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ABSTRACT. We give an explicit formula of the central critical value L(%7 T ®x) of the base-change
lift 7 to an imaginary quadratic field K of an automorphic representation w as the square of a
finite sum of the values of a nearly holomorphic cusp form in 7 at elliptic curves with complex
multiplication by K. As long as the transcendental factor of the value is a CM period, x is basically
any unitary arithmetic Hecke character of K inducing the inverse of the central character of 7.

INTRODUCTION

Let D be a quaternion algebra over a number field F', regarded as a quadratic space by its norm
form N : D — F. The orthogonal similitude group GOp is isogenous to D* x D* by the action
(g,h)v = gvh~! on v € D. Pick a quadratic extension K/F with an embedding K into D; so, we
have K*\K; — D*\Dy. Take a Hecke eigenform f on D*\D} with central character v, and
pick a character y of K*\K; with Xlpx = ™', The unitarization f*(g) := f(g)|¢(det(g))|~*/2
generates a unitary automorphic representation ¢, which has a base-change lift 7¢ to Resg/pD*.
Similarly we set x~ = (x o ¢)/|x| for (¢} = Gal(K/F). Vigneras and Waldspurger [Wa] proved a
striking (and ingenious) formula relating the square of L, (f) := [ K\K £(t)x(t)d*t to the central

critical value L(%,7¢ ® x~) (up to sometimes undetermined local factors). When K/F is a totally
imaginary quadratic extension of a totally real field F' (a CM extension), L, (f) is basically a finite
sum of the value of f at CM-abelian varieties and hence, it is essentially p-integral up to the Néron
period of the abelian variety. If one wants to interpolate p-adically L, (f) over arithmetic x’s for a
cusp form f as Katz did for Eisenstein series [K], we need an explicit formula without ambiguity.
Such computation has been done by many people including Shou-Wu Zhang, Ben Howard, Kartik
Prasanna and others (cf. [MSS], [YZZ] and [P]). However published computation seems limited to
the case where the infinity type of x is either the highest or the lowest determined by f and D and
the conductor of y could be limited to split primes of K/Q (the Heegner hypothesis). For simplicity,
assuming F' = Q, K is imaginary quadratic and D = M>(Q), we present here such an explicit
formula of L, (f)? (Theorem 4.1) covering all arithmetic characters y with y|yx = ¥~" (producing
“critical” central value). The formula involves an Euler-like factor (at primes dividing the level)
which vanishes only in limited cases. A main point is to find a good Schwartz-Bruhat function
on Dy making the theta correspondence optimal. This optimal choice is suggested by the explicit
computation of the g-expansion of the theta lift of £ to GO(F) through “partial Fourier transform”
of the Siegel-Weil theta series which was studied in [HO6] in order to prove the anticyclotomic main
conjecture for CM fields. Our method is elementary, classical and almost global without resorting
much to Langlands theory, and we can extend it to general base fields. In this article, we restrict
ourselves to M>(Q) for simplicity. Obviously one may use the same Schwarz-Bruhat function for
division D fixing an isomorphism D, 2 My (F}) (for almost all primes ¢) or take a non-CM quadratic
extension K/F. However we need a more careful analysis (e.g., [P]) of the rationality /transcendence
of the theta correspondence in these slightly more general cases, which we hope to treat in future.
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Organization of the paper and a sketch of the proof. In Section 1, starting with a brief
discussion of how to associate automorphic forms f on GLs(A) to classical holomorphic elliptic
modular forms f, we recall the Siegel-Weil theta series © and its theta correspondence: f — O(f)
for the dual pairs (SL(2), SO(2,2)) and (SL(2), SO(2)) of the quadratic spaces (M2(Q),det) and
(K,+Ng/qg). For an explicitly given Schwartz-Bruhat function on M, (A), we make a computation
of its partial Fourier transform, which later enables us to make explicit the image ©(f) on the side
of SO(2,2) ~ SL(2) x SL(2). In other words, starting with a normalized Hecke eigenform f of
weight k, by our choice of a Schwartz-Bruhat function, we conclude the image O(f) = [, ©fdz is
given (2i)*f @ f for a suitably chosen measure dr and an elliptic modular Shimura curve Sh. For
this reason, we call the choice optimal. The precise choice of the Schwartz—Bruhat function is made
in §1.4, and then we adjust the choice to make easier later computation of Rankin convolution in
§1.7. In Section 2, we compute the restriction of the Siegel-Weil theta series to the orthogonal group
O(2) x O(2) given by the quadratic space (K, Ng/q) @ (K, —Ng/q) = (M2(Q),det) and show that
the restriction is a product 0 - 6’ of two binary theta series 6,0 of K (of weight 1 + &k and 1,
respectively). Via Siegel-Weil formula (and a more classical result of Hecke), we identify 6" with an
explicitly given Eisenstein series E. In Section 3, we apply to © a (two variable) Maass—Shimura
differential operator A = 67" ® §7* on SO(2,2) ~ SL(2) x SL(2) which is induced by (the m-th
power of) a Lie invariant differential operator X ® X on SLz(R) x SLy(R). The restriction of this
derived A® to O(2) x O(2) turns out to be Oxy2,07" E for a holomorphic binary theta series xtom
with higher weight 1 + k£ + 2m than 6. In the final Section 4, we state our main theorem and
compute f(KX\KAX )2 (£x) @ (£x)dt> @ dt* (with respect to a suitable Haar measure d*¢ on K[). On

the one hand, this value is L, (f)?. Replacing f @ f by ©(f) transforms the integral into a double
integral over (K*\K;)? x Sh. Interchanging the order of integration, L, (f)? is transformed into
a Rankin convolution integral |, s EOk+2md7" Edz, which gives rise to the L-value. This proves the
desired formula.
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1. QUATERNIONIC THETA CORRESPONDENCE

1.1. Classical modular forms and adelic ones. Let S be the algebraic group SL(2),7. Let
f(7) be a cusp form in Si(I',9) (1 € H = {z € C|Im(z) > 0}) for a congruence subgroup I' of
S(Q). Here v is a finite order character whose kernel is a congruence subgroup I of I'. Write r
for the closure of T in S(A(>)). Then f/f’ >~ T'/T”, and hence we may regard v as a character
of T. Then by the strong approximation theorem, we have S (A) =S5 (Q)f’S (R). Thus we can lift
fto f: S(Q\S(A)/T — C by flau) = f(use(d))¥(w)j(tse,i)* for o € S(Q) and u € T, where
J((*%),7) = (er +d). For our later use, we put J((24),7) = (ad — bc)~1/2(c7 + d). We note that
J(r(0),i) = J(r(0),i) = e~ for r(0) = (% 5n%) € SO2(R). Similarly, writing Z for the center
of GL(2), we have j(¢,7) = ¢ while J(¢,7) =1 for ¢ € Z(R).

