Growth of Hecke Fields Along a p-Adic Analytic
Family of Modular Forms
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Abstract Fix a nearly ordinary non-CM p-adic analytic family of Hilbert modular
Hecke eigenforms (over a totally real field F). We prove existence of a density one
set & of primes of the field F such that the degree of the field over Q(jtpo0 ) generated
by the Hecke eigenvalue of the Hecke operator T([) grows indefinitely over the
family for each prime [ in the set 2.
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We generalize in this paper all the principal results obtained in [H14] for the one
variable cyclotomic p-ordinary Hecke algebra to the full nearly p-ordinary Hecke
algebra of fixed central character. This algebra is finite flat over the m variable
Iwasawa algebra for the degree m totally real base field F. The restriction coming
from fixing a central character is essentially harmless as we can bring one central
character to another by character twists (up to finite order character of bounded
order).

Take the field Q of all numbers in C algebraic over Q. Fix a prime p and a field

embedding Q Ly @p C C,. Fix a totally real number field F (of degree m over Q)
inside Q with integer ring O (as the base field for Hilbert modular forms). We use the
symbol O exclusively for the integer ring of F, and for a general number field L, we
write Oy, for the integer ring of L. We choose and fix an O-ideal n prime to p (as the
level of modular form). We define an algebraic group G (resp. 71) by Resp,zGL(2)
(resp. Resg, ;zGn); 0, G(R) = GLa2(R @z O) and T1.(R) = (R ®z O1). We write
TR =~ T} for the diagonal torus of G; so, writing T2 for the diagonal torus of
GL(Z)/O, T[‘é = RCSO/ZTA.

Let S,(n,€;C) denote the space of weight k adelic Hilbert cusp forms
f : G(@Q)\G(A) — C of level n with character ¢ modulo n, where n is a non-
zero ideal of O. Here the weight k = (k1, k») is the Hodge weight of the rank 2 pure
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motive M(f) with coefficient in the Hecke field Q(f) associated with any Hecke
eigenform f € S, (n,€;C) (see [BR93]). Though M(f) is possibly defined over a
quadratic extension F’ of F (depending on f), the Hodge weight is well defined
over F independent of the infinity places over a given place of F. For each field
embedding o : F < Q, taking an extension & of o to F', M(f) ®F 10005 C has
Hodge weights (k1 4, k2.+) and (k2.4, k15 ), and the motivic weight [k] 1= k15 + k25
is independent of o. We normalize the weight imposing an inequality «; , < k24.
This normalization is the one in [HMI, (SA1-3)]. Writing I (resp. I,) for the set
of all field embeddings into Q (resp. p-adic places) of F, we identify kj with
Y werkio0 € Z[I). Sometimes we identify 7, and I regarding , as a set of p-adic
places induced by i, o o for o € I. Often we use [ to denote ), o € Z[I]. If the
Hodge weight is given by x = (0, k) for an integer k > 1, traditionally, the integer
k + 1 is called the weight [of the cusp forms in S, (n, €; C)] at all o, but we use here

the Hodge weight «.
The “Neben character” ¢ we use is again not a traditional one (but the one
introduced in [HMI]). It is a set of three characters ¢ = (€1, ¢€;,€4), where

€4 1 FX/F* — C* is the central character of the automorphic representation sy
of G(A) generated by any Hecke eigenform 0 # f € S, (n, ¢; C). The character €+
has infinity type I — k| — k», and therefore its finite part has values in Q . The finite
order characters ¢; are Q-valued continuous characters of 0% = hrn ( /NO)*

with €;€; = €1 |5x. These characters ¢; (j = 1,2) factor through (0/ m)x for an
integral ideal 91. The two given data {¢;, >} are purely local and may not extend to
Hecke characters of the idele class group FY/F*. Put €~ := €€, ', and we assume
that €~ factors through (O/n)*; so, the conductor of €~ is a factor of n and 91 (which
could be a proper factor of n). Then for the level group

U= Uy(n) = {u= (%) € GZ) withc € i =10},
we have f(gu) = e(u)f(g) for all g € G(A) and u € U, where

€(u) = ex(det(u))e (an) = €1(det()) (€)™ (dn)

for the projection d, of d to ]_[”n Fy. The characters ¢; for j = 1, 2 factor through
(O/n;)* for some multiple n; of n but we do not insist on n = n;. As long as the local
component 77y of ¢ at a prime [|n;| is principal of the form 7 («, 8) or Steinberg
of the form o («, 8), we choose the data so that {¢;, €;} = {oz|0[x , ,3|le} (see [H89,
Sect. 2]). In other words, for a suitable choice of (¢, €;), we have a unique minimal
form f° € S,(n°, ¢; C) in 7y with minimal level n°|n. This minimal level n° of ¢
is a factor of the conductor of 7y but could be a proper factor of it. These minimal
forms are p-adically interpolated (the interpolation property is not always true for
new forms). A detailed description of cusp forms in S, (n, €; C) will be recalled in
Sect. 1.9 from [HMI].
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Throughout the paper, n denotes an O-ideal prime to p, and we work with cusp
forms of (minimal) level np’ % (r = Y pes, P € ZI[I)] with r, > 0 and prl =

l_[p|p p» 1, symbolically). Extend €; to a character of the finite adele group (FX’O))><
(trivial outside the level n; and trivial at a choice of uniformizer w at each prime ),
and extend the character € of U to the semi-group

Ao(n) = {(g b) € G(A®) N My(0)|dO + 7 =0, c e a}

by € (? Z) = ¢(ad — bc)(e7)"'(d,). The Hecke operator T(y) of the double
coset U (39) U = 38U is defined by fIT(y)(g) = Y 5 €(8)"'f(gd) [see (14)].
For a Hecke eigenform f, the eigenvalue a(y, f) of T(y) depends only on the ideal
n= ya N F [see (19)]; so, for each prime [ of F, we write a(l, f) for a(w, f) and put
T(1) := T(w), choosing a prime element @ of the [-adic completion O. Therefore
the yth Fourier coefficient c(y,f) of f is €;(y)a(y,f) for each Hecke eigenform f
normalized so that ¢(1,f) = 1, and the Fourier coefficient depends on y (if €; # 1)
not just on the ideal v. For [|np, we often write U(I) for T'(I). For a Hecke eigenform
fe S.(npt, €;C) (p + n) and a subfield H of Q, the Hecke field H(f) inside C is
generated over H by the eigenvalues a(l, f) of f for the Hecke operators T'(I) for all
prime ideals [ and the values of € over finite ideles. If H C Q, then H(f) is a finite
extension of H sitting inside Q.

Let W be a sufficiently large discrete valuation ring flat over Z,. Let I' = Z}}
(m = [F : Q]) be the maximal torsion-free quotient of OpX for 0, = O ®z Z,.
We use this symbol T exclusively for the base totally real field F. Later in
Sect. 1.12, for a CM quadratic extension M/F, we write I'y, for the maximal
p-profinite torsion free quotient of the anti-cyclotomic quotient of the ray class
group Cly (p*>°) = 1i<_mn Cly (p™) of M modulo p® (i.e., the projective limit of the ray
class group Cly(p") modulo p"). Here the anti-cyclotomic quotient is the maximal
quotient on which the generator ¢ of Gal(M/F) acts by —1. Note that we have a
natural inclusion: I' — I, but it could have finite cokernel. We fix once and for
all a splitting of the projection: 0;; — I' and decompose O[f =T x A for a finite
group A.
algebra A = Ay := W[[I']] with the power series ring W[[T]] (T = {T;}j=1,...m)
byl 3y =1t := (1+7T;) € A. We have W[[T]] = l(iLnn Wit ™1/ = 1),
where 1 = (1), ™' = (7"); and (#" — 1) is the ideal (' — 1,....# — 1) in
WI[T]]. In this way, we identify the formal spectrum Spf(A) with @m ®z, I'* for
I'* = Homg, (T, 7Z,), as t; giving the character of T'* corresponding #(y;*) = §;
for the dual basis {y;"}; of {y;};. Here G ®z, I'* sends a local p-profinite ring R
to the p-profinite group (1 + mg) ®z, I * as a group functor (for the maximal ideal
mpg of R).

A p-adic nearly ordinary analytic family of eigenforms F = {fp|P €
Spec(I)(C,)} is indexed by points of Spec(Il)(C,), where Spec(l) is an irreducible
component of the spectrum of the big nearly ordinary Hecke algebra h and is a
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torsion-free domain of finite rank over A (in this sense, we call Spec(l) a finite
torsion-free covering of Spec(A)). For each P € Spec(I)(C,), fp is a p-adic Hecke
eigenform of slope 0 and level np™ for a fixed prime to p-level n. The family
is called analytic because P — a(y, fp) is a p-adic analytic function on the rigid
analytic space associated with the formal spectrum Spf(I) in the sense of Berthelot
(cf. [dJ95, Sect. 7], see also [dJ98]). We call P € Spec() (@p) arithmetic of weight
k = k(P) € Z[I|* with character € = (€1,€,€4) if Koy — k1o > 1 for all
o € I (we write this condition as k, — k1 > I), €;|r has values in p,o (@p) and
Pt — 5 l(yj)yfz) = 0 for all j (regarding P as a W-algebra homomorphism
P : 1 — Q). Here y* = [[,q0(0) fory € 0, and k = Y ko0,
and k > I means k, > 1 for all 0 € [I. If P is arithmetic, fp is a classical
p-stabilized Hecke eigenform (not just a p-adic modular form). In order to make
the introduction succinct, we put off, to Sect. 1.9, recalling the theory of analytic
families of eigenforms including the definition and necessary properties of CM
families. We only remark that each universal nearly ordinary family comes from an
irreducible component Spec(Il) of the spectrum Spec(h) of the big nearly ordinary
Hecke algebra h, and we assume now that Spec(ll) is one of such irreducible
components.
In this paper, we prove the following theorem.

Theorem. Let Spec(l) be an irreducible (reduced) component of Spec(h) and
K = Q(upoe). Then 1 is a non-CM component if there exists a prime | of F and
an infinite set A of arithmetic points in Spec(l) of a fixed weight k with k, — k1 > 1
such that

lim sup[K (a(l,fp)) : K] = oo.
PeA

Indeed, if I is a CM component, the degree [K(fp) : K] is bounded independently of
arithmetic P. Conversely, if I is a non-CM component, there exists a set of primes &
of F with Dirichlet density one such that for any infinite set A of arithmetic points
in Spec(ll) of a fixed weight k with ky — k1 > I, we have

limsup[K (a(l,fp)) : K] = oo foreach!| € E.
pPeA

In particular, for any bound B > 0, the set of arithmetic primes P of given weight k
in Spec(I)(Q,) with [K(fp) : K] < B is finite for a non-CM component 1.

The first assertion and the boundedness of [K(fp) : K] (for a CM component
I) independently of arithmetic P follow from the construction of CM families in
Sects. 1.12 and 1.13 (see [H11, Corollary 4.2] for the argument for F = Q which
holds without modification for general F). We prove in this paper a slightly stronger
statement than the converse in the theorem. The formulation of Theorem 3.1 is a
bit different from the above theorem asserting that boundedness of [K(a([, fp)) : K]
(P € A) over [ € X implies that I is a CM component as long as X has positive
upper density.
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We could have written the assertion of the theorem as limpe 4 [K (a(l, fp)) : K] = 00
for the “limit” with respect to the filter of A given by the complement of all finite
subsets of A instead of limsuppc 4[K(a(l,fp)) : K] = oco. Hereafter we use this
filter and use limpe 4 instead of limsuppe 4. In [H11] (and [H13]), we proved a
similar result for K[a(p, fp)] for p|p. Here the point is to study the same phenomena
for a(l, fp) for [ outside np. Indeed, we proved in [H14] the above fact replacing the
nearly ordinary Hecke algebra by the smaller cyclotomic ordinary Hecke algebra
of one variable. The many variable rigidity lemma (see Lemma 4.1) enabled us
to extend our result in [H14] to the many variable setting here. We expect that,
assuming Kk, — k1 > 1,

Il)irr}‘[K(a([, fp)) : K] = oo for any single | } np if Lis a non CM component
€

as in the case of p|p (see Conjecture 3.5). As in [H11], the proof of the above
theorem is based on the elementary finiteness of Weil /-numbers of given weight in
any extension of Q(upo) of bounded degree up to multiplication by roots of unity
and rigidity lemmas (in Sect.4) asserting that a geometrically connected formal
subscheme in a formal split torus stable under the (central) action ¢ +— * of z in
an open subgroup of Z;f is a formal subtorus. Another key tool is the determination
by Rajan [Rj98] of compatible systems by trace of Frobeniai for primes of positive
density (up to character twists).

Infinite growth of the absolute degree of Hecke fields (under different assump-
tions) was proven in [Se97] for growing level N, and Serre’s analytic method is now
generalized to (almost) an optimal form to automorphic representations of classical
groups by Shin and Templier [ST13]). Our proof is purely algebraic, and the degree
we study is over the infinite cyclotomic field Q[u,o<] (while the above papers use
non-elementary analytic trace formulas and Plancherel measures in representation
theory). Our result applies to any thin infinite set A of slope 0 non-CM cusp forms,
while in [Se97] and [ST13], they studied the set of all automorphic representations
of given infinity type (and given central character), growing the level. Note here
the Zariski closure of A could be a transcendental formal subscheme of @m Qr*
relative to the rational structure coming from 7 and could have the smallest positive
dimension 1, while dim @m ®I'* = m = [F : Q]. Another distinction from earlier
works is that we are now able to prove that the entire I has CM if the degrees
[K(fp) : K] are bounded only over arithmetic points P of a possibly very small
closed subscheme in Spf(l).

To state transcendence results of Hecke operators, let L/F be a finite field
extension inside C, with integer ring Oy, and look into the torus 7; = Reso, ;z2G».
Write Zy,) = QN Z, and O,y = O ®z Zg) C L*. Consider an algebraic
homomorphism v € Homgp scheme (T2, Tr). We regard v : Ti(Z,) = OZ’p =
(OL ®z Zp)* — Tr(Q,) D Tr(Zy) = O,. Project v(T1(Zp)) N Tr(Zy) C Oy
to the maximal torsion free quotient I' of 0;;. As an example of QQ,-rational v (so,
v(Or,p) C Tr(Zy) = O;f), we have the norm character Ny q or, if L is a CM field
with a p-adic CM type @ (in the sense of [HT93]), v : (L ®q Q)™ — Q; given by
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V() = Hw€¢ &¥. Define an integral domain R = R, to be the subalgebra of Az,
generated over Z,) by the projected image G of v(T7.(Z,)) N O, in I'. Note that for
any £ € R, and any arithmetic point P, P(§) = &p is in L& (juy, 00 ) for the Galois
closure L& of L/Q and for a sufficiently large 0 < N € Z for which .y receives
all the values of characters of A (e.g., N = |A|). The field L& (yy, j1,00) is a finite
extension of Q(u,o<). For an integral domain A, write Q(A) for the quotient field
of A. By definition, R, is isomorphic to the group algebra Z,)[G] of the torsion-
free group G. Unless G = {1}, the quotient field Q(R,) has infinite transcendental
degree over Q.

