf{q}$;
- (iii) Iw^- is the characteristic power series (of the branch in (i)) of the maximal p-ramified extension of the anti-cyclotomic \mathbb{Z}_p^{\times} -tower over M.

Once these divisibilities are assumed, the proof is fairly easy: Under a suitable branch condition, we know from the analytic class number formula that the λ and μ -invariants of G and Iw^- are the same and hence

(1.2)
$$Iw^- = L^-$$
 up to a unit power series

as the anticyclotomic main conjecture predicts.

Strictly speaking, the equality (1.2) is proven in [M-T] and [T] under the assumption that the class number of M is equal to 1. In fact, if the class number h of M is divisible by p, we need to modify (1.1) as

(1.3)
$$h \cdot L^- |H| h \cdot I w^-$$
 for the class number h of M.

In [M-T], the second divisibility assertion: $H \mid Iw^{-}$ is proven under the milder assumption that h is prime to p but there is another assumption that the branch character ψ of L^{-} must be non-trivial on the inertia group I_{p} at p. We will prove the divisibility (1.3) outside the trivial zero of L^{-} (if any) without hypothesis in Appendix.

2. In this section, we deal with the generalization of the first divisibility result: $L^- \mid H$ in the general CM case. The second divisibility: $H \mid Iw^-$ will be dealt with in the following paragraphs. To state the result precisely, we fix a prime p and write the fixed embeddings as $\iota_p : \overline{\mathbf{Q}} \to \overline{\mathbf{Q}}_p$ and $\iota_\infty : \overline{\mathbf{Q}} \to \mathbf{C}$. We consider $\overline{\mathbf{Q}}$ as a subfield of $\overline{\mathbf{Q}}_p$ and \mathbf{C} by these embeddings. Let F be a totally real number field with class number h(F) and M/F be a totally imaginary quadratic extension whose class number is denoted by h(M). Let c be the complex conjugation which induces the unique non-trivial automorphism of M over F. We assume the following ordinarity condition: Ordinarity hypothesis All prime factor p of p in F splits in M.

Thus we can write the set of prime factors of p in M as a disjoint union $S \cup S^{c}$ of two subsets of prime ideals so that $\mathfrak{P} \in S$ if and only if $\mathfrak{P}^{c} \in S^{c}$. If a is the number of prime ideals in F over p, there are 2^a choices of such subset S. Such an S will be called a p-adic CM-type. Considering S as a set of p-adic places of M, let Σ be the set of embeddings of M into $\overline{\mathbf{Q}}$ which give rise to places in S after combining with ι_p . Then $\Sigma \cup \Sigma \circ c$ is the total set of embeddings of M into $\overline{\mathbf{Q}}$ and hence gives a complex CM-type of M. Hereafter we fix a p-adic CM-type S and compatible complex CM-type Σ . Let G be the Galois group of the maximal p-ramified abelian extension M_{∞} of M. Then we fix a decomposition $\mathbf{G} = \mathbf{G}_{tor} \times \mathbf{W}$ for a finite group \mathbf{G}_{tor} and a Z_p -free module W. Let K/Q_p be a p-adically complete extension in the p-adic completion Ω of $\overline{\mathbf{Q}}_p$ containing all the images $\sigma(M)$ for $\sigma \in \Sigma$ and $\mathfrak{O} = \mathfrak{O}_K$ be the *p*-adic integer ring of K. We now consider the continuous group algebras $\Lambda = \mathfrak{O}[[\mathbf{W}]]$ and $\mathfrak{O}[[\mathbf{G}]] = \Lambda[\mathbf{G}_{tor}]$. By choosing a basis of \mathbf{W} , we have $\mathbf{W} \cong \mathbf{Z}_{p}^{r}$ and $\Lambda \cong \mathcal{O}[[X_{1}, \dots, X_{r}]]$. Here $r = [F : \mathbf{Q}] + 1 + \delta$, where δ is the defect of the Leopoldt conjecture for F; i.e., $\delta \ge 0$ and $\delta = 0$ if and only if the Leopoldt conjecture holds for F and p. Fix a character $\lambda : \mathbf{G}_{tor} \to \mathfrak{O}^{\times}$ and define the projection $\lambda_* : \mathfrak{O}[[\mathbf{G}]] \to \mathfrak{O}[[\mathbf{W}]] = \Lambda$ by $\lambda_*(g, w) = \lambda(g)[w]$ for the group element [w] in Λ for $w \in \mathbf{W}$ and $g \in \mathbf{G}_{tor}$. We consider two anticyclotomic characters of G given by $\lambda_{-} = \lambda(\lambda^{c})^{-1}$ and $\alpha = \lambda_{*}(\lambda^{c}_{*})^{-1}$, where $\lambda^{c}(\sigma) = \lambda(c\sigma c^{-1})$ and $\lambda^{c}_{*}(\sigma) = \lambda_{*}(c\sigma c^{-1})$. Let $M^{-}(\lambda_{-})$ be the subfield of M_{∞} fixed by Ker(α). Let $\mathbf{M}_{s}(\lambda_{-})/M^{-}(\lambda_{-})$ be the maximal *p*-abelian extension unramified outside S. Naturally $X_s = \text{Gal}(\mathbf{M}_s(\lambda_-)/M^-(\lambda_-))$ is a continuous module over $\mathbf{Z}_{p}[[\mathbf{H}]]$ of $\mathbf{H} = \operatorname{Im}(\alpha)$. We consider the λ_{-} -branch of X_{s} defined by

$$X_{S}(\lambda_{-}) = X_{S} \otimes_{\mathbb{Z}_{p}[\mathbf{G}_{tor}]} \mathfrak{O}(\lambda^{-})$$

where $\mathcal{O}(\lambda_{-})$ is the \mathcal{O} -free module of rank one on which \mathbf{G}_{tor} acts via λ_{-} . Once we are given a *p*-adic CM-type *S*, we have the following 3 objects as in the imaginary quadratic case:

- (i) The λ_{-} -branch of the projection L^{-} of the Katz *p*-adic *L*-function $L \in \mathfrak{O}_{\Omega}[[\mathbf{G}]]$ to the anti-cyclotomic tower $M^{-}(\lambda_{-})$;
- (ii) The congruence power series $H \in \Lambda$ attached to the λ -branch of the nearly ordinary Hecke algebra of CM-type S;
- (iii) The characteristic power series Iw^- of $X_s(\lambda_-)$ in Λ .

Note that $\operatorname{Ker}(\alpha)$ contains $\mathbf{G}_{+} = \{x \in \mathbf{G} \mid cxc^{-1} = x\}$ and we can realize the quotient $\mathbf{G}/\mathbf{G}_{+}$ inside \mathbf{G} by the subgroup of commutators $[x, c] = xcx^{-1}c^{-1}$.

Especially the maximal torsion-free quotient \mathbf{W}^- of \mathbf{H} can be thought of a direct factor of \mathbf{W} via this map. For a technical reason (namely, H resides in Λ), we regard L^- and Iw^- as elements in Λ via this inclusion although they belong to $\Lambda_- = \mathcal{D}[[\mathbf{W}^-]]$. Moreover, to have a non-zero Iw^- , we need to suppose a weak version of the Leopoldt conjecture (depending on S) for the anti-cyclotomic tower. This weak form of Leopoldt's conjecture holds true if the CM field M is abelian over \mathbf{Q} . On the other hand, one can prove unconditionally (i.e. without supposing the weak Leopoldt conjecture) the non-vanishing of the characteristic power series Iw of the maximal S-ramified abelian extension over the full \mathbf{Z}_p^r -tower of M. Before giving the precise definition of L^- and H, we state the first theorem:

Theorem 2.1 L^- divides H in $\mathfrak{O}_{\Omega}[[\mathbf{W}]] \otimes_{\mathbf{Z}} \mathbf{Q}$. Moreover if the μ -invariant of every branch of the Katz *p*-adic *L*-function of *M* vanishes, then we have the strong divisibility:

$$(h(M)/h(F))L^{-} \mid H \text{ in } \mathfrak{O}_{\Omega}[[\mathbf{W}]].$$

The following conjecture is obviously motivated by (1.1):

Conjecture 2.2 $H = (h(M)/h(F))L^{-}$ up to a unit in $\mathfrak{O}_{\mathfrak{n}}[[\mathbf{W}]]$ if p > 2, where h(M) (resp. h(F)) is the class number of M (resp. F).

This conjecture is known to be true if $F = \mathbf{Q}$, $p \ge 5$ and the class number h(M) of M is prime to p under a certain branch condition.

First, let us explain the definition of L^- . Although we will not make the identification with the power series ring due to the lack of canonical coordinates of \mathbf{W} , we may regard any element of Λ as a *p*-adic analytic function of several variables. There are two different ways of viewing $\Phi \in \Lambda$ as an analytic object: For $G = \mathbf{G}$ or \mathbf{W} , let $\mathfrak{X}(G)$ be the set of all continuous characters of G with values in $\overline{\mathbf{Q}}_p$. If one fixes a \mathbf{Z}_p -basis (w_i) of \mathbf{W} , then each character $P \in \mathfrak{X}(\mathbf{W})$ is determined by its value $(P(w_i)) \in D^r$, where $D = \{x \in \overline{\mathbf{Q}}_p \mid |x-1|_p < 1\}$. Thus $\mathfrak{X}(\mathbf{W}) \cong D^r$. Each character $P : G \to \overline{\mathbf{Q}}_p^{\times}$ induces an \mathfrak{O} -algebra homomorphism $P : \mathfrak{O}[[\mathbf{G}]] \to \overline{\mathbf{Q}}_p$ such that $P \mid_G$ is the original character of G. In this way, we get an isomorphism:

$$\mathfrak{X}(G) \cong \operatorname{Spec}(\mathfrak{O}[[\mathbf{G}]])(\overline{\mathbf{Q}}_p) = \operatorname{Hom}_{\mathfrak{O}\text{-}\operatorname{alg}}(\mathfrak{O}[[\mathbf{G}]], \overline{\mathbf{Q}}_p).$$

Then

(A1) Φ is an analytic function on $\mathfrak{X}(G)$ whose value at P is $P(\Phi) \in \overline{\mathbb{Q}}_p$.

