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Here is a table of misprints in the above book, and “P.3 L.5b” indicates fifth line from the bottom of the
page three. Addenda to the text follow the misprint table.

page and line Read Should Read

P.9 L.12b ϕ∗ : A×/Q× ϕ∗ : A×/Q× → C×

P.10 L.8b R× R×
+

P.11 L.10b Ô = O ⊗Z Ẑ Ô = O ⊗Z Ẑ

P.13 L.11 ϕ of F ϕ of F ′

P.13 (∗)

∏
i(1− αiX)−1

= det(1n − ρ(φ)X)−1 X d
dX

log(det(1d − ρ(φ)X)−1) + d

P.14 L.3 ϕ(φ
m/fi

i ) = 0 ϕ̂(φ
m/fi

i ) = 0
P.14 L.6, 8

∑
ζ∈µfi

ζϕ̂
∑

ζ∈µfi

ζmϕ̂

P.14 L.10 det(1n − ρ(φ)X) det(1d − ρ(φ)X)
P.19 L.17 the final chapter (5) the final chapter
P.23 L.6b M ⊃M1 ⊃ · · · ⊃Mn = {0} M ) M1 ) · · · ) Mn = {0}
P.33 L.3b ρ : G→Mn(E) ρ : G→ GLn(E)
P.36 L.6b σ = ρ σ ∼ ρ
P.37 L.6

⊕
ρ∈ bG eρE[G]

⊕
ρ∈ bGE

eρE[G]

P.40 L.7b closed subgroup of finite index closed subgroup
P.40 L.7b M ∈ RE(H) M ∈ RepE(H)

P.40 L3b map:IndG
H functor:IndG

H

P.42 L.13b RE(G) RE(H)
P.45 L.15b δ : Mn(F )→Mn(F ) E-linear δ : Mn(E)→Mn(E)
P.49 L.10 vn, vσ(n) vm, vσ(m)

P.50 L.12
add (2.10) at the end and
remove (2.10) three lines below.

P.50 L.2b T (r0r2r1) T (r2r1r0)
P.51 L.11 ρ : R → A ρ : R →Mn(A)
P.51 L.13 ρ : R → GLn(A) ρ : R →Mn(A)
P.51 (2.11) ρ : G→ GL2(A) ρ : G→ GLn(A)
P.52 L.10b µq−1

∼= F× µq−1(A) ∼= F×

P.53 L.14b ιj([gp]j) = ρj(gp) ιj([gp]i(j)) = ρj(gp)
P.53 L.12b ι ιρ
P.54 L.8 % : Γ→ O[[T ]] % : Γ→ O[[T ]]×

P.54 L.13 ι(f(T )) ιρ(f(T ))
P.54 L.16 the general object A = lim

←−j
Aj a general object A = lim

←−j
Aj

P.54 L.9b Gp
∼= Γ ∼= Zp Gab

p
∼= Γ ∼= Zp

P.56 L.8 τ ∼= τ τ ≡ τ
P.57 L.11 Subsection 2.3.2.2 Subsection 2.2.2
P.57 L.8b,
6b, 5b

m mA

P.59 L.6 tangent co-tangent
P.59 L.10 pA = 0 mOA = 0
P.59 L.14 m/m2

A mA/m2
A

P.60 L.7b V (ad(ρ)) ad(ρ)
P.60 L.5b m mR

P.60 L.3b φ(r) = φ0(a) + φε(r)ε φ(r) = φ0(r) + φε(r)ε
P.61 L.2 a = a mod mA a = a mod mR
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page and line Read Should Read

P.61 L.14b u′ : G→Mn(F) u′
ρ : G→Mn(F)

P.61 L.17 mutiplicativity multiplicativity

P.61 L.6b
ρ(g) + u′

ρ(g) =
(1 + xε)(ρ(g) + u′

ρ′ (g))(1− xε)
ρ(g) + u′

ρ(g)ε =
(1 + xε)(ρ(g) + u′

ρ′ (g)ε)(1 − xε)