If the family (associated with II) contains a theta series of weight « with k, —k| >
I of the norm form of a quadratic extension M,r, M is a CM field, and all forms
indexed by Spec(I) have CM by the same CM field M (see Sects. 1.12 and 1.13).
In particular, the ring generated over Z,, by a(l) for primes [ of F' in any CM
component is a finite extension of R, taking L = M for v given by a CM type
of M; so, the Hecke field has bounded degree over Q(t,00) for any CM component.
Fix an algebraic closure Q of the quotient field 0 = Q(A z,) of Az,. We regard I as

a subring of Q. As a corollary of Theorem 3.1, we prove

Corollary 1. Let the notation be as above; in particular, Spec(l) is an irreducible
(reduced) component of Spec(h). We regard 1 C Q as A-algebras andR, C A C Q.
Take a set X of prime ideals of F prime to pn. Suppose that ¥ has positive upper
density. If Q(R,)[a()] C Q for all | € X is a finite extension of Q(R,) for the
quotient field Q(R,) of R,, then I is a component having complex multiplication by
a CM quadratic extension M r.

An obvious consequence of the above corollary is

Corollary II. Let the notation be as in the above theorem. If 1 is a non-CM
component, for a density one subset & of primes of F, the subring Q(R,)[a(0)] of O
forall | € B has transcendental degree 1 over Q(R),).

We could have made a conjecture on a mod p version of the above corollary as
was done in [H14, Sect. 0], but we do not have an explicit application (as discussed
in [H14]) to the Iwasawa p-invariant of the generalized version; so, we do not
formulate formally the obvious conjecture. We denote by a Gothic letter an ideal
of a number field (in particular, any lowercase Gothic letter denotes an ideal of F).
The corresponding Roman letter denotes the residual characteristic if a Gothic letter
is used for a prime ideal. Adding superscript “(c0)”, we indicate finite adeles; so,
for example, (F\™)* = {x € FX|xeo = 1}. Similarly, A?> is made of adeles
without p and co-components.

The author would like to thank the referees for their careful reading.
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1 Hilbert Modular Forms

We recall the arithmetic theory of Hilbert modular forms limiting ourselves to what
we need later. The purpose of giving fair detail of the moduli theoretic interpretation
of Hilbert modular forms here is twofold: (1) to make this article essentially self-
contained and (2) because most account of this theory was written before the
publication of the paper of Deligne—Pappas [DP94] and because there seems no
detailed account available explaining that the correction to the original treatment in
[Rp78] does not affect much the theory of p-adic modular forms.

Though most results in this section are used implicitly in the rest of the paper,
the author also thought that it would be good to give a summary of the theory as
this conference participants are very diverse and some of the people are quite far
from the author’s area of research. The reader who is familiar with the theory can
go directly to Sect. 1.13 where a characterization of CM components is given (which
is essential to the sequel). We keep the notation used in the introduction.

1.1 Abelian Varieties with Real Multiplication

Put O* = {x € F|Tr(xO) C Z} (which is the different inverse 9~!). Recall the level
ideal n, and fix a fractional ideal ¢ of F prime to pn. We write A for a fixed base
commutative algebra with identity, in which the absolute norm N(c) and the prime-
to-p part of N(n) are invertible. To include the case where p ramifies in the base
field F, we use the moduli problem of Deligne—Pappas in [DP94] to define Hilbert
modular varieties. As explained in [Z14, Sects.2 and 3], if p is unramified in F,
the resulting p-integral model of the Hilbert modular Shimura variety is canonically
isomorphic to the one defined by Rapoport [Rp78] and Kottwitz [Ko92] (see also
[PAF, Chap. 4]). Writing ¢ for the monoid of totally positive elements in ¢, giving
data (c, c4) is equivalent to fix a strict ideal class of ¢. The Hilbert modular variety
M = M(c; n) of level n classifies triples (X, A, i),s formed by

¢ An abelian scheme 7 : X — § of relative dimension m = [F : Q] over an
A-scheme S (for the fixed algebra A) with an embedding: O < End(X/s);

A
e An O-linear polarization X' := Picg)(/s — X ® ¢ inducing an isomorphism
(c,ey) = (Hom?m(X/S,X;S),P(X,X;S)), where Homgym(X/g,X;S) is
the O-module of symmetric O-linear homomorphisms and P(X,X;S) C

Hom{" (X /s, X/s) is the positive cone made up of O-linear polarizations;
* A closed O-linear immersion i = iy, : (G,, ®z 0*)[n] < X for the group (G, ®z
O*)[n] of n-torsion points of the multiplicative O-module scheme G,, ®7 O*.

By A, we identify the O-module Homy" (X /s, X)s) of symmetric O-linear homo-
morphisms inside Homg(X/s, X;S) with ¢. Then we require that the (multiplicative)
monoid of symmetric O-linear isogenies induced locally by ample invertible sheaves
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be identified with the set of totally positive elements ¢ C ¢. The quasi-projective
scheme 91 = M(c;n)/4 is the coarse moduli scheme of the following functor g
from the category of A-schemes into the category SETS:

PS) = [(X, A.i)s]

where [ ] = { }/ = is the set of isomorphism classes of the objects inside the
brackets, and we say (X, A,i) =~ (X', A’,{) if we have an O-linear isomorphism
¢ : X5 — Xjgsuchthat A" = poAog and i'* op = i*(& ¢poi = 1i). The
scheme 91 is a fine moduli scheme if n is sufficiently deep (see [DP94]).

1.2  Geometric Hilbert Modular Forms

In the definition of the functor g in Sect. 1.1, we could impose local Os ®7z O-
freeness of the Os ®z O-module 74 (L2x/s) as was done by Rapoport in [Rp78]. We
consider an open subfunctor o of o which is defined by imposing local freeness of
4+ (R2x/s) over Os ®z O. Over Z[DLF] for the discriminant Dy of F, the two functors
©F and p coincide (see [DP94]). We write 9%(¢; n) for the open subscheme of
M (c; n) representing EX. For w with 74(Qx/s) = (Os ®z O)w, we consider the
functor classifying quadruples (X, A, i, w):

Q(S) = [(X. A.iiw)s].

Weleta € Tr(S) = H(S, (Os®z0)*) acton Q(S) by (X, A, i,w) — (X, A, i, aw).
By this action, Q is a Tg-torsor over the open subfunctor pR of g; so, Q is
representable by an A-scheme M = M(c; n) affine over MF = 9MR(c;n) 4. For
each weight k € X*(Tp) = Homgp.sch(Tr, G, if F # Q, the k~'-eigenspace of
H°(M 4, Opq/4) is the space of modular forms of weight k integral over a ring
A. We write Gi(c,n;A) for this space of A-integral modular forms, which is an
A-module of finite type. Thus f € Gi(c,n;A) is a functorial rule (i.e., a natural
transformation f : Q — (,) assigning a value in B to each isomorphism class of
(X, A, i, w),p (defined over an A-algebra B) satisfying the following four conditions:

(GO) the value f at every cusp is finite (see below for its precise meaning);

(Gl) f(X,A,i,w) € Bif (X, A,i,w) is defined over B;

(G2) f(X,A,i,w)®pB') = p(f(X,A,i,w)) for each morphism p : Bjy — B;A;
(G3) f(X,A,i,aw) = k(a)"'f(X, A, i, o) for a € Tr(B).

Strictly speaking, the condition (GO) is only necessary when F' = Q by the Koecher
principle (see below at the end of this subsection for more details). By abusing the
language, we consider f to be a function of isomorphism classes of test objects
(X. A, i, w), hereafter. The sheaf of k~'-eigenspace Oxq[k™"] under the action of
Tr is an invertible sheaf on DJ?fA. We write this sheaf as @ (imposing (GO) when
F = Q). Then we have

Gi(e,m;A) =~ HO(S)TR(c;n)/A,Q’;A) canonically,
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as long as 9MR(c;n) is a fine moduli space. Writing X := (X, A,i,®) for the
universal abelian scheme over MK, s = f(X)w* gives rise to the section of w*.
Conversely, for any section s € H°(OMMR(c;n), w*), taking the unique morphism
¢ : Spec(B) — MR such that ¢*X = X for X := (X, A,i,w),p, we can define
f € Grby ¢*s = fX)a,

We suppose that the fractional ideal ¢ is prime to np, and take two ideals a
and b prime to np such that ab=' = ¢. To (a,b), we attach the Tate AVRM
Tate, 5 (q) defined over the completed group ring Z((ab)) made of formal series
flg) = Zg»_w a(§)¢* (a(§) € 7). Here £ runs over all elements in ab, and there
exists a positive integer n (dependent on f) such that a(§) = 0 if o (§) < —n for
some o € I. We write A[[(ab)>]] for the subring of A[[ab]] made of formal series f
with a(§) = 0 for all £ with 0(§) < 0 for at least one embedding o : F — R.
Actually, we skipped a step of introducing the toroidal compactification of 9%
and 91 (done in [Rp78] and [DP94]), and the universal abelian scheme over the
moduli scheme degenerates to Tate, , (¢) over the spectrum of (completed) stalk at
the cusp corresponding to (a, b). The toroidal compactification of the scheme SUI?A
is proper normal by Deligne and Pappas [DP94] and hence by Zariski’s connected
theorem, it is geometrically connected. Since 9% is open dense in each fiber of 9
(as shown by Deligne and Pappas [DP94]), it is geometrically connected. Therefore
the g-expansion principle holds for H*(90tR (¢; n), w*). We refer details of these facts
to [K78, Chap.I], [C90, DT04, Di03, DP94] [HT93, Sect. 1] and [PAF, Sect. 4.1.4].
The scheme Tate, p(g) can be extended to a semi-abelian scheme over Z[[(ab)xo]]
adding the fiber G,, ® a* over the augmentation ideal 2. Since a is prime to p,
a, = O,. Thus if A is a Z,-algebra, we have the identity: A ®z a* = A ®z, a["; =
A ®z, 0; = A ®z O*, and we have a canonical isomorphism:

Lie(Tateq p(q) mod 2A) = Lie(G, ® a*) =2 A ®z a* = A ®7 O*.

By duality, we have Que, 4 (g)/All(ab)=o] = A[[(ab)>0]]. Indeed we have a canon-
ical generator wea, of Qrue, ,(q induced by % ® 1 on G,, ® a*. Since a is
prime to n, we have a canonical inclusion (G,, ® O*)[n] = (G, ® a*)[n]
into G,, ® a*, which induces a canonical closed immersion i, : (G, ®
O*)[n] < Tatesp(g). As described in [K78, (1.1.14)] and [HT93, p. 204],
Tate, »(g) has a canonical c-polarization A ,,. Thus we can evaluate f € G (c, n; A)
at (Tateq.5(q), Acans ican> @can)- The value f(g) = fa.6(q) actually falls in A[[(ab)>o]]
(if F # Q : Koecher principle) and is called the g-expansion at the cusp (a, b).
Finiteness at cusps in the condition (GO) can be stated as

(GO)  fap(q) € All(ab)=o]] for all (a, b).
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1.3 p-Adic Hilbert Modular Forms of Level np™

Suppose that A = 1(1111 A/p"A (such aring is called a p-adic ring) and that n is prime
to p. We consider a functor into sets

@A) = [(X, ALy, in))s]

defined over the category of p-adic A-algebras B = Ig_n B/p"B. An important point
is that we consider an embedding of ind-group schemes i), : [0 ®z, 0; — X[p*]
(in place of a differential w), which induces @m ® 0; ~ X for the formal completion

X along the identity section of the characteristic p-fiber of the abelian scheme X over
A.

We call an AVRM X over a characteristic p ring A p-ordinary if the Barsotti—Tate
group X[p°°] is ordinary; in other words, its (Frobenius) Newton polygon has only
two slopes 0 and 1. In the moduli space 9t(c; n) /F,» locally under Zariski topology,
the p-ordinary locus is an open subscheme of 9t(¢; n). Indeed, the locus is obtained
by inverting the Hasse invariant (over 9i(c; n) /Fp)- So, the p-ordinary locus inside
IR (¢; 1) is open in MF(c;n). In the same way as was done by Deligne—Ribet and
Katz for the level p*>°-structure, we can prove that this functor is representable by the
formal completion MR (c;n) of MR (c; n) along the p-ordinary locus of the modulo
p fiber (e.g., [PAF, Sect. 4.1.9]).

Take a character k € Z[I]. A p-adic modular form f;4 over a p-adic ring
A is a function (strictly speaking, a functorial rule) of isomorphism classes of
(X, A, ip,in)/g (in 1 Gy ®z O*[n] — X) satisfying the following three conditions:

(Pl) f(X.A,iy,in) € Bif (X, A, ip, iy) is defined over B;

P2) f(X,A.ip.in) ®g B') = p(f(X,A,ip,iy)) for each continuous A-algebra
homomorphism p : B — B,

(P3)  fan(q) € A[[(ab)>o]] for all (a, b) prime to np.

We write V(c, np; A) for the space of p-adic modular forms satisfying (P1-3). By
definition, this space V (¢, np®>; A) is a p-adically complete A-algebra.

The g-expansion principle is valid both for classical modular forms and p-adic
modular forms f:

(g-exp)  The g-expansion: f — f4v(q) € A[[(ab)>o]] determines f uniquely.

This follows from the irreducibility of the level p® Igusa tower, which was proven
in [DR80] (see also [PAF, Sect. 4.2.4] for another argument).

Fix a generator d of 0;. Since @m ® O* has a canonical invariant differential
% ®d, we have w, = i, « (% ®d) on X, [under the notation of (P1-3)]. This allows
us to regard f € Gi(c, n; A) as a p-adic modular form by

FX A i in) 1= fX A i, @)).

By (g-exp), this gives an injection of Gi(c,n;A) into V(c,np®>;A) preserving
g-expansions.
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1.4 Complex Analytic Hilbert Modular Forms

Over C, the category of test objects (X, A, i, w) is equivalent to the category of
triples (£, A, i) made of the following data (by the theory of theta functions): £
is an O-lattice in O ®z C = C', an alternating pairing A : £ Ag £ = ¢* and
i:n*/O0* — FL/L. The alternating form A is supposed to be positive in the sense
that A (4, v)/ Im(uv©) is totally positive definite. The differential w can be recovered
by ¢ : X(C) = C!/L so that @ = t*du where u = (s ),¢; is the variable on C’.
Conversely

Ly = {/w € 0®zCly EHI(X((C),Z)}
¥
is a lattice in C’, and the polarization A : X’ ~ X ® cinduces Lx A Lx & c*.
Using this equivalence, we can relate our geometric definition of Hilbert modular
forms with the classical analytic definition. Define 3 by the product of I copies of
the upper half complex plane §). We regard 3 C F ® g C = C'. For each z € 3, we
define

L, = 271«/—_1(bz+ a*), AZ(ZN\/—_l(az—f-b),Zn«/—_l(cz—f-d)) = —(ad—bc) € ¢*

with i, : n*/0* — C!/L, given by i.(a mod O*) = (2m+/—la mod L,).
Consider the following congruence subgroup 1"11 (n; a, b) given by

{(44) e sLa()

a,d €0, b e (ab)*, ¢ € nabd and d — 1 en}.

Write [ (e;n) = T](n; 0, ¢7"). We let g = (g5) € SLay(F ®g R) = SLy(R)! act
on 3 by linear fractional transformation of g, on each component z,,. It is easy to
verify

(Lo AL i) = (L Ayiy) <= w=y(z) fory e I} (n;a,b).

