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Fix a prime p > 2. For a (nonzero) Hecke eigenform f ∈ Sk+1(Γ0(Npr+1),ψ) (p � N, r � 0) and a
subfield K of C, the Hecke field K ( f ) inside C is generated over K by the eigenvalues an = a(n, f )
of f for the Hecke operators T (n) for all n. Then Q( f ) is a finite extension of Q sitting inside the
algebraic closure Q in C. Let Γ be the maximal torsion-free quotient of Z×

p . We choose and fix a

generator γ ∈ Γ so that Γ = γ Zp and identify the Iwasawa algebra Λ = W �Γ � with the power series
ring W �T � by Γ � γ �→ (1 + T ) (for a discrete valuation ring W finite flat over Zp). A p-adic slope 0
analytic family of Hecke eigenforms F = { f P | P ∈ Spec(I)(Cp)} is indexed by points of Spec(I)(Cp),
where Spec(I) is a finite reduced irreducible covering of Spec(Λ) (giving an irreducible component
of the ‘big’ ordinary Hecke algebra of prime-to-p level N; see the discussion after the following the-
orem for a definition of the family). For each P ∈ Spec(I), f P is a p-adic modular form of slope 0 of
level Npr+1 for a fixed prime to p-level N (p � N) with a suitable exponent r. The family is called
analytic because a(n) : P �→ a(n, f P ) is a p-adic analytic function on Spec(I)(Cp) belonging to the
structure sheaf I. Often we write the value at P of this function as aP (n); so, aP (n) = P (a(n)) ∈ Qp

if P ∈ Spec(I)(Qp) (regarding P as a W -algebra homomorphism P : I → Qp). We call P arithmetic of
weight k = k(P ) ∈ Z with character εP : Γ → μp∞(Cp) if P kills (1 + T − εP (γ )γ k) ∈ Λ and k(P ) � 1
(so the weight of the associated cusp form is k(P )+ 1 � 2). We write pr(P ) for the order of εP (so, f P

has level Npr(P )+1). If P is arithmetic, f P is known to be a p-stabilized classical Hecke eigenform and
has Neben character ψP whose restriction to Γ is given by εP . After the work of Shimura and Deligne,
it is proven in [13] (see also [29, Proposition 1 in Section 9]) that for each P ∈ Spec(I), we have a
p-adic semi-simple Galois representation ρP : Gal(Q/Q) → GL2(κ(P )) with coefficients in the residue
field κ(P ) of P unramified outside Np such that Tr(ρP (Frobl)) = a(l, f P ) for all primes outside Np.
Write ρI for ρP if P = (0) and ρ for ρm for the maximal ideal m of I. The representation ρ has values
in GL2(F) for the finite field F = κ(m). For each p-decomposition subgroup D ⊂ Gal(Q/Q), the restric-
tion ρP |D is known to be isomorphic to a reducible upper triangular representation with unramified
quotient character (e.g., [16, Theorem 4.2.6]). Consider the adjoint representation Ad(ρP ) realized on
the trace zero subspace in sl2(κ(P )) ⊂ M2(κ(P )) by conjugation action: x �→ ρP (σ )xρP (σ )−1. Since
ρP is motivic and Ad(ρP ) is critical at s = 1 if P is arithmetic, Ad(ρP ) has an L-invariant L(Ad(ρP ))

defined by Greenberg [7] (see also [20, Section 1.5.2]). Thus we get a function P �→ L(Ad(ρP )) defined
on the set of arithmetic points of Spec(I). This function can be interpolated analytically on Spec(I),
and we just write P �→ L(Ad(ρP )) for this analytic function (as in Theorem 2.4 in Section 2.5). We
prove in this paper

Theorem. Let p > 2. Either suppose smoothness at an arithmetic point P0 of the ordinary deformation space
of ρP0 (an almost known conjecture; see Conjecture 2.2 below) or define the I-adic L-invariant as in Sec-
tion 2.5. Then the analytic function Spec(I)(Cp) � P �→ L(Ad(ρP )) is constant if and only if the family F has
complex multiplication.

After recalling the definition of the ‘big’ cuspidal Hecke algebra, we prove the theorem in Sec-
tion 1.1 assuming a formula of L(Ad(ρP )) in terms of a derivative of the analytic function a(p) with
respect to T . We recall from [18] the proof of the derivative formula in Section 2. By this theorem, if
F is a non-CM family, P �→ L(Ad(ρP )) is a non-constant analytic function; so, except for finitely many
modular adjoint Galois representations in the family, the conjecture of Greenberg (see [7]) predicting
the non-vanishing of L(Ad(V )) is true. The importance of characterizing CM families out of general
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p-adic analytic families of cusp forms will be discussed in the last section, where one can find also
an overview of such characterizations (including a list of known/expected characterizations).

1. Big cuspidal Hecke algebra and Galois representation

Before proving the theorem, here is a concise definition of p-adic analytic families of slope 0.

Fix a prime p � 3, field embeddings C
i∞←↩ Q

ip
↪→ Qp ⊂ Cp and a positive integer N prime to p. We

sometimes identify Cp and C by a fixed field isomorphism compatible with the above embeddings.
Consider the space of cusp forms Sk+1(Γ0(Npr+1),ψ) with (p � N, r � 0). Let the rings Z[ψ] ⊂ C
and Zp[ψ] ⊂ Qp be generated by the values ψ over Z and Zp , respectively. The Hecke algebra h =
hk+1(Γ0(Npr+1),ψ;Z[ψ]) over Z[ψ] is

h = Z[ψ][T (n)
∣∣ n = 1,2, . . .

] ⊂ End
(

Sk+1
(
Γ0

(
Npr+1),ψ))

.

For any Z[ψ]-algebra A ⊂ C, hk+1(Γ0(Npr+1),ψ; A) = h ⊗Z[ψ] A is actually the subalgebra generated
over A by T (l)’s in End(Sk+1(Γ0(Npr+1),ψ)). Simply we write

hk+1,ψ = hk+1,ψ/W = hk+1
(
Γ0

(
Npr+1),ψ; W

) := h ⊗Z[ψ] W

for a p-adic discrete valuation ring W ⊂ Qp containing Zp[ψ]. Sometimes our T (p) is written as
U (p) as the level is divisible by p. The ordinary part hk+1,ψ/W ⊂ hk+1,ψ/W is then the maximal ring
direct summand on which U (p) is invertible. We write e for the idempotent of hk+1,ψ/W ; so, e is the
p-adic limit in hk+1,ψ/W of U (p)n! as n → ∞. By the fixed isomorphism Cp ∼= C, the idempotent e
not only acts on the space of modular forms with coefficients in W but also on the classical space
Sk+1(Γ0(Npr+1),ψ). We write the image of the idempotent as Sord

k+1 for modular forms and Sord
k+1 for

cusp forms. Let ψ1 = ψN × the tame p-part of ψ . Then, as constructed in [12] and [13], we have a
unique ‘big’ Hecke algebra h = hψ1/W such that

(1) h is free of finite rank over Λ := W �T � equipped with T (n) ∈ h for all n,
(2) if k � 1 and ε : Z×

p → μp∞ is a character,

h/
(
1 + T − ψ(γ )ε(γ )γ k)h ∼= hk+1,εψk (γ = 1 + p) for ψk := ψ1ω

1−k,

sending T (n) to T (n), where ω is the Teichmüller character.