For an open compact subgroup I' of GLy(A(®)) with GLy(A) = GLy(Q)T - GLI(R) (GLF (R) =
{g € GLy(R)| det(g) > 0}), put T =T~ GLI (R)NGLy(Q). If 1 : I — C* is a continuous character,
we may regard ¢ as a character of I'. Write Si (T, ) for the space of holomorphic cusp forms
with f(y(7)) = Y= () f(1)j(7,7)¥. Then we can define f(au) = f(uoo(i))1(u)j(uoo,)™ %, and f
is a function on GLy(Q)\GLy(A)/Ker(¢ : T — C*) such that f(agu) = ¢(u)f(g) for u € T and
a € G(Q). Write Si(T', 1) for the space of cusp forms f with holomorphic f satisfying f(au) =
F oo ())0(1)j(tso, )", Thus we have Sp(T',1p) = Sp(T',1) by £ < f. More generally, fixing
g € GLy(A), we may define f,(2) = £(99o0)s(goo, ) With geo(i) = z. Then f, € Sg(Ty,1,) for
Ty = (gTg™") - GLT (R) N GLy(Q) and vy(u) = ¥(g~ ug); so, Su(T, ) = S(Ty,1,) via f < f,.
For ¢ € Z(A) and f € Sk(f,w), we have f|¢(z) = f({x) resides in Sk(f,w). Thus Z(A) acts on
Sk (fﬂ/)). Note that f|(s = (Ff. Thus Sk (fﬂ/)) can be decomposed into the direct sum of the
eigenspaces of Z(A). On each eigenspace, Z(A) acts by a Hecke character ¥ : A*/Q* — C* with
¢|fmZ(A) =1 and P (Co) = (¥, and 9| - |¥ is of finite order. Write this eigenspace as Sk(f, 1). Let
To(N) = {(g b) € GLy(Z)|c € NZ} and Ty (N) = {(g b) e To(N)|d—1¢ NZ}. 1f T = To(NV) for
a positive integer N, a choice of v is given by (‘Cl Z) — 1(d) for a Dirichlet character ) modulo N.
Then ) is a Hecke character whose restriction to Zy = He| ~ Z;) is given by 1. Thus as usual, if we
lift ¢ to A* by ¥*(€y) = ¢ (¢) for ¢ prime to N, we have b = ¢*| - |gk. We write simply Sk (N, )
for Si(To(IN),%). Then we have Sg(N, 3) = Sy (Co(N), 1) via £ < f. Note that f € Sg(To(N), )
satisfies f(v(z)) = ¥(a) " f(2)j(7, 2)* for v = (25) € To(N) (note ¥(a) = 1p~'(d)), which could be
a common definition of S (T'o(N),)).

If we start with an anti-holomorphic modular form f(z) € Sy (T, ¢), we lift it to the adelic one f by
£ (o) = £ (oo (1)) (1) (ttoo, —i) ™ for o € S(Q) and u € T. Again f(au) = F(uoo (i) (1) (tos, i) *
for « € S(Q) and u € T. The corresponding spaces of antiholomorphic adelic modular forms are
written as S (T, ) and Sy (N, 9).

1.2. Weil representation. Let (V, @) be a quadratic space over Q with dimension 2d. The qua-
dratic form V' 3 z — Q(z) € Q produces a Q-bilinear symmetric pairing s(z,y) = Q(z+y) — Q(z) —
Q(y). f V=D and Q(x) = xz* = N(x) (for the reduced norm N : D — Q and the main involution
t), then s(z,y) = Tr(zy"). If V = K and Q = Ng/q, then s(z,y) = Trg/q(zy°) ((c) = Gal(K/Q)).
Write S(V,) for the space of Schwartz-Bruhat functions on V3 =V ®g A. The group S(Q) is gen-
erated by (° §) and upper triangular matrices; so, by the density of S(Q) C S(A™)) diagonally
embedded (removing one place v), S(A(®)) is topologically generated by these elements. The Weil
representation r of S(A) on S(V4) is defined as follows:

(L1) r(§4)6(v) = ea(Q)w)o(v), r (§ %) (v) = xv(a)lalfd(av) and r (O §) 6(v) = wd(v),

where xy : A*/Q* — {£1} is a Hecke character, ey : A/Q — C* is an additive character with
enr(rs) = exp(2mizs) for zo € R, 7y is an eighth root of unity both determined by (V,Q)

(see [MSS] 8.5.3) and ¢ is the Fourier transform with respect to ea(s(z,y)) normalized so that

~

(E(x) = ¢(—x). We have (cf. [MSS] 8.5.3 and [HMI] Proposition 2.61)
o If (V,Q) = (M2(Q), £ det) for the determinant det : M2(Q) — Q, xp = vp = 1,
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o If (V,Q) = (K, £Ng/qg) for an imaginary quadratic field K, xyy = (K—/Q) and vy = Fv—1.
Let Oy be the orthogonal group and GOy be its similitude group; so,
GOy (A4) = {a € GL(V ®g 4)|Q(az) = vy ()Q(z) with vy(a) € A*}
and Oy = Ker(vy : GOy — G,y,). We let g € GOy (A) acts on S(Vi) by
L(g)é(v) = v (9|, *og™"v).

Then by [We], the action r and L commutes on S(A) x Oy (A); so, we may regard r ® L as a
representation of S(A) x Oy (A). The following result is a main theorem of [We].

Theorem 1.1. The generalized theta series of Siegel-Weil
0s(®)(z;9) = Y (r()L(9)®(v) (for cach ® € S(V4))

veV
\S(A)) x (Ov(QN\Ov (A)).

)
We define two projections x — x5 and x — sz of GL(2) to S by x5 = way c( ) and 5T = a t(x)
for ay = (§?). Let Gv = {(z,9) € GL(2) x GOy|det(x) = vy (g)}. Then we have the following

skew commuting relation for (z,g) € Gy (A):
(1.2) r(zs) o L(g) = L(g) o r(sz).

