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Here is a table of misprints in the above book, and “P.3 L.5b” indicates fifth line from the bottom of the
page three. If more misprints are found, this errata table will be updated, and a latest version will be posted
in the web page www.math.ucla.edu/~hida.

page and line Read Should Read

P.viii 1.9 T ⊗R Q T ⊗A Q
P.3 L.3 p-profinite algebras p-profinite W -algebras
P.5 L.4 residue field F residue field F and fraction field K

P.9 L.5 P e(P) P `P (X)

P.12 L.18b IndK
F IndF

K

P.12 L.9b ρ : GF → A ρ : GF → A×

P.12 L.1b GQ/[GQ,GQ] [GQ,GQ]
P.14 L.8 Remove “ mod mAv”
P.17 (uv) τ ∼= τ τ ≡ τ
P.17 L.18 map. We map. Extend ϕ to F by ϕ(0) := 0. We
P.17 (w2) X(s, t) −X(t, s) X(s, t), X(t, s)
P.21 L.8 Hom(π1(X), A) Hom(π1(V ), A)

P.21 L.15b πalg
1 (V )/(πalg

1 (V/Q
), πalg

1 (V/Q
))) πalg

1 (V/Q
)/(πalg

1 (V/Q
), πalg

1 (V/Q
))

P.21 L.10b Hom(π1(Z),Z`) Hom(Z,Z`)
P.22 L.4b ((2πi)Q)⊗m ⊗Hm

B ((2πi)Q)⊗m ⊗Hn
B

P.23 L.18b
∫
Z
ω

∫
V
ω

P.24 L.9b, L15b Hn(V ) (three places) Hn(V )(m)
P.28 L.10 ρ : GF → GL2(K) ρ : GS

F → GL2(K)
P.29 L.1b Fq Fp

P.34 L.4b ρp|Dp
ρF |Dp

P.35 L.17 EndK EndA

P.39 Below 1.54
Insert:
“Suppose that I is normal.”

P.39 L.18 RF R̃F

P.42 L.3b Gal(K/Q) Gal(K/F )
P.43 L.1,2,8,9,10 Gal(K/Q) Gal(K/F )
P.44 L.17b may other many other
P.51 L.5 the corollary Proposition 1.67
P.90 L.6 SA = SA t SAf

SA ⊃ SA t SAf

P.99 L.1b x−(κ1+κ2)+I x
−(κ1+κ2)+I
∞

P.101 L.5b a ∈ a∗ ξ ∈ a∗

P.101 L.3b TrF/Q(ξO) TrF/Q(ξa)
P.102 (2.3.7) a ∈ a∗+ ξ ∈ a∗+
P.103 (ex2) ε−v ε−

P.103 (ex3) Z(A(∞))/Z(Q) Z(A(∞))
P.103 (ex3) Z(A)S0((v) ∩N) = Z(A)S1((v) ∩N)→ B× Z(A)S0((v) ∩N)→ C×

P.103 (2.3.13)
Here U is the unipotent radical of the
upper triangular Borel subgroup of GL2.

P.103 (2.3.14) h u, t

P.107 L.7 Insert after ε = (ε+, ε1, ε2) on Z(A(∞)) and T (Ẑ)
P.110 L.13 firms forms
P.112 L.6b SD

κ (N, ε;A)) MD
κ (N, ε;A))

P.114 L.15 d(B) (two places) d(D)
P.117 L.4b

∫
U π(u)vdu

∫
U π(u)wdu

P.118 (2.3.31) λ(b)g(g) λ(b)f(g)



page and line Read Should Read

P.118 L.17 φ(bxb−1) φ(bub−1)
P.120 L.3 Insert at the end if S ⊃ B(Oq)
P.120 L.13 if S ⊃ B(Zp) if S ⊃ B(Oq)
P.120 L.21 ξ =

(
$a1 0

0 $a2

)
ξ =

(
$a1 0

0 $a2

)
with a1 ≥ a2

P.126
Theorem 2.43 (2)

ε+N [κ] ε+N
P.127 L.1b k(Q) k(P )
P.129 2.45 Replace T by T in the proof
P.129 L14 characteristic P characteristic p