We often identify Λ with the completed group algebra W �Γ � of Γ = 1 + pZp generated by γ =
(1 + p) by (1 + T ) ↔ γ .

Let Q be the quotient field of Λ. Each (reduced) irreducible component Spec(I) ⊂ Spec(h) has a
two-dimensional semi-simple Galois representation ρI (of Gal(Q/Q)) with coefficients in the quotient
field Q I of I which is a finite extension of Q (see [13]). This representation preserves an I-lattice
L ⊂ Q 2

I (i.e., an I-submodule of Q I of finite type which spans Q 2
I over Q I), and as a map of Gal(Q/Q)

into the profinite group AutI(L), it is continuous. Write a(l) for the image of T (l) (l � Np) in I and a(p)

for the image of U (p). The representation ρI restricted to the p-decomposition group D is reducible
with nontrivial unramified quotient. We write ρss

I for its semi-simplification over D . As is well known
now (e.g., [16, Section 4.2]), ρI satisfies

Tr
(
ρI(Frobl)

) = a(l) (l � Np),

ρss
I

([
γ s,Qp

]) ∼
((

(1 + T )s 0
0 1

))
and ρss

I
([p,Qp]) ∼

((∗ 0
0 a(p)

))
, (Gal)
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where γ s = (1+ p)s ∈ Z×
p for s ∈ Zp and [x,Qp] is the local Artin symbol. We call a prime ideal P ⊂ I

a prime divisor if Spec(I/P ) has codimension 1 in Spec(I). If a prime divisor P of Spec(I) contains
(1 + T − εψk(γ )γ k) with k � 1, we therefore have a Hecke eigenform f P ∈ Sk+1(Γ0(Npr(P )+1), εψk)

such that its eigenvalue for T (n) is given by aP (n) := (T (n)|I mod P ) ∈ Qp for all n. A prime divisor P
with P ∩ Λ = (1 + T − εψk(γ )γ k) with k � 1 is called an arithmetic point (or prime). We write
εP = ε and k(P ) = k � 1 for an arithmetic P . Thus I gives rise to an analytic family FI = { f P |
arithmetic P ∈ Spec(I)}. A (cuspidal) component I is called a CM component if there exists a nontrivial
character ξ : Gal(Q/Q) → I× such that ρI ∼= ρI ⊗ ξ . Then ξ is necessarily an odd quadratic character;
so, M := QKer(ξ) is an imaginary quadratic field (see [23, (CM1–3) in Section 1]). If a cuspidal I is not
a CM component, we call it a non-CM component.

For each prime P ∈ Spec(I), Tr(ρI) mod P has values in I/P . Let κ(P ) be the field of frac-
tions of I/P . As we already mentioned, we have a unique semi-simple Galois representation ρP :
Gal(Q/Q) → GL2(κ(P )) such that

Tr
(
ρP (Frobl)

) = (
a(l) mod P

)
.

The easiest way of constructing ρP is by the technique of pseudo-representations (though the tech-
nique is not logically necessary; see [29, Proposition 1 in Section 9]).

A family has complex multiplication if one of the following equivalent conditions is satisfied (see
[23, (CM1–3) in Section 1] and [22, Proposition 3.2] for the equivalence):

(1) there exist an arithmetic point P ∈ Spec(I) and a nontrivial Galois character ξ such that ρP ⊗
ξ ∼= ρP ,

(2) for all arithmetic points P ∈ Spec(I) and a nontrivial Galois character ξ , we have ρP ⊗ ξ ∼= ρP .

If the above equivalent conditions are satisfied, ξ cuts out an imaginary quadratic field M so that
ξ = (

M/Q
), and the above conditions are equivalent to the each of the two following conditions:

(3) there exists an arithmetic point P ∈ Spec(I) such that f P is a theta series of the norm form of M ,
i.e., f P = ∑

a λ(a)qN(a) for a Hecke character λ of M , where a runs over integral ideals of M ,
(4) for all arithmetic points P ∈ Spec(I), f P is a theta series of the norm form of M .

Let F/Q be a totally real finite extension field. Suppose F �= Q. For each prime factor p|p in F , we
write Γp for the Galois group of cyclotomic Zp-extension of the local field Fp (the p-adic completion
of F ). Let ΓF = ∏

p|p Γp . In the Hilbert modular case for the totally real number field F , the locally
cyclotomic nearly ordinary family (with fixed central character) is indexed by Spec(I) for an integral
domain finite flat over the Iwasawa algebra W �ΓF �. For each point P ∈ Spec(I)(Qp), we still have an
associated Galois representation ρP : Gal(Q/F ) → GL2(κ(P )) (see [20, Sections 2.3.8 and 3.2.8]) and
we have an analytic function Spec(I)(Cp) � P → L(IndQ

F Ad(ρP )) interpolating Greenberg’s L invariant

of IndQ
F Ad(ρP ) (see [20, Theorem 3.73]). Similarly as above (e.g., [14]), we define CM families of

Hilbert modular forms. We may conjecture

Conjecture 1.1. The analytic function Spec(I)(Cp) � P �→ L(IndQ
F Ad(ρP )) is constant if and only if the fam-

ily F has complex multiplication.

The conjecture implies that for a non-CM component I, the function P �→ L(IndQ
F Ad(ρP )) is non-

constant; so, it vanishes only on a very thin subset of Spec(I).

1.1. Proof of the theorem

Before starting the proof, we prepare a lemma which is a characteristic 0 version of a lemma of

Chai [2, Theorem 4.3]. Identify Λ with ̂W [t, t−1] = lim←−n
W [t]/(t pn − 1) by t = 1 + T . Then the formal
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completion Ĝm of the multiplicative group Gm along the identity 1 ∈ Gm(F) is given by Spf(Λ). Here
note that our Ĝm is the formal completion along the characteristic p identity not along 1 ∈ Gm(W )

(i.e., p-adic completion, which could be somehow standard), though the completion of W [t, t−1] with
respect to (p, T ) and with respect to the filter {(t pn −1)}n are actually equal. Therefore we may regard
our Ĝm as a group functor from the category of pro-artinian local rings over W into the category of
groups; so, Ĝm(R) = 1 + mR for any pro-artinian local W -algebra R with maximal ideal mR . Write

Ĝm × Ĝm = Spf( ̂W [t, t−1, t′, t′−1]) for the variable t of the left factor and t′ of the right factor, and let
z ∈ Z×

p act on Ĝm × Ĝm by (t, t′) �→ (tz, t′ z) for z ∈ Z×
p , where tz = (1 + T )z = ∑∞

n=0

(z
n

)
T n ∈ W �T �.