The set of pairs (a, b) with ab™! = ¢ is in bijection with the set of cusps (unramified
over o) of Fll (n; a, b). Two cusps are equivalent if they transform to each other by
an element in I'! (n; a, b). The standard choice of the cusp is (O, ¢ '), which we call
the infinity cusp of 9(c; n). For each ideal t, (t, tc™!) gives another cusp. The two
cusps (t, tc™") and (s, sc!) are equivalent under Fll (¢;n) if t = as for an element
o € F* witha =1 mod nin F. We have

M(c;n)(C) = T} (c;n)\3, canonically.

Recall G := Resp/zGL(2). Take the following open compact subgroup of
G(A®);

Ul(n) = {(f[’}) € G(z)}c enO and a=d=1 mod na},
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and put K = K| (n) = (¢ ?)_1 Ul(n) (49) for an idele d with dO = d and dy = 1.
Here for an idele and an O-ideal a # 0, we write x,, for the projection of x to ]_[” Fr

and x(® = xx;l. Then taking an idele ¢ with cO =Tand c. = 1, we see that

riEm c (DK N6@y)

for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a complete representative set {c} C Fj for the strict ray class group
CI (n) modulo n, we find by the approximation theorem that

G = || c@(§9)k-G®*

cecrt (n)
for the identity connected component G(R) ™ of the Lie group G(R). This shows

G(Q\G(A)/KC = GQ+\G(A)+/KCi = | | M(em)(O), ()

ceCl:'-_(n)

where G(A) 4 = G(A®)G(R)™ and Cj is the stabilizer of i = (v/—1,...,+/—1) €
3in G(R)T. By (1), a CIf (n)-tuple (f;). with f. € Gi(c,n; C) can be viewed as a
single automorphic form defined on G(A).

Recall the identification X*(Tr) with Z[I] so that k(x) = [, o(x)* for k =
> s keo € Z[I]. Regarding f € Gi(c,n;C) as a function of z € 3 by f(z) =
f(L,, A, i), it satisfies the following automorphic property:

fy©@) =1 l_[(c“z(7 +d°)% forally = (¢54) € T{(cin). )

The holomorphy of f follows from the functoriality (G2). The function f has the
Fourier expansion

f@= > a@erE)

£€(ab)>o

at the cusp corresponding to (a, b). Here ez(£z) = exp(2nv/—1)_, §%2z,). This
Fourier expansion gives the g-expansion f, , (¢) substituting ¢¢ for er(£z).

1.5 Ty-Level Structure and Hecke Operators

We now assume that the base algebra A is a W-algebra. Choose a prime q of F. We
are going to define Hecke operators U(q") and T'(1, q") assuming for simplicity that
q 4 pn, though we may extend the definition to arbitrary q (see [PAF, Sect. 4.1.10]).
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Then X[q'] is an étale group scheme over B if X is an abelian scheme over an A-
algebra B. We call a subgroup C C X cyclic of order q" if C =~ O/q" over an étale
faithfully flat extension of B.

We can think of quintuples (X, A, i, C,),s adding an additional information
C of a cyclic subgroup scheme C C X cyclic of order q". We define the space
of classical modular forms G (¢, n, [p(q"); A) (resp. the space V (¢, np™, Th(q"); A)
of p-adic modular forms) of prime-to-p level (n, ((q")) by (GO0-3) [resp. (P1-
3)] replacing test objects (X, A, i, w) [resp. (X, A,in,ip)] by (X, A, i, C,w) [resp.
X, A, in, C.ip)l.

Our Hecke operators are defined on the space of prime-to-p level (n, ['o(q")).
The operator U(q") is defined only when » > 0 and T'(1, q") is defined only when
r = 0. For a cyclic subgroup C’ of X,p of order ¢", we can define the quotient
abelian scheme X/C’ with projection 7 : X — X/C’. The polarization A and the
differential @ induce a polarization 7« A and a differential (7*)~'w on X/C'. If
C' N C = {0} (in this case, we call that C' and C are disjoint), (C) gives rise to
the level ['y(q")-structure on X/C’. Then we define U(q)-operators acting on f €
V(eq";np®, To(q"); A) by

1

f|U(C|n)(X7 Av Cv iﬂﬂ C’ lP) = N(qn)

Y fX/C A T oin.(C).woiy)  (3)
C/

where C’ runs over all cyclic subgroups of order ¢" disjoint from C. Since w« A =
oA ox'isa cq-polarization, the modular form f has to be defined for abelian
varieties with cq"-polarization.

As for T(1,q"), since q 4 n, forgetting the I'y(q")-structure, we define 7(1, ")
acting on f € V(cq"; np*; A) by

1

f|T(]’qn)(Xv A»iuvip) = N(qn)

D F(X/C A woin. woiy) if f € V(A),  (4)
C/

where C’ runs over all cyclic subgroups of order q". We check that f|U(q") [resp.
T(1,q")] belongs to V(cq*; np>, Ty(q"); A) [resp. V(cq"; np®>; A)], and compatible
with the natural inclusion Gi(c,n,To(q");A) — V(cq";np™,To(q");A) [resp.
Gi(c,m;A) — V(cq";np®>;A)] defined at the end of Sect. 1.3; so, these Hecke
operators preserve classicality. We have

U(q") = U(a)".

1.6 Hilbert Modular Shimura Varieties

We extend the level structure i limited to n-torsion points to far bigger structure
n® including all prime-to-p torsion points. Let Zyy = Q N Z, (the localization
of Z at (p)). Triples (X, A, n®) /s for Z,)-schemes S are classified by an integral
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model Sh;pz)(l)) (cf. [Ko92]) of the Shimura variety Sh,q associated with the algebraic
Zy-group G (in the sense of Deligne [D71, 4.22] interpreting Shimura’s original
definition in [Sh70] as a moduli of abelian schemes up to isogenies). Here the
classification is up to prime-to-p isogenies, and A is an equivalence class of
polarizations up to multiplication by totally positive elements in F prime to p.

To give a description of the functor represented by Sh”, we introduce some more
notations. We consider the fiber category A(If) over schemes defined by

(Object) abelian schemes X with real multiplication by O;
(Morphism) HomA(ﬁm (X,Y) = Hom(X,Y) ®z Z).

Isomorphisms in this category are isogenies with degree prime to p (called “prime-
to-p isogenies”), and hence the degree of polarization A is supposed to be also prime
to p. Two polarizations are equivalent if A = ¢A’ = A’ o i(c) for a totally positive
¢ prime to p. We fix an O-lattice L C V = F? with O-hermitian alternating pairing
(-,-) inducing a self-duality on L, = L ®z Z,.

For an open-compact subgroup K of G(A®) maximal at p (i.e., K = G(Z,) x
K®)), we consider the following functor from Z,-schemes into SETS:

PP(S) = [ A7) 5 with (den)| 5)

Here 77 : L @7 AP® =~ VO (X) = T(X) ®z AP is an equivalence class

of n” modulo multiplication n® > 3n® o k by k € K® for the Tate module

T(X) = lim X [n] (in the sheafified sense that n” = (7)® mod K étale-locally),
n

anda A € A induces the self-duality on L, Aslongas K ) is sufficiently small, pép)
is representable over any Z)-algebra A (cf. [Ko92, DP94] and [Z14, Sect.3]) by a
scheme Shg,4 = Sh/K, which is smooth over Spec(Z,)) if p is unramified in Fq
and singular if p|Dr but is smooth outside a closed subscheme of codimension 2 in

the p-fiber Sh?) xz,, IF,, by the result of [DP94]. We let g € G(A¥>) act on Sh}pz)(p)
by

x=XAngx)=XAnog).

which gives a right action of G(A) on Sh®) through the projection G(A) —»
G(AP>),

By the universality, we have a morphism 9t(c; n) — Sh®)/ f} (¢; ) for the open
compact subgroup: f%(c; n) = (§9)Ki(m)(§ ?)_1 = (Cd(;l 9) Ul(n) (Cd(;l ?)_1
maximal at p. The image of M1(c; n) gives a geometrically irreducible component
of Sh?»/ f{(c; n). If n is sufficiently deep, we can identify 2(c; n) with its image
in Sh?)/ f}(c; n). By the action on the polarization A + aA for a suitable totally
positive & € F, we can bring 9t(c; n) into M(xc; n); so, the image of 1(i£1n M(c;n)

in Sh® only depends on the strict ideal class of ¢ in lim Cl;" (n).
<—n: o

n+(p)=
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1.7 Level Structure with “Neben” Character

In order to make a good link between classical modular forms and adelic automor-
phic forms (which we will describe in the following subsection), we would like to
introduce “Neben” characters. We fix an integral ideal n’ C O. We think of the
following level structure on an AVRM X:

i1 (G ®O0")[] < X[n'] and i : X[W'] — O/n, 6)

where the sequence

1 > (G ® 0[] - X[n'] > 0/n' — 0 )

is exact and is required to induce a canonical duality between (G,, ® O*)[n’] and
O/v’ under the polarization A. Here, if n’ = (N) for an integer N > 0, a canonical
duality pairing

(.9} 1 (G, ® O[N] x O/N — iy

is given by ({ @ a,m ® B) = ") for (o, B) € O* x O and (¢, m) € uy x Z/N
identifying (G,, ® O*)[N] = uy ® O* and O/N = (Z/NZ) ®z O. In general,
taking an integer 0 < N € n’, the canonical pairing between (G,, ® O*)[n’] and
O/v is induced by the one for (N) via the canonical inclusion (G, ® O*)[n'] —
(G, ® 0*)[N] and the quotient map O/(N) — O/v’.

We fix two characters €; : (O/n)* — A* and ¢, : (O/n')* — A%, and we insist
for f € Gi(c,n;A) on the version of (GO-3) for quintuples (X, A,i-a,d-i,®) and
the equivariancy:

fX,A,i-d,a-i,0) = e (de(a)f(X,A,i, i, w) fora,d € (O/n)*.  (Neben)

Here the order €;(d)e,(a) is correct as the diagonal matrix (g 2) in T2(0/vw') C
GL,(0/n’) acts on the quotient O/n’ by a and the submodule (G,, ® O*)[n'] by
d. The ordering of €1, €, is normalized with respect to the Galois representation
local at p of f (when f is a p-ordinary Hecke eigenform so that €; as a Galois
character corresponds to the quotient character of the local Galois representation;
see (Ram) in Sect.1.11). Here A is the polarization class modulo equivalence
relation given by multiplication by totally positive numbers in F prime to p. We
write Gi(c, [o(n), €; A) (¢ = (€1, €3)) for the A-module of geometric modular forms
satisfying these conditions.
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1.8 Adelic Hilbert Modular Forms

Let us interpret what we have said so far in automorphic language and give a
definition of the adelic Hilbert modular forms and their Hecke algebra of level n
(cf. [H96, Sects. 2.2-4] and [PAF, Sects. 4.2.8-4.2.12]).

We consider the following open compact subgroup of G(A():

Uo(n) = {(g b) € G@)|c =0 mod n6} :
Ul(n) = {(‘C‘f}) € Uy(m)la=d =1 mod na} 8)
where O = 0 ®7 Z and Z = [1; Z¢. Then we introduce the following semi-group
Ao(n) = {(g b) € G(A®) N My(0)|c = 0 mod 10, dy, € 0:} : )

where d, is the projection of d € Oto On =11
maximal diagonal torus 7% of GL(2) 0. Putting

qln Oq for prime ideals q. Recall the

Do = {diag[a, dl = (29) € TA(Fyo0) N Ma(0)|dy = 1} : (10)
we have (e.g., [MFG, 3.1.6] and [PAF, Sect. 5.1])
Ao(n) = Up(n)DoUp(n). (11)

In this section, the group U is assumed to be a subgroup of Uy(np®*) with U D
Ul(np®) for some 0 < a < oo. Formal finite linear combinations Y 5 csUSU
of double cosets of U in Ayg(np®) form a ring R(U, Ag(np®)) under convolution
product (see [IAT, Chap. 3] or [MFG, Sect.3.1.6]). Recall the prime element w
of Oy for each prime q fixed in the introduction. The algebra is commutative and
is isomorphic to the polynomial ring over the group algebra Z[Uy(np®)/U] with
variables {T'(q), T(q, q) }4. Here T(q) (resp. T(q, q) for primes q + np®) corresponds
to the double coset U (7 (1)) U (resp. UywqU). The group element u € Uy(np®)/U
in the group algebra Z[Uy(np*) /U] corresponds to the double coset UuU (cf. [HI5,
Sect. 2]).

As in the introduction, we extend ¢; to a character of (F™)* ¢ 0% x [] Ty
trivial on the factor ]_[q qu, and denote the extended character by the same symbol
¢;. In [HMI, (ex0-3)], €, is extended as above, but the extension of ¢; taken there
is to keep the identity €4 = €€, over (F‘(&OO))X. The present extension is more
convenient in this paper.

The double coset ring R(U, Ag(np®)) naturally acts on the space of modular
forms on U. We now recall the action (which is a slight simplification of the action
of [UxU] given in [HMI, (2.3.14)]). Recall the diagonal torus T2 of GL(2) /05 SO,
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TA = an /0" Since T2(0/n') is canonically a quotient of Uy(n’) for an ideal ', a
character € : T2(0/n’) — C* can be considered as a character of Uy(n'). If ¢; is
defined modulo n;, we can take n’ to be any multiple of n; Nn,. Writing e ((§9)) =
e1(a)ex(d), if € = €1€;" factors through (O/n)* for for an ideal n|n’, then we can
extend the character € of Uy(n') to Ag(n) by putting €(§) = €;(det(8))(e™) "' (dy)
for § = (%) € Ag(n) (as before). In this sense, we hereafter assume that € is
defined modulo n and regard € as a character of the group Up(n) and the semi-group
Ap(n). Recall that e : FX — C* is a Hecke character trivial on F* with infinity
type (1 — [¢])I (for an integer [k]) such that €4 (z) = €1(z)ex(z) forz € 0*.

Recall the set 7 of all embeddings of F into @ and Tﬁ for Resp /ZTA (the diagonal
torus of G). Then the group of geometric characters X*(T2) is isomorphic to Z[]?
so that (m,n) € Z[I]* send diag[x,y] € T2 to x"y" = [1,e/(0(x)" o (y)*). Taking
Kk = (k1,k2) € Z[I]?, we assume [k]] = k| + k2, and we associate with « a factor
of automorphy:

Je(g. 1) = det(800) " Lj(goo. 7)1 for g € G(A) and T € 3. (12)

We define S, (U, €; C) for an open subgroup U C Uy(n) by the space of functions
f: G(A) — C satisfying the following three conditions (e.g., [HMI, (SA1-3)] and
[PAF, Sect.4.3.1]):

(S1)  f(oxuz) = e(u)es(2)f(x)J (u, i)~ fora € G(Q),u € U- C;and z € Z(A).

(S2) Choose u € G(R) with u(i) = 7 for t € 3, and put f,(v) = f(xu)J, (u, i) for
each x € G(A®®) (which only depends on 7). Then f, is a holomorphic function
on 3 for all x.

(S3) f(r) for each x is rapidly decreasing as n, — oo (r = & +in) forallo e[
uniformly.