P.62 L.3b dimF H1(G, ad(ρ)) <∞ dimF H1
ct(G, ad(ρ)) <∞

P.65 L.1 χ(a) χ(d)
P.67 L.3b semi-simple semi-simple, simply-connected

P.68 L.9 dense in A dense in A(∞)

P.75 L.12 χ−1
N (γ(∞))f((γu)∞) χ−1

N (γ(∞))f(γ · u∞)
P.76 L.16 (A1)for (A1) for

P.89 L.4b Proj(A)[ 1
∆ ] affine Proj(A)[ 1

∆ ] is the affine
P.94 L.18b given in (1.42) given in (3.42)
P.94 L12b, 4b k ≥ 2 k > 2
P.96 L.11 h(S(Γ0(N), χ; A)) h(Sk(Γ0(N), χ; A))
P.97 L.5b HomZ(S(Z)A, Z) HomZ(S(Z), Z)
P.100 L.7b χ′ χχ′

P.107 L.1 X2 − t(p)X + pk−1〈p〉 X2 − t(p)X + 〈p〉
P.108 L.19 GL2 GLn

P.109 L.2 Zp(λ
′) O = Zp(λ

′)
P.109 L.14 ρλ′ ρ = ρλ′

P.110 L.2 diagonal upper-triangular
P.110 L.7 λ(T (q)(−Z×

p (λ′)) λ(T (q))(∈ Zp(λ
′)×)

P.114 L.3b
in the second formula
replace Tr by det

P.115 L.7 GpN G = GpN

P.116 L.6b h is h be
P.117 L.2 p p
P.121 L.18 P p
P.128 L.9b ∆q ∆Q

P.136 L.10b
Chebotarev density,
theorem using

Chebotarev density
theorem and using

P.153 L.2b PSL2(F) ∼= A4 PSL2(F3) ∼= A4

P.165 L.12b (E ×M M ′)×′
M M ′′ (E ×M M ′)×M ′ M ′′

P.167 L.1b τ : S′ → I′ τ : S → I′

P.168 L.1 φ2 − φ′
2 = π′

∗ ◦ τ (φ2 − φ′
2)∗ = π′

∗ ◦ τ∗
P.175 L.1,2 δj δj−1

P.186 L.5 Ĉp+1 Ĉ|p+1|

P.186 L.11b 0→ Z
ε
−→ C0

∂0−→ C1 0← Z
ε
←− C0

∂0←− C1

P.186 L.9b C̃−2
δ−2

−−→ C̃−1
ε
−→ Z→ 0 C̃−2

δ−2

←−− C̃−1
ε
←− Z← 0

P.189 L.13b
The above fact
(4.21) and (4.13)

The above facts
(4.21) and (4.13)

P.191 L.7
∏

m∈M−{0}

∏
m∈MU−{0}

P.207 L.11 Theorem 4.19 Theorem 4.22

P.209 L.6 lim
←−U∈U ,cMU=cM

Hr(G/U, M ⊗Z C) lim
−→U∈U ,cMU=cM

Hr(G/U, M̂ ⊗Z C)

P.210 L.8b ExtC(Z/mZ, C) = 0 Ext3C(Z/mZ, C) = 0
P.211 L.16 Hq

ct(U, X) Hq
ct(U, X)∗

P.215 (cf2)

H2(U, C) −−−−→ H2(V, C)

o

y o

y

Q/Z
x 7→nx
−−−−→ Q/Z.

H2(U, C)[l∞] −−−−→ H2(V, C)[l∞]

o

y o

y

Ql/Zl
x 7→nx
−−−−→ Ql/Zl

for all l ∈ S.
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page and line Read Should Read

P.217 L.3 H1(H, Q
×

) = 0. H1
ct(H, Q

×
) = 0.