On the other hand, we can view Λ as a space of measures on G in the sense of Mazur so that

(A2)
$$\int_{G} P(g) \, \mathrm{d}\Phi(g) = P(\Phi) = \Phi(P).$$

By class field theory, we can identify, via the Artin symbol, the group G with the quotient of the idele group M_A^{\times} . For a given A_0 -type Hecke character $\varphi: M_A^{\times}/M^{\times} \to C^{\times}$ of *p*-power conductor whose infinity type is given by

$$\varphi(x_{\infty}) = x_{\infty}^{-\xi} = \prod_{\sigma \in \Sigma \cup \rho \Sigma} (x_{\infty}^{\sigma})^{-\xi\sigma} \text{ for } \xi = (\xi_{\sigma})_{\sigma \in \Sigma \cup \rho \Sigma} \in \mathbf{Z}^{\Sigma \cup \rho \Sigma},$$

as shown by A. Weil in 1955, φ has values in $\overline{\mathbf{Q}}$ on finite ideles and we have a unique *p*-adic avatar $\hat{\varphi} : \mathbf{G} \to \overline{\mathbf{Q}}_p^{\times}$ which satisfies $\hat{\varphi}(x) = \varphi(x)$ if $x_p = x_{\infty} = 1$, and if $x_p \in M_p^{\times}$ is close enough to 1, then

$$\hat{\varphi}(x_p) = x_p^{-\xi} = \prod_{\sigma \in \Sigma \cup \rho \Sigma} (x_p^{\sigma})^{-\xi_{\sigma}}.$$

In 1978, Katz showed in [K] the existence of a unique *p*-adic *L*-function given by an element L of $\mathfrak{O}_{\Omega}[[\mathbf{G}]]$ such that

$$\frac{L(\hat{\varphi})}{\text{suitable } p\text{-adic period}} = c(\varphi) \frac{L(0,\varphi)}{\text{suitable complex period}}$$

whenever φ is critical at 0 (i.e. if either $\xi_{\sigma\rho} \geq \xi_{\sigma} + \xi_{\sigma\rho} + 1 \geq 0$ or $\xi_{\sigma} + 1 \leq \xi_{\sigma} + \xi_{\sigma\rho} + 1 \leq 0$ for all $\sigma \in \Sigma$). Here, $c(\varphi)$ is a simple constant including a modifying Euler *p*-factor, local Gauss sum, Γ -factor and a power of π . See [K, (5.3.0), (5.7.8-9)] for details. To define L^- , we first project Katz's L to Λ . Namely, we fix once and for all a finite order character $\lambda : \mathbf{G}_{tor} \to \mathfrak{O}^{\times}$. Then we have a continuous character $\lambda_* : \mathbf{G} = \mathbf{G}_{tor} \times \mathbf{W} \to \mathfrak{O}[[\mathbf{W}]]$ given by

$$\lambda_*(g,w) = \lambda(g)w \in \mathfrak{O}[[\mathbf{W}]],$$

where we consider $\lambda(g)$ for $g \in \mathbf{G}_{tor}$ as a scalar in \mathfrak{O} but w as a group element in \mathbf{W} . This character induces the projection to Λ_{\perp}

$$\lambda_{\star}:\mathfrak{O}[[\mathbf{G}]]=\Lambda[\mathbf{G}_{\mathrm{tor}}]\to\Lambda.$$

Then for any point $P \in \mathfrak{X}(\mathbf{W})$, $\lambda_P = P \circ \lambda_* : \mathbf{G} \to \overline{\mathbf{Q}}_p$ is a *p*-adic character of **G**. When λ_P is the avatar of an A_0 -type Hecke character, we say that P is arithmetic (this notion of arithmeticity is independent of the choice of λ). Let c denote the complex conjugation in $\operatorname{Gal}(\overline{\mathbf{Q}}/F)$ and write $\lambda^e(x) = \lambda(cxc^{-1})$. We then consider the anti-cyclotomic character α attached to λ_* given by

$$\alpha(x) = \lambda_*^{-1} \lambda_*^c(x) = \lambda_*(cxc^{-1}x^{-1})$$

and the corresponding Λ -algebra homomorphism

$$\alpha_* : \mathfrak{O}[[\mathbf{G}]] \to \mathfrak{O}[[\mathbf{W}]].$$

This α_* actually has values in the anti-cyclotomic part $\mathfrak{O}[[\mathbf{W}^-]]$, where

$$\mathbf{W}^{-} = \{ w \in \mathbf{W} \mid w^{c} = cwc^{-1} = w^{-1} \}.$$

Then we define

$$L^- = \alpha_*(L) \in \mathfrak{O}_{\Omega}[[\mathbf{W}^-]].$$

Although the divisibility of Theorem 2.1 is stated as taking place in the bigger ring $\mathcal{D}[[\mathbf{W}]] \supset \mathcal{D}[[\mathbf{W}^-]]$, actually the congruence power series H itself also falls in the subring $\mathcal{D}[[\mathbf{W}^-]]$. However we will know this fact *after* proving the second divisibility: $H \mid (h(M)/h(F))Iw^-$ and we do not know this fact *a priori*. Thus we continue to formulate our result using $\mathcal{D}_{\Omega}[[\mathbf{W}]]$ as the base ring. This power series L^- satisfies the following interpolation property:

$$\frac{L^{-}(P)}{p\text{-adic period}} = c(\lambda_{P}^{c}\lambda_{P}^{-1})\frac{L(0,\lambda_{P}^{c}\lambda_{P}^{-1})}{\text{complex period}}$$

whenever P is arithmetic and $\lambda_P^c \lambda_P^{-1}$ is critical at P.

We now define the *p*-adic Hecke algebra and the congruence power series and then give a sketch of the proof of the theorem. To define Hecke algebra, we explain first a few things about Hilbert modular forms. Let I be the set of all field embeddings of F into $\overline{\mathbf{Q}}$. The weight $k = (k_{\sigma})_{\sigma \in I}$ of a modular form will be an element of the free Z-module $\mathbf{Z}[I]$ generated by elements of I. Actually, our holomorphic modular forms have double digit weight $(k, v) \in \mathbf{Z}[I]^2$ associated to the following automorphic factor:

$$J_{k,\nu}\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) = \prod_{\sigma \in I} \{ \det(\gamma_{\sigma})^{\nu_{\sigma}-1} (c^{\sigma} z_{\sigma} + d^{\sigma})^{k_{\sigma}} \},$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(F_{\infty})$ $(F_{\infty} = F \otimes_{\mathbf{Q}} \mathbf{R} = \mathbf{R}^I)$ with totally positive determinant and $z = (z_{\sigma})_{\sigma \in I} \in \mathfrak{H}^I$ is a variable on the product of copies of upper half complex planes \mathfrak{H}^I indexed by *I*. For each open compact subgroup *V* of the finite part of the adele group $GL_2(F_A)$, let $S_{k,v}(V)$ be the space of holomorphic cusp forms *f* of weight (k, v) defined in [H1, §2]. Namely *f* is a function on $GL_2(F_A)$ satisfying

$$f(\alpha xu) = f(x)J_{k,v}(u_{\infty}, z_0)^{-1}$$
 for $\alpha \in GL_2(F)$ and $u \in V \times C$,

where C is the stabilizer of $z_0 = (\sqrt{-1}, \ldots, \sqrt{-1}) \in \mathfrak{H}^I$ in $GL_2(F_{\infty})$, which is isomorphic to the product of the center $(\cong (\mathbb{R}^{\times})^I)$ of $GL_2(F_{\infty})$ and $SO_2(\mathbb{R})^I$.

We can associate to f and each finite idele $t \in GL_2(F_{A_f})$, a function f_x on \mathfrak{H}^I by

$$f_t(z) = f(t\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}) J_{k,v}(\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}, z_0).$$

It is easy to check that f_t satisfies the automorphic condition:

$$f_t(\gamma(z)) = f_t(z)J_{k,v}(\gamma,z) \quad \text{for} \quad \gamma \in \Gamma_t = t^{-1}VtGL_2^+(F_\infty) \cap GL_2(F),$$

where $GL_2^+(F_\infty)$ is the connected component of $GL_2(F_\infty)$ with identity. Similarly we write $F_{\infty+}^{\times}$ for the connected component with identity of F_∞^{\times} . Then we suppose for $f \in S_{k,\nu}(V)$ that, for all $t \in GL_2(F_{A_f})$,

- (i) f_t is holomorphic on \mathfrak{H}^I (holomorphy),
- (ii) $f_t(z)$ has the following Fourier expansion:

$$\Sigma_{\xi \in F} c(\xi, f_t) \exp(2\pi i \operatorname{Tr}(\xi z))$$

with $c(\xi, f_t) = 0$ unless $\xi^{\sigma} > 0$ for all $\sigma \in I$ (cuspidality).

Let D be the relative discriminant of M/F and let \mathfrak{r} and \mathfrak{R} be the integer ring of F and M, respectively. As the open compact subgroup V, we take the group V_{α} given by

$$\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\hat{\mathfrak{r}}) \mid c \in Dp^{\alpha} \hat{\mathfrak{r}}, \quad a \equiv 1 \mod p^{\alpha} \hat{\mathfrak{r}}, \quad d \equiv 1 \mod Dp^{\alpha} \hat{\mathfrak{r}} \},$$

where \mathfrak{r} is the integer ring of F and $\hat{\mathfrak{r}} = \lim_{N \to \infty} \mathfrak{r}/N\mathfrak{r}$ is the product of \mathfrak{l} -adic completion of \mathfrak{r} over all primes \mathfrak{l} . Let $\chi : F_A^{\times}/F^{\times} \to \mathbb{Z}_p^{\times}$ be the cyclotomic character. If $c(\xi, f_t) \in \overline{\mathbb{Q}}$ for all $t \in GL_2(F_{A_f})$, we can associate to each f as above the following p-adic q-expansion (cf. [H4, §1]):

$$f(y) = \Sigma_{0 \ll \xi \in F} a(\xi y d, f) q^{\xi}$$
 with $a(\xi y d, f) \in \overline{\mathbb{Q}}_{p}$,

where d is any differential idele of F (i.e., its ideal is the different of F/Q) and $y \mapsto a(y, f)$ is a function on finite ideles, vanishing outside integral ideles, given by

$$\begin{aligned} a(y,f) &= c(\xi,f_t) y_p^{-v} \xi^v \chi(\det(t)) \quad \text{for} \quad t = \begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix} \\ & \text{with} \quad y \in \xi ad(V_\alpha \cap F_{A_f}^{\times}) F_{\infty+}^{\times}. \end{aligned}$$

Out of this q-expansion, we can recover the Fourier expansion of f:

$$f\left(\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}\right) = |y|_{A} \{ \Sigma_{0 \ll \xi \in F} \ a(\xi y d, f)(\xi dy)_{P}^{v}(\xi y_{\infty})^{-v} \mathbf{e}_{F}(i \xi y_{\infty}) \mathbf{e}_{F}(\xi x) \}.$$

Here note that $a(\xi yd, f)(\xi dy)_p^v$ is an algebraic number which is considered to be a complex number via the fixed embedding of $\overline{\mathbf{Q}}$ into C. When a(y, f)is algebraic for all y with $y_p = 1$, f is called algebraic (this is equivalent to asking that $c(\xi, f_t)$ are algebraic for all t). We consider the union $S(\overline{\mathbf{Q}})$ of all algebraic forms of all weight (k, v) inside the space of formal q-expansions. Then putting a p-adic uniform norm

$$|f|_p = \operatorname{Sup}_y |a(y, f)|_p$$

on $S(\overline{\mathbf{Q}})$, we define the space S of *p*-adic modular forms by the completion of $S(\overline{\mathbf{Q}})$ under the norm $| |_p$.

