Λ -ADIC *p*-DIVISIBLE GROUPS, II

HARUZO HIDA

Contents

1.	Mod p modular curves	1
2.	The α -eigen space in $G_{\infty}^{ord}[p^{\infty}]$	4
Ret	ferences	4

1. Mod p modular curves

We consider the following Drinfeld-style moduli problem classifying $(E, \phi'_p, \phi_N)_{/A}$ over $\mathbb{Z}_{(p)}$, where $\phi_N : \mu_N \hookrightarrow E[N]$ and ϕ'_p is made of isogenies $\pi : E \to E'$ and ${}^t\pi : E' \to E$ of degree p^r with two points $P \in E(A)$ and $P' \in E'(A)$ such that $\operatorname{Ker}(\pi)$ is equal to the relative Cartier divisor $\sum_{j=0}^{p^r-1} [jP] \subset E$ and $\operatorname{Ker}({}^t\pi)$ is equal to the relative Cartier divisor $\sum_{j=0}^{p^r-1} [jP'] \subset E'$. The canonical Cartier duality pairing $\operatorname{Ker}(\pi) \times \operatorname{Ker}({}^t\pi) \to \mu_{p^r}$ gives a point $\zeta_{p^r} = \langle P, P' \rangle$. Thus this moduli problem, we regard as defined over $\mathbb{Z}_{(p)}[\mu_{p^r}]$. As shown in [AME], this problem is represented by a regular affine scheme over $\mathbb{Z}_{(p)}[\mu_{p^r}]$ with regular projective compactification X'_r whose generic fiber is $X_{r/\mathbb{Q}[\mu_{p^r}]}$. The special fiber X'_{r/\mathbb{F}_n} has the following description:

$$X'_{r/\mathbb{F}_p} = \bigcup_{a+b=r,a\geq 0,b\geq 0} X'_{(a,b)},$$

for smooth irreducible projective curves $X'_{(a,b)}$ intersecting only at super-singular points. The curve $X'_{(r,0)}$ removed super-singular points and cusps represents $(E, \mu_{p^r} \hookrightarrow E, \phi_N)$, and $X'_{(0,r)}$ removed super-singular points and cusps represents $(E, \mathbb{Z}/p^r\mathbb{Z} \hookrightarrow E, \phi_N)$. So they are both Igusa curves, and $X'_{(0,r)} \cong X'^{(p^r)}_{(r,0)}$ canonically. We put $Y'_r = X'_{(0,r)} \cup X'_{(r,0)}$. On the middle components $X'_{(a,b)}$ with $ab \neq 0, \pi : E \to E'$ factors $E \xrightarrow{F^a} E^{(p^a)} \cong E'^{(p^b)} \xrightarrow{V^b} E'$. As before, let J_r (resp. G_r and tG_r) be the identity connected component of the Néron model of $J_{r/\mathbb{Q}}$ (resp. G_r and tG_r) over $R_r := \mathbb{Z}_{(p)}[\mu_{p^r}]$. Mazur and Wiles in [MW] have shown the existence of a canonical

The second talk of the two lectures at CRM (Montréal) in September 2005 while the author was a Clay research scholar, and the note was revised on October 30, 2009; the author is supported partially by NSF grant: DMS 0244401 and DMS 0456252.

isogeny $av(\operatorname{Pic}_{Y_r/\mathbb{F}_p}^0) \to av(G_{r/\mathbb{F}_p})$ for abelian variety part "av". By a theorem of Raynaud [NMD] Theorem 9.4.5, $J_r = \operatorname{Pic}_{X_r/R_r}^0$. Thus taking the special fiber, we have a surjection $J_{r/\mathbb{F}_p} = \operatorname{Pic}_{X_r/\mathbb{F}_p}^0 \to \operatorname{Pic}_{Y_r/\mathbb{F}_p}^0$ corresponding to the inclusion $Y_r \hookrightarrow X_r$. Then by Theorem 3.1 in the first lecture combined with [MW] Proposition in page 267, we find

Corollary 1.1.

$$J_r^{ord}[p^{\infty}]_{/\mathbb{F}_p} \cong \operatorname{Pic}^0_{Y_r/\mathbb{F}_p}[p^{\infty}]^{ord} \cong G_r^{ord}[p^{\infty}]_{/\mathbb{F}_p}.$$

Adding the toric part to the isogeny in [MW], we have an isogeny $\operatorname{Pic}_{Y_r/\mathbb{F}_p}^0[p^{\infty}]^{ord} \to G_r^{ord}[p^{\infty}]_{/\mathbb{F}_p}$, but the projection: $J_r^{ord}[p^{\infty}]_{/\mathbb{F}_p} \cong \operatorname{Pic}_{Y_r/\mathbb{F}_p}^0[p^{\infty}]^{ord}$ composed with this isogeny is the special fiber of the isomorphism in Theorem 3.1.