If we replace the expression “rapidly decreasing” in (S3) by “slowly increasing,” we
get the definition of the space G, (U, €; C). It is easy to check (e.g., [HMI, (2.3.5)]
that the function f, in (S2) satisfies

fly(@) =€ ' y)f(t)e(y.7) forall y € T(U), (13)

where T',(U) = xUx"'G(R) " NG(Q). Also by (S3), f, is rapidly decreasing towards
all cusps of Ty; so, it is a cusp form. If we restrict f as above to SL,(Fy), the
determinant factor det(g)“' ! in the factor J, (g, T) disappears, and the automorphy
factor becomes only dependent on k = k, — k1 + I € Z][I]; so, the classical modular
form in Gy has single digit weight k € Z][I]. Via (1), we have an embedding of
S (Upo(n'), €; C) into Gy(To(n'),e;C) = @[c]ea; Gi(c,To(n'), €; C) (¢ running
over a complete representative set prime to n’ for the strict ideal class group Cl:f)
bringing f into (f.)( for f. = £, [as in (S3)] with x = (Cd(;l ?) (for d € F} with
do = ). The cusp form f, is determined by the restriction of f to x-SL, (F4). Though

in (13), €' shows up, the Neben character of the direct factor Gi(c, To(n'), €; C) is
given by €, since in (Neben), the order of (a, d) is reversed to have €;(d)ez(a). If we
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vary the weight « keeping k = k» — k1 + I, the image of S, in Gy(T'o(n'), €; C)
transforms accordingly. By this identification, the Hecke operator T'(q) for non-
principal q makes sense as an operator acting on a single space G, (U, €; C), and
its action depends on the choice of «.

It is known that G, = O unless k| +xp = [k + k]I for [k| + k3] € Z, because I —
(k1 + k») is the infinity type of the central character of automorphic representations
generated by G,. We write simply [«] for [k; 4+ k2] € Z assuming G, # 0. The
SL(2)-weight of the central character of an irreducible automorphic representation
7 generated by f € G, (U, €; C) is given by k (which specifies the infinity type of
Too as a discrete series representation of SL, (Fg)).

In the introduction, we have extended ¢; to (FXX’))>< and € to Ag(n) (as long as
€ is defined modulo 1), and we have €(8) = €;(det(8))(e ™)~ !(dy) for § = (f Z) €
Ap(n). Let U be the unipotent algebraic subgroup of GL(2),o defined by U/(A) =
{((1) ‘f) |a € A} . Note here that U(a) C Ker(€); so, €(tu) = €(t) if t € Dy and u €
Z/l(a). For each UyU € R(U, Ay(np®)), we decompose UyU = uzeDO.ueu@ utU
for finitely many u and ¢ (see [IAT, Chap. 3] or [MFG, Sect. 3.1.6]) and define

fllUYUI) = ) e(t)” ECuur). (14)

tu

We check that this operator preserves the spaces of automorphic forms: G, (n, €; C)
and S, (n, €; C), and depends only on UyU not the choice of y as long as y € Dy.
However it depends on the choice of w4 as the character € (extended to Ag(n))
depends on @ . This action for y with y,, = 1 is independent of the choice of the
extension of € to T2 (F,). When y, # 1, we may assume that y, € Dy C T?(Fy),
and in this case, 7 can be chosen so that 7, = y, (so 7, is independent of single right
cosets in the double coset). If we extend € to T2 (F XX’)) by choosing another prime

element wél and write the extension as €’, then we have

€(ty)[UyU] = e'(tn)[UyU]',

where the operator on the right-hand side is defined with respect to €’. Thus the sole
difference is the root of unity €(t,)/€’(tn) € Im(€[7a(o/w))- Since it depends on the

choice of @, we make the choice once and for all, and write T(q) for [U (7 {) U]
(if g + n), which coincides with T(1, q) in (4) if q 4 n’. By linearity, these actions of
double cosets extend to the ring action of the double coset ring R(U, Ag(np®)).

To introduce rationality of modular forms, we recall Fourier expansion of adelic
modular forms (cf. [HMI, Proposition 2.26]). Recall the embedding ¢« : @ — C,
and identify Q with the image of (o,. Recall also the differential idele d € F X with

d® =1 and dO = 0. Each member f of S« (U, €; C) has its Fourier expansion:

F(57) =Dla Y cEyd.D(Evoo) ™ er(i&yoo)er(£x), (15)

0KEEF
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where ey : F/F — C* is the additive character with ep(xo0) = exp(27i ) ¢ X5)
for xeo = (X5)s € R = F ®g R. Here y + ¢(y,f) is a function defined on y € F}
only depending on its finite part y(>. The function c(y, f) is supported by the set
(5 X Foo) N F of integral ideles.

Let F[«] be the field fixed by {o € Gal(Q/F)|ko = k}, over which the character
k € X*(T?) is rational. Write O[] for the integer ring of F[x]. We also define
Olk, €] for the integer ring of the field F[x, €] generated by the values of € over F[k].
For any F[k, €]-algebra A inside C, we define

Sc(U.€;A) = {f € Se(U.€:C)c(y.f) € A aslong as y is integral} . (16)

As we have seen, we can interpret S, (U, €;A) as the space of A-rational global
sections of a line bundle of a variety defined over A; so, by the flat base-change
theorem (e.g., [GME, Lemma 1.10.2]),

Sc(n,e;A) ®4 C = S, (n, ¢;C). (17

The Hecke operators preserve A-rational modular forms (cf. (23) below). We define
the Hecke algebra h, (U, €;A) C Enda (S, (U, €; A)) by the A-subalgebra generated
by the Hecke operators of R(U, Ag(np®)). Thus for any @,,-algebras A, we may
consistently define

Sc(U,e;4) = S (U,€;Q) ®g, A. (18)

By linearity, y = c¢(y, f) extends to a function on F x S, (U, €; A) with values in A.
Foru € 5X, we know from [HMI, Proposition 2.26]

ciyu,f) = €1 (u)c(y,f). (19)

If f is a normalized Hecke eigenform, its eigenvalue a(y,f) of T(y) is given by
€1(y)"'c(y, f) which depends only on the ideal 1) := ya N F by the above formula
as claimed in the introduction. We define the g-expansion coefficients (at p) of f €
Sc(U,€;A) by

¢ (. ) =y, c(y.f). (20)

The formal g-expansion of an A-rational f has values in the space of functions on
F (o, with values in the formal monoid algebra A[[qg]]gep . of the multiplicative
semi-group F4+ made up of totally positive elements, which is given by

(0) =N epEvd. e, Q1)

£30

where N @ FX /F* — @; is the character given by N'(y) = y, /|y |;".
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We now define for any p-adically complete O[«, €]-algebra A in C,
Sc(U.€;A) = {f € 5.(U, €:Cp)|c,(y. f) € A for integral y} . (22)

As we have already seen, these spaces have geometric meaning as the space of
A-integral global sections of a line bundle defined over A of the Hilbert modular
variety of level U, and the g-expansion above for a fixed y = y(> gives rise to
the geometric g-expansion at the infinity cusp of the classical modular form f, for
X = (g ?) (see [HI1, (1.5)] and [PAF, (4.63)]).

.....

strict idele class group F*\F}/ O*FX ., where h is the strict class number of F.

oo+
Let ¢; = ¢;0. Write t; = <”i‘1071 (1’) and consider f; = f, as defined in (S2). The
collection (f;);=;__, determines f, because of the approximation theorem. Then
f(c;d™") gives the g-expansion of f; at the Tate abelian variety with ¢;-polarization
Tate 1 ,(q) (¢; = ¢;0). By (g-exp), the g-expansion f(y) determines f uniquely.

We write T (y) for the Hecke operator acting on S, (U, €; A) corresponding to the
double coset U ((‘) (1)) U for an integral idele y. We renormalize T'(y) to have a p-
integral operator T(y): T(y) = y,*' T(y). Since this only affects T(y) with y, # 1,
T(q) = T(w,) = T(q) if ¢ 4 p. However depending on weight, we can have
T(p) # T(p) for primes p|p. The renormalization is optimal to have the stability
of the A-integral spaces under Hecke operators. We define (q) = N(q)7(q, q) with
T(q,q) = [Uw,U] for q 4 n'p® (W' = n; N ny), which is equal to the central action
of a prime element @, of O, times N(q) = |@,|;'. We have the following formula
of the action of T(q) (e.g., [HMI, (2.3.21)] or [PAF, Sect. 4.2.10]):

¢, (vwy. ) + ¢, (v, fl{q) ifqtup
c,(ywy. 1) otherwise,

¢, (v.fT(q)) = (23)

where the level n of U is the ideal maximal under the condition: U} (n) C U C
Uo(n). Thus T(wq) = (wyq)," U(q) when q is a factor of the level of U (even when
ql|p; see [PAF, (4.65-66)]). Writing the level of U as np®, we assume

either p|np® or [k] > 0, (24)

since T(q) and (q) preserve the space S, (U, €;A) under this condition (see [PAF,
Theorem 4.28]). We define the Hecke algebra h,(U,¢€;A) [resp. hc(n,eq;A)]
with coefficients in A by the A-subalgebra of the A-linear endomorphism algebra
End4 (S, (U, €;A)) [resp. Ends (S, (n, €4+;A))] generated by the action of the finite
group Up(np*)/U, T(q) and (q) for all q.
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1.9 Hecke Algebras

We have canonical projections:
R(U{ (np®, Ao(np®)) — R(U, Ao(np®)) = R(Uo(np’), Ao(np’))

for all @ > B taking canonical generators to the corresponding ones, which are
compatible with inclusions

Se(Uo(mpP). €:A) = S(U. €:A) <> S (U} (np*). €: A).

We decompose 01)7( = I' X A as in the introduction and hence G = T x A x (0/n’)*.
We fix « and €4 and the initial € = (e, €2,€4). We suppose that €; (j = 1,2)
factors through G/T = A x (O/n')* for n’ prime to p. We write n for a factor
of 0’ such that €~ is defined modulo np™*% for po*%» = [T, p"or*+! for a multi-
index ry = (rop)p With p running over prime factors of p. Then we get a projective
system of Hecke algebras {h, (U, €;A)}y (U running through open subgroups of
Uy (np™*t1) containing U] (np™)), whose projective limit (when k, — ky > ) gives
rise to the universal Hecke algebra h(n, €; A) for a complete p-adic algebra A. We
have a continuous character T : 0% — h(n,€;A) given by u +— T(u) where
f]7(u)(x) = e ()" (x(49)) for u € O (here T(u) is the Hecke operator T (y)
taking y = u as the double coset U (4 9) U is equal to the single coset U (49)).
This character T factors through T = G/(A x (O/n')*) and induces a canonical
algebra structure of h(n, €; A) over A[[I']].

Let W be a sufficiently large complete discrete valuation ring inside @p (as
before). Define W[e] C @p by the W-subalgebra generated by the values of € (over
the finite adeles). It has canonical generators T(y) over A = W][[I']]. Here note that
the operator {(q) acts via multiplication by N(q)e (q) for the fixed central character
€+, where N(q) = |0/q].

The (nearly) p-ordinary projector e = lim, T(p)" gives an idempotent of the
Hecke algebras i, (U, €; W), h (np®, e4; W) and h(n, €4 ; W). By adding superscript
“n.ord,” we indicate the algebra direct summand of the corresponding Hecke algebra
cut out by e; e.g., i (np®, e4; W) = e(h,(np®, e4; W)). We simply write h for
h™ord = hnord(q e, ; W). The algebra h™*™ is by definition the universal nearly p-
ordinary Hecke algebra over A of level np® with “Neben character” €. This algebra
h™"d(n, e; W) is exactly the one h(¥ ", ') employed in [HT93, p. 240] (note that
in [HT93] we assumed k; > k; reversing our normalization here).

The algebra h™°(n, €; W) is a torsion-free A -algebra of finite rank. Take a point
Pe Spf(A)(@p). If P is arithmetic, ep = Pk (P)~! is a character of I'. By abusing
a symbol, we write €p for the character (ep,€p2,€4) given by €pj on I' and ¢;
on A x (O/w')*. Writing the conductor of € |ox as p/**), we define r(P) > 0 by
p' O+l = p/® N p Here r(P) is an element of Z[[,]; so, r(P) = > ol T(P)pp
indexed by prime factors p|p, and we write I, for {1},,. Therefore r(P) + I, =
Zp(r(P)p + 1)p. As long as P is arithmetic, we have a canonical specialization
morphism:
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W™ (n, e W) @a.p Wlep] = Wi (np P+ e Wiep)),

which is an isogeny and is an isomorphism if h™"(n,e;; W) is A-free [PAF,
Sect.4.2.11] (note in [PAF] the order of «; is reversed so that x; > k7). The
specialization morphism takes the generators T(y) to T(y).

1.10 Analytic Families of Hecke Eigenforms

In summary, for a fixed ¥ and e;, we have the algebra h = h™4(n, e, ;W)
characterized by the following two properties:

(C1) his torsion-free of finite rank over A equipped with T(l) = T(w), T(y) € h
for all primes [ prime to p andy € O, N F},

(C2) if kp — k1 > I and P is an arithmetic point of Spec(A)(@p), we have a sur-
jective W-algebra homomorphism: h @4 p Wep]) — hz'(‘g;i(np”}’ )+ ey Wlep))
with finite kernel, sending T(I) ® 1 to T([) (and T(y) ® 1 to T(y)).

Actually, if p > 5and p } |A|, in (C1), quite plausibly, h would be free over A (not
just torsion-free), and we would have an isomorphism in (C2) (this fact holds true
under unramifiedness of p > 5 in F/Q; see [PAF, Corollary 4.31]), but we do not
need this stronger fact.

By fixing an isomorphism I' = Z7 with m = [F, : Q,], we have identified
A = Ay with W[[Ty, ..., T,]] for {t; = 1 + Ti}i=1,» corresponding to a Z,-basis
{yi}i=1...m of I'. Regard k; as a character of O]’f whose value at y € O;f is

v =[ow) .

o€l

We may write an arithmetic prime P as a prime A-ideal
P=(t—e(y) ™y Awg N Aw.

When k, = kI for an integer k, y > y* is given by y +— N(y)F for the norm
map N = Nr,/q, on O, For a point P € Spec(A)(@,,) killing (#; — ¢7'y!?) for
i € poo (W), we make explicit the character €p. First we define a character €p r :
O; — oo (W) factoring through I' = O, /A by €p, r (i) = §; for all i. Then for

the fixed ey, we put ep 1 = (e+ |r)€;5r. With the fixed data G](r) = €1l(o/n)y<xa
T ._ = () ; -
and €, ' = €|o/w)*xa, We put €p; = €pre; . In this way, we form ep =

(GP.1,€P,2,€+)~

Let Spec(Il) be a reduced irreducible component Spec(I) C Spec(h). Since h
is torsion-free of finite rank over A, Spec(l) is a finite torsion-free covering of
Spec(A). Write a(y) and a(l) for the image of 7(y) and T(I) in I (so, a(wy) is



Growth of Hecke Fields Along a p-Adic Family 151

the image of T(wy,)). We also write a(y) for the image of T(y); so, a(y) =y, a(y).
If P € Spec(I) (@p) induces an arithmetic point Py of Spec(A), we call it again an
arithmetic point of Spec(Il), and put ;(P) = k;(Po). If P is arithmetic, by (C2), we
have a Hecke eigenform fp € Sy(p)(Up(np"OFh), ep; @p) such that its eigenvalue
for T(I) and T(y) is given by ap(l) := P(a(l)),ap(y) := P(a(y)) € @p for all [
andy € F;. Thus T gives rise to a family F = Fy = {fp|arithmetic P € Spec()}
of classical Hecke eigenforms. We call this family a p-adic analytic family of p-
slope 0 (with coefficients in I) associated with an irreducible component Spec(I) C
Spec(h). There is a sub-family corresponding to any closed integral subscheme
Spec(J) C Spec(l) as long as Spec(J) has densely populated arithmetic points.
Abusing our language slightly, for any covering 7 : Spec(l) — Spec(Il), we will
consider the pulled back family /5 = {fp = f;(p)|arithmetic P € Spec(I)}. The
choice of T is often the normalization of I or the integral closure of I in a finite
extension of the quotient field of 1.