Now we define the Hecke operators. For each $x \in F_A^{\times}$ with $x_{\infty} = 1$, we can define the Hecke operator $T(x) = T_{\alpha}(x)$ acting on $S_{k,v}(V_{\alpha})$ as follows: First take the double coset $V_{\alpha} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} V_{\alpha}$ and decompose it into a disjoint union of finite right cosets $\bigcup_i x_i V_{\alpha}$. Then we define $T_{\alpha}(x)$ by

$$f \mid T_{\alpha}(x)(g) = \Sigma_i f(gx_i).$$

Since we have taken the average of right translation of f on a double coset, we can check easily that $T_{\alpha}(x)$ is a linear operator acting on $S_{k,v}(V_{\alpha})$. Especially the action of T(u) for $u \in \mathfrak{r}_p^{\times}$ factors through $(\mathfrak{r}/p^{\alpha}\mathfrak{r})^{\times}$. Similarly, the center F_A^{\times} acts on $S_{k,v}(V_{\alpha})$ so that $f \mid z(g) = f(gz)$. This action factors through $Z = F_A^{\times}/\overline{F^{\times}U(D)^{(p)}F_{\infty}^{\times}}$ for

$$U(D)^{(p)} = \{ u \in \hat{\mathfrak{r}}^{\times} \mid u \equiv 1 \mod D\hat{\mathfrak{r}} \text{ and } u_p = 1 \}.$$

Thus $S_{k,v}(V_{\alpha})$ has an action of the group $G = Z \times \mathfrak{r}_p^{\times}$ and Hecke operators T(x). The group G is a profinite group and we can decompose

$$G = G_{tor} \times W$$

so that $W \cong \mathbb{Z}_{p}^{[F:\mathbb{Q}]+1+\delta}$ and G_{tor} is a finite group. Since $M_A \supset F_A$, we have a natural homomorphism of Z into G. On the other hand, by our choice of p-adic CM-type, we can identify $\mathfrak{r}_p = \mathfrak{r} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ with $\mathfrak{R}_S = \prod_{\mathfrak{P} \in S} \mathfrak{R}_{\mathfrak{P}}$. This identification gives an injection of \mathfrak{r}_p^{\times} into M_A^{\times} and yields a homomorphism of \mathfrak{r}_p^{\times} into G. Thus we have natural morphisms:

$$\iota: G = Z \times \mathfrak{r}_p^{\times} \to \mathbf{G} \text{ and } \iota_*: \mathfrak{O}[[G]] \to \mathfrak{O}[[\mathbf{G}]].$$

We can easily check that ι takes W into a subgroup of finite index of W and ι_* is an $\mathfrak{O}[[W]]$ -algebra homomorphism.

We take the Galois closure Φ of F in $\overline{\mathbf{Q}}$ and let \mathfrak{V} be the valuation ring of Φ corresponding to the embedding Φ into $\overline{\mathbf{Q}}_p$. We pick an element ϖ_p for each prime factor \mathfrak{p} of p in F such that $\varpi_p \mathfrak{r} = \mathfrak{p}\mathfrak{a}$ for an ideal \mathfrak{a} prime to p. We consider ϖ_p as a prime element in F_p . Then the p-adic Hecke algebra $\mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{V})$ with coefficients in \mathfrak{V} is by definition the \mathfrak{V} -subalgebra of $\operatorname{End}_{\mathfrak{V}}(S_{k,v}(V_{\alpha}))$ generated by

- (a) Hecke operators T(x) for all $x \in \hat{\mathfrak{r}} \cap F_{A_t}^{\times}$,
- (b) the Hecke operator $\varpi_{\mathfrak{p}}^{-\nu}T(\varpi_{\mathfrak{p}})(\varpi_{\mathfrak{p}} \in \mathfrak{r}_{\mathfrak{p}})$ for all $\mathfrak{p} \mid p$,
- (c) the action of the group $G = Z \times \mathfrak{r}_p^{\times}$.

It is well known that $\mathbf{h}_{k,v}(Dp^{\alpha}; \mathfrak{V})$ is free of finite rank over \mathfrak{V} (cf [H1, Th.3.1]). Especially $T(\varpi_{\mathfrak{p}})$ is divisible by $\varpi_{\mathfrak{p}}^{v} = \prod_{\sigma \in I} \varpi_{\mathfrak{p}}^{\sigma v \sigma}$. For each extension K of \mathbf{Q}_{p} containing Φ , let \mathfrak{O} be the *p*-adic integer ring of K. Then the *p*-adic Hecke algebra of level Dp^{α} is defined by

$$\mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{O}) = \mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{V}) \otimes_{\mathfrak{V}} \mathfrak{O}.$$

By definition, the restriction of $T_{\beta}(x)$ acting on $S_{k,\nu}(V_{\beta})$ to $S_{k,\nu}(V_{\alpha})$ for $\beta > \alpha > 0$ coincides $T_{\alpha}(x)$. Thus the restriction induces a surjective \mathcal{O} -algebra homomorphism:

$$\mathbf{h}_{k,v}(Dp^{\beta};\mathfrak{O}) \to \mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{O})$$

which takes $T_{\beta}(x)$ to $T_{\alpha}(x)$. Thus we can take the projective limit

$$\mathbf{h}_{k,v}(Dp^{\infty};\mathfrak{O}) = \lim_{\overleftarrow{\alpha}} \mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{O}),$$

which is naturally an algebra over the continuous group algebra $\mathfrak{O}[[G]]$. For each α , we can decompose

$$\mathbf{h}_{k,v}(Dp^{\alpha};\mathfrak{O}) = \mathbf{h}_{k,v}^{n.\mathrm{ord}}(Dp^{\alpha};\mathfrak{O}) \times \mathbf{h}_{k,v}^{s}(Dp^{\alpha};\mathfrak{O})$$

so that $p^{-v}T(p)$ is a unit in $\mathbf{h}_{k,v}^{n.ord}(Dp^{\alpha}; \mathfrak{O})$ and is topologically nilpotent in $\mathbf{h}_{k,v}^{s}(Dp^{\alpha}; \mathfrak{O})$. Then basic known facts are (see [H2]):

(H1) The pair $(\mathbf{h}_{k,v}(Dp^{\infty}; \mathfrak{O}), x_p^{-v}T(x))$ is independent of (k, v) if $k \geq 2t$, where $t = \sum_{\sigma \in I} \sigma$.

In fact, the union $S_{k,v}(V_{\infty}) = \bigcup_{\alpha} S_{k,v}(V_{\alpha}; \overline{\mathbf{Q}})$ of all algebraic modular forms of weight (k, v) is dense in S and thus the algebra $\mathbf{h}_{k,v}(Dp^{\infty}; \mathfrak{O})$ can be considered as a subalgebra of $\operatorname{End}(S)$ topologically generated by $x_p^{-v}T(x)$ and it is independent of (k, v). Now we can remove the suffix (k, v) from notation of the Hecke algebra and we write $\mathbf{h}(D; \mathfrak{O})$ (resp. $\mathbf{h} = \mathbf{h}^{n.ord}(D; \mathfrak{O})$) for $\mathbf{h}_{k,v}(Dp^{\infty}; \mathfrak{O})$ (resp. $\mathbf{h}_{k,v}^{n.ord}(Dp^{\infty}; \mathfrak{O})$). In other words, there is a universal Hecke operator $\mathbf{T}(x) \in \mathbf{h}(D; \mathfrak{O})$ which is sent to $x_p^{-v}T(x)$ under the isomorphism: $\mathbf{h}(D; \mathfrak{O}) \cong \mathbf{h}_{k,v}(Dp^{\infty}; \mathfrak{O})$.

- (H2) h is of finite type and torsion-free as $\mathfrak{O}[[W]]$ -module.
- (H3) There exists an $\mathfrak{O}[[W]]$ -algebra homomorphism $\theta^* : \mathbf{h} \to \mathfrak{O}[[\mathbf{G}]]$ such that for primes outside Dp

$$\theta^*(T(\mathfrak{q})) = \begin{cases} [\mathfrak{Q}] + [\mathfrak{Q}^c] & \text{if } \mathfrak{q} = \mathfrak{Q}\mathfrak{Q}^c, \\ 0 & \text{if } \mathfrak{q} \text{ remains prime in } M \end{cases}$$

where $[\mathfrak{Q}]$ is the image of the prime ideal \mathfrak{Q} under the Artin symbol.

This statement is just an interpretation of the existence of theta series $\theta(\varphi)$ for each A_0 -type Hecke character φ of G characterized by

$$\theta(\varphi) \mid T(\mathfrak{q}) = \begin{cases} (\varphi(\mathfrak{Q}) + \varphi(\mathfrak{Q}^c))\theta(\varphi) & \text{if } \mathfrak{q} = \mathfrak{Q}\mathfrak{Q}^c, \\ 0 & \text{if } \mathfrak{q} \text{ remains prime in } M. \end{cases}$$

By (H3), we may consider the composite $\lambda_* \circ \theta^* : \mathbf{h} \to \Lambda$.

(H4) After tensoring the quotient field **L** of Λ over $\Lambda_0 = \mathcal{D}[[\mathbf{W}]]$, we have a Λ_0 -algebra decomposition

 $\mathbf{h} \otimes_{A_0} \mathbf{L} \cong \mathbf{L} \oplus \mathbf{B}$ for a complementary summand \mathbf{B} ,

where the projection to the first factor is given by $\lambda_* \circ \theta^*$.