Lemma 1.2. Let Φ(t, t′) = t′d +a1(t)t′d−1 +· · ·+ad(t) ∈ Λ[t′] with Φ(1,1) = 0 be an irreducible polynomial

over Q = Frac(Λ). Suppose that the integral closure of Zp in J := ̂W [t, t−1, t′, t′−1]/(Φ(t, t′)) is equal to W .
If the integral formal closed subscheme Z = Spf(J) of Ĝm × Ĝm/W of codimension 1 is stable under the action
of an open subgroup U of Z×

p , we have Φ(t, t′) = t′d − tb for b ∈ Zp with dZp + bZp = Zp for a p-power d.

Proof. Write J := Λ[t′]/(Φ(t, t′)). Regard J as embedded in an algebraic closure Q of Q . Since Qp ∩
J = W in Q , J ⊗W Qp is an integral domain by [30, Section 3.5]. Thus Spec(J) (and Spec(J ⊗W Qp))
is geometrically irreducible with dominant projection to the right factor Ĝm = Spf(Λ). By assumption,
Z ⊂ Ĝm × Ĝm is stable under the diagonal action (t, t′) �→ (ts, t′ s) for s ∈ U . We may assume that U =
1 + prZp for r > 0. Since Z is flat of relative dimension 1 over W , replacing W by a finite extension
if necessary, we find in Z a W -point (t0, t′

0) ∈ Ĝ2
m(W ) of infinite order. Thus we have an infinite set

Ξ = {(ts
0, t′ s

0 ) | s ∈ U } = {(t0t pr u
0 , t′

0t′ pr u
0 ) | u ∈ Zp} inside Z . By translation τ : (t, t′) �→ (tt−1

0 , t′t′−1
0 ),

we find that τ (Z) contains

Ξ0 = {(
t pr u

0 , t′ pr u
0

) ∣∣ u ∈ Zp
}
.

Since Z is finite flat over Spf(Λ) with dominant projection to the right factor Ĝm , by flatness, J is
a free module over Λ, and

⋂
P∈Ξ0

(P ∩ Λ)J = 0. So τ (Z) is the Zariski closure of the infinite sub-

group Ξ0 of Ĝ2
m . Then τ (Z) must be a formal subgroup of Ĝ2

m of codimension 1, and Z is a coset
(t0, t′

0)τ (Z) in Ĝm × Ĝm . Since Z contains the identity 1 of Ĝm × Ĝm as Φ(1,1) = 0, we must have
τ (Z) = Z . Since the left projection π : Z → Spf(Λ) = Ĝm is finite flat of degree d, the kernel Ker(π)

is a finite flat group scheme over W , which is therefore a finite flat subgroup of μpn × μpn for suffi-
ciently large n isomorphic to μpm × μpm′ (for some m � n and m′ � n). Thus Z is an extension of Ĝm

by μpm × μpm′ . By geometric irreducibility of Z = Spec(J), multiplication by p induces a dominant
morphism on Z → Z and hence Z [p∞] is p-divisible. Since Ker(π) is finite flat, Z [p∞] is a Barsotti–
Tate group fitting into an exact sequence 0 → Ker(π) → Z [p∞] → μp∞ → 0; so, we may assume that
m′ = 0. By Cartier duality applied to this sequence, the dual of Z [p∞] is étale, and hence Z [p∞] must
be isomorphic to μp∞ . Therefore Z ∼= lim←−n

μpn is a formal multiplicative group, and Z is a formal

subtorus of Ĝ2
m . Thus writing X∗(Ĝm × Ĝm) ∼= Z2

p for the formal character group of Ĝm × Ĝm , Z is

the kernel of χ ∈ X∗(Ĝm × Ĝm). Writing χ(t, t′) = tat′−b , we have Z = {(t, t′) | tb′ = t′a} for a,b′ ∈ Zp .
Thus we may assume that a = upn for u ∈ Z×

p by the original form of Φ . Then Z = {(t, t′) | tb = t′d′ }
for d′ = pn and b = b′u−1. Thus d = d′d′′ for an integer d′′ prime to p. Since we can extract d′′-th root
inside 1 + mΛ for the maximal ideal mΛ of Λ (as 1 + mΛ is p-profinite), irreducibility of Φ(t, t′) in

Q [t′] implies d = d′ , and Φ(t, t′) = (t′d − tb)u(t, t′) for a unit u(t, t′) ∈ ̂W [t, t−1, t′, t′−1]. Since Φ(t, t′)
is irreducible of degree d = d′ in Q [t′], u(t, t′) must be a unit in Λ. Since Φ(t, t′) and t′d − tb are
monic with respect to t′ , we conclude u(t, t′) = 1. This finishes the proof. �
Remark 1.1. In the above proof, the two conditions Φ(1,1) = 0 and geometric irreducibility are both
indispensable. If we do not suppose Φ(1,1) = 0, for a one-dimensional formal subtorus G ⊂ Ĝm ×
Ĝm , a coset (ζ, ζ ′)G for (1,1) �= (ζ, ζ ′) ∈ μpm (W ) × μpm (W ) is stable under U = 1 + pmZp but is
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not a formal subgroup. As a special instance of this example, we have the case when Φ(t, t′) is an
irreducible factor Ψ (t′) of t′ pn − 1 (and in this case, Z = Ĝm × ζ for a root ζ of Ψ (t′) = 0 in W ).
Similarly if we do not suppose geometric irreducibility of Spec(J), Z ⊂ Ĝm × Ĝm could be of the
form (μpm × μpr ) · G (with m + r > 0) which is not a formal subtorus but a geometrically reducible
formal subgroup. In the above example of Φ(t, t′) = Ψ (t′), geometric irreducibility of Spec(J) forces
Φ(t′) = t′ − 1 (and hence d = 1 and b = 0 under the notation of the above lemma).

We now start the proof of the theorem. Hereafter we assume p > 2 in the rest of the paper. We
may assume that the integral closure of Zp in I is equal to W (by extending scalars if necessary). By
Theorem 2.1 (which assumes Conjecture 2.2), L(Ad(ρP )) (for densely populated arithmetic points P
in Spec(I)) is a constant multiple of

(
a(p)−1 da(p)

dX

)∣∣∣∣
X=0

,

if P ∩ Λ = (X) for X = γ −kζ−1t − 1 and t = 1 + T . After proving the theorem assuming this formula,
we recall the proof of the formula (though it was proven in [18]). By variable change, we get

(
a(p)−1 da(p)

dX

)∣∣∣∣
X=0

=
(

a(p)−1t
da(p)

dt

)∣∣∣∣
t=ζγ k

.