P.132 L.7
∣∣c ∈ N Ẑ

∣∣aẐ +N Ẑ = Ẑ, c ∈ N Ẑ
P.132 (2.4.6)

∑
0<d|(m,n)

∑
0<d|(m,n),(d,N)=1

P.133 L.10b φ ∈ Hk(Γ0(N); Z) φ ∈ Hom(Hk(Γ0(N); Z),Z)
P.141 (2.5.2) Θij(φ(aj), φ

∗(ai)) Θij(φ(aj) ⊗ φ∗(ai))
P.144 (2.5.6) (−√−1z)λ/2(

√−1z)µ/2 (−√−1z)−λ/2(
√−1z)−µ/2

P.183 L.8b Gal(Q/Q) Gal(Q/F )
P.183 L.8b c(ε)p Np

P.185 L.4
the finite flat group scheme
(Z/pZ)⊕ µp)⊗Fp

F
a finite flat group scheme,
and ρss is given by the twist of (Z/pZ)⊕ µp) ⊗Fp

F

P.188 L.8b = F[ε]⊗F lim←−n

Ounr,×
p

(Ounr,×
p )

pn (RHS) = F[ε]⊗F lim←−n

O×

p

(O×

p )
pn

P.190 Thm 3.23 2. the number of the number r of
P.201 L.11, 16

∏
q∈ΣρtQ

∏
q∈Σρ

P.202 L.6b H0(Iq, Ad(ρ))/(Frobq − 1)Ad(ρ) H0(Iq, Ad(ρ))/(Frobq − 1)H0(Iq, Ad(ρ))
P.203 L.13 dimF(Op/pOp)− 1 if αp = N p dimF(Op/pOp) + 1 if αp = N p

P.207 L.14 dimF Sel⊥∅ (Ad(ρ)) = dimF ΦQ(F[ε]) dimF Sel⊥∅ (Ad(ρ)(1)) ≥ dimF ΦQ(F[ε])
P.209 L.20b σ acts by the identity on X. σ has eigenvalue 1 on X.

P.214 L.6
∏

q∈Σρ

H1(Fq,Ad(ρ0)m)
ΦP,q(F[ε])

∏
q∈Σρ

H1(Fq,Ad(ρ0)m)
ΦP,q(Wm[ε])

P.224 L.3
F -version of
Kummer’s criterion

See Addenda for a proof.

P.248 L.15b (E1–3) (E2–3)
P.249
Theorem 3.69,
Lemma 3.70

Add the following assumption.
If a prime l - p ramifies in F ′/F
the ramification index of l is prime to p.

P.265 L.6b
Insert the follwing
after “such factors.”

Decompose Y = Y ⊕Kt0 ⊕K(1)t1

as Dp-modules so that YDp = 0 = Y(1)Dp
.

P.264 L.9b
∏

I/Dp

∏
Homfield(F,Q)/Dp

P.266 L.7b F+H1(Qp, Y )
F+H1(Qp,Y)×Hom(Dp/Ip, K)t0 ×H1

fl(Qp, K(1))t1

⊂ H1(Qp, Y )
P.356 Lemma 5.7 (i) ΩA/R ⊗R C, ΩC/A, ΩC/R ΩA/B ⊗A R, ΩR/B , ΩR/A

P.359 L.2 ΩRj/Pj
⊗Rj

Rj/Pj Ω(Rj/(Pj∩Λj)Rj)/W ⊗Rj
Rj/Pj

P.359 L.3 ΩRj/Pj/Rj
⊗Rj

Rj/Pj Ω(Rj/(Pj∩Λj)Rj)/W ⊗Rj
Rj/Pj

P.359 L.10 λh = W [[yp]]p Λh = W [[yp]]p
P.361 L.16 Replace R and Rn by RP and Rn,P

P.365 L.14 (y1, . . . , fdn
) (y1, . . . , ydn

)
P.367 L.16 I-module R0-module
P.372 L.5b Remove “as ψA

n/B”

P.377 L.9b the fixed subfield of Γ− (resp. Γ+) the fixed subfield of Γ+ (resp. Γ−)

P.380 L.12 ϕ̃−(σ) = ϕ̃(cσc−1σ) ϕ̃−(σ) = ϕ̃(cσc−1σ−1)
P.384 L.10b sign error place “−1” in front of all the exponents

P.384 L.7b −e(p) logp(Np(α(P)
−e(p)
P )). −e(p) logp(Np(α(P)P)).