Identify Spec(I) (@p) with Homyy g1 (I, @p) so that each element a € I gives rise
to a “function” a : Spec(I) (@p) — @p whose value at (P : T — @[,) € Spec(I) (@p)
is ap ;= P(a) € @p. Then a is an analytic function of the rigid analytic space
associated with Spf(I). We call such a family p-slope 0 because |ap(wy)|, = 1 for
the p-adic absolute value |- |, of @p for all p|p (it is also called a p-ordinary family).

1.11 Modular Galois Representations

Each (reduced) irreducible component Spec(Il) of the Hecke spectrum Spec(h) has
a 2-dimensional semi-simple (actually absolutely irreducible) continuous represen-
tation p; of Gal(Q/F) with coefficients in the quotient field of I (see [H86a] and
[H89]). The representation py restricted to the p-decomposition group D), (for each
prime factor p|p) is reducible (see [HMI, Sect.2.3.8]). Define the p-adic avatar
e (FOY< /P — @: by €4.(y) = €4 (y)y5 ™ 172 (note here yoo = 1 as F s
made of finite adales in F»). We write pj°® for its semi-simplification over D,. As is
well known now (e.g., [HMI, Sect. 2.3.8]), pr is unramified outside np and satisfies

Tr(pr(Froby)) = a(l) for all prime [ } pn. (Gal)

By (Gal) and Chebotarev density, Tr(py) has values in I; so, for any integral
closed subscheme Spec(J) C Spec(l) with projection 7 : I — J, & o Tr(pp) :
Gal(Q/F) — J gives rise to a pseudo-representation of Wiles (e.g., [MFG,
Sect. 2.2]). Then by a theorem of Wiles, we can make a unique 2-dimensional semi-
simple continuous representation py : Gal(Q/F) — GL,(Q(J)) unramified outside
np with Tr(py(Froby)) = m(a(l)) for all primes [ 4 np, where Q(J)) is the quotient
field of J. If Spec(J) is one point P € Spec(ﬂ)(@p), we write pp for py. This is
the Galois representation associated with the Hecke eigenform fp (given in [H89]).
As for p-ramification, the restriction of py to the decomposition group at a prime
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p|p is reducible. Taking o € Gal(@p /F) whose restriction to the maximal abelian
extension of Fy, is the Artin symbol [u, Fy], we have by Hida [H89]

pp(0) ~ (62-”(“0)”7K2 elﬁp(;;u_'(l) for u € O} and pp(0) ~ (§ ap(w ) for u € O, — {0}.
(Ram)

Thus [u, Fp] — € p(u)u™" is the quotient character at p (and in this way, €; (j =
1, 2) are ordered).

1.12 CM Theta Series

Following the description in [H06, Sect. 6.2], we construct CM theta series with
p-slope 0 and describe the CM component which gives rise to such theta series
(the construction was first made in [HT93]). We first recall a cusp form f on G(A)
with complex multiplication by a CM field M top down without much proof. By
computing its classical Fourier expansion, we can confirm that f is a cusp form. Let
M/F be a CM field with integer ring Oy and choose a CM type X:

Iy = Homgey(M, Q) = T U B¢

for complex conjugation c. To assure the p-slope 0 condition, we need to assume
that the CM type X is p-ordinary, that is, the set X, of p-adic places induced by
tpo0 foro € X is disjoint from X, (its conjugate by the generator ¢ of Gal(M/F)).
The existence of such a p-ordinary CM type implies that each prime factor p|p of
F split in M/F. Thus the set Iy, of p-adic places of M is given by X, LI 3. Write
p = PP in Oy for two primes *P # P such that P € X, is induced by ¢, o o on
M foro € X. Foreachk € Z[I] and X = X, Iy, we write kX = )y ky|FO.

We choose k; — k1 > I with k1 4+ k = [k]I for an integer [x]. We then choose a
Hecke ideal character A of conductor €3¢ (€ prime to p) such that

A(@) = a®1 =X forq € M* witha = 1 mod POy espe in l_[ M,
llepe

where ¢ = [[ey, FPPF) fore = Yoy (e(F)P+e(P)F) and Oy o =
[1ja Om, for an integral ideal a of Oy.

We now recall a very old idea of Weil (and history) to lift the ideal character A
to an “idele” Hecke character: A : My /M>* — C* following to Weil (who invented
this identification of two types of Hecke characters in [W55] as a part of the theory
of complex multiplication of abelian varieties, established by himself together with
Shimura and Taniyama in the Tokyo-Nikko symposium in 1955). For the moment,
we write A for the lifted idele character following [W55], but once it is defined,

w~n

we just write simply A for the idele and the ideal characters removing the tilde “™",
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following the more recent tradition. We write (M(€q3 o<>))X = {x € M}|xeo =
x; = 1} for all primes [|€B°. For an idele x € (Mffp o) )* whose €J3¢co-
component is trivial, we require i(x) := A(xOyp), where xOy = M N xOy inside
(MXX)))X = {x € M} |x0 = 1} (which is a fractional ideal prime to €J3¢). At the
infinity component M, = (M ®4 R)* = [[,ex C*, for xoo = (%5 )sex requiring

Y — —c —K2.0—CK
A(xoo) — X(X/)QZ K1 = on_ 2,0 2.{75’

oEX

we get a continuous character A (Mffwm))x x M — C*. We consider
M* (Mfgmeoo))xMx C My which is a dense subgroup of My, and in particular,
we have M} = U((‘,‘&]Z?“)(M(@p 2N XM where U(a) = O} N 1 4 aOy for an
Op-ideal a. We can extend A to the entire idele group M} so that )L(M *)=1.To
verify this point, we only need to show A(a) = 1fora € M* N U(CP)M, inside
M. Since the €3¢ component of @ € M} is in U(CP°), we check agpe = 1
mod €, and hence, writing (@) = xOy for x = a(@¥) e (MTF )< (the
projection of « € M} to (Mffmeoo))x), we have A (xtog) = A((0)) 2= 1Z = |,
By continuity, this extension A of A to the dense subgroup M* (Mffqyoo))ng‘o
extends uniquely to the entire idele group M} which is trivial on M*U(CR°).

Hereafter, we just use the symbol A for X (as identifying the ideal character A with
the corresponding idele character A).

If we need to indicate that € is the prime-to-p conductor of A, we write €(1) for
¢. We also decompose ¢ =J[a £ ) for pr1me ideals £ of M. We extend A to a

p-adic idele character e M /MM, — Q so that A(a) = )t(aO)a—KZE X

By class field theory, for the topological closure MXMX in MX, MY /M*MY is

canonically isomorphic to the Galois group of the maximal abelian extension of
M; so, this is the first occurrence in the history (again due to Weil [W55]) of the
correspondence between an automorphic representation A = A of GL1 (M) and the

Galois representation X Pulling back to Gal(F/M), we may regard X as a character
of Gal(F /M) Any character ¢ of Gal(F/M) of the form X as above is called “of
weight «”. For a prime ideal £ of M outside p, we write A ¢ for the restriction of x
to Mg; 50, Ag(x) = X(x) = A(x) for x € M3. For a prime ideal B|p of M, we put
Agp(x) = ,)I(x)x’(zz'”’“z = A(x) forx € M%. In particular, for the prime P|p with
P € T,, we have Aq(x) = A()x2Zr for x € M3, and Agpe(x) = A(0)x1Zp for
X € M%‘}C. Then A g for all prime ideals £ (including those above p) is a continuous
character of M with values in Q whose restriction to the £-adic completion Oy; ¢ of
Oy is of finite order. By the condition k] # k3, 2 cannot be of the form A = ¢oNy/F
for an idele character ¢ : F/F*F5 , — @:
We define a function (F Xoc))x >y c(y, (1)) supported by integral ideles by

c(y,0(V)) = > A(x) if y is integral, (25)

xG(MX”))X xXxé=y
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where x runs over elements in M} / (51(5‘43?) )* satisfying the following four condi-
tions: (0) xoo = 1, (1) xOy is an integral ideal of M, (2) Ny r(x) = y and (3)
xn = 1 for prime factors £ of the conductor €3¢. The g-expansion determined
by the coefficients c(y, #(1)) gives a unique element 6(1) € Sc(ng, €}: Q) ([HT93,
Theorem 6.1] and [HMI, Theorem 2.72]), where ng = Ny/r(EB¢)d(M/F) for the

discriminant d(M/F) of M/F and €] is a suitable “Neben” character. We have

(C) The central character €)4 of the automorphic representation 7 (A) generated
by 6(1) is given by the product: x — A(x)|x|a <A$) for x € F and the
quadratic character (M—/F) of the CM quadratic extension M /F.

Recall here that A : M} — C* is trivial on M™ as deo(Xoo) = x32="1% and

hence €, is a continuous character of the idele class group F /F*.

We describe the Neben character € = (€ 1, €32, €1+ ) of the minimal form f(A)
in the automorphic representation 7 (4). For that, we choose a decomposition ¢ =
§5.J so that §§. is a product of split primes and J for the product of inert or ramified
primes, § + §. = Oy and § C §¢, where § could be strictly smaller than §¢. If we
need to make the dependence on A of these symbols explicit, we write F(A) = F,
SA) =F.and JA) = J. Weputf = N Fandi = J N F. Define A~ (a) =
A(a™) (with a“™! = aa™!), and write its conductor as ¢(17). Decompose as
above €(A7) = F(A7)F(A7)T(A7) so that we have the following divisibility of
radicals /F(A7)[v/F(A) and /F(A7)[/T.(A). Let Ty = Reso,,;0G. The I-

component €, ; (j = 1,2) of the character ¢, ; is given as follows:

(hk1)  For [[f, we identify Ty (O1) = Oy o X Oy o With this order for the prime
ideal £|(0yNF) and define €, 1 X €) 2 1 by the restriction of A ¢ X A gc to Ty (Oy).

(hk2) For P € X,, we identify Ty (0y) = D/)‘;m X Di)‘}‘r" and define €; |, X €) 2 p
by the restriction of Az X Agqse to Ty (Op).

(hk3) For [[(T(A) N O)d(M/F) but [ } (J(A7) N O), we can choose a character
¢ F — C* such that A¢ = ¢ o Ny /r,. Then we define €, 1 (a) =

(MLT/F‘) ¢i(a) and €, 5 ((d) = ¢((d), where £ is the prime factor of [ in M and

MET/F‘ is the character of Mg /F.
(hk4) For [|(T(AT)NO), x4 = ex+,[|0[x and €, 5 = 1 for the central character
€,+ given in (C).

We now give an explicit description of the automorphic representation 7 (4). In
Cases (hk1-3), taking a prime £|l in M, we have

w(Ae, Age) in Case (hkl),
mp(A) = m(Ag, Age) in Case (hk2), (26)
n((“ﬂ—/ﬂ) dud) in Case (hk3).
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In Case (hk4), m(A) is the super-cuspidal representation giving rise to

Fo~
IndMI[ MGal(f[/M[)-
To describe of f(1), we split ng into a product of co-prime ideals n,. and n,g, so

that n,,. is made up of primes in Cases (hk1-3). For [[n,,, writing 7r((A) = 7 (11, 1})
for characters 1, n} : Fi* = C*, we write C| for the conductor of n[_l 1;- Define the
minimal level of (1) by

R(A) = rlcusp 1_[ C[,

I[1ne

where [ runs over primes satisfying one of the three conditions (hk1-3). Put

E={gleD>F [[ B.Lon)}

BEZ,

for primes £ of M. Then the minimal form f(1) has the following g-expansion
coefficient:

ZXX‘=y.x5=1 :X\(x) if y is integral,
0 otherwise,

¢ (y.f(1)) = @27

where x runs over (5M N M;f<m)/(O$))X with x¢ = 1 for £ € E. See [HO6,
Sect. 6.2] for more details of this construction (though in [H06], the order of (k, 7)
is interchanged so that k; > 7).

1.13 CM Components

We fix a Hecke character A of type k as in the previous subsection, and we continue
to use the symbols defined above. We may regard the Galois character % asa
character of Cly; (€p™).

We consider the ray class group Cly(€(A7)p°°) modulo €(A7)p*>°. Since
A7 (a°) = (A7) (a), we have €(A7) = €(A7)°. Thus Gal(M/F) = (c) acts natu-
rally on Cly (€(A7)p>). We define the anticyclotomic quotient of Cly (€(A7)p™>°)
by

Cly (€(A7)p™) := Cly(E(A7)p™)/Cly(E(A7)p™) '+
We have canonical identities:

Oitp = Oppop X Opy e = Oy X O and Ojy, := (Oy @z, Zp)™ = Op 5, X 0,325 =0, x 0y
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on which ¢ acts by interchanging the components. Here Oy x = Hmex Ousp

for X = ¥ and X¢. The natural inclusion OAX/LP/O_;, — CI(€(A7)p*>) induces
an inclusion I' — CI,(€(A7)p>). Decompose CI,(E(A7)p>®°) = T'y x Ay
with the maximal finite subgroup Ay so that I'y, D T. Then I' is an open
subgroup in I'y;. In particular, W[[I ]] is a regular domain finite flat over Ay .

Thus we call P € Spec(W[[T ]])(Q,) arithmetic if P is above an arithmetic point
of Spec(A W)(@p). Regard the tautological character

projection

v Cly(€p™) ——— Ty > WLy *

as a Galois character v : Gal(M /M) — W[T y]]*.

The composite vp = P o v for an arithmetic point P € Spec(W[[T y]])
is of the form @p for a Hecke character gp with p-type kp,%, + kp X, for
Kp = (Kpy.kp,) € Z[I,)* satisfying ks + kp, — (ki + kp) = I,. Assume that
7 has values in W* (enlarging W if necessary). We then consider the product v
Gal(M/M) — WI[T y]]* and pwir, := Ind5; Av : Gal(M /M) — GLy(WI[T y]]).
Define Iy, C W[[I y]] by the Aw-subalgebra generated by Tr(pwyr,). Then we
have the localization identity Iy, p = W[[I y]]p for any arithmetic point P (this
follows from the irreducibility of pp = P o pwr,) = Indﬂ ;\\vp; e.g., [H86b,
Theorem 4.3]).

Leth = h™(n(1), €44 : W), which is a torsion-free finite A yy-algebra. We have
a surjective projection m; : h — I sending T'([) to Tr(pwyry (Frob:)) for primes [
outside n(A). Thus Spec(l,) is an irreducible component of Spec(h). In particular,
P, = Pw[r,]- In the same manner as in [HMI, Proposition 3.78], we prove the
following fact:

Proposition 1.1. Let the notation be as above. Then for the reduced part h? of
h and each arithmetic point P € Spec(A W)(@p), Spec(h¥?) is finite étale over
Spec(Ap). In particular, no irreducible components cross each other at a point
above an arithmetic point of Spec(A w).