Then the congruence module of λ_* is defined by

(H5) $\mathfrak{C}(\lambda_*; \Lambda) = \Lambda/(\mathbf{h} \otimes_{\Lambda_0} \Lambda \cap \mathbf{L}).$

The congruence power series H is then defined by the characteristic power series of $\mathfrak{C}(\lambda_*; \Lambda)$. By definition, the principal ideal $H\Lambda$ is the reflexive closure of the ideal $\mathbf{h} \otimes_{\Lambda_0} \Lambda \cap \mathbf{L}$ in Λ .

3. We now give a sketch of the proof of Theorem 2.1. The idea of the proof is the comparison of two *p*-adic interpolations of Hecke *L*-functions of *M*. One is Katz's way and the other is the *p*-adic *L*-function attached to the Rankin product *L*-function of $\theta(\lambda_P)$ and $\theta(\mu_Q)$. Here μ is another character of \mathbf{G}_{tor} and we extend it to a character $\mu_* : \mathbf{G} \to \Lambda^{\times}$ similarly to λ_* . In fact, we can show by the method of *p*-adic Rankin convolution ([H4, Theorem I]) that there exists a power series Δ in $\mathcal{O}[[\mathbf{W} \times \mathbf{W}]]$ such that

$$\frac{\Delta(P,Q)}{H(P)} = c(P,Q) \frac{D(1 + \frac{m(Q) - m(P)}{2}, \theta(\lambda_P), \theta(\mu_Q \circ c))}{(\theta(\lambda_P), \theta(\lambda_P))}$$

whenever both P and Q are arithmetic and both $\lambda_P^{-1}\mu_Q$ and $\lambda_P^{-1}(\mu_Q^c)$ are critical. Here $D(s, \theta(\lambda_P), \theta(\mu_Q)^c)$ is the Rankin product of $\theta(\lambda_P)$ and $\theta(\mu_Q)^c$, i.e., the standard *L*-function for $GL(2) \times GL(2)$ attached to the tensor product of automorphic representations spanned by $\theta(\lambda_P)$ and $\theta(\mu_Q)^c$; $(\theta(\lambda_P), \theta(\lambda_P))$ is the self Petersson inner product of $\theta(\lambda_P)$ and c(P,Q) is a simple constant including the modifying Euler *p*-factor, Gauss sums, Γ -factors and a power of π . The integer m(P) is given as follows: Write the infinity type of λ_P as ξ and $m(P) = \xi_{\sigma} + \xi_{\sigma\rho}$ for $\sigma \in \Sigma$ (this value is independent of σ). Similarly m(Q)is defined for μ_Q . Now looking at the Euler product of D and the functional equation of Hecke *L*-functions, we see

$$D(1+\frac{m(Q)-m(P)}{2},\theta(\lambda_P),\theta(\mu_Q^c))\approx L(0,\lambda_P^{-1}\mu_Q)L(0,\lambda_P^{-1}\mu_Q^c).$$

It is also well known that, with a simple constant c(P) similar to c(P,Q),

$$(\theta(\lambda_P), \theta(\lambda_P)) = c(P)(2^{1-[F:Q]}h(M)/h(F))L(0, \lambda_P^c \lambda_P^{-1}).$$

Modifying the Katz measure L in $\mathcal{O}[[\mathbf{G}]]$, we can find two power series L' and L'' in $\mathcal{O}[[\mathbf{W} \times \mathbf{W}]]$ interpolating $L(0, \lambda_P^{-1} \mu_Q)$ and $L(0, \lambda_P^{-1} \mu_Q^c)$, respectively. Then out of the above formulas, we get the following identity:

$$\frac{\Delta}{H} = U \frac{L'L''}{2^{1-[F:\mathbf{Q}]}h(M)/h(F))L^{-}} \quad \text{in } \mathcal{O}[[\mathbf{W} \times \mathbf{W}]],$$

where U is a unit in $\mathfrak{O}[[\mathbf{W} \times \mathbf{W}]]$. Thus if L' and L" are prime to L^- in $\mathfrak{O}[[\mathbf{W} \times \mathbf{W}]] \otimes_{\mathbf{Z}} \mathbf{Q}$, we get the desired divisibility. Almost immediately from the construction of L' and L", we know that for any character $P \in \mathfrak{X}(\mathbf{W})$ the half specialized power series $L'_P(X) = L'(P, X)$ and $L''_P(X)$ in $\mathfrak{O}[[\mathbf{W}]]$ have their μ -invariants independent of P, equal to the μ -invariant of the Katz measure along the irreducible component of $\lambda^{-1}\mu$ and $\lambda^{-1}\mu^c$. If (a characteristic 0) prime factor $\mathbf{P}(Y)$ (in $\mathfrak{O}_{\Omega}[[\mathbf{W}]]$) of $L^-(Y)$ divides L', then by letting P approach to a zero of P, we observe that the μ -invariant of L'_P . Thus L^- is prime to L'L'' in $\mathfrak{O}[[\mathbf{W} \times \mathbf{W}]] \otimes_{\mathbf{Z}} \mathbf{Q}$, which shows the desired assertion. Especially if the μ -invariant of the Katz measure vanishes, then we know the strong divisibility as in the theorem.

4. Now we explain briefly how one can show the other divisibility: $H \mid Iw^{-}$ by using Mazur's theory of deformation of Galois representations. We keep the notations and assumptions introduced above. In particular, we assume the ordinarity hypothesis and fix a *p*-adic CM-type S. To the pair (S, λ) , where λ is a given character of \mathbf{G}_{tor} , we attached a congruence module, with characteristic power series H. On the other hand, let M_{∞} be the maximal abelian extension of M unramified outside p of M; so, we have $\mathbf{G} = \operatorname{Gal}(M_{\infty}/M)$. We have defined a character $\lambda_* : \mathbf{G} \to \Lambda^{\times}$ for $\Lambda = \mathfrak{D}[[\mathbf{W}]]$ for a fixed finite order character $\lambda : \mathbf{G}_{tor} \to \mathfrak{O}^{\times}$. In fact, on \mathbf{G}_{tor} , λ_* coincides with λ and on \mathbf{W} , it is the tautological inclusion of \mathbf{W} into Λ . Define the '-' part of λ_* , which we write as $\alpha = \alpha_{\lambda}$, by

$$\alpha = \lambda_*(\lambda_*^c)^{-1}$$
 for $\lambda_*^c(\sigma) = \lambda_*(c\sigma c^{-1}).$

Let $M^- = M^-(\lambda_-)$ be the fixed part of M_{∞} by $\operatorname{Ker}(\alpha)$, which contains $\mathbf{G}^+ = \{\sigma \in \mathbf{G} \mid c(\sigma) = \sigma\}$. We write $\mathbf{H} = \operatorname{Gal}(M^-(\lambda_-)/M) \cong \operatorname{Im}(\alpha)$. Let $\mathbf{M}_S(\lambda_-)$ be the maximal *p*-abelian extension of M^- unramified outside *S*. One can prove, under a weak Leopoldt type assumption for the extension $M^-(\lambda_-)/M$ (for details of this assumption, see our forthcoming paper), that $X_S = \operatorname{Gal}(\mathbf{M}_S(\lambda_-)/M^-)$ is torsion over $\mathbf{Z}_p[[\mathbf{H}]]$. The character $\lambda^- = \lambda/\lambda^c$: $\mathbf{G}_{tor} \to \mathfrak{O}^{\times}$ factors through the torsion part \mathbf{H}_{tor} of \mathbf{H} and the characteristic power series of the λ^- -part $X_S(\lambda^-) = X_S \otimes_{\mathbf{Z}_p[\mathbf{H}_{tor}]} \mathfrak{O}(\lambda^-)$ of X_S is nothing but Iw^- . Then the precise result, we can obtain at this date is as follows:

Theorem 4.1 (i) If $[F: \mathbf{Q}] > 1$, H divides $(h(M)/h(F))Iw^-$ in $\mathfrak{O}[[\mathbf{W}]]$. (ii) If M is imaginary quadratic, then H divides $h(M)Iw^-$ in $\mathfrak{O}[[\mathbf{W}]]$ unless $\lambda^- = \lambda/\lambda^c$ restricted to the decomposition group D of \mathfrak{P} in \mathbf{G} is congruent to 1 modulo the maximal ideal $\pi \mathfrak{O}$ of \mathfrak{O} . In this exceptional case, we need to exclude the trivial zero, i.e., the divisibility holds in $\mathfrak{O}[[\mathbf{W}]][\frac{1}{P_{\lambda}}]$, where P_{λ} is a generator of the unique height one prime ideal corresponding to the character $\tau_{\lambda}: \mathbf{H} \to \mathfrak{O}^{\times}$ such that $\tau_{\lambda}(D) = 1$ and $\tau_{\lambda} \mid \mathbf{H}_{tor} = \lambda^{-}$.

Comments (a) By a base change argument in Iwasawa theory, one can probably include the 'trivial zero' P_{λ} . Nevertheless, the argument possibly needs a sort of multiplicity one result for 'trivial zeros' of the Katz-Yager *p*-adic *L*-function which needs to be verified.