P.218 L.5 recS : CS → Gab
S recS : CG

S → Gab
S

Cor. 4.49 See Addenda below
P.219 L.1 CG

S /mCG
S CG

S /`mCG
S

P.219 L.3 Gab/mGab Gab/`mGab

P.219 L.6 CG

S /mCG

S → Gab/mGab CG

S [m]→ Gab[m]
(see also Addenda below)

P.230 middle see addenda below
P.231 L.4 (U/µ) ⊗Z W (U/µ) ⊗Zp

W

P.241 Example 5.1 H = Gal(F (p,∞)/F )
P.253 L.9 ϕ∞ ϕ
P.260 L.16b a A-free an A-free
P.282–285 Ω1(±, λ◦; A) Ω(±, λ◦; A) (defined in page 274 L.1)
P.285 L.10

∫
A× f(x)|x|s

A
dx

∫
A× f (( x 0

0 1 )) |x|s
A
dx

P.287 L.1 regular sequence f .
regular sequence f
(see [CRT] Section 16).

P.303 L.5b (noH) (NO)
P.304 L.6 (RgH) (RgD) (∀D ∈ SH)
P.305 L.2 g−1

D′ PD(B)gD′ g−1
D′ BD(B)gD′

P.324 L.8

U∞ ⊗Zp
I −−−−→

y

J/J2 ⊗Λ∞
I −−−−→

U∞ ⊗Zp
I −−−−→

ι

y

J/J2 ⊗Λ∞
I −−−−→

P.340 L.7 (Sh) 209 (W) 220

Corrections and Addenda

• P.29 L.17b: an ordered set X means that if A, B ∈ X, we find C in X such that A ⊂ C and B ⊂ C.
• P.106 Proof of Lemma 3.25: We should have remarked that h′ = h by the Chebotarev density

theorem applied to the Galois representations ρλ′ (in Theorem 3.26) for λ′ factoring through h.
• P.212 L.9b: Between “the duality.” and “In this case”, add the following explanation:

In particular, by α2(µm), we have

µm(K)∗ = H0
ct(G, µm)∗ ∼= Ext2C(µm, C) ∼= H2

ct(G, Hom(µm, C)) = H2(G, Z/mZ).

By the long exact sequence attached to 0 → Z
m
−→ Z → Z/mZ → 0, the cohomology group

H2
ct(G, Z/mZ)∗ surjects onto (H2

ct(G, Z) ⊗ Z/mZ)∗ ∼= Gab[m] ∼= µm(K) by the reciprocity map,
and hence H2

ct(G, Z/mZ) = Gab[m].
• P.213 L.3b: Add the following explanation to the end of the proof of Theorem 4.43:

By Proposition 4.30 and the divisibility of C,

Hr
ct(G, M) ∼= Extr

C(M∗(1), C) = 0

for M∗(1) = Hom(M, C).
• P.218 Corollary 4.49 (2) should read:

Suppose that M is a finite module. Let F be a finite totally imaginary Galois extension of K
inside KS such that Gal(KS/F ) acts trivially on M and µ|M |.

• P.219 L.7: Replace “the corollary.” by:
the corollary, because H2

ct(Gal(KS/F ), Z/mZ)∗ = H2
ct(Gal(KS/F ), µm)∗ = Gab[m] is the surjec-

tive image of CG

S [m] by the theory of Brauer groups [CFT] Chapter 14 (and F ⊃ µm).

The above correction does not affect the sequel, since Corollary 4.49 is quoted only at P.220 L.14 and P.223
L.8 and the relevant statement is (1) of Corollary 4.49.
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Here is how to prove the last point using the theory of Brauer groups: Let ` ∈ S and write X` = X[`∞]

for a module X. Write also KS×
S = lim

−→L⊂KS
L×

S and ES = lim
−→L⊂KS

EL,S. We may assume that m = `k for

0 < k ∈ Z. Then 1→ ES → KS×
S → CS → 1 is exact, and hence we have two injections:

H2
ct(H, ES)` ↪→ H2

ct(H, KS×
S )` ↪→

∏

v∈Σ

H2
ct(Hv, F v)`,

where Σ is the set of places of F over places in S, and Hv = Gal(F v/Fv) for an algebraic closure F v of Fv.