Thus we may extend the representation r ® L to a representation of Gy (A) such that r(zg) ® L(g) =
L(g9) ® r(sx). We can still think of

(1.3) 0 (¢)(z39) ==Y r(rs)o ZL or(sz)p(v) =: 0 (4)(g; ).

v

gives an automorphic form defined as a function on (S(Q

In this definition, the variables x and g are not independent; so, we write 6;(z;g) if we use the
expression r(zg) o L(g), and we write 0g(g; ) if we use the expression L(g) o r(sz) (though they
produce the same function).

Lemma 1.2. The above extended theta series 0g(¢)(x;g) on Gy (A) is left Gy (Q)-invariant, that
is, it factors through Gy (Q)\Gv (A).

Proof. Take £ € GOy (Q). Since GOy (Q) leaves stable the vector space V' C V,, noting s(aez) =g =
and |vy(§)]a =1 for £ € GOy (Q), we have

0 (9)(Eg; aner) = D L(Eg) (x(s(awe)z))d) (v) = > v (Eg) 7 (x(s(onie))9) (g1 )

veV

=Y v (@) P e(s2)e) (g7 0) = D v (9) ] P (x(s2)0) (g7 o) = ba(9) (g5 2).

v

Thus Oc(¢) is left invariant under (a,(),§) € G(Q). Since (a,§) € G(Q) can be written as
(av(e), ) (s, 1), we now only need to prove left invariance of 6 (¢) under S(Q). Since (ar)s = a(zs)
for a € S(Q), we see

0c(9)(axig) = 3 r((aw)s)(L(9)8)(v) = Os(L(9))(alws) 1) 2 Os(L(g)d) (ws: 1) = 0 () (x: 9),

v

where the identity at (%) follows from S(Q)-invariance of g (Theorem 1.1). O

1.3. Partial Fourier transform. Let D = (M2(Q),£det). Then s(z,y) is the trace pairing
(x,y) := Tr(zy") for the main involution . We define the partial Fourier transform ¢ — ¢* for
¢ € S(Dy) as in [HO6] Section 2.4:

(1.4) o (e0) = /A 6 (@0 en(all — ba')dd'dV,

where ey : A/Q — C* is the additive character with e (%) = exp(27izs) for oo € R and da’db’
is the self-dual measure with respect to this Fourier transform.
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Let ¢ be a Schwartz-Bruhat function on Dy. Following [H06] (2.18), we choose ¢ so that ¢ =
() ® oo with ¢(>) Dg)o) — C and ¢ : Do — C given by, for (1, z,w) € H3,

12, W k m(7
(1.5) Uy (75 2,w)(v) = Im(7) (%) e(— det(v)?—!—iW(hl(w)Hv,z,wHQ)
for e(x) = exp(2miz) and [v;z,w] = —Tr(v* - ¥z, 1)(w,1)J) = —(w,1)Jv* () = (2, )Jv(Y}) =
wez — aw +dz — b with J = (% §) andv—(‘clg) We have
[g7 vh; 2, w] = [v; g(2), h(w)] det(g) ™" ji(g, 2)i(h, w),
@] g ks
(16) Tn(g(:) (k) — o ) 900200
lg~ " vh; 2z, w]? ot (q—1p) V3 9(2), h(w I
()~ 0 M e )

where j((2%),7) = c7 +d. Consider Siegel’s theta series 6y, () (73 2,w) = > wep @(v). As shown
in [HO6] Proposition 2.2, Poisson summation formula tells us
Lemma 1.3. We have 0 (7; 2, w; $(*)) = Op(2; 7, w; (b*(oo)).

By Lemma 1.3, we get the following version of [Sh2] IT Proposition 5.1 (see [H06] Theorem 3.2):

Theorem 1.4. Suppose that f is a holomorphic cusp form of weight k > 0. Let I" be a congruence
subgroup of SL2(Q) fixring f(1)0(¢)(7). Then we have

/ 01 (0)) (73 2, w) Fo(T)dpu(7) = (20)* > ¢ (ea) exp(2mi det(a)2) f e (w),
IS aeT\M2(Q);det(a)>0
where dp(t) is the invariant measure n=2dédn on $) for =& +in, e= ('), fe(2) = f(—2) and
flea(w) = det(a)* 1 f(a(w))j(a, w)™* for a € Ma(Q) with positive determinant.

1.4. Optimal Schwartz—Bruhat function. Let N be a positive integer and K be an imaginary
quadratic field with discriminant d(K). Define do(K) to be d(K)/4 or d(K) according as 4|d(K) or
not. We split the set of prime factors in N - do(K) into two disjoint sets A and C = Co U C (so,
AUC = {{|N -do(K)}). We put Cy = {€|do(K)}. Decompose N = [],c 4,0 ¢ and assume that
¢ € A= v(f) >0 (but not necessarily the converse). Also v(¢) could be 0 for £ € C.

Definition 1.5. Let
A =Ag(A,C;N) = Dg(A, Co, C1; N) © My(Z) N GLy(A))

be the semi-group made of elements (‘C’ Z) € MQ(Z) satisfying the following conditions:

(a) a—1€ NZ,

(c) co € NEZy for L € A, co € ! NyZy for £ € C; for j =0,1,
where Ny = () is the (-primary part of N.

We put N; = NHeecl £. Write dx for the characteristic function of a set X. Take s,t € 7

with t = s =1 mod N¢Z, where N is the C-part of N. Define ¢ = ¢; , to be a Schwartz-Bruhat
function on My (A(%®)) given by

dx ifeg A
1.7
40 ” ( ) {5(SZ+NZZZ) (a)dz, (b)5N£(tz+NtzZ£) (€)0z,(d) if L€ A.

Then ¢ ; depends only on (s,z) mod N and is the characteristic function of ”ysytﬁ(A, C;N) for
”Ys,t:((s)sgl)(stNl)GSIQ ) Let
T(A,C; N) =SLy(Z) NA(A,C;N) and T(A,C;N) = SLy(Z) N A(A, C; N),

U(A, C; N) {( b) € A(4,C; N)N GLy(Z)|ar = dy mod N,Zy for € € A}.