(b) The reason why things become easier when $[F : \mathbf{Q}] > 1$ is contained in the following easy lemma. To state the lemma, let us recall the character $\lambda_* : G \to \mathfrak{O}[[\mathbf{W}]]$ given by

$$\lambda_*(g, w) = \lambda(g) w \in \mathfrak{O}[[\mathbf{W}]] \quad \text{for } g \in \mathbf{G}_{\text{tor}}$$

and $w \in \mathbf{W}$ in §2

Lemma 4.2 (i) If $[F: \mathbf{Q}] > 1$, the ideal \mathfrak{I} generated by the values $\lambda_*(\sigma) - \lambda_*(c(\sigma))$, σ running over the decomposition group $D_{\mathfrak{p}}$ at \mathfrak{p} in G is of height greater than 1, i.e., is not contained in any prime of height one in $\Lambda = \mathfrak{O}[[\mathbf{W}]]$. (ii) If $F = \mathbf{Q}$, this ideal is contained in $P_{\lambda}\Lambda$. The outline of the proof of Theorem 4.1 runs as follows. Let us fix a prime P of height one such that the restrictions of λ and λ^c to D_p are not congruent modulo P for all prime \mathfrak{p} in F over p (by Lemma 4.2, this gives no restriction when $[F: \mathbb{Q}] \geq 2$). We consider the complete discrete valuation ring Λ_P with residue field k(P) and look at the residual representation

$$\overline{\rho}_0: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to GL_2(k(P))$$

given as the reduction modulo P of the induced representation ρ_0 of λ_* : $\operatorname{Gal}(\overline{\mathbf{Q}}/M) \to \Lambda^{\times}$. By the choice of $P, \lambda \not\equiv \lambda^{c} \mod P$, hence $\overline{\rho}_{0}$ is irreducible. The main step in the proof of Theorem 4.1 is to relate $X_s(\lambda^-) \otimes_{\Lambda} \Lambda_P$ to a module of Kähler differentials attached to some deformation problem of $\overline{\rho}_0$ over Λ_P . Since k(P) is not a finite field, the study of this deformation problem, though very similar to the one made by B. Mazur in [M], is slightly trickier. To define this problem, we need to introduce some notations. First, let N be the ray class field of M of conductor p (one has of course N inside M_{∞}) and $N^{(p)}$ be the maximal p-extension of N unramified outside p. It is clear that $\overline{\rho}_0$ restricted to $\operatorname{Gal}(\overline{\mathbf{Q}}/N)$ factors through $\Pi_N = \operatorname{Gal}(N^{(p)}/N)$, so that, for the deformation problem of $\overline{\rho}_0$, we can restrict ourselves to representations ρ of $\Pi = \operatorname{Gal}(N^{(p)}/F)$. The great advantage of such a limitation in the choice of ρ 's is that II is topologically of finite type (II_N is a pro-p-group and its Frattini quotient is finite by Kummer theory over N). Now, let Art be the category of local artinian Λ_P -algebras with residue field k(P), Sets the category of sets and \mathfrak{F} the covariant functor

$$\mathfrak{F}: \mathsf{Art} \to \mathsf{Sets}$$

given for $A \in Ob(Art)$ with maximal ideal \mathfrak{m}_A by

$$\mathfrak{F}(A) = \{ \rho : \Pi \to GL_2(A) \mid \rho \text{ is finitely continuous and} \\ \rho \mod \mathfrak{m}_A = \overline{\rho}_0 \} / \approx .$$

Here (i) ' \approx ' denotes the strict equivalence of representations, that is, conjugation by a matrix in $GL_2(A)$ congruent to 1 modulo \mathfrak{m}_A .

(ii) The phrase 'finitely continuous' means that there exists a Λ -submodule L in A^2 of finite type stable by ρ generating A^2 over Λ_P . The reason for this definition instead of usual P-adic continuity is that Λ_P is not locally compact for the P-adic topology, but Π is even compact. Hence a P-adically continuous representation should have a very small image, and in some sense, we look for representations with open image (over Λ). Note that a finitely continuous representation induces a continuous representation: $\Pi \to GL(L)$, L being endowed with the usual m-adic topology for the maximal ideal m of Λ .

This notion of 'finite continuity' does not depend on the choice of the lattice L by the Artin-Rees lemma. We can extend this notion of finite continuity to any map u of Π to an A-module V requiring that u having values in a Λ -finite submodule L in V and the induced map $u : \Pi \to L$ is continuous under the m-adic topology on L. This generalized notion will be used later to define finitely continuous cohomology.

By using the fact that $\overline{\rho}_0$ is induced from a finitely continuous character: $\Pi \to k(P)^{\times}$, it is not so difficult to check by Schlessinger's criterion the following fact:

Theorem 4.3 The functor \mathfrak{F} is pro-representable; that is, there exists a unique universal couple (R', ρ') where R' is a local noetherian complete Λ_P -algebra with residue field k(P) and $\rho' \in \mathfrak{F}(R') = \lim_{\alpha} \mathfrak{F}(R'/\mathfrak{m}_{R'}^{\alpha})$.

Comments a) The 'continuity' property ρ' enjoys should be called 'profinite continuity', meaning that for any artinian quotient $\varphi : R' \to A$ of $R', \varphi \circ \rho'$ is finitely continuous. There is also an obvious notion of profinite continuity of maps from Π to any Λ_P -module.

b) It is natural to ask for the pro-representability of this problem starting from an *arbitrary* irreducible finitely continuous representation $\overline{\rho}_0$. The answer is not known in general because of the lack of a cohomology theory adapted to finite continuous representations and subgroups of $GL_2(k(P))$. Such theory is available when k(P) is a *p*-adic field, due to Lazard [L], and allows us to give a positive answer in this case. See Appendix below.

In fact, the universal ring we need is smaller than R'. It will pro-represent a subfunctor \mathfrak{F}_S of \mathfrak{F} requiring local conditions at primes of F above p (these conditions involve the choice we made of a *p*-adic CM-type S). We call this problem the *S*-nearly ordinary deformation problem of $\overline{\rho}_0$. For \mathfrak{P} in S, recalling $\mathfrak{p} = \mathfrak{P} \cap F$, we choose $D_{\mathfrak{p}}$ so that $D_{\mathfrak{p}}$ is the decomposition group of \mathfrak{P} in $\Pi_M = \operatorname{Gal}(N^{(p)}/M)$. A strict equivalence class $[\rho]$ in $\mathfrak{F}(A)$ belongs to $\mathfrak{F}_S(A)$ if and only if for any representative ρ , the following conditions are satisfied:

(4.1a) For each prime \mathfrak{p} above p in F, there exists a finitely continuous character $\delta_{\mathfrak{p}} : D_{\mathfrak{p}} \to A^{\times}$ such that ρ restricted to $D_{\mathfrak{p}}$ is equivalent (but not necessarily strictly) to $\begin{pmatrix} * & * \\ 0 & \delta_{\mathfrak{p}} \end{pmatrix}$;

(4.1b) $\delta_{\mathfrak{p}}$ is congruent modulo \mathfrak{m}_{A} to the restriction of λ_{\star}^{c} to $D_{\mathfrak{p}}$ and $\delta_{\mathfrak{p}}$ restricted to the inertia subgroup $I_{\mathfrak{p}}$ of $D_{\mathfrak{p}}$ coincides with the restriction to $I_{\mathfrak{p}}$ of λ_{\star}^{c} ;

(4.1c) det (ρ) = det (ρ_0) (considered as having values in A via the structural morphism: $\Lambda \to \Lambda_P \to A$).

One can deduce from Theorem 4.3 that \mathfrak{F}_S is pro-representable. We denote by (R_S, ρ_S) the corresponding universal couple. Let us define a Λ_P -module \mathfrak{W}_P by

$$\mathfrak{W}_P = \cup_{m=1}^{\infty} P^{-m} \Lambda_P / \Lambda_P = \mathbf{L} / \Lambda_P,$$

where **L** is the quotient field of Λ . Then \mathfrak{W}_P is the injective envelope of k(P). We consider the algebra $R_S[\mathfrak{W}_P] = R_S \oplus \mathfrak{W}_P$ with $\mathfrak{W}_P^2 = 0$. One can consider, by abusing the notation, $\mathfrak{F}_S(R_S[\mathfrak{W}_P])$. Namely $\mathfrak{F}_S(R_S[\mathfrak{W}_P])$ is a set of profinitely continuous deformations of $\overline{\rho}$ satisfying the above conditions (i), (ii) and (iii). Since Π is topologically finitely generated, by the profinite continuity, ρ has image in a noetherian subring $R_m = R_S[P^{-m}\Lambda_P/\Lambda_P]$ for sufficiently large m. Thus we have a local Λ -algebra homomorphism φ_{ρ} : $R_S \to R_S[\mathfrak{W}_P]$ such that $\rho \approx \varphi_{\rho} \circ \rho_S$. Now we consider the subset

 $\mathfrak{F}_0(R_S[\mathfrak{W}_P]) = \{ \rho \in \mathfrak{F}_S(R_S[\mathfrak{W}_P]) \mid \rho \mod \mathfrak{W}_P = \rho_S \}.$

We also define $\operatorname{Sect}_{\Lambda}(R_S[\mathfrak{W}_P]/R_S)$ to be the set of continuous sections (under the \mathfrak{m}_{R_S} -adic topology) $\varphi: R_S \to R_S[\mathfrak{W}_P]$ as R_S -algebras whose projection to \mathfrak{W}_P is contained in $P^{-m}\Lambda_P/\Lambda_P$ for *m* sufficiently large. We put

$$sl_2(\mathfrak{W}_P) = \{x \in M_2(\mathfrak{W}_P) \mid \mathrm{Tr}(x) = 0\},\$$

which is a module over Π under the action: $\sigma x = \rho_S(x)x\rho_S(x)^{-1}$. We consider the cohomology group $H^1(\Pi, sl_2(\mathfrak{W}_P))$, which is the quotient of the module of profinitely continuous 1-cocycles on Π having values in $sl_2(P^{-m}\Lambda_P/\Lambda_P)$ for sufficiently large m modulo usual coboundaries. In fact, for each $\rho \in$ $\mathfrak{F}_S(R_S[\mathfrak{W}_P]), \varphi_{\rho} : R_S \to R_S[\mathfrak{W}_P]$ is a Λ -algebra homomorphism. If $\rho \in$ $\mathfrak{F}_0(R_S[\mathfrak{W}_P])$, then by the fact that $\rho \mod \mathfrak{W}_P = \rho_S, \pi \circ \varphi = \mathrm{id}_{R_S}$. Thus we have a morphism: $\mathfrak{F}_0(R_S[\mathfrak{W}_P]) \to \mathrm{Sect}_{\Lambda}(R_S[\mathfrak{W}_P]/R_S)$. This morphism is of course a surjective isomorphism because for $\varphi \in \mathrm{Sect}_{\Lambda}(R_S[\mathfrak{W}_P]/R_S), \varphi \circ \rho_S$ is an element of $\mathfrak{F}_0(R_S[\mathfrak{W}_P])$. Therefore we know that

$$(4.2) \quad \mathfrak{F}_0(R_S[\mathfrak{W}_P]) \cong \mathsf{Sect}_{\Lambda}(R_S[\mathfrak{W}_P]/R_S).$$

For each $\mathfrak{p} \in \Sigma$, we can find $\alpha_{\mathfrak{p}} \in GL_2(R_S)$ such that

$$\begin{aligned} \alpha_{\mathfrak{p}}\rho_{S}(\sigma)\alpha_{\mathfrak{p}}^{-1} &= \begin{pmatrix} * & *\\ 0 & \delta_{\mathfrak{p}}^{S}(\sigma) \end{pmatrix} & \text{for all } \sigma \in D_{\mathfrak{p}} \\ & \text{and } \delta_{\mathfrak{p}}^{S} \equiv \lambda^{c} \mod \mathfrak{m}_{R_{S}}. \end{aligned}$$

We fix such a α_p for each p. Then we define the ordinary cohomology subgroup $H^1_{\text{ord}}(\Pi, sl_2(\mathfrak{W}_P))$ by the subgroup of cohomology classes of cocycle usatisfying, for every p dividing p in F,

$$\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \} \supset \alpha_{\mathfrak{p}} u(D_{\mathfrak{p}}) \alpha_{\mathfrak{p}}^{-1} \quad \text{and} \quad \{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \} \supset \alpha_{\mathfrak{p}} u(I_{\mathfrak{p}}) \alpha_{\mathfrak{p}}^{-1}.$$

Theorem 4.4 We have a canonical isomorphism:

$$\operatorname{Hom}_{R_{S}}(\Omega_{R_{S}/\Lambda_{P}},\mathfrak{W}_{P})\cong H^{1}_{\operatorname{ord}}(\Pi, sl_{2}(\mathfrak{W}_{P})),$$

where the Kähler differential module Ω_{R_S/Λ_P} is defined to be the module of continuous differentials, i.e., $\Omega_{R_S/\Lambda_P} = I/I^2$ for the kernel *I* of the multiplication map of the completed tensor product $R_S \hat{\otimes}_{\Lambda_P} R_S$ (under the adic topology of the maximal ideal of $R_S \otimes_{\Lambda_P} R_S$) to R_S .