Lemma 5.37 α(P)1−c
P′ α(P)c−1

P′

P.385 L.3 δp([γp, Fp])
δp([γp,Fp])

[Fp:Qp]

Theorem 5.38
Corollary 5.39

∏
p|p

e(p)
h

(−1)e
∏

p|p
1

h·fp
for fp = [O/p : Fp],

because of the correction at P.385 L.3



Addenda/Errata

• P.26 L.3: Here is some history of the rationality theory of critical L-values (not touched in the book).
It is important to have researchers entering into this area know how rationality theory of L-values
actually developed, and I have decided to add some explanation (not to misguide new researchers
by the short statement starting at line 3 in page 26). The conjectures in [D4] were made only after
Shimura had established a couple of years earlier rationality for modular and Hecke L-values. The
theory goes back to Euler (in the eighteenth century) for the critical Riemann zeta values and to Siegel
(and Klingen) for critical Dedekind zeta values. The modern theory for modular and automorphic
L-values was started by Shimura in his early paper [59c] Section 9 (in [CPS] volume I) for the critical
values of L(s,∆) (∆ is Ramanujan’s function of weight 12). In his later papers [75c] [76b] and [77d]
(in [CPS] II), he established rationality of Hecke L-values in [75c] and rationality of general elliptic
modular critical L-values in [76b] and [77d]. One of his main ideas in these works (and later ones) is
the use of certain nonholomorphic differential operators acting on automorphic forms which preserve
rationality (but not holomorphy) of automorphic forms and theta functions (up to explicit constants;
for example, [75c] and [77c]). If we move an evaluation point (of an automorphic L-value) by integers
(within the critical range), out of experience, one might guess that, in many cases (if not all), the
move adds (or eliminates) a power of 2πi to (or from) the transcendental factor (the period) of the
starting L-value. The precise move of the exponent of 2πi in the period was proven by Shimura in
many cases (for example, [76b]) using often this property of the differential operator (one can find a
motivic interpretation of this move of the exponent of 2πi for motivic L-values in a later paper [D4]
of Deligne). Further in [77c] Remark 3.4 (in [CPS] II), periods (up to algebraic numbers) of rational
differentials on abelian varieties with real multiplication were determined in terms of the values of a
certain rational meromorphic Hilbert modular form over the field of real multiplication. This result
provides the equivalence between the rationality result of the Hecke L-values proven in [75c] and the
rationality of the Hecke L-values with respect to an appropriate CM period (which is also discussed
later in [D4]). A preprint of [77b] in the proceedings of an international conference in Kyoto held
in 1976 was circulated among the participants of the conference (including the author of this note).
The paper [77b] contains in particular as Theorem 4 the rationality theorem in [76b] and [77d]. After
these works, Deligne made his conjecture on the rationality of motivic L-values with respect to his
motivic period in a conference at Corvallis (which was held in July-August 1977), and his paper
[D4] was later published in 1979 (though, appeared strange in the eyes of the author of this note,
Deligne does not quote in [D4] Shimura’s earlier works except for [75c]). In [D4], Deligne checked his
conjecture conforming well to the known results at the time. After these works, Shimura went on
and extended his rationality results (for example, his CM period relation in [79a], his factorization of
CM and non CM periods in terms of periods of quaternionic automorphic forms in [83a] and [88]...)
even to non-motivic L-values (for example, in [81a] and [88] in [CPS] III, values of L-functions
associated to half-integral weight modular forms are treated) and to the values of explicitely given
automorphic forms and Dirichlet series of new type (for example, [81b,c]). Later from late 1980s,
other researchers joined in the rank and started studying rationality of L-values and automorphic
forms, and many such rationality results (motivic or non-motivic) so far known have been proven
guided by the automorphic methods Shimura invented. Indeed, the proof of the anticyclotomic main
conjecture in [H05d] relies on the results on the new type of Dirichlet series in [81b,c].
• P.195 Lemma 3.24 and Theorem 3.25 (This error was pointed out to the author by Olivier Fouquet).