/\/—\

(1.8)

Note that 75 ¢ normalizes U(A, C; N), f(A, C;N)and I'(A,C; N).
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Define ¢, () := (¢%;)*(ex). Then, by [BNT] VIL7 Proposition 13, we have

OMa (Z0) iftg AUC,
(1.9) ¢ (24) =<0z, (@)ee(—Sb)(sN,;lz,Z (0)ON, (t+N.20)(€)z, (d) i £ € A,

0z, (a)er(=b)0y-17, (0)04i N, 2, ()02, (d) ifeeC;(j=0,1),
where e;(z) = exp(—27i[z],) for the fractional part [z]; of z € Q. This shows
(1.10) ¢s,t(v) = (751,1(04;1”0‘5)) and ¢:t(v) = (75;,1(04;15;1“))

for ay = (§9) and B, = (§?). By computation, we conclude ¢, ,(vzd~ ') = ¢, () for 7,6 €
(A, C; N). Write, for ¥y in (1.5),

05t (752, w) = O, @ Vie)(T5 2, w).
Then, by [H06] Proposition 2.3,
(1.11) Os, (7(7); (2), B(2)) = §(7,7) Fj(a, 2)*§ (B, 0) O (75 2, w)
for (v, 8) € T(A,C; N)3and j((24) . 2) = (cz+d) (recall also J((24), 2) = (ad—be)~Y/2(cz+d)).
Lemma 1.6. Suppose f € Sk(To(N1),) for Ny = N [],ec, €. Then we have
> % 4(ca)e(det(a)2) flra(w) = ¥(s) 7 Y e(n2)f|T(n)(w),
a€T(A,C;N)\ M2 (Q);det(a)>0 n=1
where e(z) = exp(2miz).

Proof. Abusing notation, we take an element 7 in SLy(Z) with v = v5; mod N? (by the strong
approximation theorem) and define f|gvys,: by f|r7y. Also pick o5 € SL2(Z) with 05 = v, mod N.
By definition, we have

&3 i(ea)e(det(a)z) flra(w)

a€l(A,C;N)\M2(Q);det(a)>0

= > e(det(a)2)(flrvs,)a(w)
QGF(A,C;N)\Mz(Q)ﬁ&(A,C;N);dct(a)>0
=(s) > e(det(a)2) flrosa(w) = p(s) ™" > e(nz) fIT(n)(w).
n=1

a€l'(A,C;N)\A(A,C;N)
[l

Thus if f is a normalized Hecke eigenform with f|T(n) = a(n, f)f, we have
(1.12) Og,,(f) = / Os.t(73 2, w) fo(T)dp(r) = (20)*9(5) 71 f(2) f (w).
L(A,CN)\H
This is a version of a formula in [Sh2] II, Proposition 5.1 (see also [P] page 923).

1.5. Adelic theta series. Recall S = SL(2),z. Regard (g,h) € S(A)? as a linear automorphism
of D®g A by £(g,h) : v — gvh™" in Op. This gives rise an isogeny S x S — Op. We pull back to
S(A)? the theta series 0s(¢)(z;g,h) on S(A) x Op(A) by this isogeny, and we still write 0g(¢) for
the resulting automorphic form on S(A)3.

As for the classical Siegel’s theta series, we first extend 6 (¢(%))(7; z,w) to S(A) x S(A) x S(A)

as in 1.1 and write it as 0;,(¢())(z; g, h). Thus 0 (¢(>)) is a function on (S(Q)\S(A))?. We have

Lemma 1.7. Suppose d(v) = ¢ (0N Wy (i;4,7)(veo). Then for (z;9,h) € S(A)®, we have
0s(0)(x: 9, h) = 01(6')) (w3 9, ).
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Proof. First suppose that 0(¢(%))(Zoo; oo hoo) = 05(4)(Too; oo, heo) by definition. Thus they
coincide on (S(Q)S(R))?. By the strong approximation theorem, (S(Q)S(R))? is dense in S(A)?;
thus, they are equal on the entire S(A)3. We need therefore to show 0s(#)|srys = Ok(6(>))|swr)s-

Note that ¢oo(v) = Wi (isi,4) = [v; —i, —i]*e(det (v)i+ £ |[v; 7, ’ ). Let g, = Im(T)fl (Iméf) RCI(T))
for 7 € 9; 50, g, (i) = 7. Note that 0 (6(°)) is of weight (—k, k, k) in (7, z,w) (cf. (1.11)), and hence

ok((b(oo) gTaQZagw Zq}k Tazaw J(g‘ra_i)k‘](gz,i)ik‘](gwai)ik

We take the quadratic space (D, — det). We get from (1.6) and (1.1) (see also Section 3.1)

L9z, gu) (x(g7) Uk (354, 0)) (v) = k(75 2,w)J (g7, =) T (g2, 8) " T (g, 1) 7"
This shows
0s(&)s@s = D L9z, 90) (x(g7) Ui (131, 1)) (1) = Ok () | s(rys

as desired. O

We further extend 0(¢)(z; g, h) to G(A) = {(z, g, h) € GL2(A)3| det(z) = det(g)/ det(h)} by

(113) ({E,g, h) = 95(¢g h)(fE ((% dcto(m))il i1 1) = 95(¢9 h)(la L; ((% dcto(m))il .I)

for ¢4 n(a) = |det(h)/ det(g)|a@(g~"ah). We write the above theta function on G(A) as ©(¢)(x; g, h).

Note that the action (g,h)v = gvh L for v € D gives rise to an isogeny from G to Gp, and
we regard 0g(¢)(z;9,h) = 0s(¢)(zs;g,h) as a function on G(Q)\G(A) by pull back. Note that
0c(9)(g, h; z) can be defined using the left projection GL(2) 3 x +— gz € S. By (1.2), it turns out the
two definitions produce the same function 6g(¢). In this sense, we write @(¢)(g, h; x) = 0c(g, h; x)
if we adopt this left projection.

Lemma 1.8. The function ©($)(x; g, h) is an automorphic form on G(Q)\G(A) and is equal to
06 (0)(x; 9,h) = 0c(9)(g, h; ). Moreover, ©(9)(x; Cg,Ch) = O(§)(z; g, h) for ¢ € Z(A).
Proof. For £,n € Q, we have

O (Pacg,ann)(aeg, anh; agy-1x) = Z Du (gilaglvanh)

for a Schwartz-Bruhat function ¢, only dependent on = € S(A) (given by the Weil representation
r(z)¢). Since v — ozglvoz77 is a linear automorphism of D, we get
®(¢a5g,anh)(a£ga anh§ O‘fnflx) = 6((2504597047,’1)(9, h; 33)

Thus we only need to show ©(¢)(ax; Bg,vh) = O(x;g,h) for o, 8,y € S(Q). This follows from
Weil’s generalized Poisson summation formula (Theorem 1.1). Thus 6g(¢) = ©(¢) on S(A)3
Lemma 1.7. Then the way of extending the two to G(A) is the same; so, we get g (¢p) = O(¢). The
last assertion follows from