Proof For each $\rho \in \mathfrak{F}_0(R_S[\mathfrak{W}_P])$, we define $u: \Pi \to M_2(\mathfrak{W}_P)$ by

$$ho(\sigma) = (1 \oplus u(\sigma))
ho_S(\sigma) \quad ext{for } \sigma \in \Pi.$$

Since ρ_s and ρ are both profinitely continuous, u has values in $P^{-m}\Lambda_P/\Lambda_P$ for sufficiently large m and is profinitely continuous. Then by (6.1c), we know that $\det(\rho_s) = \det(\rho)$. This shows that u has values in $sl_2(\mathfrak{W}_P)$. Similarly by (6.1b), we know that $\{\begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}\} \supset \alpha_p u(I_p)\alpha_p^{-1}$. By the multiplicativity: $\rho(\sigma)\rho(\tau) = \rho(\sigma\tau)$, we see easily that u is a cocycle and u is a coboundary if and only if $\rho \approx \rho_s$. Thus the map $\mathfrak{F}_0(R_s[\mathfrak{W}_P]) \rightarrow H^1_{\mathrm{ord}}(\Pi, sl_2(\mathfrak{W}_P))$ is injective. Surjectivity follows from the fact that we can recover a profinitely continuous representation out of a profinitely continuous cocycle by the above formula. Namely we know that

$$\mathfrak{F}_0(R_S[\mathfrak{W}_P])\cong H^1_{\mathrm{ord}}(\Pi, sl_2(\mathfrak{W}_P)).$$

If we have a section $\varphi \in \text{Sect}_{\Lambda}(R_{S}[\mathfrak{W}_{P}]/R_{S})$, we can write $\varphi(r) = r \oplus d_{\varphi}(r)$. Then $d_{\varphi} \in \text{Der}_{\Lambda}(R_{S}, \mathfrak{W}_{P}) = \text{Hom}_{R_{S}}(\Omega_{R_{S}/\Lambda}, \mathfrak{W}_{P})$. It is easy that from any derivation $d: R_{S} \to \mathfrak{W}_{P}$, we can reconstruct a section by the above formula. Thus we know that

$$\operatorname{Hom}_{R_S}(\Omega_{R_S/\Lambda},\mathfrak{W}_P)\cong\operatorname{Sect}_{\Lambda}(R_S[\mathfrak{W}_P]/R_S)$$

which conclude the proof by (4.2).

We have an injection

res :
$$H^1(\Pi, sl_2(\mathfrak{W}_P)) \to H^1(\Pi_M, sl_2(\mathfrak{W}_P))^{\operatorname{Gal}(M/F)}$$
.

Note that as Π_M -module, $sl_2(\mathfrak{W}_P) \cong \mathfrak{W}_P(\alpha) \oplus \mathfrak{W}_P(\alpha^{-1}) \oplus \mathfrak{W}_P$, where $\alpha = \lambda_*(\lambda_*^c)^{-1}$ and $\mathfrak{W}_P(\alpha) \cong \mathfrak{W}_P$ as Λ -module but Π acts via the one-dimensional abelian character α . The action of c interchanges $\mathfrak{W}_P(\alpha)$ and $\mathfrak{W}_P(\alpha^{-1})$ and acts by -1 on \mathfrak{W}_P . Thus we see

$$\begin{split} H^{1}(\Pi_{M}, sl_{2}(\mathfrak{W}_{P}))^{\mathrm{Gal}(M/F)} &= H^{1}(\Pi_{M}, \mathfrak{W}_{P}(\alpha)) \oplus \mathrm{Hom}_{\mathrm{conti}}(\mathbf{G}/(1+c)\mathbf{G}, \mathfrak{W}_{P}).\\ \text{Recall that } M^{-}(\lambda_{-})/M \text{ is the extension corresponding to } \mathrm{Ker}(\alpha). \text{ The inclusion of } H^{1}(\Pi_{M}, \mathfrak{W}_{P}(\alpha)) \text{ into } H^{1}(\Pi_{M}, sl_{2}(\mathfrak{W}_{P}))^{\mathrm{Gal}(M/F)} \text{ is given in terms of } \mathrm{cocycle } by \text{ the cocycle } U \text{ such that } U(\sigma) = \begin{pmatrix} 0 & u(\sigma) \\ u(^{c}\sigma) & 0 \end{pmatrix} \text{ for } ^{c}\sigma = c\sigma c^{-1}.\\ \mathrm{From this, it follows, by the ordinarity condition,} \end{split}$$

$$\operatorname{res}_{\Pi_{M^{-}}}(u)(cI_{\mathfrak{P}}c^{-1})=\operatorname{res}_{\Pi_{M^{-}}}(u)(I_{\mathfrak{P}^{c}})=0 \text{ for all } \mathfrak{P}\in S,$$

where $M^- = M^-(\lambda_-)$. Namely $\operatorname{res}_{\Pi_{M^-}}(u)$ is unramified outside S. Thus we have a natural map:

$$\operatorname{res}: H^1_{\operatorname{ord}}(\Pi_M, \mathfrak{W}_P(\alpha)) \to \operatorname{Hom}_H(X_S, \mathfrak{W}_P(\alpha)) = \operatorname{Hom}_{\Lambda_-}(X_S(\lambda^-), \mathfrak{W}_P)$$

Comments We omitted α from the module of extreme right, because the Λ_{-} -module structure on \mathfrak{W}_{P} given by α coincides with the natural structure given by the inclusion $\Lambda_{-} = \mathfrak{O}[[\mathbf{W}^{-}]]$ into Λ through the Λ -module structure of \mathfrak{W}_{P} . Moreover we can write the extreme right as

$$\operatorname{Hom}_{\Lambda_{-}}(X_{s}(\lambda^{-}),\mathfrak{W}_{P})=\operatorname{Hom}_{\Lambda}(X_{s}(\lambda^{-})\otimes_{\Lambda_{-}}\Lambda,\mathfrak{W}_{P}).$$

Thus the variable coming from the '+' part \mathbf{W}^+ in Λ is just a 'fake' and the divisibility we will obtain is in fact the divisibility in Λ_- although we have variables coming from \mathbf{W}^+ inside the Hecke algebra. This is natural because $X_s(\lambda^-)$ is a Λ_- -module. The use of '+'-variables is inevitable because we do not know a priori that the congruence power series belongs to the '-' part. In the appendix, we prove that when $F = \mathbf{Q}$, the congruence power series belongs to the ordinary part of the Hecke algebra, which can be regarded as the '-' part in our situation.

It is not difficult to show that the above map: res. is injective; namely,

Corollary 4.5 Hom_A($X_{\mathcal{S}}(\lambda^{-}) \otimes_{\Lambda_{-}} \Lambda, \mathfrak{W}_{P}) \supset H^{1}_{ord}(\Pi_{M}, \mathfrak{W}_{P}(\alpha)).$

Since the inclusion of $\operatorname{Hom}_{\operatorname{conti}}(\mathbf{G}/(1+c)\mathbf{G},\mathfrak{W}_P)$ into $H^1(\Pi_M, sl_2(I_P))^{\operatorname{Gal}(M/F)}$ is given in terms of cocycle by

$$\operatorname{Hom}_{\operatorname{conti}}(\mathbf{G}/(1+c)\mathbf{G},\mathfrak{W}_P)\ni u\mapsto U(\sigma)=\begin{pmatrix}u(\sigma)&0\\0&-u(\sigma)\end{pmatrix};$$

we know that if U is ordinary, then u is unramified everywhere. Let Cl^{-} be the '-' quotient of the ideal class group of K. We thus know that

Theorem 4.6 $H^1_{ord}(\Pi, sl_2(\mathfrak{W}_P)) \cong \operatorname{Hom}_{\Lambda_P}(\Omega_{R_S/\Lambda_P} \otimes_{R_S} \Lambda_P, \mathfrak{W}_P)$ injects naturally into

$$\operatorname{Hom}_{\Lambda}(X_{S}(\lambda^{-})\otimes_{\Lambda_{-}}\Lambda,\mathfrak{W}_{P})\oplus\operatorname{Hom}(Cl^{-},\mathfrak{W}_{P})$$

as Λ -module.

To relate $X_{\mathcal{S}}(\lambda^{-})$ to the congruence power series, we recall the morphism $\lambda_* \circ \theta^* : \mathbf{h} \to \Lambda$ seen in §2, H3. Let R_0 be the local ring of \mathbf{h} through which the above morphism factors. To make R_0 a Λ -algebra, we consider $R = R_0 \otimes_{\Lambda_0} \Lambda$, which is still a complete local ring. Consider the module of differentials $\mathfrak{C}_1 = \Omega_{R/\Lambda} \otimes_R \Lambda$ introduced in [H1, p. 319], where the tensor product is taken via

$$R \to \Lambda \otimes_{\Lambda_0} \Lambda \to \Lambda$$
,

which is $\lambda_* \circ \theta^*$ composed with the multiplication on Λ . Let R_P be the completion of the localization of R at P. In [H3, Th.I], an S-nearly ordinary deformation $\rho^{\text{mod}} : \Pi \to GL_2(R_P)$ of $(k(P), \overline{\rho}_0)$ has been constructed. Especially R_P is generated over Λ_P by $\text{Tr}(\rho^{\text{mod}})$, and hence, the natural map $\varphi: R_S \to R_P$ which induces the equality $[\varphi \circ \rho_S] = [\rho^{\text{mod}}]$ is surjective. Then φ induces another surjection

$$\varphi_*:\Omega_{R_S/\Lambda_P}\otimes_{R_S}\Lambda_P\to\mathfrak{C}_1\otimes_\Lambda\Lambda_P.$$

This combined with Theorem 4.6 yields

Theorem 4.7 We have a surjective homomorphism of Λ -modules:

 $(X_{\mathcal{S}}(\lambda^{-}) \otimes_{\Lambda_{-}} \Lambda') \oplus (Cl^{-} \otimes_{\mathbb{Z}} \Lambda') \to \mathfrak{C}_{1},$

where Λ' is either Λ or $\Lambda[\frac{1}{P_{\lambda}}]$ in Lemme 4.2 according as $F \neq \mathbf{Q}$ or $F = \mathbf{Q}$ and $\lambda_{-} \mod \pi \mathfrak{O}$ is trivial on $D_{\mathbf{p}}$.