From this identification, we can give an alternating proof of the closed immersion of $G_r^{ord}[p^{\infty}]$ into $G_s^{ord}[p^{\infty}]$, similarly to the characteristic 0 case. Also they have shown that the U(p) operator on the abelian quotient $\operatorname{Pic}^0_{X_{(r,0)}/\mathbb{F}_p} \times \operatorname{Pic}^0_{X_{(0,r)}/\mathbb{F}_p}$ of $\operatorname{Pic}^0_{Y_r/\mathbb{F}_p}$ has the following matrix shape

(1.1)
$$\begin{pmatrix} F & * \\ 0 & V\langle p^{(p)} \rangle \end{pmatrix} \text{ on } \operatorname{Pic}^{0}_{X_{(0,r)}/\mathbb{F}_{p}} \times \operatorname{Pic}^{0}_{X_{(r,0)}/\mathbb{F}_{p}}$$

for the *p*-power relative Frobenius *F* and its dual *V*. If N = 1, $U(p) = \begin{pmatrix} F & 0 \\ 0 & V \end{pmatrix}$ is semi-simple on $\operatorname{Pic}^{0}_{X'_{(0,r)}/\mathbb{F}_{p}} \times \operatorname{Pic}^{0}_{X_{(r,0)}/\mathbb{F}_{p}}$. Here $\langle p^{(p)} \rangle$ is the diamond operator for $p \in (\mathbb{Z}/N\mathbb{Z})^{\times}$.

We can think of the following new moduli problem genuinely defined over $\mathbb{Z}_{(p)}$ classifying $(E, \phi_p, \phi_N)_{/A}$ over $\mathbb{Z}_{(p)}$, where $\phi_N : \mu_N \hookrightarrow E[N]$ and ϕ_p is made of an isogeny $\pi: E \to E'$ of degree p^r with a points $P \in E(A)$ such that $\operatorname{Ker}(\pi)$ is equal to the relative Cartier divisor $\sum_{j=0}^{p^r-1} [jP] \subset E$. Then the fine moduli scheme exists over \mathbb{Z} which is a regular affine scheme of relative dimension 1 over \mathbb{Z} (see [AME] Chapter 5). The compactification $X'_{r/\mathbb{Z}_{(p)}}$ of the moduli scheme is a projective regular curve whose generic fiber is canonically isomorphic to $X_1(Np^r)_{\mathbb{Q}}$. The mod p curve X'_{r/\mathbb{F}_p} $X'_{r/\mathbb{Z}_{(p)}} \otimes \mathbb{F}_p$ is a union of proper irreducible curves $X'_{(a,b)}$ as before intersecting at super-singular points. Also, $X_{r/\mathbb{Z}_{(p)}}[\mu_{p^r}]$ is the normalization of $X'_{r/\mathbb{Z}_{(p)}}$ in the function field of X_r . Thus we have a natural finite morphism $X_{r/\mathbb{Z}_{(p)}}[\mu_{p^r}] \to X'_{r/\mathbb{Z}_{(p)}} \otimes \mathbb{Z}_{(p)}[\mu_{p^r}]$. This morphism induces an isomorphism $X_{(0,r)} \cong X'_{(0,r)}$; so, we the identity connected component $J'_{r/\mathbb{Z}_{(p)}}$ of the Néron model of $J_{r/\mathbb{Q}}$ is canonically isomorphic to $\operatorname{Pic}^{0}_{X'_{r}/\mathbb{Z}_{(p)}}$ again by the theorem of Raynaud. In particular, $X'_{0/\mathbb{F}_p} \cong X_{0/\mathbb{F}_p}$ is a smooth projective curve. We write $G'_{r/\mathbb{Z}_{(p)}}$ (resp. ${}^{t}G'_{r/\mathbb{Z}_{(p)}}$) for the identity connected component of the Néron model over $\mathbb{Z}_{(p)}$ of $G_{r/\mathbb{Q}}$ (resp. ${}^tG_{r/\mathbb{Q}}$). We put $Y'_r = X'_{(0,r)} \cup X'_{(r,0)} \subset X'_{r/\mathbb{F}_p}$. Then we admit the following difficult fact:

Theorem 1.2.

$${}^{t}G'_{r}^{ord}[p^{\infty}]_{/\mathbb{F}_{p}} \cong J'_{r}^{ord}[p^{\infty}]_{/\mathbb{F}_{p}} \cong \operatorname{Pic}^{0}_{Y'_{r}/\mathbb{F}_{p}}[p^{\infty}]^{ord} \cong G'_{r}^{ord}[p^{\infty}]_{/\mathbb{F}_{p}}.$$

We now study the unipotent radical of $G'_r^{ord}[p^n]_{/\mathbb{F}_p}$. For simplicity, we assume that N = 1. As was shown in [AME] Theorem 13.5.4 and Corollary 13.5.3,

$$X'_{(r,0)} \cong X_0 \otimes_{\mathbb{F}_p} \mathbb{F}_p[\widehat{x}]/(\widehat{x}^{\varphi(p^r)})$$

where $m := \varphi(p^r) = p^{r-1}(p-1)$ and \hat{x} is a fixed parameter of the formal group of the universal elliptic curve $\mathbf{E}_{/X_0}$. Writing x for the function $Y'_r \ni P \mapsto \hat{x}(P)$ and t for the parameter of the universal deformation space of a given super-singular elliptic curve over $S \in Y'_r(\overline{\mathbb{F}}_p)$. Then the completed local ring $\widehat{\mathcal{O}}_{Y'_r,S/\overline{\mathbb{F}}_p} \cong \overline{\mathbb{F}}_p[[t,x]]/(tx^m)$. Thus the nilradical \mathfrak{n} of $\mathcal{O}_{Y'_r/\mathbb{F}_p}$ is Zariski locally generated by (tx); so, it has a filtration $\mathfrak{n} = \mathfrak{n}_1 \supset \mathfrak{n}_1 \supset \cdots \supset \mathfrak{n}_m = 0$ corresponding $(tx) \supset (tx^2) \supset \cdots \supset (tx^m) = 0$ at each super-singular point. Since \hat{x} on the ordinary locus of X_0 is the parameter of $\widehat{\mathbf{E}} \cong \widehat{\mathbb{G}}_m$, we may assume $\hat{x} \circ \langle z \rangle = (1 + \hat{x})^z - 1 \equiv zx \mod \mathfrak{n}_2$. Thus on the sheaf $\mathfrak{n}_j/\mathfrak{n}_{j+1}, \mu_{p-1} \subset \mathbb{Z}_p^{\times}$ acts by $\zeta \mapsto \zeta^j = \omega^j$. Thus $\mathfrak{n}_{p-1}/\mathfrak{n}_p$ supported on $X'_{(r,0)}^{red} = X_0$ is a line bundle isomorphic to $\mathcal{O}(\Sigma)$ with $\mathcal{O}_{X_0}/\mathcal{O}(\Sigma) = \mathcal{O}_{\Sigma}$, where Σ is the disjoint union of super-singular points on X_0 . Let $\pi : Ig_1 \to X_0$ be the first layer of the Igusa tower classifying $\mu_p \hookrightarrow E$ in addition to ϕ_N . The direct image

$$\pi_*\mathcal{O}_{Ig}(\Sigma) = \mathcal{O}(\Sigma) \oplus \bigoplus_{a=1}^{p-2} \mathcal{O}(\omega^a)$$

for the ω^a -eigenspace $\mathcal{O}(\omega^a)$, which is a line bundle over X_0 of degree 0. Then we have for $j \not\equiv 0 \mod (p-1)$, $\mathfrak{n}_j/\mathfrak{n}_{j+1} \cong \mathcal{O}(\omega^a)$. Since \hat{x} is a parameter of formal group, it is unaffected dividing the elliptic curves by an étale subgroup. Thus $H^j(X_0, \mathfrak{n}_i/\mathfrak{n}_{i+1})$ the Hecke operator T(n) for n prime to p and U(q) for q|Np acts naturally. Write $Y = Y'_r$ simply, and let $g: X_0 \to \operatorname{Spec}(\mathbb{F}_p)$ be the structural morphism. Note that