Lemma 3.24 and its proof are both wrong, for example, A×/Q×R×
+
∼= Ẑ×/{±1} has a lot of 2-torsion

(in the proof, it is claimed to have no 2-torsion). This lemma is used in the proof of Theorem 3.25
in the middle of page 197. The corrected statement of Theorem 3.25 is

Theorem 3.25 Let p be an odd prime, and suppose (h1–4) and (aiF [µp]). Then a Taylor–Wiles
system {RQ,MQ}Q∈Q for the universal deformation ring RQ of ΦQ exists for an infinite set Q of
finite subsets Q ⊂ ΣF such that
(1) Q is made up of finite subsets Q of primes q outside pc(ε) satisfying (tw1) and (reg);
(2) MQ is the direct factor of the W -dual space

HomW (SΣ0-ord(S(Q), ε;W ),W )



for S(Q) = Γ̂0(N) ∩ Γ̂1
1(Q) under the Hecke operator action (as specified in the proof) and

satisfies the module compatibility condition (5) in Theorem 3.23;
(3) the primes q ∈ Q have residual degree 1, and the primes q in

⋃
Q∈QQ with N(q) ≡ 1 mod pn

for any given n > 0 have positive density.

The proof of Theorem 3.25 is sound if one removes the paragraph starting at the top of page
197 to line 25 of page 197. As originally stated in Fujiwara’s work correctly, replacing the starting
phrase of the paragraph beginning at line 12 from bottom of page 197: “Thus assuming (ni)” by
“Thus assuming (aiF [µp])”, the proof works well. Lemma 3.24 and the misstated original Theorem
3.25 is never used in the rest of the book, and the version of Theorem 3.25 used in the book is the
one corrected as above.
• P.224 L.3: (KCF:F -version of Kummer’s criterion) used in the text can be stated as:

Let φ be a totally even Hecke character of F of conductor 1 and p be an odd prime unramified
in F/Q. If one has a Hecke eigen cusp form f of level 1 whose Hecke eigenvalue for T (l) is
congruent to 1+φ(l)NF/Q(l) modulo p for a prime ideal p|p for all primes l of F outside p, then
p|L(−1, φ).

Proof. We relate the L-value L(−1, φ) to class number of a certain cyclotomic extension. Since φ
modulo p only matters; so, we may assume that φ has order prime to p. Take a character χ of order
prime to p such that χ−1ω−1 = φ for the Teichmüller character ω modulo p (so, χ is totally odd).
Let F (χ) for the CM field with Gal(F (χ)/F ) = Im(χ). Write F+(χ) for the maximal real field of
F (χ). Then L(−1, φ) ≡ L(0, χ−1) mod p (by the existence of Deligne–Ribet p-adic L-function of
χ−1ω = φω2).

Remark (not a necessary ingredient of the proof): The product H =
∏

j:odd L(0, χj) (j running

over odd positive integers up to the order of χ) is basically the relative class number of F (χ)/F+(χ)
(at least if p > 3 is unramified in F , the p-part of the class number coincides with the p-part of the
product). Let H ′ =

∏
j:odd L(−j, φj). Then H ′ ≡ H mod p by the same reason as above.

Suppose one has a Hecke eigen cusp form f as above of level 1. Then the Galois representation
ρ of f modulo p is upper triangular. Then by Ribet’s argument in [Ri1], we may assume that

ρ(σ) ≡
( 1 ∗

0 χ−1

)
mod p and that ρ is non-semisimple. The splitting field L of ρ is a p-abelian

extension of F (χ) unramified everywhere such that Gal(F (χ)/F ) acts on Gal(L/F (χ)) by χ. From
this, what we find is that p|H or equivalently p|H ′.