$g.1(v) = | det(h)/ det(g)|ad (g™ vh) = | det(Ch)/ det(Co)lad(g™ ¢ vCh) = degcn(v),

as ( is in the center. O

1.6. Adelic theta integral. For a Dirichlet character ) modulo N, we define ¢* : A*/Q* — C*
by 1*(stN)) = 9)(s) for positive integers s prime to N. Recall 1 = 1*|-|;*. Write 64, ¢, for ©(¢) =
Oc(¢) for ¢ = ¢y 4 ® Wi(isi, ) given by @ > ¢y 3 (¢)) s (i54,7)(wec). For f € Sp(To(N1), %), we
define f.(z) = f(—%) € Sk(I'o(N1),v), and lift them to adelic modular forms on G Ly(A)

fe(9oc) = §(9gocs1)™ ka(QOO( ) € gk(NlaE)a and f(goo) = j(goo, 7)™ kf(QOO( 1)) € Sp(N1, ).
We then have

£(Cvgocu) = PY(C)¥ (dn)E(gos) and fe(Crgoor) = ()P (dn)fe(go)

with ¢ € Z(A), v € GLy(Q) and u = (2}) € fO(Nl) (see Proposition 3.5 of [MFG]).

The following result is the reason why we call our choice of the Schwartz-Bruhat function optimal.
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Proposition 1.9. Let X := S(Q)\S(A)/SO5(R), and take the subgroup U = T'(A,C; N) C SLy(Z)
fizing the product 040N (T04er(g-1h); 9> h)Ee(x). Write du(x) for the SLy(A)-invariant measure on
X inducing X/U =T'(A,C; N)\$ the measure Im(7)~2|dr A d7|. Suppose that f € Sp(To(N1), )
(for N1 = N [lscc, £) is a normalized Hecke eigenform. Then we have

/X 04,08 (@act(g-1n); 9 WEe(@)du(x) = (20)*4p(det(g)) ' £(9)E(h).
Proof. Since U N SLy(Q) =T'(A, C; N), we have from Lemma 1.6, for g1, h1 € S(A) and s,t € 7x,
/X Os5(s.0) (@3 g1, h)fe(@)dp(x) = (20) ()~ £(g1)E (ha) = (20)* 9" (sn)E (91)E (M),

as du(z) is the pullback of the measure du(7) = 3 Im(7)7%|d7 A d7| on T\$. Recall ay = (§9) for
t € AX with too = 1. Since GLy(A) = GLy(Q)GLy(Z)GL} (R), we may assume that g, h € GLy(Z).
Then, for ¢ = det(g) and s = det(h), |t|]a = |s|]a = 1, and for ¢ = @11, We have Gg.n(v) =
¢171(gflvh) = ¢171(aglg§10h5a5) = ¢Syt(gglvh5). Thus we have, for gg, hg € S(A),

/®G(¢1,1)($at*15;gah)?C(x>d,u(x>:/ Os (b5 ((xas-15)s; g5, hs)Fe(x)dp(z)
X X

= /X 05(¢, 1) (w: s, hs)fclan(z)du(z) = (20) %" (sn)f(gs)E (hs) = (20)*¢" (sw)E (9o E (ha )
= (209" ()" (tw) "1 (s3) T (9)E (h) = (20)"3p(det(9)) £ (9)E (),

as YP*(t) = Y*(ty) = (t) since ¢ € Z*. The left-hand-side and the right-hand-side are both
functions on GLa(A) x GL2(A) left invariant under G L2(Q)?, invariant under the diagonal action of
Z(A) and right invariant under T'o(N7) (by Lemma 1.8); so, they must coincide over GL2(A)%. O

1.7. Adjustment of Schwartz-Bruhat function for convolution. We now modify the theta
series so that our computation of a Rankin convolution will be easier. Recall the fixed imaginary
quadratic field K of discriminant d = d(K). Let do(K) be d(K)/4 or d(K) according as 2|d(K)
or not. Let N1 = N[, ¢ Write Ny = *) and we assume that £|do(K) = ¢ € C. Let
C, = {t € Clord;(N1) > 0}. Note C', D Cy. We decompose Cy = C; LU Cs U C,. so that C; is made
of primes inert in K and C, is made of 2 if 4 || d(K) and v(2) > 0 (so, C; is made of split primes).
Since C; U C,. U C; is made of primes in C non-split in K/Q, we often write C,,s for C; U C,. U Cy.
Define a new function ¢, (2 Y) given by

OMa(Z0) ifegAUC,
(1.14) 0z, (a)ef(_Sb)(sN;lzl (b)5Ng(t+NgZ£)(c>5Z£ (d) if £ € A,
0z, (a)ee(=b)dy—17, (0)0n,z, () (" D3pz,(d) — /O 0pi0r14,(d) if L€ C,
9z, (a)eg(—b)zij\,;l%Z (b)onN, ,z,(c)dz,(d) it ¢ € Chs,
where e/(z) = exp(—2mi[z],) for the fractional part [z], of z € Q. Then ¢, is given by
OMa(Z0) iftg AuC,
(1.15) 054N,z (@) 0z, (D)ON, (14N, 2, (€) Iz, (d) if €A,
14N, 20 (@) 3z, (0)n, 2, () (0¥ D S4v 7, (d) — 07O 28014, (d)) if £ € Cs,
014 N,2,(a)0z, (0)ON, ,2,(c)dz, (d) it € Cps.
Since for £ € AU C, we have A(A,C;N), = l_l(;io A(A, C; N (50) A(A, C; N);, we get

SUpD(Py 4 ) = Vs, DA, O3 N)e = || 7t DA, C5N) S (5 5) AA, O3 N)Y,
j=0

and Supp(55+NtzZ£ (&)52,3 (b)5Nz(t+N£Z£)(C)5f€Z£ (d)) = I_l(;io Fysytz(Aa C; N)Z ((lJ 695 ) A(Aa C; N)Z By
Lemma 1.3 combined with [H06] Proposition 2.3, this shows
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Lemma 1.10. The theta series Oc(v1,1)(z; g, h) is an automorphic form on U(A, C; N) with respect
to the variable x and h.

We write ©® 4,c,n (73 g, h) for Og(p1,1) and O (f) for [ O 4,0, (Ter(g-11); 9 W) Ee(@)dp(z).
In basically the same way as in the proof of Proposition 1.9, we get

Lemma 1.11. Let the notation be as in Proposition 1.9. Let M = HEGCS Ny. Suppose that f €
Sk(To(N1),¢) for Ny = N [],cc, ¢ is a normalized Hecke eigenform. Then we have

O (£) = (20)*4p(det(9)) " 3 ut)a(Myt, ) (M/0) E|[BSE (9)E ()

Y
for the Moebius function p of Q, where f|[5t(/oj/)[]( )= f(gﬁt(/oj/)[) for the finite part 65/02/)[ € GLy(A()
of Biym = (t/éw ) € GLx(Q).