As explained in [T2], there is a divisibility theorem proven by M. Raynaud:

Theorem 4.8 H divides the characteristic power series of \mathfrak{C}_1 in Λ .

Then Theorems 4.7 and 4.8 prove Theorem 4.1.

Although we have concentrated to the anti-cyclotomic tower, there is a (hypothetical) way to include the case of the cyclotomic tower. To show the dependence on F, we add subscript F to each notation, for example L_F^- for L^- over F. Supposing the strong divisibility in $\Lambda : L_{F_n}^- | Iw_{F_n}^-$ for the *n*th layer F_n of the cyclotomic \mathbb{Z}_p -extension of F for all n, we hope that we could eventually get the full divisibility: L | Iw over F? But for the moment, this is still far away.

APPENDIX

Let F/\mathbf{Q} be a finite extension and fix an arbitrary finite Galois extension N/F. Let $N^{(p)}/N$ be the maximal *p*-profinite extension of N unramified outside p and ∞ . Put $\Pi = \operatorname{Gal}(N^{(p)}/F)$. In this appendix, we shall prove the existence of the universal deformation for any (continuous) absolutely irreducible Galois representation $\overline{\rho}: \Pi \to GL_n(K)$ for a finite extension K/\mathbf{Q}_p and then we prove the divisibility in Λ' (as in Theorem 4.7) of $h(M)Iw^-$ by H when M is an imaginary quadratic field. Let Λ be a noetherian local ring with residue field K and suppose that Λ is complete under the m-adic topology for the maximal ideal m of Λ . We consider the category $\operatorname{Art}_{\Lambda}$ of artinian local Λ -algebras with residue field K. For any object A in $\operatorname{Art}_{\Lambda}$, the p-adic topology on A gives a locally compact topology on $GL_n(A)$. We consider the covariant functor

$$\mathfrak{F}: \mathsf{Art}_{\Lambda} \to \mathsf{Sets}$$

which associates to each object A in Art_A a set of strict equivalence classes of continuous representations $\rho: \Pi \to GL_n(A)$ such that $\rho \mod \mathfrak{m}_A = \overline{\rho}$. Then we have

Theorem A.1 \mathfrak{F} is pro-representable on Art_{Λ} .

Proof We verify the Schlessinger's criterion H_i (i = 1, 2, ..., 4) for prorepresentability ([Sch]). The conditions H_1 , H_2 and H_4 can be checked in exactly the same manner as in [M, 1.2]. We verify the finiteness of tangential dimension; i.e.,

H3: $\dim_K \mathfrak{F}(K[\varepsilon])$ is finite, where $K[\varepsilon] = K \oplus K\varepsilon$ with $\varepsilon^2 = 0$.

If $\rho \in \mathfrak{F}(K[\varepsilon])$, then we define a map $u = u_{\rho} : \Pi \to M_n(K)$ by $\rho(\sigma) = (1 \oplus u(\sigma)\varepsilon)\overline{\rho}(\sigma)$. Since ρ is continuous, u is a continuous 1-cocycle with values in the Π -module $M_n(K)$, where Π acts on $M_n(K)$ by $\sigma x = \overline{\rho}(\sigma)x\overline{\rho}(\sigma)^{-1}$. On the other hand, if we have a continuous 1-cocycle u as above, we construct a representation ρ by $\rho(\sigma) = (1 \oplus u(\sigma)\varepsilon)\overline{\rho}(\sigma)$. As a map to $M_n(K)$, ρ is continuous. Then ρ is finitely continuous as a representation. Thus the map $\mathfrak{F}(K[\varepsilon]) \to H^1_c(\Pi, M_n(K))$ is surjective. Here H_c indicates the continuous cohomology. We see easily that $u(\sigma) = (\sigma - 1)m$ if and only if $(1 \oplus m)^{-1}\overline{\rho}(1 \oplus m) = \rho$ (i.e., ρ is strictly equivalent to $\overline{\rho}$, which is the 'zero' element in $\mathfrak{F}(K[\varepsilon])$. Thus we have

$$\mathfrak{F}(K[\varepsilon]) \cong H^1_c(\Pi, M_n(K))$$

and

(A.1)
$$H^1_{\mathfrak{c}}(\Pi, M_n(K)) \cong H^1_{\mathfrak{c}}(\Pi, \mathfrak{sl}_n(K)) \oplus \operatorname{Hom}_{\mathfrak{c}}(\Pi, K).$$

By class field theory, $Hom_c(\Pi, K)$ is finite dimensional. We now claim

(A.2)
$$\dim_{K} H^{1}_{\epsilon}(\Pi, sl_{n}(K)) < +\infty.$$

Let us prove this. Let F_{∞} be the subfield of $N^{(p)}$ fixed by $\operatorname{Ker}(\overline{p})$. Since cohomology groups of a finite group with coefficients in finite dimensional vector space over K are finite dimensional, we may replace Π by any normal subgroup of finite index because of the inflation-restriction sequence. First we may assume that $H = \operatorname{Im}(\overline{p})$ is a pro-*p*-group without torsion and that F_{∞}/N is unramified outside p and ∞ . Then applying a theorem of Lazard [L, III.3.4.4.4], we know that H has a subgroup of finite index which is pro*p*-analytic. Hence we may even assume that H itself is pro-*p*-analytic. By inflation-restriction sequence, the sequence:

(A.3)
$$0 \to H^1_c(H, sl_n(K)) \to H^1_c(\Pi, sl_n(K)) \to \operatorname{Hom}_H(\operatorname{Ker}(\overline{\rho}), sl_n(K))$$

is exact. Let $\mathbf{M}_{\infty}/F_{\infty}$ be the maximal *p*-abelian extension unramified outside p and ∞ and X be the Galois group $\operatorname{Gal}(\mathbf{M}_{\infty}/F_{\infty})$. Let $\mathbf{A} = \mathbb{Z}_p[[H]]$. Since H is pro-*p*-analytic and is contained in the maximal compact subgroup of $GL_n(K)$, we know that X is a **A**-module of finite type by [Ha, §3]. The maximal topological abelian quotient $\operatorname{Ker}(\overline{\rho})^{ab}$ is a quotient of X and hence of finite type over **A**. This proves that

(A.4)
$$\dim_{K} \operatorname{Hom}_{H}(\operatorname{Ker}(\overline{\rho}), sl_{n}(K)) < +\infty$$

Thus we need to show the finite dimensionality of $H^1_c(H, sl_n(K))$. Let \mathfrak{H} be the Lie algebra of $G \cap H$. Then again by a result of Lazard [L, V.2.4.10], we see

$$H^1_c(H, sl_n(K)) \cong H^0(H, H^1(\mathfrak{H}, sl_n(K))),$$

which is finite dimensional.

Let $\mathbf{h}_0 = \mathbf{h}_0^{\text{ord}}(D; \mathfrak{O})$ be the ordinary Hecke algebra defined in [H1, Th.3.3] for any positive integer D prime to p. In this case G in §2 is just $Z \times \mathbf{Z}_p^{\times}$ for $Z = ((\mathbf{Z}/D\mathbf{Z})^{\times} \times \mathbf{Z}_p^{\times})/{\{\pm 1\}}$. Then we have

Theorem A.2 Suppose that $p \geq 5$ and $F = \mathbf{Q}$. Let $\chi : \mathbf{A}^{\times} \to \mathbf{Z}_{p}^{\times}$ be the cyclotomic character such that $\chi(\varpi_{l}) = l$ for the prime element ϖ_{l} in \mathbf{Q}_{l} $(l \neq p)$. Then we have an $\mathcal{O}[[G]]$ -algebra isomorphism:

$$\mathbf{h} \cong \mathbf{h}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{O}[[\mathbf{Z}_p^{\times}]],$$

which is given by $\mathbf{T}(x) \mapsto T(x) \otimes [\chi(x)]$ for all $x \in \hat{\mathbf{Z}} \cap A_f^{\times}$. Here $\mathbf{h}_0 \hat{\otimes}_{\mathcal{O}} \mathcal{O}[[\mathbf{Z}_p^{\times}]]$ is the profinite completion of $\mathbf{h}_0 \otimes_{\mathcal{O}} \mathcal{O}[[\mathbf{Z}_p^{\times}]]$, i.e., m-adic completion for the maximal ideal \mathfrak{m} of Λ_0 .