Here is how to show p|L(−1, φ) (equivalently p|L(0, χ−1)) from the result of [Wi1]. Let F∞(χ)/F (χ)
be the cyclotomic Zp-extension. Note F ∩ Q∞ = Q by the unramifiedness of p in F/Q. Write
L(χ)/F∞(χ) be the maximal p-abelian extension unramified everywhere. LetXχ be the χ-eigenspace
of Gal(L(χ)/F∞(χ)), and write g(T ) for the characteristic power series of Xχ as in [Wi1]. Here T =
u− 1 in the Iwasawa algebra Λ for a fixed generator u of 1 + pZp (identified with Gal(F∞(χ)/F (χ)).
Theorem 1.2 and 1.4 in [Wi1] combined tells us that g(T ) is equal to the Deligne-Ribet p-adic L-
function Lp(s, χ−1ω) (or more precisely, the Iwasawa power series Gχ−1ω(u(1 + T )−1 − 1) for G(T )
giving Lp(s, χ

−1ω) as modified in [Wi1] page 494).
(KCF) is valid by the following result due to Iwasawa (see Washington’s book [ICF] Proposi-

tion 13.28):

hdimΛ(Xχ) = 1

(that is, Xχ does not have pseudo-null module non-null). Since φ is unramified at p, χ ramifies
at p; therefore Lp(0, χ

−1ω) 6= 0 (Lp(s, χ
−1ω) does not have exceptional zero at s = 0). Then,

by a standard argument in Iwasawa theory and the theory of Fitting ideals combined, the order
|Xχ/TXχ| is then equal to |g(0)|−1

p which is equal to |Lp(0, χ
−1ω)|−1

p = |L(0, χ−1)|−1
p . The group

Xχ/TXχ is the χ-eigenspace of the p-primary part of the class group of F (χ). Thus we have a
surjective homomorphism Xχ/TXχ

� Gal(L/F (χ)), which is nontrivial by the Ribet construction.
Recall that L(−1, φ) ≡ L(0, χ−1) mod p; so, p|L(−1, φ). �

• P.244 L.25: Tr(ρ(σ)) ∈ AL, because

Tr(ρ(σ)) = ρ(σ) + (det(ρ(σ))ρ(σ−1) = ρ(σ) + ε+N (σ)ρ(σ−1) ∈ A ∩End(L) = AL.



• On the correction (in P.249) for Theorem 3.69 and Lemma 3.70: The added assumption is necessary
to guarantee that the extended deformation ρ of ρ′ (which exists by [MFG] Lemma 5.32) satisfies
the condition (Q6). Indeed, under this condition, the local deformation ρ|Il

is determined by ρ|Il

and ρ′. Later applications concern only quadratic F ′/F or cyclotomic p-extension F ′/F unramified
outside p; so, this does not affect the arguments using Theorem 3.69 later.
• On the correction at P.266 L.7b: The space F+H1(Qp,Y) × Hom(Dp/Ip, K))t0 × H1

fl(Qp, K(1))t1

can be rewritten as the image of H1
fl(Qp,F+Y ) × Hom(Dp/Ip, Y

Dp) since F+Y × Y Dp ⊂ Y . The

latter expression is independent of the choice of the decomposition Y = Y ⊕Kt0 ⊕K(1)t1 inserted
at P.265 L6b. By this expression, dim(F00H1

p (M)/Up(M)) = t + t0 + t1 claimed at P.268 L.6 is

clear because dimY = 2t. Obviously, Up(IndQ
F V ) = Up(IndQ

F V ) if t1 = t = 0 which is the case
when V = Ad(ρf ) for a nearly p-ordinary Hilbert cusp form f which is not Steinberg at any prime
factors of p. If f is Steinberg at a prime factor of p, t > 0 but t1 = 0 always, and still we have
Up(IndQ

F V ) = Up(IndQ
F V ) (see [H2] Lemma 1.6 and [H3] Lemma 1.4) so, this is harmless for the

application in the book.
• Lemma 3.83: For any ring A and the trivial G-module A, if we write ι : H1(H,A) ∼= H1(G, IndG

H A)
for the isomorphism of Shapiro’s lemma, we have ι = Res−1. Indeed, Hq(G,A[G]) = 0 for all
q > 0 (G = G/H), and from H0(G,H1(H,A[G])) = H0(G,H1(H,A) ⊗A A[G]) = H1(H,A), the
inflation-restriction sequence shows that this lemma is valid for any A not necessarily a field A = K
of characteristic 0. Thus if σ ∈ G has order h in G, for φ ∈ H1(H,K) = Hom(H,K), ι(φ)(σ) =
h−1φ(σh). Since [p,Qp]

dp = [p, Fp]|Qab
p

, for φ ∈ H1(Fp, K) = Hom(Gal(F p/Fp), K), applying the

above fact to G = Gal(Qp/Qp) and H = Gal(Qp/Fp), we have ι(φ)([p,Qp]) = d−1
p φ([p, Fp]) and