Proof. Since (f|[M/t])(goo(i))j(goo,1) " (gﬁt/M) the proof is exactly the same as that of Propo-
sition 1.9 if we get
(1.16) / O (91,0)(73 2, w) fo(r)dp(r) = (20)F Y p(t)(M/t)a(M]/t, f) fI[M/8)(2) f (w)
L(A,C:N\D tIM
for a Hecke eigenform f € Si(I'o(N1), ). Note here
Z,u M/t 5(M/t)ZN = H (éy(e)(SguZ[ — éy(e)ilisgu(f)flzz)
Y teC,
for Zn = [Isc auc Ze- Define for a positive integer m,
An(A,C;N) ={a e A(A,C; N)’m|det(a) >0}.
By Theorem 1.4, the left-hand-side of (1.16) is equal to
> ult) > 1,1 (ea)e(det(a)2) flro(w)
t|M €l (A,C:N)\(M2(Q)Ny1,18 4 /4 (A,C5N)
M M &
Ik > e(det(a)2) flrafw) = Y ut) " S e(na)fIT(n)(uw)
t|M a€l(A,C;N)\Ap/:(A,C;N) t|M n=1,|n
M
=Y ult TZ n(M/t), fle(n(M/t)2)f(w) =y _ u(t)—-a(M/t, f)|[M/t](2) f(w)
Y n=1 Y
as desired. g

2. SPLITTING OF QUATERNIONIC THETA SERIES

Let K be an imaginary quadratic field with discriminant d(K). Write O for the integer ring of
K. We split the quadratic space (D, det) = (K, N) @ (K,—N) for the norm form N = Ng /g and
accordingly split the theta series into a product of theta series of K.

2.1. Torus integral. Choose 21 € O so that O = Z[z] with z; € $), and define p : K — M>(Q) by
a regular representation:

p&) (1) = ()
and consider D as a right K* x K*-module by (£,7)z = p(¢)"'zp(n). Note that p(b) = p(b)*. Let

T be the algebraic torus defined over Q whose Q-points are K* x K*. We embed T into G by
(&;m) = (an(en-1y; (&), p(n)). We then choose g1 € GL2(A) with and g1,00(7) = 21.

Lemma 2.1. Let x : K /K> — C* be a Hecke character with x *|yx = 1 and x(as) = a¥,. Then
a— f(pla)g1)x(a) factors through I := K /K*AXKX (the anticyclotomic idele class group).
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Proof. For z € Z(A), we have f(zz) = 9 (2)f(x); so, a — x(a)f(p(a)z) factors through K*\ K /A*.
Let K! be a torus over Q given by K1(A4) = {¢ € K ®q A|£€ = 1}, where the complex conjugation
€ — £¢ = € is induced from K. We take aoo € KX. Then p(aoo)g1.00(i) = p(ao)(21) = 21, and we
have, writing f’ for fggao) as in Section 1.1,

£(p(ase)gr) = F'(P(ac)91,00(0))5 (000 )1 00, 1) 7
= f'(plase)(21))i(plasc), 21) (91,00, 1) 7" = f'(21)i(plasc), 21) " 5(91,00,8) ™" = £(g1)acd
Since x(aoo) = ak,, we have f(p(aso)g1)x(as0) = £(g1). Thus the function factors through I.. O

Let F be a number field with integer ring Op. Normalize the Haar measure dja on F/FX so
that fox d*a = 1. Then taking a fundamental domain ® C F/EFX of Ip = F*\F,/FX, we get

the measure dja on Ir induced by dja on ® = Ir. Thus fox/ox dra=|05| " for F=Q and K.

Write d*a for dja. We have an exact sequence: 1 — Ig — Ix — I;; — 1. We define a measure
d~aon I by [, ¢(a)d*a = fl flc p(ab)dybd~a. Fix a Hecke character x: K /K* — C* with

X 1|ax = b. Taking x as above such that x'[ax = v and x(as) = a¥,. We put for f € Sp(N, 1)
Ly(f) = / £(p(a)gn)x(@)da; so, / £(p(a)gr)x(a)d"a = vol(Ig) "Ly (F) = 2Ly (£),

Ik

where vol(Ig) = f[ dpa = 1. Then by Lemma 1.11, writing 7 = T(Q)\T'(A)/T(R) = Ix x Ik for
simplicity, we get

21) @) 3 u(t)a(M/t, DMLy (£][8550]) Ly (F)

0<t|M

/ (N (a) det(g1))0™ (£) (p(a)g1. p(b)g1)x (@)X (b)d* ad*b.

We have, for t = N(a™'b),
/ (N (a) det(g1))0™ (£) (p(a)g1, p(b)g1)x(a)x(b)d* ad” b

/ / (N (a) det(91))@ 1.0, (wass p(a)g1, p(b)g1)x(a)x(b)d” ad*b - Fu(w)du(x)
By (1.13), we have, for t = N(a™1b),

(2.2) ©4.c.n(zas; pla)gr, p(0)gr) = [t > v(x) (1,191 ' pla) " vp(b)gr)) -
veD

2.2. Factoring the theta series. We now study © 4 ¢ n(zay; p(a)gi, p(b)g1). Choose € € GL3(Q)
so that (1,€) is a basis of D over K (& D = p(K) + p(K)e), €2 = 1 and p(K) L p(K)e under
s(z,y) = Tr(zy") and ep(€¢) = p(€)e for £ € K and (¢) = Gal(K/Q). The norm form of D
induces two quadratic forms on K: one ()1 by pullback via p : K — D another Q). by pullback via

€: K — D (p-e(v) = pv)e € D). Let Tj,g (j = 1,€) be the orthogonal similitude group of
(K, Q;), which is a torus whose group of Q-points is isomorphic to K*. We have (a,b) € (K*)?
acting on D by x — x - (a,b) = p(a)~tzp(b). Thus we have

(p(@) + p(y)e) - (a,0) = plab™ )" p(x) + plab )~ p(y)e.