A component [ is called a CM component if there exists a nontrivial character
¥ : Gal(Q/F) — TI* such that py = p; ® y. We also say that T has complex
multiplication if I is a CM component. In this case, we call the corresponding family
JF a CM family (or we say J has complex multiplication). It is known essentially by
deformation theory of Galois characters (cf. [H11, Sect. 4]) that any CM component
is given by Spec(l) as above for a specific choice of A.

If F is a CM family associated with I with p; = pr ® y, then y is a quadratic
character of Gal(Q/F) which cuts out a CM quadratic extension M/F, i.e., y =

M—/F> Write T for the integral closure of Ay inside the quotient field of I. The
following three conditions are known to be equivalent:
(CM1) F has CM and p1 = p1 ® (M—/F) (& pr = Ind,f,,\llfor a character
= Av: Gal(Q/M) — Q(I)* for the quotient field Q(I) of 1);
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(CM2)  For all arithmetic P of Spec(I) (@p), fp is a binary theta series of the norm
form of M/ F;

(CM3)  For some arithmetic P of Spec(I) (@,,), fp is a binary theta series of the
norm form of M/ F.

Since the characteristic polynomial of pj(o) has coefficients in I, its eigenvalues fall
in I; so, the character W has values in I* (see [H86b, Corollary 4.2]). Then, (CMI)
is equivalent to p; = Ind}, ¥ for a character ¥ : Gal(Q/M) — T* unramified
outside Np (e.g., [MFG, Lemma 2.15]). Then by (Gal) and (Ram), WVp = Po W :
Gal(Q/M) — @: for an arithmetic P € Spec@(@p) is a locally algebraic p-adic
character, which is the p-adic avatar of a Hecke character Ap : My /M>* — C* of
type Ay of the quadratic extension M/ r. Then by the characterization (Gal) of oy, fp is
the theta series f(1), where a runs over all integral ideals of M. By «;(P)—k(P) > 1
(and (Gal)), M has to be a CM field in which p is split (as the existence of Hecke
characters of infinity type corresponding to such «(P) forces that M/F is a CM
quadratic extension). This shows (CM1)=(CM2)=(CM3). If (CM2) is satisfied,
we have an identity Tr(py(Froby)) = a(l) = y(Da(l) = Tr(pr ® x(Froby)) with

X = (’M) for all primes [ outside a finite set of primes (including prime factors

of n(1)p). By Chebotarev density, we have Tr(pr) = Tr(pr ® x), and we get (CM1)
from (CM2) as py is semi-simple. If a component Spec(l) contains an arithmetic
point P with theta series fp of M/F as above, either I is a CM component or
otherwise P is in the intersection in Spec(h) of a component Spec(l) not having CM
by M and another component having CM by M (as all families with CM by M are
made up of theta series of M by the construction of CM components as above). The
latter case cannot happen as two distinct components never cross at an arithmetic
point in Spec(h) (i.e., the reduced part of the localization hp is étale over Ap for
any arithmetic point P € Spec(A)(@p); see Proposition 1.1). Thus (CM3) implies
(CM2). We call a binary theta series of the norm form of a CM quadratic extension
of F a CM theta series.

Remark 1.2. 1f Spec(J)) is an integral closed subscheme of Spec(l), we write the
associated Galois representation as pj. By abuse of language, we say J has CM by
Mifpy = pr ® (M—/F) Thus (CM3) is equivalent to having pp with CM for some

arithmetic point P. More generally, if we find some arithmetic point P in Spec(J)
and pp has CM, J and I have CM.

2 Weil Numbers

Since @ sits inside C, it has “the” complex conjugation c. For a prime /, a Weil

[-number ¢ € Q of integer weight k > 0 is defined by the following two
properties:

(1) « is an algebraic integer;
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() |a®| = 2 for all o € Gal(Q/F) for the complex archimedean absolute
value | - |.

Note that Q(«) is in a CM field finite over Q (e.g., [Ho68, Proposition 4]), and the
Weil [-number is realized as the Frobenius eigenvalue of a CM abelian variety over
a finite field of characteristic /. We call two nonzero numbers a,b € @ equivalent
(written as a ~ b) if a/b is a root of unity. We say that Weil numbers o and § are
p-equivalent if a/B € ppo0 (Q). Here is an improvement of [H11, Corollary 2.5]
proved as [H14, Corollary 2.2]:

Proposition 2.1. Let d be a positive integer. Let Ky be the set of all finite extensions
of K = Q[upoe] of degree d inside Q. If I # p, there are only finitely many Weil
l-numbers of a given weight in the set-theoretic union ULG,C{I L* (in @X) up to p-
equivalence.

Let L;r be a finite field extension inside C, with integer ring O as in the
introduction. Recall T, = Resg, /7G,, (in the sense of [NMD, Sect. 7.6, Theorem 4])
and a morphism v € Homgp scheme (77, TF) in the introduction. Define an integral
domain R = R, by the subalgebra of A generated over Z, by the image G of
v(OF () N Tr(Zy) projected down to T'. If v # 1, v(OF ,)) N Tr(Z,) contains
Go = {EV|§ € Z(Xp)} for some 0 < N € Z. Replacing N by its suitable multiple,
Gy is a free Z-module of infinite rank. Since R, = Z,)[G] (the group algebra of
G), R, contains a polynomial ring over Z,) (isomorphic to Z[Go]) with infinitely
many variables, and Q(R,) has infinite transcendental degree over Q (if v # 1). For
any arithmetic point P and § € R,, the value &p € C, falls in L& iy, j1,00] for the
Galois closure L& of L/Q and N = |A|. For example, if F = Q and L = Q with
the identity v : G,, = G,,, taking y; = 1 +pforp=4ifp=2andp =pifp > 2,
we have G = {tlog,,<é)/log,,(y1)|§ € Zg)); so, p(,logp(é)/log,,(w)) = £2(E2)71¢ for
P = (1 — {yy?), where o is the Teichmiiller character (N = p — 1 for F = Q and
odd p). Note that £ has values in L& instead of L. Recall the algebraic closure QO
(we fixed) of the quotient field Q of A.

Proposition 2.2. Let I be a finite normal extension of A inside Q and regard R =
R, C A as a subalgebra of I. Let A C 1 be an R-subalgebra of finite type whose
quotient field Q(A) is a finite extension of the quotient field Q(R) of R. Regarding an
arithmetic point P € Spec(l) as an algebra homomorphism P : 1 — @p, write Ap
(resp. Rp) for the composite of the image P(A) [resp. P(R)] with Q(jpoe) inside @p.
Then there exists a closed subscheme E of codimension at least 1 of Spec(l) such
that there are finitely many Weil I-numbers of a given weight in UP¢E Ap CQupto
p-power roots of unity, where P runs over all arithmetic points of Spec(Il) outside E.

Proof. We may assume that A = R[a] (i.e., A is generated over R by a single element
a). The generator a € A satisfies an equation f(x) = aox" +a;x" ' +---+a, € R[x]
with ay # 0. Then the zero locus E of ag is a closed formal subscheme of
codimension at least 1. Since arithmetic points are Zariski dense in Spec(l), we
have a plenty of arithmetic points outside E (i.e., the set arithmetic points outside
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E is infinite). Thus as long as P(ap) # 0, we have [Ap : Rp] < n. Since
Rp C L& [y, ipe0], we have [Rp : Q(pp00)] < B for a constant B independent
of arithmetic P outside E. Thus [Ap : Q(upoo)] is bounded independently by
d := nB for all arithmetic P ¢ E. Then we can apply Proposition 2.1 and get
the desired result. O

3 Theorems and Conjectures

Hereafter,
(W) we fix k € Z[I]> with ks — k] > I.

Though the weight « is fixed, the character €p is a variable (so, we have densely
populated arithmetic points P € Spec(ll) with k(P) = «). Letf € S, (np’" 1%, e; W)
be a Hecke eigenform with f|7(y) = a(y,f)f for all y. We normalize f so that
c(1,f) = 1. For a prime [ } p, we write f|T(I) = (a; + B)f and | 8; = e(DI" if
[} ap™*! (aq, B1 € Q), where f; is the degree of the field O/[ over the prime field F;.
If /|n, we put B; = 0 and define o; € Q by f|U(I) = af. Then the Hecke polynomial
H(X) = (1 —aX)(1 — BX) gives the Euler [-factor of L(s,f) = > a(n,H)N(n)™*
after replacing X by |O/I|™* = N(I)™ and inverting the resulted factor. Here n runs
over all integral ideals of F.

Let 7 = {fp}pespecn(c,) be a p-adic analytic family of p-ordinary Hecke eigen
cusp forms of p-slope 0. The function P + a(y,fp) is a function on Spec(ll) in
the structure sheaf I; so, it is a formal (and analytic) function of P. We write
agp, Bip for ay, By for fp. We write oy p for a(p,fp) = a(wy,fp). In particular,
the field Fl«][pnpoe][op p] (for the field F[k] of rationality of « defined in Sect. 1.8)
is independent of the choice of @, (as long as @, is chosen in F). By a result
of Blasius [B02] (and by an earlier work of Brylinski-Labesse), writing |«;| :=
max, (|k1.6]), N(D¥!la p is a Weil I-number of weight ([k] + 2|« |)f; for f; given by
|O0/1| = Ft. Thus o p is a generalized Weil number in the sense of [H13, Sect. 2].

We state the horizontal theorem in a form different from the theorem in the
introduction:

Theorem 3.1. Let K = Q(upo0). Suppose that there exist a subset X of primes of
F with positive upper density outside np and an infinite set A; C Spec() (@p) of
arithmetic points P of the fixed weight k as in (W) such that [K(ap) : K] < By for
all P € Ay with a bound By for each | € X (possibly dependent on |). If the Zariski
closure Ay in Spec(l) contains an irreducible subscheme Spec(J) of dimension
r > 1 independent of | € X with Zariski-dense A; N Spec(J) in Spec(J), then 1
has complex multiplication.

In the above theorem, « is independent of [ but By and .4, can be dependent on I.
By replacing A, by a suitable infinite subset of .4; N Spec(J), we may assume that
A is irreducible with dimension r independent of . By extending W if necessary,
we may assume that Spec(J) is geometrically irreducible. From the proof of this
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theorem given in Sect. 6, it will be clear that we can ease the assumption of the
theorem so that « is also dependent on [.

Let R, be as in Proposition 2.2 for a number field L. Then we have the following
result which implies Corollary I in the introduction:

Corollary 3.2. Let the notation be as in Proposition 2.2 and in the above theorem.
Let X be a set of primes of F with positive upper density. Let Spec(Il) be a reduced
irreducible component of Spec(h), and assume that 1 is a finite extension of A inside
Q. If there exists a pair (L,v) of a finite extension L/r and a homomorphism v €
Homgpscheme(Ty, Tr) such that the ring R,[a(l)] generated over R, by a(l) inside
0 has quotient field Q(R,[a(1)]) finite over the quotient field Q(R,) for all | € %,
then I has complex multiplication.

Proof. Applying Proposition 2.2 to A; = R, [a(l)], we take A to be the set of the
arithmetic points outside the closed subscheme E; for R,[a([)] in Proposition 2.2.
Then the Zariski closure of A is the entire Spec(I) as E; has codimension at least
1. Thus the assumption of the theorem is satisfied for A, for all [ € 3. Therefore,
the above theorem tells us that I has CM. O

This corollary implies

Corollary 3.3. Suppose that 1 is a non-CM component. Let (L, v) be a pair of finite
extension of F and v € Homgpscheme(Ty, Tr). Then, for a density one set of primes
E of F outside pn, the ring R,[a(l)] C Q for each | € E generated over R, C Q by
a(l) inside Q has quotient field of transcendental degree one over Q(R,) in Q.

Proof. Let B be the set of primes [ of F made up of [ with a([) transcendental over
O(R)) (as a(l) € W: non-constancy). Let ¥ be the complement of & outside pn. If
¥ has positive upper density, by Corollary 3.2, I has complex multiplication by a
subfield of L, a contradiction. Thus X has upper density 0, and hence = has density
1. O

By Theorem 3.1, we get the following corollary:

Corollary 3.4. Let A be an infinite set of arithmetic points of Spec(l) of fixed
weight k. Then there exists a subset X of primes of F with upper positive density
such that [K(a(l,fp)) : K] for | € X is bounded over A if and only if fp is a CM
theta series for an arithmetic P with k(P) > I.

By the argument given after [H11, Conjecture 3.4], one can show [K (a([, fp)) : K]
is bounded independently of arithmetic points P € Spec(l) if fp, is square-integrable
at a prime [ } p (so, [|n) for one arithmetic Py. Further, if a prime [ is a factor of n
(so I } p) and fp (or more precisely the automorphic representation generated by fp)
is Steinberg (resp. super-cuspidal) at [ for an arithmetic point P, then all members
of F are Steinberg (resp. super-cuspidal) at [ (see the remark after Conjecture 3.4 in
[H11]). Take a prime [ { n of O with a(p # 0 for some P (so, [ can be equal to p).
If [ § np, replacing I by a finite extension, we assume that det(T — py(Frob;)) = 0
has roots in I. Since a1 p # 0 for some P (and hence ¢ p is a p-adic unit), fp is not
super-cuspidal at [ for any arithmetic P.
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Conjecture 3.5. Let the notation be as in Corollary 3.4. Let A be an infinite subset
of arithmetic points in Spec(ll) of fixed weight k. Then limpe 4[K (a(l,fp)) : K] < o0
for a single prime | of F if and only if either 1 has complex multiplication or the
automorphic representation generated by fp is square integrable at | } p for a single
Pe A

4 Rigidity Lemmas

We study formal subschemes of G:= @ﬁl stable under the action of ¢ — ¢* for all z
in an open subgroup U of Z;. The following lemma and its corollary were proven
in [H13]. For the reader’s convenience (and to make the paper self-contained), we
recall the statements and their proof.

Lemma 4.1. Let X = Spf(X) be a closed formal subscheme of G = @fn W flat
geometrically irreducible over W (i.e., X N @p = W). Suppose there exists an open
subgroup U of Z;f such that X is stable under the action G > t — 1 € afor all

u € U. If there exists a subset & C X(Cp) N pjoo (C,) Zariski dense in X, then {'X
is a formal subtorus for some ¢ € Q.

Proof. Let X*" be the scheme associated with X given by Spec(X). Define X,
to be the singular locus of X = Spec(X) over W, and put X° = X* \ X,.
The scheme X; is actually a closed formal subscheme of X. To see this, we note,
by the structure theorem of complete noetherian rings, that X is finite over a
power series ring W[[X;,...,Xy]] C X for d := dimy X (cf. [CRT, Sect.29]).
The sheaf of continuous differentials Q x/spr(wiix, ... x,1)) With respect to the formal
Zariski topology of X is a torsion X-module, and X; is the support of the sheaf of
Q x /spf(wiix, ... x,) (Which is a closed formal subscheme of X). The regular locus of
X° is open dense in the generic fiber X;};( = X" xy K of X*" (for the field K of
fractions of W). Then Q° := X° N Q is Zariski dense in Xj};(

In this proof, by making scalar extension, we always assume that W is sufficiently
large so that for { € Q we focus on, we have ¢ € é(W) and that we have a plenty
of elements of infinite order in X(W) and in X°(K) N X(W), which we simply write
as X°(W) := X°(K) N X(W).

Note that the stabilizer U; of { € Q in U is an open subgroup of U. Indeed, if the
order of { is equal to p¢, then Uy = U N (1 + p“Z,). Thus making a variable change
t— 1L ~! (which commutes with the action of U;), we may assume that the identity
10f G is in Q°.