Thus by using the local duality, Hom(µm, KS×
S ) → H2

ct(H, µm)∗ is surjective. Since H2
ct(H, CS)`

∼= Q`/Z`

(cf2-3), it is not difficult to see that the image of HomCH
(µm, CS) in HomCH

(µm, KS×
S ) actually covers

H2
ct(H, µm)∗. Thus if F contains all m–th roots of unity, we can replace µm by Z/mZ. �

• P.230 middle: By local Tate duality, χ(G, M) = χ(G, M∗(1)); so, here, we actually compute

χ(G, M∗(1)) = −dimF({(F×/(F×)p) ⊗F κ}[ρ]) = χ(G, M).

• P.237 L.15: Here is some history of the rationality theory of critical L-values (not touched much in
the book). It is important to have researchers entering into this area know how rationality theory
of L-values actually developed, and I have decided to add some explanation (not to misguide new
researchers by the short statement starting at line 15 in page 237). The conjectures in [D2] were
made only after Shimura had established a couple of years earlier rationality for modular and Hecke
L-values. In this note, the reference [CPS] indicates Shimura’s collected papers published by Springer
in 2002 (there are four volumes quoted as I, II,...). The theory goes back to Euler (in the eighteenth
century) for the critical Riemann zeta values and to Siegel (and Klingen) for critical Dedekind zeta
values. The modern theory for modular and automorphic L-values was started by Shimura in his
early paper [59c] Section 9 (in [CPS] volume I) for the critical values of L(s, ∆) (∆ is Ramanujan’s
function of weight 12). In his later papers [75c] [76b] and [77d] (in [CPS] II), he established rationality
of Hecke L-values in [75c] and rationality of general elliptic modular critical L-values in [76b] and
[77d]. One of his main ideas in these works (and later ones) is the use of certain nonholomorphic
differential operators acting on automorphic forms which preserve rationality (but not holomorphy)
of automorphic forms and theta functions (up to explicit constants; for example, [75c] and [77c]). If
we move an evaluation point (of an automorphic L-value) by integers (within the critical range), out
of experience, one might guess that, in many cases (if not all), the move adds (or eliminates) a power
of 2πi to (or from) the transcendental factor (the period) of the starting L-value. The precise move
of the exponent of 2πi in the period was proven by Shimura in many cases (for example, [76b]) using
often this property of the differential operator (one can find a motivic interpretation of this move of
the exponent of 2πi for motivic L-values in a later paper [D2] of Deligne). Further in [77c] Remark
3.4 (in [CPS] II), periods (up to algebraic numbers) of rational differentials on abelian varieties with
real multiplication were determined in terms of the values of a certain rational meromorphic Hilbert
modular form over the field of real multiplication. This result provides the equivalence bewteen the
rationality result of the Hecke L-values proven in [75c] and the rationality of the Hecke L-values
with respect to an appropriate CM period (which is also discussed later in [D2]). A preprint of
[77b] in the proceedings of an international conference in Kyoto held in 1976 was circulated among
the participants of the conference (including the author of this note). The paper [77b] contains in
particular as Theorem 4 the rationality theorem in [76b] and [77d]. After these works, Deligne made
his conjecture on the rationality of motivic L-values with respect to his motivic period in a conference
at Corvallis (which was held in July-August 1977), and his paper [D2] was later published in 1979
(though, appeared strange in the eyes of the author of this note, Deligne does not quote in [D2]
Shimura’s earlier works except for [75c]). In [D2], Deligne checked his conjecture conforming well
to the known results at the time. After these works, Shimura went on and extended his rationality
results (for example, his CM period relation in [79a], his factorization of CM and non CM periods in
terms of periods of quaternionic automorphic forms in [83a] and [88]...) even to non-motivic L-values
(for example, in [81a] and [88] in [CPS] III, values of L-functions associated to half-integral weight
modular forms are treated) and to the values of explicitely given automorphic forms and Dirichlet
series of new type (for example, [81b,c]). Later from late 1980s, other researchers joined in the
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rank and started studying rationality of L-values and automorphic forms, and many such rationality
results (motivic or non-motivic) so far known have been proven guided by the automorphic methods
Shimura invented.