ι(φ)([u,Qp]) = d−1
p φ([u, Fp]) (for dp = [Fp : Qp]) as explained in page 273, because

dp · ι(φ)([u,Qp]) = ι(φ)([udp ,Qp]) = Res(ι(φ))([u, Fp]) = φ([u, Fp]).

Therefore
ι(φ)([u,Qp])

logp(u) = d−1
p

φ([u,Fp])
logp(u) .

• In Theorem 3.93 (or its proof), a full detailed argument relating qp and NFp/Qp
(Qp) for the Tate

period Qp at p of the elliptic curve E is not given. It can be found in [H1] below. Our formula

computes the L-invariant of IndQ
F Ad(V ). Though L(s, Ad(V )) = L(s, IndQ

F Ad(V )), the modification
(vanishing) Euler p-factor computed over Q following [G] (6) and the corresponding Euler p-factor
over F are different if O/p 6= Fp. Indeed, the vanishing factor over Qp is of degree 1 for each p|p
and is given by

∏
p|p(1 − ap) with ap = 1!. However over F at p, it is of degree fp := [O/p : Fp]

and is given by (1− afp

p ) = (1− ap)
∏

1 6=ζ∈µfp
(1 − ζap). Thus we have the following identity of the

nonvanishing factor

E+(IndQ
F Ad(V )) = (

∏

p|p

∏

1 6=ζ∈µfp

(1− ζ))E+(Ad(V )/F ) = (
∏

p|p

fp)E+(Ad(V )/F )

under the notation in [H] Conjecture 0.1, because fp =
∏

1 6=ζ∈µfp
(1− ζ). Thus the expression of the

L-invariant L(Ad(V )/F ) over F is slightly different from L(IndQ
F Ad(V )) over Q, and indeed,

L(Ad(V )/F ) = (
∏

p|p

fp)L(IndQ
F Ad(V )),

since we have lims→1
Lp(s,ρ)
(s−1)e = L(ρ)E+(ρ) L(1,ρ)

c+(ρ(1)) conjecturally for ρ = Ad(V ) and IndQ
F Ad(V ).

Then our formula in Theorem 3.93 formulated for L(Ad(V )/F ) takes the following shape:

L(Ad(V )/F ) =
∏

p|p

logp(qp)

ordp(Qp)
(⇔ L(IndQ

F Ad(V )) =
∏

p|p

logp(qp)

ordp(qp)
),

where 1
fp

ordp(qp) = ordp(Qp). C.-P. Mok (see [M]) computed the analytic L-invariant for some Tate

curves E over F following the method of Greenberg–Stevens and got the formula using ordp(Qp) as

above under some assumptions. His formula gives the value L(V/F ) as the product of
logp(qp)

ordp(Qp) over

p-adic places p where E has split multiplicative reduction under some assumptions on E/F and F .



• P.385 L.3: The variable xp appearing in this formula is different from the one in Theorem 3.73. If
we write the variable xp in page 385 as Xp (and keep writing the variable xp in Theorem 3.73, we

have the relation (1 + xp) = (1 + Xp)[Fp:Qp]; so, [Fp : Qp]
∂

∂xp
= ∂

∂Xp
. Thus after the correction as

indicated above, the formula is equivalent to the one given in Theorem 3.73. This correction causes
the modification of the formulas in Theorem 5.38 and Corollary 5.39.
• Theorem 5.38 and Corollary 5.39: As for the sign error part “(−1)e”, a detailed explanation can be

found in [H] Section 3.3. By the addendum to Theorem 3.93,

det




(

logp(Np′ (α(P)c−1
P′ ))

h

)

P,P′∈Σc
p





gives the L-invariant L(Ad(IndF
M ϕ̃P )/F ) = L(α/F ) (for α = αM/F ) over F .
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