Proof Let $S(\mathfrak{O}) = \{f \in S \mid a(y, f) \in O\}$ and $\mathbf{S} = eS(\mathfrak{O})$ for the idempotent e of \mathbf{h} in $\mathbf{h}(D; \mathfrak{O})$. Let \mathbf{S}_0 be the ordinary subspace of \mathbf{S} which is denoted by $S_0^{\text{ord}}(D; \mathfrak{O})$ in [H1, p. 336]. Then it is known that the pairing given by

$$\langle h, f \rangle = a(1, f \mid h) \text{ on } \mathbf{h} \times \mathbf{S} \text{ and } \mathbf{h}_0 \times \mathbf{S}_0$$

is perfect in the sense that $\operatorname{Hom}_{\mathcal{O}}(\mathbf{h}, \mathcal{O}) \cong \mathbf{S}$ and vice versa [H4, Th.3.1]. For any character $\psi : \mathbf{Z}_p^{\times} \to \overline{\mathbf{Q}}_p$ and $f \in \mathbf{S}$, $f \otimes \psi(y)$ given by $a(y, f \otimes \psi) = \psi(\chi(y))a(y, f)$ is again an element in S with $f \otimes \psi \mid e = f \otimes \psi$ (cf. [H4, §7.VI]). This shows that we have a natural $\mathcal{O}[[G]]$ -linear map $m : \mathbf{S}_0 \otimes_{\mathcal{O}} \mathfrak{C}(\mathbf{Z}_p^{\times}; \mathcal{O}) \to \mathbf{S}$ given by

$$a(y,m(f\otimes \phi))=\phi(\chi(y))a(y,f),$$

where $\mathfrak{C}(\mathbf{Z}_p^{\times}; \mathfrak{O})$ is the Banach \mathfrak{O} -module of all continuous functions on \mathbf{Z}_p^{\times} into \mathfrak{O} and $\mathbf{S}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{C}(\mathbf{Z}_p^{\times}; \mathfrak{O})$ is the *p*-adic completion of $\mathbf{S}_0 \otimes_{\mathfrak{O}} \mathfrak{C}(\mathbf{Z}_p^{\times}; \mathfrak{O})$. Note that $\operatorname{Hom}_{\mathfrak{O}}(\mathbf{S}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{C}(\mathbf{Z}_p^{\times}; \mathfrak{O}), \mathfrak{O}) \cong \mathbf{h}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{O}[[\mathbf{Z}_p^{\times}]]$. It is easy to verify that the dual map $m^* : \mathbf{h} \to \mathbf{h}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{O}[[\mathbf{Z}_p^{\times}]]$ is in fact an $\mathfrak{O}[[G]]$ -algebra homomorphism. Since the projection map $\mathbf{h} \to \mathbf{h}_0$ is surjective by definition and since any $[z^{-1}] \in \mathfrak{O}[[\mathbf{Z}_p^{\times}]]$ for $z \in \mathbf{Z}_p^{\times}$ is the image of $\mathbf{T}(z)$, m^* is surjective. Note that $\mathbf{h}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{O}[[\mathbf{Z}_p^{\times}]]$ is free of finite rank over Λ_0 by [H7, Th.3.1]. Since \mathbf{h} is torsionfree over Λ_0 and its generic rank is equal to that of $\mathbf{h}_0 \hat{\otimes}_{\mathfrak{O}} \mathfrak{O}[[\mathbf{Z}_p^{\times}]]$, we conclude that m^* is an isomorphism.

Corollary A.3 The congruence power series H can be chosen inside Λ_{-} .

By this corollary, when F = Q, it is sufficient to consider only ordinary Hecke algebras instead of nearly ordinary Hecke algebras and only ordinary deformations instead of nearly ordinary deformations. To make this fact more precise, let M/Q be an imaginary quadratic field of discriminant D satisfying the ordinarity hypothesis: $p = \mathfrak{PP}^c$. We also assume that $p \geq p$ 5. Let L (resp. L^*) be the maximal abelian extension of M unramified outside \mathfrak{P} (resp. \mathfrak{P}^c). Let $G_{cw} = \operatorname{Gal}(L/M)$ and $G_{cw}^* = \operatorname{Gal}(L^*/M)$ and W_{cw} (resp. W^*_{cw}) be the maximal torsion-free quotient of G_{cw} (resp. G^*_{cw}). Then the restriction map gives an isomorphism $\mathbf{W} \cong W_{cw} \times W_{cw}^*$. Thus $\alpha: W_{cw} \ni w \mapsto wcw^{-1}c^{-1} \in \mathbf{W}_{-}$ gives an isomorphism. Similarly, without losing generality, we may assume that $\lambda : \mathbf{G}_{tor} \to \mathfrak{O}^{\times}$ factors through G_{cw} . We decompose $G_{cw} = \Delta \times W_{cw}$. Let $\Lambda_{-} = \mathfrak{O}[[W_{cw}]]$ identifying W_{-} with W_{cw} . We consider the character $\lambda_*: G_{cw} \to \Lambda_-$ such that $\lambda_*(\delta, w) = \lambda(\delta)[w]$ for $\delta \in \Delta$ and $w \in W$. It is known that the μ -invariant of Iw^- and L^- are both trivial [G]. Thus we only worry about height one primes P (in Λ_{-}) of residual characteristic 0. We take N/\mathbf{Q} to be the ray class field of M modulo p and consider the Galois group Π as in Theorem A.1. Let K be the quotient field of Λ_{-}/P . Then K/\mathbf{Q}_{p} is a finite extension and we consider the Galois representation:

$$\rho_0 = \operatorname{Ind}_{\Pi_K}^{\Pi}(\lambda_*) : \Pi \to GL_2(\Lambda_-), \text{ and} \\ \rho_P = \operatorname{Ind}_{\Pi_K}^{\Pi}(\lambda_* \mod P) : \Pi \to GL_2(K).$$

Suppose that $P \neq P_{\lambda}$ as in Lemma 4.2. Then ρ_P is absolutely irreducible. Let Λ be the *P*-adic completion of the localization of Λ_- at *P*. Let Art be the category of artinian local Λ -algebras with residue field *K*. Any object *A* in Art is a locally compact ring with respect to *p*-adic topology and thus we do not worry about 'finite continuity' etc. Let (R', ρ') be the universal couple representing the functor $\mathfrak{F} : \operatorname{Art} \to \operatorname{Sets}$ defined for $\overline{\rho} = \rho_P$. We consider the subfunctor of \mathfrak{F}

$$\mathfrak{F}^{\operatorname{ord}}:\operatorname{Art}\to\operatorname{Sets}$$

which associates to $A \in Ob(Art)$ the set of strict equivalence class of representations $\rho: \Pi \to GL_2(A)$ such that

- (i) $\rho \mod \mathfrak{m}_A = \rho_P$,
- (ii) There exists a continuous character $\delta : D_{\mathfrak{P}} \to A^{\times}$ such that ρ restricted to $D_{\mathfrak{P}}$ is equivalent (but not necessarily strictly) to $\begin{pmatrix} * & * \\ 0 & \delta \end{pmatrix}$;
- (iii) δ is congruent modulo \mathfrak{m}_A to the restriction of λ^c_* to $D_{\mathfrak{P}}$ and $\hat{\delta}$ restricted to the inertia subgroup I_p of $D_{\mathfrak{P}}$ coincides with the restriction to I_p of λ^c_* (i.e., δ is unramified at \mathfrak{P})
- (iv) $det(\rho) = det(\rho_0)$.

We say that an ideal \mathfrak{a} of R' is ordinary if $\rho' \mod \mathfrak{a}$ satisfies (i), (ii), (iii) and (iv). Then it is an easy exercise to verify that if \mathfrak{a} and \mathfrak{b} are ordinary, then $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ are ordinary. Namely for $\mathfrak{I} = \bigcap_{\mathfrak{a}: \operatorname{ordinary}} \mathfrak{a}$, $R^{\operatorname{ord}} = R'/\mathfrak{I}$ and $\rho^{\operatorname{ord}} = \rho' \mod \mathfrak{I}$ represents $\mathfrak{F}^{\operatorname{ord}}$. Then the same argument as in §4 prove that $H \mid h(M)Iw^-$. From Theorem 2.1 and the vanishing of the μ -invariant [G], we conclude

Theorem A.4 Suppose $p \ge 5$ and that M is an imaginary quadratic field. Let $\Lambda' = \Lambda_{-}[\frac{1}{P_{\lambda}}]$ if $\lambda_{-} \mod \pi \mathfrak{O}$ is trivial on $D_{\mathfrak{P}}$ and otherwise we put $\Lambda' = \Lambda_{-}$. Then we have

 $h(M)L^{-} \mid H \text{ in } \Lambda_{-}$ and $H \mid h(M)Iw^{-} \text{ in } \Lambda'$.

Although we confined ourselves to characters λ of *p*-power conductor, similar result holds for any character whose conductor is prime to its complex conjugate. We hope to prove the divisibility even at the 'trivial-zero' P_{λ} in our subsequent paper.

REFERENCES

- [G] R. Gillard, 'Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes', J. reine angew. Math. 358 (1985), 76-91.
- [Ha] M. Harris, 'p-adic representations arising from descent on abelian varieties', Compositio Math. 39 (1979), 177-245.
- [H1] H. Hida, 'On p-adic Hecke algebras for GL_2 over totally real fields', Ann. of Math. 128 (1988), 295-384.
- [H2] H. Hida, 'On nearly ordinary Hecke algebras for GL(2) over totally real fields', Adv. Studies in Pure Math. 17 (1989), 139-169.
- [H3] H. Hida, 'Nearly ordinary Hecke algebras and Galois representations of several variables', Proc. JAMI inaugural Conference, Supplement of Amer. J. Math. (1989), 115-134.
- [H4] H. Hida, 'On p-adic L-functions of $GL(2) \times GL(2)$ over totally real fields', preprint.
- [H5] H. Hida, 'Galois representations into GL₂(Z_p[[X]]) attached to ordinary cusp forms', Invent. Math. 85 (1986), 545-613.
- [H6] H. Hida, 'A p-adic measure attached to the zeta functions associated with two elliptic modular forms II', Ann. Inst. Fourier 38, No.1 (1988), 1-83.
- [H7] H. Hida, 'Iwasawa modules attached to congruences of cusp forms', Ann. Scient. Ec. Norm. Sup. 4e-serie, t.19, 1986, 231-273.
 - [K] N. M. Katz, 'p-adic L-functions for CM fields', Invent. Math. 49 (1978), 199-297.
 - [L] M. Lazard, 'Groupes analytiques p-adiques', Publ. Math. I.H.E.S. No.26, 1965.
- [M] B. Mazur, 'Deforming Galois representations', in Galois Groups over Q, Proc. Workshop at MSRI, 1987, pp.385-437.
- [M-T] B. Mazur and J. Tilouine, 'Représentations galoisiennes, différentielles de Kähler et "conjecture principales" ', Publ. I.H.E.S.
 - [R] K. Rubin, 'The one-variable main conjecture for elliptic curves with complex multiplication', preprint.
 - [Sch] M. Schlessinger, 'Functors on Artin rings', Trans. A.M.S. 130 (1968), 208-22.
 - [T1] J. Tilouine, 'Sur la conjecture principale anticyclotomique', Duke Math. J.
 - [T2] J. Tilouine, 'Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire', Compositio Math. 65 (1988), 265-320.

Downloaded from https://www.cambridge.org/core. Caltech Library, on 04 Nov 2018 at 14:08:19, subject to the Cambridge Core terms of use, available at https://www.cambridge:BookstOnline.@gCambridge:Deiversity.Press, 2009