Thus the constancy of L(Ad(ρP )) implies constancy of

a(p)−1(1 + T )
da(p)

dT
= a(p)−1t

da(p)

dt
.

Thus t da
dt = s · a for a(t) = a(p)(t) for s ∈ W ⊗Zp Qp . In other words, putting b(x) = logp ◦a(expp(x))

(for x = logp(t)), as dx = dt
t , we get from the chain rule,

db

dx
= da

dx

db

da
= da

dx

d logp(a)

da
= s · a · 1

a
= s.

Thus b is a linear function of x with slope s:

logp(a) = sx + c ⇔ a = C expp

(
s · logp(t)

) = Cts (
C = expp(c)

)
.

Then a(p) = Cts ∈ F �T � for ts = expp(s · logp(t)), where F is the quotient field of W . Since a(p) is
a unit in I, C is a p-adic unit in W ×; so, Φ(t) := ts = C−1a(p) ∈ I. Consider the subalgebra J =
Λ[Φ(t)] ⊂ I topologically generated by C−1a(p). We have a surjective W -algebra homomorphism

̂W [t, t−1, t′, t′−1] � J sending (t, t′) to (1 + T ,Φ(t)). This surjection gives rise to an integral formal
closed subscheme Z ∼= Spf(J) in Ĝm × Ĝm . Since C−1a(p) is a power series ts = ∑∞

n=0

(s
n

)
T n ∈ F �T �

convergent over a closed disk Dε = {x ∈ F | |x|p � ε} for some ε ∈ |F ×|p , it is in an affinoid ring F {T }
which is the convergent power series ring over Dε . Since the action t �→ tz for z ∈ Z×

p extends to
F {T }, we have Φ(tz) = Φ(t)z in F {T } as Φ(t) = ts . Thus Φ(tz) = Φ(t)z for all z ∈ U = Z×

p in J as we
may regard J as a subring of F {T }. Then the formal subscheme Z is stable under the action (t, t′) �→
(tz, t′ z) of all z ∈ U := Z×

p on Ĝm × Ĝm . Thus we conclude s ∈ Qp from the above lemma. Let us write

f P ,ζ = f P for the eigenform in the family corresponding to a prime P above (X) = (γ −kζ−1t −1) with
ζ ∈ μpr to emphasize dependence on ζ . The cusp form f P ,ζ is a Hecke eigenform in Sk(Γ1(Npr+1)),
and we have a(p, f P ,ζ ) = Cγ ksζ s . Take ζ = 1. Then the p-adic unit a(p, f P ,1) = Cγ ks is an algebraic
number α. This shows that for any ζ ∈ μp∞ , a(p, f P ,ζ ) = α up to p-power roots of unity. Thus the
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field generated by a(p, f P ,ζ ) for all ζ ∈ μp∞ is a finite extension of Q[μp∞]. Then by Theorem 3.3
in [23] (see Strong horizontal theorem in Section 3.2 in the text), we conclude that F is a CM family.

Conversely, we suppose that F is a CM family. Then we find a Galois character λ : Gal(Q/M) → I×
for an imaginary quadratic field M such that ρI ∼= IndQ

M λ (and hence ρP = IndQ
M λ mod P for all

P ∈ Spec(I)) and λ is unramified at a unique factor p|p in M . Then a(p) is the value of the char-
acter λ(Frobp) at the Frobenius element Frobp at p. Note that for the class number h of M , taking
a generator α of ph and putting logp(p) = 1

h logp(α) for the Iwasawa logarithm logp , we find that

λ(Frobp) = tlogp(p)/ logp(γ ) up to a root of unity. This shows the constancy of L-invariant for the CM
family (see [20, Section 5.3.3] for the description of the constant).

2. Recall of L-invariant

For the completeness of the paper and the reader’s convenience, we give a sketch of the proof of
the fact that L(Ad(ρP )) is proportional to the derivative of a(p) ∈ W �T � (the details can be found
in [18]).

Let us start with some words on the history of the invariant. After Mazur, Tate and Teitelbaum [27],
many number theorists have proposed diverse definitions of the L-invariant which are expected to
give the correction factor relating the conjectural arithmetic part of the leading term of the Taylor
expansion of a given p-adic motivic L-function at an exceptional zero to its archimedean counter-
part. For an elliptic curve E/Q with multiplicative or ordinary good reduction modulo p, its p-adic
L-function L p(s, E) has the following evaluation formula at s = 1:

Lp(1, E) = (
1 − a−1

p

) L∞(1, E)

period
,

where L∞(s, E) is the archimedean L-function of E , and ap is the eigenvalue of the arithmetic Frobe-
nius element at p on the unramified quotient of the p-adic Tate module T (E) of E . If E has split
multiplicative reduction, ap = 1, L p(s, E) has zero at s = 1. This type of zero of a p-adic L-function re-
sulting from the modification Euler p-factor is called an exceptional zero, and it is believed that if the
archimedean L-value does not vanish, the order of the zero is the number e of such Euler p-factors;

so, in this case, e = 1. Then L′
p(1, E) = dLp(s,E)

ds |s=1 is conjectured to be equal to the archimedean value
L∞(1,E)
period times an error factor Lan(E), the so-called L-invariant:

L′
p(1, E) = Lan(E)

L∞(1, E)

period
.

The problem regarding L-invariants of motives is to find an explicit formula in terms of their p-adic
realization without recourse to p-adic L-functions. For E/Q split multiplicative at p, writing E(Qp) =
Q×

p /qZ for the Tate period q ∈ pZp , the solution conjectured by Mazur, Tate and Teitelbaum and
proved by Greenberg and Stevens [8] is

Lan(E) = logp(q)

ordp(q)
.

Since E is modular, it is associated to an elliptic Hecke eigenform f E of weight 2 with q-expansion∑∞
n=1 a(n, f E )qn . In particular, a(p, f E ) = ap = 1 and a(1, f E) = 1. We can lift f E to a unique Λ-adic

Hecke eigenform F for a finite flat extension Λ of Zp � X � (étale around X = 0) so that f E is a
specialization of F at X = 0. Then one of the key ingredients of their proof is the following formula:

Lan(E) = −2 logp(γ )
da(p)

dX

∣∣∣∣
X=0

.
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Greenberg generalized in [7] the conjectural formula of his L-invariant to general V when
V is p-ordinary. We write L(V ) for the L-invariant of Greenberg. Suppose that V is a modu-
lar ordinary two-dimensional Galois representation ρP : Gal(Q/Q) → GL2(κ(P )). Recall the variable
X = γ −kζ−1t − 1 for ζ = εP (γ ). Then we have P ∩ W � X � = (X). For the reader’s convenience (and
also for completeness), we give a sketch of the proof of the following theorem in [18]:

Theorem 2.1. Let p be an odd prime, and suppose Conjecture 2.2 in the following section. Then we have

L(
Ad(ρP )

) = −2 logp(γ )aP (p)−1 da(p)

dX

∣∣∣∣
X=0

,

where aP (p) = (a(p) mod P ) ∈ Qp .