The morphism 7 : T — Ty x T, is given by (a,b) — (ab™!, aEil) = (a, f) identifying T1(Q) = K*
and T.(Q) with K* by p. Note that Ker(r) is the diagonal image of G,,,/g in T'. Let T" = T1 x Te.
Assume the following two conditions:
(S1) orde(d(K)) =1« £ € Cy, C, is empty or a singleton {2} according as v(2) =0 or 4 || d(K)
and v(2) > 0, where ord, : Qy — Z is the discrete valuation with ordy(¢) = 1.
(S2) All ¢ € A splits in K.
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Proposition 2.2. Assume (S1-2). Then, we have a decomposition
©.a.0,n(x; p(a)gr, p(b)gr) = (—=20)"0(¢1)(x, a)8(dc) (x, )

for theta series 8(¢;) of Q;. Here <p(oo)( o) + p(w)e)gr) = goo)(v) Se (w), and the explicit
form of ¢; and the choice of € and g1 € GLQ( ) at each place will be given in the proof.

For the splitting in the proposition, the condition (S2) is an absolute requirement.

Proof. We now prove Proposition 2.2. We start with the infinity place. By Lemma 1.7, the in-
finity part of the Schwartz-Bruhat function defining ©4 ¢ n is given by Wy (i;4,¢), and L(g,h) o
r (oo )Wk (4;4,4)(v) is given roughly by Wi (7;4,i)(g  vh) if 2o = g, (T € $) as in the proof of
Lemma 1.7. More precisely, we have, by (1.6),

W (734, 1) (97 56 V91,00)

- 1 Y _ JIm(7)
Tm(r) = (Im(T)[glyoongoo, —1, —z]) e(det(v)(—7) +1

2

|97 2V 91,005 1, 1] %)

. 71,71) | * _y o dm(r) oy -2
= gnee iy (ALY enton () + 57 o v s

_ (Im(7)[v;Z1, 7] i _Im(r) .
= (W> e(det(v)(=T) +1 5 I[97 Lovg1 003, ]2),

where g1 oo = Im(zl)fl/2 (Imgzl) RC(121)), Write v = p(€) + p(n)e for € € D with ep(&)e™ = p(€).

If K = Q[V/d], taking zy = \/Eil, we may realize po(a +bVd) = (& b);s0, po(n) (7 ) = (%3"). We

take € for po to be g = (' 9), and hence

(Po(§), po(n)eo) = —Tr(po(§)eopo(1)) = —Tr(po(§n)eo) = —a+a =0 (= po(K) L po(K)eo)

if £n = a 4 bv/d. Since any p is a conjugate of py : a + bVd — (db a), writing p = apoa~?! for
a € GLy(Q) with 21 = a(zp), we have (p(€), p(n)e) = 0 with € = aepa™". We thus have

(p(€) + p(n)e, p(€') + p(")e) = (p(€), p(€")) + (p(n)e, p(1))e) = Tr(€€ ) — Tr ().
Thus the corresponding positive majorant is given by
(p(€) + p(n)e, p(€') + p( )e)+ = Tre Q€€ ) + Trre (),

and defining p(z, w) = —*(2z,1)(w, 1)J (see [HO6] (2.11)), p(21, 21)+p(21, 21) and ip(z1, 21) —ip(z1, 21)
span p(Ko)e (see [HO6] 2.1 and 2.2). In other words,

(2.3)  [p(&) + p(n)e; 21, 71] = (p(&) + p(n)e, p(Z1,71)) = (p(n)e, p(Z1,71))
= (2, 1)Jp(n)e (31, 1) = (1, 1) Jep@)' (71, 1) = nles 71, 71,
as p(n)*(z1,1) = n'(z1,1), where we recall J = ( % §). Similarly, we get

(2.4) [p(&) + p(n)e; Z1, z1] = €[1; 21, 21] = —2i{ Im(z1),
Note also
(2.5) [€:21,Z1] Im(2z) ! = —2¢/—1.

Since for v = p(§) + p(n)e, we have

(2.6)  TIm(r)"* ! Im(z1) " [v; 71, 1] e(det(v)(—F) + Im(T)) I[vs 21, 1] 2)

2TIm(z1)?
:(—2z'>’“Im(ﬂ’““n’“e(%(—@,w Re(r) +iIm(7) (v, v)4)) = (—20)* Im(7)* '  e(—£&F + nijr),

we now set

(2.7)  1,00(€) = 1,00(&;7) = Im(7)/2e(—EEF), Be,00() = be.oo(n; T) = Im(7)* T/ Dk e ().

For the quadratic space (K, —Ng/q), we have r(gr)o1,00(&; ) (gr, —1) 7! = ¢1.00(7; &) and for the
quadratic space (K, Ni/q), we have r(gr)de,o0 (11:1)J (97, 1) ™F = de 00 (75 7).
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Now suppose that £ is a prime split in K. Choose a prime factor [|¢ in O, and identify K, =
K x Ky = Qg x Q. We write ¢ = ¢, for the projection of K, to the left factor K; and co ¢, for the

other. We make explicit later the choice of [. Take h ¢ so that hi%p(a)hlyg = (“Zgl) C(“fza)) ) For

example, hy o = (% ') € GLa(Zy) does the job. For one choice of € with ep(£)e™! = p(€) for € € K,
all other choices fills the double coset p(K, )ep(K, ). Adjusting this way, we may choose hq ¢ so that
hipehie = (94) and det(hy¢) = 1, as det(p(K;)*) = Q;. Then we define gy ¢ = hy ¢ (¢ ¢) for
u=1if¢e€ Aand u=0if ¢ € Cj; so, det(g1,¢) = €. We simply write ¢s(a) = o and c(ie(a)) = @.
Thus we have
€7 f"(mﬁ_)ﬂ*"(s%)) ifle A,
910 (p(&) + pmeo)gre = 4 p 7wy &7
e €
We define C; (resp. \A) for the set of this choice of split primes [ over C := {¢ € C|v(¢) > 0} (resp.
over £ € A). For non-split primes over C, there is a unique choice of primes over £ in K. We write
Cns for the set of the non-split primes of K over C. Then C = C; U C,s. Note that g1 s € GL2(Zy)
if ¢ ¢ AUC U{oco}. Then by definition, we get the following facts.

ifteCsorlg ALCU{oc0}.