Let G™, Xan, and X be the rigid analytic spaces associated with G, X, and
X, (in Berthelot’s sense in [dJ95, Sect.7]). We put X, = X,, \ X},, which is an
open rigid analytic subspace of X,,,. Then we apply the logarithm log : G €C,) —
C, = Lie(@‘}%p) sending (¢); € 6“”(((:,,) (the p-adic open unit ball centered at
1=(11,....1) to (log,(t));) € C} for the p-adic Iwasawa logarithm map log,,
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(C;‘ — C,. Then for each smooth point x € X°(W), taking a small analytic open
neighborhood V, of x (isomorphic to an open ball in W for d = dimy X) in X°(W),
we may assume that V, = G, N X°(W) for an n-dimensional open ball G, in a(W)
centered at x € a(W). Since ©2° # @, log(X°(W)) contains the origin 0 € C}. Take
¢ € Q°. Write T; for the Tangent space at { of X. Then Ty = W for d = dimy X.
The space T; @w C, is canonically isomorphic to the tangent space Ty of log(V;)
at0.

If dimy X = 1, there exists an infinite order element t; € X(W). We may (and
will) assume that U = (1 + pZ,) for 0 < b € Z. Then X is the (formal) Zariski

closure #{ of

14+pPz bz
1 =1,z € 2y = n{t] V|2 € 7},

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of
{# bz|z € Zy}; in other words, regarding #{ as a W-algebra homomorphism #{ : X —
C,, we have /Z = Spf(Z) for Z = X/ (,ey Ker(#4). Since ¢! is an infinite set,
we have dimy Z > 0. From geometric irreducibility and dimy X = 1, we conclude
X = nZ and Z =~ G,,. Since X contains roots of unity § € Q@ C ppeo (W), we
confirm that X = {Zfor{ € QN :“21/ for b’ >> 0. This finishes the proof in the case
where dimy X = 1.

We prepare some result (still assuming d = 1) for an induction argument on d

in the general case. Replacing #; by t"fh for b as above if necessary, we have the
translation Z, > s > {t] € Z of the one parameter subgroup Z, > s > #]. Thus
we have log(f;) = fl—tjh:o € T, which is sent by “log : G — G, to log(t1) € To.
This implies that log(#;) € Ty and hence log(#;) € T; for any { € Q° (under the
identification of the tangent space at any x € G with Lie(@)). Therefore T;’s over
¢ € Q° can be identified canonically. This is natural as Z is a formal torus, and the
tangent bundle on Z is constant, giving Lie(Z).

Suppose now that d = dimy X > 1. Consider the Zariski closure Y of Y for
an infinite order element ¢ € V; (for { € Q°). Since U permutes finitely many
geometrically irreducible components, each component of Y is stable under an open
subgroup of U. Therefore Y = (_J {'T; is a union of formal subtori 7 of dimension
< 1, where ¢’ runs over a finite set inside Moo (C,) N X(Cp). Since dimy ¥ = 1,
we can pick Ty of dimension 1 which we denote simply by 7. Then 7 contains
for some u € U. Applying the argument in the case of dimy X = 1 to 7, we find
ulog(r) = log(t") € T¢; so, log(t) € T; for any { € Q° and ¢ € V. Summarizing
our argument, we have found

(T) The Zariski closure of U in X for an element ¢ € V¢ of infinite order contains

acoset £7 of one dimensional subtorus 7T, Spb = 1and #" € T for some b > 0;
(D)  Under the notation as above, we have log(¢) € T;.

Moreover, the image \_/; of V¢ in 6/ T is isomorphic to (d — 1)-dimensional open
ball. If d > 1, therefore, we can find 7 € V¢ of infinite order. Pulling back 7 to
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! € V¢, we find log(r), log(?') € T¢, and log(r) and log(¢’) are linearly independent
in T¢. Inductively arguing this way, we find infinite order elements ¢y, ...,#; in V¢
such that log(#;) span over the quotient field K = Q(W) of W the tangent space
T;/]K = T; ®w K — T, (for any € Q°. We identify TI/K C Ty with T;/K C Tp.
Thus the tangent bundle over X9 is constant as it is constant over the Zariski dense
subset 2°. Therefore X° is something close to an open dense subscheme of a coset
of a formal subgroup. We pin-down this fact that X° is a coset of a formal scheme.

Take t; € V; asabove (j = 1,2,...,d) which give rise to a basis {0; = log(#;)}; of
the tangent space of T;/x = T1/x. Note that £ € X and ud; = log(#}) = ulog(y)) €
Ty/k for u € U. The embedding log : V; — T1 C Lie(a/w) is surjective onto a
open neighborhood of 0 € T; (by extending scalars if necessary). For t € V¢, as
t = {,log(t) — 0. Thus by replacing 1, . . ., t; inside V; with elements in V; closer
to ¢, we may assume that log(t;) & log(#;) for all i # j belong to log(Vy).

So, for each pair i # j, we can find #;+; € V; such that log(t;tjil) = log(#;,) £
log(t)) = log(t;+;). The element log(#;+;) is uniquely determined in log(aan (C))) =
/C\;an((Cp)//J«;oo (C,). Thus we conclude {{ijtiti‘ = f;+; for some {i/ij € ,u"N for
sufﬁc1ently large N. Replacmg X by its image under the p-power isogeny Gt
#" € G and t; by tp , we may assume that ¢ 1‘jE = t;+; all in X. Since tU C X, by
(T), for a sufficiently large b € Z, we find a one dimensional subtorus H; ; containing

b ~
#7 such that {;H; C X with some ¢; € [LZ,, for all i. Thus again replacing X by the

image of the p-power isogeny Got>1t € G, we may assume that the subgroup
H (Zariski) topologically generated by ¢4, ..., is contained in X. Since {log(t;)};
is linearly independent, we conclude dlmwﬁl > d = dimy X, and hence X must
be the formal subgroup H of G. Since X is geometrically irreducible, H=Xisa
formal subtorus. Pulling it back by the p-power isogenies we have used, we conclude
X = Qfl for the original X and ¢ € /LZ,,N (W). Since 2 is Zariski dense in X, we may
assume that ¢ € Q. This finishes the proof. O

Corollary 4.2. Let W be a complete discrete valuation ring in C,. Write W[[T]] =
WI[Ty, ..., T,]] for the tuple of variables T = (T4, ..., T,). Let

-

G =G =SptW[r. i7" ... 1.1, ']),

//\

and identify Wt;, 17" ... t,, ;'] with W[[T]] for t; = 1 + T;. Let @(Tl,...,Tn) €
WIITT]. Suppose that there is a Zariski dense subset Q C /'Lpoo (C)) in G((Cp) such
that ®(§ — 1) € uyoo(C,) for all ¢ € Q. Then there exists §y € ppoo (W) and z =
(z)); € Zy, with z; € Zy, such that o = [1;(t)%, where (1 + T)* = Z ( )T
with x € Zy,.

Proof. Pick n = (;) € Q. Making variable change 7 +— n~ (T + 1) — 1 (i.e.,
Tj—n; 1(T + 1) — 1 for each j) replacing W by its finite extension if necessary, we
may replace 2 by n7!'Q > 1; so, rewriting 7' Q as €, we may assume that 1 € Q.
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Then ®(0) = o € ppoo. Thus again replacing ® by '®, we may assume that
®(0) = 1.

For 0 € Gal(K(up)/K) with the quotient field K of W, ®({° — 1) = ®(¢ —
1)°. Writing ¢({) = ®(¢ — 1), the above identity means ¢ ({%) = ¢({)?. Identify
Gal(K(upe<)/K) with an open subgroup U of Z,'. This is possible as W is a discrete
valuation ring, while W[ ,o0] is not. Writing o, € Gal(K(u,e)/K) for the element
corresponding to u € U, we find that

Poul@—-1) =" =1 =2 -1) =P - D™ =uo 1.

We find that uo¢ = ¢ ou is valid on the Zariski dense subset 2 of Spec(W/[[T]]); so,

¢ as a scheme morphism of G = @"m into @m commutes with the action of u € U.
Note that u € ZI’,‘ acts on @m as a group automorphism induced by a W-bialgebra

automorphism of W[[T]] sendingt = (1 +7T) > t* = (1 +T)" = ]_[j(l + )"

Take the morphism of formal schemes ¢ € Homgcn,,, (@" @,,,), which sends 1 to

1. Put G := @'rﬁl X @m /w- We consider the graph I'y of ¢ which is an irreducible
formal subscheme I'y C @”m x G,, smooth over W. Writing the variable on G as
(T,T), Ty is the geometrically irreducible closed formal subscheme containing the
identity 1 € G defined by the principal ideal (¥ — ¢(r)). Since ¢ o u = u o ¢ for all
u in an open subgroup U of Z;f (where U acts on the source @31 and on the target
@m by t > 1), I'y is stable under the diagonal action of U on G and is finite flat
over @fjl (the left factor of G). Then, applying Lemma 4.1 to I'y, we find that I'y is a
subtorus of rank 7 surjecting down to the last factor @m Since any subtorus of rank
nin G whose projection to the last factor is defined by the equation ' = (1 + T)?,
' = ®(T), we have the power series identity ®(7T) = ¢ = (1 + T)* in W[[T]]
identifying I'y = Spf(W[[T]]). |

5 Frobenius Eigenvalue Formula

Recall the fixed weight k with k, — k| > I. We assume the following conditions and
notations:

(J1) Let Spec(J) be a closed reduced geometrically irreducible subscheme of
Spec(I) flat over Spec(W) of relative dimension r with Zariski dense set A of
arithmetic points of the fixed weight «.

(J2) We identify Spf(A) for A = WJ[[T]] with G,, ®z, T* for T* =
Homg, (', Z,) naturally.

Then for any direct Z,-summand I' C T, @m ®z, I'* is a closed formal torus of

@m ®z, I'*. We insert here a lemma (essentially) proven in [H13, Lemma 5.1].

Lemma 5.1. Let the notation and the assumption be as in (J1-2). Then, after
making extension of scalars to a sufficiently large complete discrete valuation ring
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W c C,, we can find a Zy-direct summand I' of ' with rank dimy Spf(J) and an
arithmetic point Py € ANSpec(J)(W) such that we have the following commutative
diagram:

SpfJ) —— Py~ (G, ®z, T

n| |n

Spf(l) ——— Gy, ®z, T* = Spf(A),

which becomes Cartesian after localizing at each arithmetic point of Spf(J), and
Spf(l) gives a geometrically irreducible component of Spf(Il) Xspr(a) Po - (@m ®z,
I'*). Here Py - (@m ®z, I'*) is the image of the multiplication by the point Py €
G, ®z, T* inside G, ®z, T*.

In [H13, Lemma 5.1], it was claimed the diagram is Cartesian, which is wrong
(as the fiber product could have several components). The correct statement is as
above. This correction does not affect the results obtained in [H13].

Proof. Let w : Spec(J) — Spec(A) be the projection. Then the smallest reduced
closed subscheme Z C Spec(A) containing the topological image of 7 contains an
infinitely many arithmetic points of weight «. Since J is a domain with geometrically
irreducible Spec(J), Z is geometricalyiﬁ:ducible. Take a basis {y1,...,yYn} of T,
and write G := G,, ®z, T'™* as Spf(W[z;, tj_l]j=1 _____
to the dual basis {yj*}j of I'*. Let P; € Z be an arithmetic point of weight «
under P € Spec(J)(W) (after replacing W by its finite extension, we can find
a W-point P). Then by the variable change ¢ +— Py! -t (which can be written
as t; — ijj_Kztj for suitable {; € ppo0(W)), the image of arithmetic points of
Spec(J) of weight « in Z are contained in oo (@p). Since Z is defined over W,
Q = Z(Cp) N ppes(Cp) is stable under Gal(K[uyo0]/K) for the quotient field
K of W. Identify Gal(K[suyc]/K) with a closed subgroup U of Z; by the p-
adic cyclotomic character. Since W is a discrete valuation ring, U has to be also
open in Z;. Since u € U acts on Q by ¢ +— ¥, Z is stable under the central
action G 5 t +— * € G. Then by Lemma 4.1, we may assume, after making
further variable change ¢ — n~'t for n € Moo (W) (again replacing W by a finite
extension if necessary), that Z is a formal subtorus; i.e., Z = @m ®z, I'* for a
direct summand I'" of I'. Since J is an integral extension of the normal domain
A = WI[T]], by Matsumura [CRT, Theorems 9.4 and 15.2-3], we conclude
dimy J = dimy Z = rankzp I'. Then putting Py = P; - ), we get the commutative
diagram. Thus we have a natural closed immersion Spf(J) <> Spf(Il) Xspf(a) Po -
(@m ®z, ['*) C Spf(I) by the universality of the fiber product. Since I is an integral
extension of the normal domain A, by Matsumura [CRT, Theorem 15.1], we have
dimy Spf(I) Xspe(ay) Po (@m ®z, r* = rankz, I' = dimy J. Thus Spec(J) is an
irreducible component of Spf(I) Xspr(ay) Po - (G ®z, ).
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We can see that Spec(J) is an irreducible component of the fiber product in
a more concrete way. At each arithmetic point P € Spf(I), the localized ring
extension Ip/ A p is an étale extension (cf. [HMI, Proposition 3.78]). The morphism
Spec(J) — Z is dominant of equal dimension; so, it is generically étale. Thus
Qspr(1)/z 1s a torsion J-module. Hence the étale locus of Spec(])® over Z is equal to
the complement of the support of Qgy¢(y)/z. In particular, Spec(J )é is an open dense
subscheme of Spec(J). Since arithmetic points are dense in Spec(J), we can find an
arithmetic point P € Spec(])*. Then we have the commutative diagram localized
at P:

P*
Jp —— Ap

I I

Ip — Ap

By our choice of P, all horizontal morphisms in the above diagram are smooth
(and all members of the diagram are integral domains). Thus the above diagram is
Cartesian. In particular, Spf(J) is a geometrically irreducible component of the fiber
of Spf(I) over Py - (@m ®z, I'). |

Take I' as in Lemma 5.1 given for J, and write A = W][[I']]. Fix a basis
Yi,..., ¥, € ' and identify A with W[[T|(T = (T})i=1.... ,)_by yi<t=14+T,.

Let Q be the quotient field of A and fix its algebraic closure Q. We embed J into Q.
We introduce one more notation:

(3) If [|p, let A be the image a(w) in J, and if [ } np, fix a root A; in Q of
det(T—py(Froby)) = 0. Replacing J by a finite extension, we assume that A; € J.

If the prime [ is clearly understood in the context, we simply write A for A;. Recall
the notation Ap = P(A). Take and fix p"th root tl.l/p oft;inQ (i =1,2,...,r)and
consider

Wi (ITNE7") = W] [[T1. . T ... .7 c @

which is independent of the choice of #'/7". Take a basis {y = pi....,Ym} of
I' over Z, (containing {y1, ..., y,}). We write #; for the variable of @m ®z, r*
corresponding to the dual basis of {y;}; of I'*. We recall another result from [H13,
Proposition 5.2] and its proof (to make the paper self-contained and also by the
request of one of the referees):

Proposition 5.2 (Frobenius Eigenvalue Formula). Let the notation and the
assumption be as in (JI-3), and fix a prime ideal | prime to n as in (J3). Write
K := Q[upoe] and Lp = K(Ap) for each arithmetic point P with k (P) = k. Suppose

(BT)) Lp/K is a finite extension of degree bounded (independently of P € A) by
a bound By > 0 dependent on |.
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Then, after making extension of scalars to a sufficiently large W, we have
A=A e WupTy..... T, ....27 10T

in Q for 0 < n € Z, and there exists s = (s;) € Qj, and a constant c € W such that
ATy =cr =c[];t] ( =14+T)).