2.1. Galois deformation

A main ingredient of the proof of Theorem 2.1 is the nearly ordinary Galois deformation the-
ory. Let us recall one of its main results. Since ρP is irreducible and Tr(ρI) ∈ I, by the theory of
pseudo-representation, we can arrange ρI to have values in IP . Let ÎP = lim←−n

IP /PnIP . It is known

that ÎP ∼= κ(P )� X � (see [20, Proposition 3.78]). The Galois character det(ρI)−1 det(ρP ) has values in
the p-profinite group 1 + m for the maximal ideal m of I, and hence we have its unique square
root χ with values in 1 + m. Define a representation ρ : Gal(Q/Q) → GL2(̂IP ) with det(ρ) = det(ρP )

by ρ(σ ) = χ(σ )ρI(σ ). Note that ρ ≡ ρI mod P . Fix a decomposition subgroup D p ⊂ Gal(Q/Q) at p.
Normalize ρP so that ρP |D p = ( εP ∗

0 δP

)
with unramified δP . Then εP �= δP and εP is ramified. Note

that ε = (εP mod m) and δ = (δP mod m) are characters (with values in F× = κ(m)×) of D p well
determined independent of P . We call ρ p-distinguished if δ �= ε .

Simply write κ := κ(P ). Let S be the set of places of Q made up of all prime factors of Np and
∞. Consider the deformation functor into sets from the category of local artinian κ-algebras with
residue field κ whose value at a local artinian κ-algebra A is given by the set of isomorphism classes
of two-dimensional continuous Galois representation ρA : Gal(Q/Q) → GL2(A) unramified outside S
such that:

(D1) (ρA mod mA) ∼= ρP for the maximal ideal mA of A;
(D2) Writing ι : κ → A for the structure homomorphism of κ-algebras, we have the identity of the

determinant characters:

ι ◦ det(ρP ) = det(ρA);

(D3) ρA |D p
∼= ( εA ∗

0 δA

)
with δA ≡ δP mod mA .

The condition (D3) is the near ordinarity, and we call the character δA of D p the nearly ordinary
character of ρA . By the work started by Wiles and Taylor followed by Diamond, Fujiwara, Skinner
and Wiles and Kisin, we know the following fact in almost all cases (cf. [20, Corollary 3.77 and
Proposition 3.78]).

Conjecture 2.2. If P is arithmetic, the above functor is pro-represented by the pair (̂IP ,ρ). Thus in particular,
we have ρ|D p

∼= ( ε ∗
0 δ

)
with nearly ordinary character δ of ρ .

Note here ÎP ∼= κ(P )� X �. The conjecture holds at least in the following cases:

(1) ρP is p-distinguished and ρ is absolutely irreducible over Q[√p∗ ] for p∗ = (−1)(p−1)/2 p (e.g.,
essentially the original R = T theorem of Wiles and Taylor; see [5], [17, Theorem 5.29] and
[20, Proposition 3.78]).
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(2) This is via the theory of eigenvariety including the identification of the rigid-analytic full (di-
mension 3) Galois deformation space with the maximal spectrum of the full Hecke algebra
(p-inverted) by Gouvêa and Mazur, Coleman and Mazur, Kisin and Chenevier (see [25, Theo-
rem 8.2], [3] and [4]). Supposing that ρ is absolutely irreducible, the conjecture holds if the
slope < k(P )/2, since the eigenvariety is étale around P (with absolutely irreducible ρ) over the
arithmetic point below P on the weight space; see also [24, Theorem 11.10].

(3) ρ ∼= χ1 ⊕ χ2 for two Galois characters with χ1|Gal(Q/Q[μp∞]) �= χ2|Gal(Q/Q[μp∞ ]) [24, Theo-

rem 11.10] and [25, Theorem 8.2].

The only remaining case is when ρ is reducible and χ1|Gal(Q/Q[μp∞ ]) = χ2|Gal(Q/Q[μp∞]) (which means

p-distinguishedness as the representation is odd). In this exceptional case, the result of Skinner and
Wiles [32] applies (so, at least ÎP is equal to the reduced part of the universal ring). The case (1)
is the combination of the result in [5] and the method in [20, Chapter 3]. Indeed, if we have an
R = T theorem for one arithmetic point P , it extends to the entire connected component Spec(T) of
Spec(h) containing Spec(I). The specific one point P with R = T is essentially covered either by [5] or
[20, Chapter 3] (especially Section 3.2.4). In the cases (2) and (3), the full Galois deformation ring R
around an arithmetic point is smooth over the weight space by the work quoted there. Since the
full deformation ring does not have information of a(p) (or U (p)), the natural projection Spec(R) →
Spec(R) (for the ordinary deformation ring R) has image on one of the two leaves (of the infinite
fern) crossing at P if the slope ordp(aP (p)) is 0 (or more generally, ordp(aP (p)) is less than k(P )/2);
so, it is étale around the point P̃ ∈ Spec(R) coming from the arithmetic point P ∈ Spec(I). Thus we
have Spec(R P̃ )

étale−−−→ Spec(RP )
smooth−−−−−→ Spec(W �T � P ), which shows that the composite is étale, and

hence R̂ P̃ = ÎP = κ(P )� X �.
In the following sections, we shall start with a brief review of the definition by Greenberg of the

Selmer group and the L-invariant of the adjoint square of a two-dimensional modular ordinary p-adic
Galois representation. After the review, we shall give a sketch of the proof of Theorem 2.1.

2.2. Selmer groups

We shall describe the definition due to Greenberg of his Selmer group associated to the adjoint
square Galois representation. For simplicity, we assume that S = {p,∞}; so, N = 1 (see [18] for the
general case without this assumption). We may assume that κ has p-adic integer ring W . Let QS be
the maximal extension unramified outside S . Let M/Q be a subfield of QS . All Galois cohomology
groups are continuous cohomology groups as defined in [17, 4.3.3]. We write p for a prime of M over
p and q for general primes of M . Write GS

M = Gal(QS/M) and Ip for the inertia subgroup of the
decomposition subgroup Dp ⊂ GS

M .
Write now V for the two-dimensional vector space over κ with a continuous action of GS as-

sociated to the Hecke eigen cusp form f P . We let GS act on Endκ (V ) by conjugation and define
Ad(V ) = sl(V ) ⊂ Endκ (V ) by the trace 0 subspace of dimension 3.

We assume given a filtration as in (D3):

V � F +V � {0} (ord)

stable under the decomposition group D p such that the inertia group I p ⊂ D p acts on the quotient
V /F +V by δP . We take a basis of V compatible with the filtration (ord) so that ρP |D p is upper
triangular. Then Ad(V ) has the following three step filtration stable under D p :

Ad(V ) ⊃ F −Ad(V ) ⊃ F +Ad(V ) ⊃ {0}, (F)

where

F −Ad(V ) = {
φ ∈ Ad(V )

∣∣ φ
(

F +V
) ⊂ F +V

}
(upper triangular),
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F +Ad(V ) = {
φ ∈ Ad(V )

∣∣ φ
(

F +V
) = 0

}
(upper nilpotent).