$$1 \to R^1 g_*(1+\mathfrak{n}) \to \operatorname{Pic}_{Y/\mathbb{F}_p} \to \operatorname{Pic}_{Y^{red}/\mathbb{F}_p} \to 1$$

is exact. The quotient $\operatorname{Pic}_{Y^{red}/\mathbb{F}_p}$ is a semi-abelian scheme with an exact sequence

$$0 \to \text{a torus} \to \operatorname{Pic}^{0}_{Y^{red}/\mathbb{F}_{p}} \to \operatorname{Pic}^{0}_{X'_{(0,r)}/\mathbb{F}_{p}} \times \operatorname{Pic}^{0}_{X_{0}/\mathbb{F}_{p}} \to 0.$$

Thus the unipotent radical $R_U(\operatorname{Pic}_{Y'_r/\mathbb{F}_p})$ has a filtration $\mathcal{U}_1 \supset \mathcal{U}_2 \supset \cdots \supset \mathcal{U}_m = 0$ such that

$$\mathcal{U}_i/\mathcal{U}_{i+1} \cong H^1(X_0, (1+\mathfrak{n}_i)/(1+\mathfrak{n}_{i+1})) \cong \begin{cases} H^1(X_0, \mathcal{O}(\omega^i)) & \text{if } i \neq 0 \mod (p-1) \\ H^1(X_0, \mathcal{O}(\Sigma)) & \text{if } (p-1)|i, \end{cases}$$

as Hecke modules. By the Serre duality, $H^0(X_0, \Omega_{X_0/\mathbb{F}_p}(-\Sigma))$ (resp. $H^0(X_0, \Omega_{X_0/\mathbb{F}_p}(\omega^{-i}))$ is the dual space of $H^1(X_0, \mathcal{O}(\Sigma))$ (resp. $H^1(X_0, \mathcal{O}(\omega^i))$). Since the Hasse invariant $H \in H^0(X_0, \underline{\omega}^{p-1})$ has simple zero at super-singular points ([AME] Theorem 12.4.3), we have $\Omega_{X_0/\mathbb{F}_p}(-\Sigma) \cong \Omega_{X_0/\mathbb{F}_p} \otimes \underline{\omega}^{(p-1)}$ as line bundles (by multiplying the Hasse invariant). By the Kodaira-Spencer isomorphism, as Hecke modules, we have

$$H^{0}(X_{0},\Omega_{X_{0}/\mathbb{F}_{p}}\otimes\underline{\omega}^{(p-1)})\cong S_{p+1}(SL_{2}(\mathbb{Z}),\mathbb{F}_{p})\cong S_{2}(\Gamma_{0}(p),\mathbb{F}_{p}) \text{ if } (p-1)|i.$$

By dualizing back, the action of U(p) on the left-hand side of the identity below

$$H^1(X_0, \mathfrak{n}_i/\mathfrak{n}_{i+1}) \cong S_{p+1}(SL_2(\mathbb{Z}), \mathbb{F}_p) \ ((p-1)|i.)$$

is by the natural contravariant action of $T(p) = F + V \langle p^{(p)} \rangle$ on the right-hand side. As for $H^1(X_0, \mathcal{O}(\omega^i))$ for *i* nontrivial modulo (p-1), by a remark in [Ri] page 204, we have

$$H^{1}(X_{0}, \mathcal{O}(\omega^{i})) \cong H^{0}(X_{0}, \Omega_{X_{0}/\mathbb{F}_{p}}(\omega^{-i})) \cong H^{0}(Ig, \Omega_{Ig/\mathbb{F}_{p}}(\omega^{-i})) \cong S_{[p+1-i]}(SL_{2}(\mathbb{Z}), \mathbb{F}_{p}),$$

where $[x] \equiv x \mod (p-1)$ and $3 \leq x \leq p+1$.

2. The α -eigen space in $G_{\infty}^{ord}[p^{\infty}]$

For an eigenvalue α of U(p) on $S_2(\Gamma_1(p^r))$, under some assumptions, we try to show that $(G^{ord}_{\infty/R_{\infty}}[p^{\infty}] \otimes \mathbb{Z}[\alpha])[U(p) - \alpha]$ is contained in $G_r \otimes \mathbb{Z}[\alpha]$.