To simplify the notation, for k = r or m, we often write ({y~*2¢t — 1) for the ideal
in W[[T}, ..., T¢]] generated by a tuple (é‘jyj_'(ztj —1) forj = 1,2,...,k (where

¢ = (g) is also a tuple in pfp‘oo (@p)). The value of k should be clear in the context.

Proof. Since A is Zariski dense in Spec(J), for any Gal(K[u,]/K) for the field
K of fractions of W, A, := UUGGal(K[MPOO] /K) A is Zariski dense in Spec(J) and
stable under Gal(K[jyo0]/K). We replace A by Ay, Let Z = Spec(A /a) for a :=
Ker(A — J) be the image of Spec(J) in Spec(A), and identify A with its image
in Z. By Proposition 2.1 (and by a remark just above Theorem 3.1), we have only a
finite number of generalized Weil I-numbers « of weight [«]f; with bounded /-power
denominator (i.e., [Ba is a Weil number of weight ([k] + 2B)f; for some B > 0) in
\Upea Lp up to multiplication by p-power roots of unity. Here we can take B = |« ]|.
Hence, replacing A by a subset, we may assume that Ap for all P € A hits one « of
such generalized Weil [-numbers of weight [k]f;, up to p-power roots of unity, since
the automorphic representation generated by fp is not Steinberg because [  n.

Let Py be as in Lemma 5.1 for this .A. By making a variable change ¢ > Py -t, we
m, and A sits above M,;oo (K), where we regard

.....

l’v,r,oo = [poo ®7z, I'* as a subgroup of @m ®z, I'* (for I' = Zy, as in Lemma 5.1)

isomorphic to Spf(W[[T]]) = Spt(W[t;, ;... 4., £7']) = Spf(W[[Ty...,T.]])
witht; =1+ T;.

After the variable change ¢t — Py - t (& T; — ;) described above, suppose for
the moment J =~ @m ®z, I'* (i.e., Py goes to the identity of @m ®z, I'* withJ =
WI[Y:....Y,]] = A (writing y; for the variable corresponding to t; and y; = 1 + ¥;
and hence A € A). Choosing y1, ..., Y, to be a generator of I' for r = rankyg, I,
we may assume that the projection A — J has kernel (t,4y — 1,...,%, — 1). In
down to earth terms, for A; = A(T) in (J3), the variable change ¢t — Py - ¢ is the
variable change 7 > ¥; = §y; (1 + Tj) — 1 with ¥ = (Y3, ..., ¥,,), and we have
A(Y)|y=o = A(T)|Tj=§j}/;(2—l’ Let

O,(Y):=a'AY) =a Ay (1 + T) — 1) € W[[Y]]

and L be the composite of Lp for P running through A. By this variable change, A is
brought into a Zariski dense subset £2; of /4/00 (@p) C @,’n = @m ®z, '* made up of
¢ such that ®({—1) is aroot of unity in L. It is easy to see (e.g., [H11, Lemma 2.6])
that the group of roots of unity of L contains 1,cc (K) as a subgroup of finite index,
and we find a subset 2 C ; Zariski dense in @m ®z, I'* = Spec(J) and a root of
unity ¢; such that {®;({ — 1)|{ € Q} C {1 upoo (K). Then @ = ¢! @ satisfies the
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assumption of Corollary 4.2, and for a root of unity ¢, we have A(Y) = {a(1 + Y)*
fors € Z,, and A(T) = {a(y (1 + T))*. Thus A(T) = c(1 + T)* for a non-zero
p-adic unit ¢ = Cay ™" € W* as desired.

More generally, we now assume that A € W[[T]][tl/""] (so, J is an extension of
WIT;....T,]land A € IO W[[T; ... ][5/, ....5""]). Since

SpE(WIITN[F/7"]]) = Gy, —— G}, = Spf(WI[T])),

by applying the same argument as above to W[[T]][r'/*"]], we get A(T) = c(1 +
T)*/"" for s € Z; and a constant ¢ # 0.

We thus need to show A € W([u]([T N[z/7"] for sufficient large n, and then
the result follows from the above argument. Again we make the variable change
T — Y we have already done. Replacing A by a~'A for a suitable Weil /-number
a of weight k (up to pp (@p)), we may assume that there exists a Zariski dense
set Ay C Spec(J)(@p) suchthat PN A = (1 4+ Y —¢p) for ¢p € /L;oo(@p) and
Ap € poo (@p) for all P € A. By another variable change (1 +Y) — {(1 +Y)
for a suitable ¢ € oo (@p), we may further assume that we have Py € A, with
lp, = 1 and Ap, = 1 (i.e., choosing o well in o - 00 (@p)). We now write J/
for the subalgebra of J topologically generated by A over A = W[[Y]]. Then we
have J' := A[A] C J. Since J is geometrically irreducible, the base ring W is
integrally closed in J'. Since A is a unit in J, we may embed the irreducible formal

scheme Spf(J’) into @jn x G = Spf(W[y,y~', 7,7 ~"]) by the surjective W-algebra

homomorphism 7 : W[y,y™',#,7~'] = I sending (y,7) to (1 + Y,A). Write
Z C G, x Gy, for the reduced image of Spf(J’). Thus we are identifying A with
W[y,y '] byy <> 1 + Y. Then Py € Z is the identity element of (@fn X @m)(@p).
Since A is integral over A, it is a root of a monic polynomial ®(¢') = ®(y,7) =
7+ a ()’ + - + ag(y) € A[f] irreducible over the quotient field Q of A,
and we have J' = A[f']/(®(y,7)). Thus J is free of rank, say d, over A; so, 7 :
Z — G!, = Spf(A) is a finite flat morphism of degree d. We let ¢ € Gal(@,,/(@,,)
acton A by > 02 a,Y" > Y o2 aY" and on A[f'] by ZjAj(Y)t/j AT (V)
for Aj(Y) € A. Note that ®({p,Ap) = 0 for P € A,. Since Ap € pye(Q,).
AG = AIVJ(”) for the p-adic cyclotomic character v : Gal(@P /Qp) — Zx ._Since W is
a discrete valuation ring, for its quotient field ', the image of v on Gal(Q,/F) is an
open subgroup U of Z. Thus we have ®° (Z;(”), A;(”)) = ®(¢p,Ap)° = 0 for all
o€ Gal(@p/(@,,) andif o € Gal(@[,/F), ®° = ®. Thus we get

B AND) = D(¢p, Ap)” = 0 forall P € A,.

For s € Z]’j, consider the integral closed formal subscheme Z; C @:n X @m defined
by ®(*, ") = 0.If s € U, we have Ay C Z N Z,. Since Z and Z, are finite flat
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over A and Ay is Zariski dense, we conclude Z = Z;. Thus Z C @,’n X @m is stable
under the diagonal action (y,?) — (y*,¢”) for s € U. By Lemma 4.1, Z is a formal
multiplicative group and is a formal subtorus of @,’" X @m, because 1 = P, € Z.
The projection 7 : Z — Spf(A) = @fn is finite flat of degree d. Sow : Z — @fn

is an isogeny. Thus we conclude Ker(r) = ]_[;:1 u,m and hence d = p™ form =

>_;m; > 0. This implies J' = A[A] C W[ |[[Y]][(1 + Y)" "] = W[p | [[T]][# ]
for n = max(mylj), as desired. |

6 Proof of Theorem 3.1

Let the notation be as in the previous section; so, K = Q[upe]. Put Lip =
K(orp). Suppose that there exist a set X of primes of positive upper density as
in Theorem 3.1. By the assumption of the theorem, we have an infinite set .4, of
arithmetic points of a fixed weight « with k, — k; > I of Spec(I) (independent of
[ € ) such that

B) ifle X, Lip/K is a finite extension of bounded degree independent of P €
Al

Let A, be the Zariski closure of A, in Spec(I). As remarked after stating Theo-
rem 3.1, we may assume that A, is geometrically irreducible of dimension r > 1
independent of [. Thus (J1) is satisfied for (A, Spec(J) := A|) forall [ € =.

Since we want to find a CM quadratic extension M/F in which p splits such that
the component I has complex multiplication by M, by absurdity, we assume that 1
is a non-CM component and try to get a contradiction.

By (B) and Proposition 5.2 applied to [ € X, for A; in (J3), we have

Aty = e[ [ forsi = (s;1) € Q) and ¢; € WX, (28)
i=1

n

As proved in Proposition 5.2, we have Ay € W[u»][[T1, ..., T[4 R r—
1]]. Since rank, J > ranky A[A] with A € J N W[up[Ty.....TJE —
1,...,#2 " —1]], the integer n is also bounded independent of [. Thus by the variable
change t; — tfn, we may assume that Ay € W[[Ty,...,T,]] for all | € ¥ (and
hence s; € Z,). Up until this point, we only used the existence of A; whose
weight k; depends on [ to conclude the above explicit form (28) of A. Since
Ay in (28) is independent of weight «(, we may now take any weight « (with
k» — k1 > 1) discarding the original choice «; dependent on [ (as remarked after
stating Theorem 3.1 that « is allowed to be dependent on [). Once « is chosen, we
can take A to be all the arithmetic points of weight x of Spec(J) (so, we may assume
that A = A\ is also independent of ). We use the symbols introduced in the proof
of Proposition 5.2. We now vary [ € X.
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Pick a p-power root of unity { # 1 of order 1| < a = p° and consider
£ = (¢...,0 € /,L;oo, and write ap; = oy = A[(Z’Q_l) for Z“_l =
e e and g = B = Gy ) for gy = @y gy,

They are generalized Weil /-numbers of weight [«]f;. Write f = fp for
P=(@—y" ) i=m—y =y

and g for the cusp form fpr for P’ = (t—¢y**~!). Consider the compatible system of
Galois representation associated with f and g. Pick a prime Q of Q(f, g) = Q(f)(g)
(with residual characteristic g sufficiently large) split over Q. Write py o (resp. py o)
for the Q-adic member of the system associated with f (resp. g). Thus pr o has
values in GL,(Z,). Since proper compact subgroups of SL;(Z,) are either finite,
open in a normalizer of a torus, open in a Borel subgroup or open in a unipotent
subgroup, the non-CM property of f and g tells us that Im(p; ) contains an open
subgroup of SL,(Z,) (e.g., [Di05, Sect. 0.1] or [CG14, Corollary 4.4]).

For a continuous representation p : Gal(Q/F) — GLy(R) (for R = @q or any
other topological ring), let p»™®/ denote the jth symmetric tensor representation
into GL;11(R). Suppose that f [and hence g by the equivalence of (CM2-3)] does

not have complex multiplication. Then by openness of Im(p» o) in GLy(Z), p5, g®j

is absolutely irreducible for all j > 0, and also the Zariski closure of Im(pffg@ )
is connected isomorphic to a quotient of GL(2) by a finite subgroup in the center.
Since B = o for aroot of unity § = [[;—, {%* (fors; € Q, as in Proposition 5.2),
we have B{ = «f [for a p-power a with (%' = 1 (j = 1,2,...,r)]. Thus
Tr(pj’?.Q(Frob[)) = Tr(p;Q(Frob[)) for all prime [ € X prime to pn, where
Tr(py 5)(g) is just the trace of ath matrix power pj - (g). Since the continuous
functions Tr(pf 5) and Tr(pg ) match on 3 = {Frob(|l € X}, we find that

Tr(p]‘iﬂ) = Tr(pgig) on the closure of %. Since we have
Tr(p") = Tr(p™"®) — Tr(p™"®“™ @ det(p)),
we get over f,
Tr(pf ") —Tr(of " @det(pr.0)) = Tr(py a>") —Tr(p) 5>~ @ det(pg.0))-
which implies
(™" @ (" ® det(pea)) = Tr(p ™ @ (075 ® det(pr.2)))
over ¥. Since X has positive upper Dirichlet density, by Rajan [Rj98, Theorem 2],

there exists an open subgroup Gal (Q/K) of Gal(Q/F) such that as representations
of Gal(Q/K)

sym@a symQ@(a—2) sym@a

e ® (0 @ det(pen)) = 0p0™ @ (5" ® det(py.0))-
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Since Im(p2.q) contains open subgroup of SL,(Z,), p‘;fg@/ restricted to Gal(Q/K)
is absolutely irreducible for all j > 0. Therefore, as representations of Gal(Q/K),
we conclude p;fg&l -~ pﬁﬁw from the difference of the dimensions of absolutely
irreducible factors in the left and right-hand side. By Calegari and Gee [CG14,
Corollary 4.4 and Theorem 7.1], each member of p;" "84 and PP is absolutely
irreducible over Gal(Q/K). Thus the ath symmetric tensor product of the two
compatible systems p; and p, are isomorphic to each other over Gal(Q/K). Again
by Rajan [Rj98, Theorem 2], as comp%tible systems of Galois representations of the
sym@®a .,

entire group Gal(Q/F), we find Joxs ~ p‘;,ym@“ ® y for a finite order character
¥ : Gal(Q/F) — @x. In particular, we get the identity of their 3-adic members

sym®@a ., _sym@a
Prop = Peyp ® X

Note that F, := F ®q Q, = [[,,, F) for the p-adic completion Fy, of F at prime
factors p of p. Pick a prime p|p of F. Then p = {x € O : |i,(c(x))|, < 1} for an
embedding o : F — Q. Then i, o 0 embeds F, into Q, continuously. Write /,, for
the set of all continuous embeddings of F, into @[, (including i, o o). By (Ram), we
can write the restriction po s |Gal(@p JFy) in an upper triangular form (97(')” 5:,, ) (up to
isomorphisms) with

Srp([u, Fpl) = ™" and €, ([u, Fp]) = u™*? foru € O sufficiently close to 1.
(29)

Here uf = Hi,,ore1p t(u)* for k = Y . k. (as the component of u in F) at
p’ # p for other primes p’|p is trivial in F)°). This property distinguishes &,
from e ,. Regard 8>, and €9, as characters of F, : by local class field theory, and

put &((up)y) = l_lp 82.p(up) and €((up)y) = Hp €rp(up) for (uy)y € Hp F;f as
characters of FY = [],, F}; (in order to regard these characters as those of F, not of
the single F’ ;). Then more precisely than (29), we have from our choice of f and g

&) =y Coe(v) =Ly 8 (y) = v and S,(y) =y (30)

as ep(y;) = ¢ and ep(y;) = 1 forall i. Since I' C Oy C F)', and hence we may
consider 85(y;) and €;(y;). Then we have from ,o;%;g@a ~ p;f}'g@a ® x

{e}87]j=0.....a} = {87yl =0.....a}.
Therefore we conclude from k, —k; > I and (29) that 6}5;_j = €/,847/ x. This means

_*Klf*/(l (a—j) — —K2j—K1 (a*j)é-Zj—a

v, e8I (y) = €8x (v) = v, 1)
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Therefore we get x(y;) = £“~% which has to be independent of j, a contradiction, as
we can choose the p-power order of ¢ as large as we want. Thus f and hence g must
have complex multiplication by the same CM quadratic extension M, by (CM1-3),
and hence I is a CM component. O
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