Note that D p acts trivially on F −Ad(V )/F +Ad(V ); so, F −Ad(V )/F +Ad(V ) ∼= κ as D p -modules; so, the
p-adic L-function of Ad(V ) has an exceptional zero at s = 1.

For each prime p|p of M , we put

Up

(
Ad(V )

) = Ker

(
Res : H1(Dp,Ad(V )

) → H1
(

Ip,
Ad(V )

F +(Ad(V ))

))
.

Then we define

SelM
(
Ad(V )

) = Ker

(
H1(GS

M ,Ad(V )
) →

∏
p

H1(Dp,Ad(V ))

Up(Ad(V ))

)
. (2.1)

Replacing Up(Ad(V )) by the bigger

U−
p

(
Ad(V )

) = Ker

(
Res : H1(Dp,Ad(V )

) → H1
(

Ip,
Ad(V )

F −(Ad(V ))

))

for p|p, we define a bigger “minus” Selmer group Sel−M(Ad(V )) ⊃ SelM(Ad(V )).
Taking the Tate-dual Ad(V )∗(1) = Homκ (Ad(V ), κ)(1) with single Tate twist, and the filtration dual

to (F), we define the dual Selmer group SelM(Ad(V )∗(1)).
Assumed Conjecture 2.2 implies the following fact in [7] necessary to define L(Ad(V )):

Lemma 2.3. Suppose (̂IP ,ρ) is universal. We have SelQ(Ad(V )) = 0 and

SelQ
(
Ad(V )

) = SelQ
(
Ad(V )∗(1)

) = 0. (V)

In the earlier article [18], the balanced Selmer group SelQ (see [7, (16)] and [20, Section 1.5.1]) is
used to prove this type of result. However, by definition, we have SelQ(Ad(V )) ⊃ SelQ(Ad(V )) and by
duality SelQ(Ad(V )∗(1)) ⊂ SelQ(Ad(V )∗(1)). On the other hand, by Greenberg [7, Proposition 2], we
have

dim SelQ
(
Ad(V )

) = dim SelQ
(
Ad(V )∗(1)

)
,

and hence, to prove the vanishing of all such Selmer groups, we only need to show SelQ(Ad(V )) = 0.

Proof of Lemma 2.3. Here is a sketch of the proof. For any derivation ∂ : ÎP → κ , consider cP :=
(∂ρ)ρ−1

P : GS → End(V ). Applying ∂ to ρ(σ )ρ(τ ) = ρ(στ ), we verify c∂ is cocycle. Since det(ρ)

is constant, cP has values in Ad(V ). Since ρ|D p is upper triangular, [cP ] ∈ Sel−Q(Ad(V )). By uni-

versality, any such cocycle is of the form c∂ . Thus the tangent space TP ∼= κ of Spec(̂IP ) at P is
isomorphic to Sel−Q(Ad(V )). Since the diagonal entry of c∂ is nontrivial, SelQ(Ad(V )) is a proper

subspace of one-dimensional subspace of Sel−Q(Ad(V )); so, it vanishes. The dual Selmer group cor-
responds to the value at the counter-part of the functional equation of L(s,Ad(ρP )) of the value
corresponding to the original Selmer group. Indeed, Greenberg proved by cohomological computation
that dimκ SelQ(Ad(V )) = dimκ SelQ(Ad(V )∗(1)); so, the desired vanishing also follows for the dual. �

We write S for the set of ramified primes for V including p. We have the Poitou–Tate exact
sequence (e.g., [17, Theorem 4.50 (5)]):

0 → SelQ
(
Ad(V )

) → H1(GS
Q,Ad(V )

) → H1(D p,Ad(V ))

U p(Ad(V ))
→ SelQ

(
Ad(V )∗(1)

)∗
.
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Thus by (V), we have

H1(GS ,Ad(V )
) ∼= H1(D p,Ad(V ))

U p(Ad(V ))
. (I)

2.3. Greenberg’s L-invariant

By definition, for the cyclotomic Zp-extension Q∞/Q, the restriction map Res : H1(GS ,Ad(V )) →
H1(GS

Q∞ ,Ad(V )) brings the one-dimensional space Sel−Q(Ad(V )) into SelQ∞ (Ad(V )), which is the
cause of the existence of the exceptional zero for the characteristic power series of the Selmer group
over Q∞ , and philosophically, one should be able to determine the L-invariant via the cocycle giving
a generator of Sel−Q(Ad(V )), which Greenberg did. Greenberg defined in [7] his invariant L(Ad(V )) in

the following way. Write F −H1(D p,Ad(V )) for the image of H1(D p, F −Ad(V )) in H1(D p,Ad(V )). By

the definition of U p(Ad(V )), the subspace F − H1(D p ,Ad(V ))

U p(Ad(V ))
inside the right-hand side of (I) is isomor-

phic to Sel−Q(Ad(V )) ∼= κ . Namely, we have

Sel−Q
(
Ad(V )

) ∼−−→
Res

F −H1(D p,Ad(V ))

U p(Ad(V ))
⊂ H1(D p,Ad(V ))

U p(Ad(V ))
.

By projecting down to F −Ad(V )/F +Ad(V ) ∼= κ with trivial D p-action, cocycles in Sel−Q(Ad(V )) give
rise to a subspace L of

Hom
(

Dab
p , F −Ad(V )/F +Ad(V )

) = Hom
(

Dab
p , κ

)
.

Note that

Hom
(

Dab
p , κ

) ∼= κ × κ

canonically by φ �→ (
φ([u,Qp ])

logp(u)
, φ([p,Qp])) for any u ∈ Z×

p of infinite order. Here [x,Qp] is the local

Artin symbol (suitably normalized).
If a cocycle c representing an element in Sel−Q(Ad(V )) is unramified, it gives rise to an element in

SelQ(Ad(V )). By the vanishing (V) of SelQ(Ad(V )), this implies c = 0; so, the projection of L to the
first factor κ (via φ �→ φ([u,Qp])/ logp(u)) is surjective. Thus this subspace L is a graph of a κ-linear
map

L : κ → κ,

which is given by the multiplication by an element L(Ad(V )) ∈ κ .