Look into the Hecke algebra

$$\mathbf{h} = \Lambda[T(n), U(p)]_{p \nmid n} \subset \operatorname{End}_{\Lambda}(G_{\infty}^{ord}[p^{\infty}]_{/R_{\infty}}).$$

Take a Gorenstein local ring \mathbb{T} of \mathbf{h} with maximal ideal \mathfrak{m} on which $\langle \zeta \rangle$ ($\zeta \in \mu_{p-1} \subset \mathbb{Z}_p^{\times}$) acts by $\omega^a : \zeta \mapsto \zeta^a$ with 0 < a < p-1. We give ourselves a Hecke eigenvalue α given by $f|U(p) = \alpha f$ for $f \in S_2(\Gamma_0(p^{r(\alpha)}), \varepsilon)$ with $\mathbb{T} \cdot f \neq 0$. Write \mathfrak{G}_r for $G_r^{ord}[p^{\infty}] \otimes \mathbb{Z}[\alpha]$ over $\mathbb{Z}_{(p)}[\mu_{p^r}]$. Adding the subscript \mathbb{T} , we indicate the \mathbb{T} -eigenspace; so, for example, $\mathfrak{G}_{\mathbb{T},r} = \mathbb{T}(\mathfrak{G}_r)$. Then $\mathfrak{G}_{\mathbb{T},r}$ is a BT group over R_r . Identify Λ with $\mathbb{Z}_p[[\Gamma]]$, we write $t = [\gamma] - \varepsilon(\gamma)$, where γ is a fixed generator of Γ and $[\gamma] \in \Gamma \subset \Lambda$ for the group element corresponding to γ (which is 1 + T if we write $\Lambda = \mathbb{Z}_p[[T]]$).

Then we expect

Conjecture 2.1. Let $\mathfrak{G}[U(p)-\alpha, t^n] = \{x \in \mathfrak{G}(\overline{\mathbb{Q}}) | x | U(p) = \alpha x \text{ and } t^n x = 0\}$. Then there exists a positive integer $s \ge r$ independent of $n < \infty$ such that the divisible part $\mathfrak{G}_{\infty}[U(p)-\alpha, t^n]^{div}(\overline{\mathbb{Q}})$ is contained in G_s^{α} .

References

Books

- [AME] N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Math. Studies 108, Princeton University Press, Princeton, NJ, 1985.
- [MFG] H. Hida, *Modular Forms and Galois Cohomology*, Cambridge Studies in Advanced Mathematics **69**, Cambridge University Press, Cambridge, England, 2000.
- [MFM] T. Miyake, *Modular Forms*, Springer, New York-Tokyo, 1989.
- [NMD] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, Springer, New York, 1990.

Articles

- [GS] R. Greenberg and G. Stevens, *p*-adic *L*-functions and *p*-adic periods of modular forms, Inventiones Math. **111** (1993), 407–447
- [H86a] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 4th series **19** (1986), 231–273.
- [H86b] H. Hida, Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms, Inventiones Math. 85 (1986), 545–613.
- [M] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162
- [MTT] B. Mazur, J. Tate and J. Teitelbaum, On *p*-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Inventiones Math. **84** (1986), 1–48
- [MW] B. Mazur and A. Wiles, Class fields of abelian extensions of **Q**. Inventiones Math. **76** (1984), 179–330
- [MW1] B. Mazur and A. Wiles, On *p*-adic analytic families of Galois representations, Compositio Math. **59** (1986), 231–264
- [Oh1] M. Ohta, On the *p*-adic Eichler-Shimura isomorphism for Λ-adic cusp forms, J. reine angew. Math. **463** (1995), 49–98
- [Oh2] M. Ohta, Ordinary *p*-adic étale cohomology groups attached to towers of elliptic modular curves, Compositio Math. **115** (1999), 241–301
- [Oh3] M. Ohta, Ordinary *p*-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann. **318** (2000), 557–583
- [R] M. Raynaud, Schémas en groupes de type (p, \ldots, p) . Bull. Soc. Math. France **102** (1974), 241–280
- [Ri] K. A. Ribet, Mod p Hecke operators and congruences between modular forms, Inventiones Math. 71 (1983), 193–205
- [T] J. Tate, p-divisible groups, Proc. Conf. on local fields, Driebergen 1966, Springer 1967, 158–183.
- [Ti] J. Tilouine, Un sous-groupe p-divisible de la jacobienne de $X_1(Np^r)$ comme module sur l'algèbre de Hecke, Bull. Soc. Math. France **115** (1987), 329-360
- [W] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443–551.