2.4. Proof of Theorem 2.1

Write ρ|D p
∼= ( ε ∗

0 δ

)
with nearly ordinary character δ. We know that c∂ for ∂ = d

dX gives a nontrivial

element in Sel−(Ad(V )). The image of c∂ in Hom(Dab
p , κ) is δ−1

P ∂δ|X=0. We know that

δ−1
P δ

([p,Qp]) = aP (p)−1a(p) and δ−1
P δ

([u,Qp]) = (
ζγ k)− logp(u)/2 logp(γ )

tlogp(u)/2 logp(γ )

for k = k(P ) and ζ − εP (γ ) by our construction. Then to get the desired result is just a simple com-
putation (done in [18]).
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2.5. I-adic L-invariant

We can go through a similar argument to define the L-invariant of Ad(ρI) which interpolate
L(Ad(ρP )). Let Q be the quotient field of I, and regard ρ as a representation into GL2(Q ), writ-
ing V for its space. Taking ∂ = t d

dt , we can think of c = ρ−1∂ρ : GS → Ad(V). Fixing a basis of V so

that ρ|D p = ( ε ∗
0 δ

)
, again we have three step filtration

Ad(V) ⊃ F −Ad(V) ⊃ F +Ad(V) ⊃ 0

in exactly the same manner as in (F). Note that c is a 1-cocycle of GS with values in Ad(V) whose
restriction to D p has values in F −Ad(V). Note that the cohomology class of c depends only on ρI not
the character twist ρ which is dependent on P . Then considering cab = c|D p mod F +Ad(V), we get

cab ∈ Hom(Dab
p , Q ) ∼= Q × Q . Then we define

L(
Ad(ρI)

) = L(
Ad(V)

) = cab([p,Qp])
cab([γ ,Qp])

logp(γ )

. (L)

By definition, if P is arithmetic, the construction of L(Ad(V)) can be done inside IP , since ρ has
values in GL2(IP ). Thus L(Ad(V)) ∈ IP , and hence L(Ad(V))(P ) = (L(Ad(V)) mod P ) is a well-defined
number in the residue field κ(P ) ⊂ Qp of P . If further (̂IP ,ρ) is universal, L(Ad(V))(P ) = L(Ad(ρP )).
In any case, we can take (L) to be the definition of L(Ad(ρI)) (which does not require any assumption
except for the existence of ρI), and we get the following result from the proof of Theorem 2.1 without
assuming any conjecture.

Theorem 2.4. We have, for a = a(p) ∈ I,

L(
Ad(ρI)

) = −2 logp(γ )a−1t
da

dt
.

This is the meaning of analytic continuation of the adjoint L-invariant described before the theo-
rem in the Introduction.

3. Motivation

The constancy of L(Ad(ρP )) characterizes CM components. In this last section, we overview known
characterization of CM components. This section is an attempt to convince the reader the importance
of such characterization.

3.1. Congruence criterion and the I-adic L-invariant

We generalize our construction of h to cover modular forms including Eisenstein series. We re-
peat the definition in the Introduction replacing cusp forms by modular forms. Consider the space
of modular forms Mk+1(Γ0(Npr+1),ψ) with (p � N, r � 0) (including Eisenstein series). Let the rings
Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated by the values ψ over Z and Zp , respectively. The Hecke
algebra over Z[ψ] is H = Z[ψ][T (n) | n = 1,2, . . .] ⊂ End(Mk+1(Γ0(Npr+1),ψ)). We put Hk+1,ψ =
Hk+1,ψ/W = H ⊗Z[ψ] W for a p-adic discrete valuation ring W ⊂ Qp containing Zp[ψ]. Sometimes
our T (p) is written as U (p) as the level is divisible by p. The ordinary part Hk+1,ψ/W ⊂ Hk+1,ψ/W is
the maximal ring direct summand on which U (p) is invertible. Let ψ1 = ψN × the tame p-part of ψ .
Then, we have a unique ‘big’ Hecke algebra H = Hψ1/W such that
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(1) H is free of finite rank over Λ := W �T � equipped with T (n) ∈ H for all n,
(2) if k � 1 and ε : Z×

p → μp∞ is a character,

H/
(
1 + T − ψ(γ )ε(γ )γ k)H ∼= Hk+1,εψk (γ = 1 + p) for ψk := ψ1ω

1−k,

sending T (n) to T (n), where ω is the Teichmüller character.

A (normalized) Hecke eigenform in Mk+1(Γ0(Npr+1),ψ) has slope 0 if f |U (p) = a · f with |a|p = 1.
For each irreducible component Spec(I) of Spec(H), again we have a semi-simple Galois representa-
tion ρI characterized by (Gal). The restriction of the Hecke operators T (n) to the space of cusp forms
produces a canonical Λ-algebra surjection H � h sending T (n) to T (n). Thus an irreducible compo-
nent of Spec(h) can be regarded as an irreducible component of Spec(H). A component I is called
cuspidal if Spec(I) ⊂ Spec(h).

By abusing the language, we call a Galois representation ρ abelian if there exists an open subgroup
G ⊂ Gal(Q/Q) such that the semi-simplification (ρ|G)ss has abelian image. We call I an abelian compo-
nent if ρI is abelian. Assuming that I is normal and that the connected component Spec(T) ⊂ Spec(h)

containing Spec(I) is Gorenstein, as explained in [17, Section 5.3.6], we have a p-adic L-function

Lp = Lp
(
Ad(ρI)

) := Lp
(
1,Ad(ρI)

) = Lp
(
1,ρ

sym⊗2
I ⊗ det(ρI)−1) ∈ I

interpolating

Lp(P ) := P (Lp) = (Lp mod P ) = L(1,Ad(ρP ))

period
for all arithmetic P .

Writing Spec(h) = Spec(I) ∪ Spec(I⊥) for the complement I⊥ , we have

Spec(I) ∩ Spec
(
I⊥

) = Spec
(
I ⊗h I⊥

) ∼= Spec
(
I/(Lp)

)
(a congruence criterion).

The Gorenstein-ness of T is known to be true if ρm is irreducible with δ �= ε , where ρm|D p = ( ε ∗
0 δ

)
(see [29, Section 9] and [22, Section 4]).

Congruence modulo a prime l of a fixed Hecke eigenform f ∈ Sk+1(Γ0(Npr+1),ψ) with another
Hecke eigenform g in the same space is controlled by the canonical integer part c( f ) of the adjoint
L-value L(1,Ad( f )) (i.e., basically l|c( f ) ⇔ the existence of g with g ≡ f mod l for a prime l|l). Thus
c( f ) is a product of the prime factors of the discriminant/conductor of the Hecke algebra in Q( f )
and more if we have g non-conjugate to f . This fact was first discovered by the author in [9] and
[10] and developed into the congruence criterion in the above form in [12, (0.7)]. See [22, Sections 5
and 6] and [17, Section 5.3.6] for an up-to-date treatment of the criterion and the construction of L p .
The above criterion characterizes L p and at this moment, L p is well defined up to units in I (see
Conjecture 3.1 how to normalize L p).

The Gorenstein locus in Spec(T) is a nonempty open dense subscheme by [26, Theorem 24.6].
By the same argument in the above references, we have the following local version of the congru-
ence criterion. If Spec(T0) ⊂ Spec(T) is an open subscheme in the Gorenstein locus and Spec(I0) =
Spec(T0) ∩ Spec(I) is normal, we have L p well defined in I0 and a local version

Spec(I0) ∩ Spec
(
I⊥0

) = Spec
(
I0 ⊗h I⊥0

) ∼= Spec
(
I0/(Lp)

)
(a local congruence criterion).

Here Spec(I⊥0 ) = Spec(I⊥)∩ Spec(T0). Therefore, if P ∈ Spec(I) is in the smooth locus over W and the
localization TP is Gorenstein, we have L p well defined in IP and an infinitesimal version

Spec(IP ) ∩ Spec
(
I⊥P

) = Spec
(
IP ⊗h I⊥P

) ∼= Spec
(
IP /(Lp)

)
(an infinitesimal congruence criterion).

See [22, Sections 5 and 6] and [17, Section 5.3.6] for the criterion and the construction of L p .
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If we interpolate the adjoint L-values including the cyclotomic variable, i.e., adding a vari-
able s interpolating L(s,Ad(ρP )) moving s, we need to multiply the L-value by the modifying Euler
p-factor. For this enlarged two-variable adjoint L-function, the modifying factor vanishes at s = 1;
so, L p(s,Ad(ρI)) has an exceptional zero at s = 1. See [15, p. 97] where the explicit modifying factor
E2(Q , P ) is given, E2(Q , P ) vanishes if k(P ) = k(Q ) − 1 with η(p) = 1 under the notation there, and
this implies vanishing at the line s = 1 of the two-variable adjoint p-adic L-function. Therefore, for an

L-invariant 0 �= Lan(Ad(ρI)) ∈ I[ 1
p ], we expect to have L′

p(1,Ad(ρI))
?= Lan(Ad(ρI))L p up to units in I

(in the style of Mazur, Tate and Teitelbaum). As we have seen in the above section, Greenberg pro-
posed a definition of a number L(Ad(ρP )) conjectured to be equal to Lan(Ad(ρP )) for arithmetic P .
We have interpolated Greenberg’s L-invariant L(Ad(ρP )) over arithmetic P and got an analytic func-
tion L(Ad(ρI)) �= 0 in I[ 1

p ] so that L(Ad(ρI))(P ) = L(Ad(ρP )) for all arithmetic P .

Conjecture 3.1. We have

L(
Ad(ρI)

) = Lan(Ad(ρI)
)

for the L-invariant L(Ad(ρI)) defined in (L) in Section 2.5 up to units in I.

The element L p ∈ I is only determined up to units in I. We can normalize L p insisting on exac-
titude of the above identity (removing the ambiguity of units) in the conjecture. In other words, we

define L p by
L′

p(1,Ad(ρI))
L(Ad(ρI))

and ask if the congruence criterion still holds for this choice.

3.2. Is characterizing abelian components important?

Here is a list of such characterizations (possibly conjectural):

• A cuspidal I is abelian ⇔ cuspidal I is a CM component ⇔ there exist an imaginary quadratic
field M = Q[√−D ] in which p splits into pp and a character Ψ = ΨI : G M = Gal(Q/M) → I× of
conductor cp∞ for an ideal c with ccDM |N such that ρI = IndQ

M Ψ , where DM is the discrimi-
nant of M . This should be well known; see [23, (CM1–3) in Section 1]. Thus we called cuspi-
dal abelian component a CM component. This implies L p = L p(Ψ −)L(0, (

M/Q
)), where Ψ −(σ ) =

Ψ (cσ c−1σ−1) for complex conjugation c, and L p(Ψ −) is the anticyclotomic Katz p-adic L-function
associated to Ψ − . This is a base of the proof by Mazur and Tilouine (e.g., [28]; see also [11] as
a precursor of the result of Mazur and Tilouine) of the anticyclotomic main conjecture (see [19]
and [21] for a version for CM fields).

• I is abelian ⇔ ρP is abelian for a single arithmetic prime P . By Ribet [31], if ρP is abelian, ρP has
complex multiplication or Eisenstein. Then P has to be on a CM component or on an Eisenstein
component (see [22, Sections 3 and 4]).

• I abelian ⇔ ρI mod p is abelian. This is almost equivalent to the vanishing of the Iwasawa
μ-invariant for L p(Ψ −) (which is known if c is made up of primes split over Q). This is a main
result in [22].

• (Strong vertical conjecture in [23].) Consider the field Vr(I) ⊂ Q generated by aP (p) for all arith-
metic P with level � Npr+1 for a fixed r � 0. Then I is abelian ⇔ [Vr(I) : Q] < ∞. This was a
question that L. Clozel asked me in the early 1990s. This holds true if the family contains weight
2 cusp form whose abelian variety has good ordinary reduction modulo p or more generally a
weight k � 2 cusp form whose motive is potentially crystalline ordinary at p (see [23, Theo-
rem 3.2]). Here a crystalline motive is ordinary if its Newton polygon of the crystalline Frobenius
coincides with the Hodge polygon. By applying this crystalline-ordinary criterion, the family F�

containing Ramanujan’s �-function has V0(I) of infinite degree over Q. In the 1970s, Y. Maeda
made a conjecture asserting that Q(a(p, f )) for any normalized Hecke eigenform f in Sk(SL2(Z))

has degree equal to d := dim Sk(SL2(Z)) with its Galois closure having Galois group isomorphic
to the symmetric group Sd of d letters. This conjecture is numerically verified up to large weight
and large p (e.g., [1]) and implies our conjecture if N = 1.



Author's personal copy

H. Hida / Journal of Number Theory 131 (2011) 1331–1346 1345

• (Strong horizontal theorem in [23].) Fix k � 1 and consider the field Hk(I) generated by aP (p)

over Q(μp∞ ) for all arithmetic P with a fixed weight k � 1. Then I is abelian ⇔ [Hk(I) :
Q(μp∞)] < ∞ (see [23, Theorem 3.3]).

• ρI restricted to the decomposition group at p is completely reducible ⇔ I is abelian. This is the
result of Ghate and Vatsal in [6].

• For cuspidal I, L(Ad(ρI)) is a constant function over Spf(I) if and only if I is a CM component.
This is a corollary of Strong horizontal theorem and is what we have proven in this paper.

• (Conjecture/Question.) Does a cuspidal component I have CM by an imaginary quadratic field M
if

L(
Ad( f P )

) = logp(p) (up to algebraic numbers)

for one arithmetic P for a prime factor p of p in M? Here taking a high power ph = (α), logp(p) =
1
h logp(α) for the Iwasawa logarithm logp .

• (A wild guess.) If Q( f P ) = Q with k(P ) � 27 for a cusp form f P , then I has CM. As is well
known, there exists a non-CM eigenform spanning the one-dimensional space S26(SL2(Z)), and
the question is if this is the highest weight rational Hecke eigenform without CM.

All statements seem to have good arithmetic consequences, and I am convinced of the importance of
giving as many characterizations of abelian components as possible.
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