Lemma 2.3. Suppose & || N and € splits in K, and recall e,(z) = e(—|[z]¢) for z € Q.
(1) If L € A, we have
©1,1,6(91.4 (p(€) + p(M)€)g1.0) = b0, (m)d14e 00y (mp)ee (€™ (1 = m1))do, (Ee)ec (€ (& — &)
(2) If ¢ € Cs, we have
e1,1,6(91.¢ (p(€) + p(M)€)gn,e) = do, (€0, (1e) (N (1) & (&) — N (D) 801 (&) ee( =L my).
(3) If t & AUC, we have @11.0(g; 4 (p(€) + p(M)€)gr.e) = S0, (ne)d0, (&)

Proof. The assertion (2) and (3) are plain. We prove (1). Since ¢11¢ = ¢; 1 4, we need to analyze

0z, (& = 1)0z, (10— iy + & = e (mp — 1+ & — &) 014002, (1) 0z, (& + 7).
If 01102, (n7) # 0, we get
0z, (& + M)z, (& — 117) # 0 = b0, (&) # 0.
Thus we get 6z, (& — 177)0z, (& + 77) 014002, (7)) = 90, (§1)01 477, (177). Then we see
6z, (& — mp)0z, (0 — 17 + & — &)0140v2z, (117) 6z, (&5 + m7) = S0, (§e) 0z, (M)S140v2, (7).
O
We now deal with the case where ¢ is inert or ramified in K with ¢¥ || N. First we suppose
K = Q¢[v/do] with Oy = Z[+/dp) is the f-adic integer ring of K,. Thus dy = d(K) if ¢ is odd and

do = @ if £ = 2. For the moment, we suppose that 2 is not inert in K/Q. Writing ord,(do) = j
and suppose that £ € C; if j > 0. We may take g1 ¢ so that

gripla+by/do)gie = (5, ¢ 00 and det(gr,) = ¢,
Thus again g1 ¢ € GL2(Z,) if £ ¢ AUC U {oo}. Again by definition, we get

Lemma 2.4. Suppose that [K; : Q) = 2 with ¢V || N and Oy = Z¢[\/do] for dy = @ € Zy¢ (this
implies that 2 ramifies if { = 2). Writing orde(do) = j, suppose that £ € C; if j >0 and £ =2 € C)
if orda(d(K)) > 7 =0 and v(2) > 0. For v = p(§) + p(n)e with & = a + b\/dy, n = a’ + b'\/dy and
€= (71 0), we have, for § = iz,

00, (€)ee(—L7"Tx(57))00, (nee(—¢Tr(J5)) if £ € Cus and v = v(£) > 0,

—1 —
Prddeoane) = {5@ ()30, (n) Frf =0
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Proof. We find p(§) + p(n)e = (e"di?b(ib/) fﬁ:gf’:/b/)) for € = a + bv/d and n = o/ + b'/d. Suppose
¢ e Cps or v(f) =0. Then

5(a— a')3(b + b )er (—0* (b 4+ b))dmayz, (Edo (b — U))5z, (a + ') if v>0,

e1,1,6(p(§)+p(n)e) = {5(a —a)§(b+ )84,z (do(b— b'))8(a +a’) otherwise.

Since a+a’ € Zy and a — d' € Zy < 2a,2d’ € 272y <= a,a’ €Zy (asa+d =a—a’ mod 2if £ = 2),
we find d(a — a’)d(a + a’) = d(a)d(a’). Similarly, §(—b — b')da,z,(do(b —b")) = 6(b)d(b'); so, we have

d(a —a")o(a + a)dayz, (do(b— b)) = 6(£)d(n).

This proves the formula when v(¢) = 0. Note that b = %Tr({/\/%) = Tr(¢/V/d) and b = Tr(n/V/d).
This proves the other case.

Lemma 2.5. Assume that [Ks : Q2] = 2 and K3/Qs is unramified. Then we can find g1¢ for £ =2
and units u1, ue € OF so that det(g1,0) = £, p(O¢) + p(Op)e = apw Ma(Zo)ar,,' and

p(E) + pln)e = (3 ¢ MOV eiruenva ™))

for all (§,m) € Or & Oy.

Proof. First we assume that v = 0. We pick a representation p; : O2 — Ms(Zs) by choosing a basis
of Oy over Zs. Since 2 is unramified in K, we have Oy ®z, O3 = O2 @ O3 by (a®b) +— (ab, ab). Since
M>5(Z2) is a module over Oz ®z, Oz by (£ @ n)x = p1(&)zp1(n), regarding M2 (Zs) as an Oz-module
by &x = p2(&)x, 1 € Ms(Z2) is an eigenvector under this action: (£ ® 7)1 = p(¢n)1. Thus we have
one more eigenvector €; such that

(E@mn)er = p1(§ep1(n) = p(§M)er-

We may choose €1 so that Ms(Z2) = p(O2)®p1(02)er. By reducing modulo 2, we get a representation
1= (p1 mod 2):Fy — M>(F3) and the above decomposition indices p, (F4) @ p; (Fa)€1 = M2 (Fs).
Take any non-zero linear form L : My(Fy) — Fo, Lo p; # 0, since otherwise p; factors through
B = {a € M3(F3)|L o a = 0} making it reducible, a contradiction. Taking the linear from b :

My(A) 3 (%) — b, we find that b|p, (F4) # 0 because of this fact. So b: p;(Fs) — Fy is surjective.
Similarly, b : p; (F4)el — TFy is surjective. Then by Nakayama’s lemma, we have b : p;(O2) — Zo and
b: p1(0O2)e1 — Zgy are surjective; so, we find u1,u. € O3, as desired. For v > 0, we just conjugate p
and ¢y ¢ for v = 0 by ayv. They do the job. O

We choose gj ¢ as in the above lemmas. Then we have

1.1,6(97,¢ (p(€) + p()E)g1.0) = $1(8)de (1)
Indeed, for the discriminant d = d(K) of K/Q, we have

do, (&) if v(€) =0
b10(6) = do,(E)ec(t (&= &) if £ € A,
’ S0, (E)(N (0”0 (&) — N(1)" 11 (&) if £ € Cs and v = v(¢) > 0,
o5 30, (€)ed(—"Te(Vd  w€)) if £ € Cpy and v = v(£) > 0,
50,5 (776) if I/(é) =0
bo o) = do, (M)8(1-+ev0r) (mp)ee(C~7 (L —mi)) if £ € A,
= 50, (ne)ed(—7 ) if 0 O, and v = v(f) >0,
do, (n)eg(—éf”Tr(\/EiluEn)) if £ € Cps and v = v(0) > 0,

where u; and u. are units in Oy and are equal to 1 except for the case where ¢ = 2 and 2 is inert in

Kg/@g.

Remark 2.6. We note ey(x) = e(—[z]¢) for x € Qq; so, if we replace eo(x) by e([x]e), we need to
change the sign inside “e”.
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From the above consideration, for ¢ = ¢ 1,

Sot@an oty (P(z) + p(®)€) = IN ()7, *61 (a7 @) N(B) 7} %0 (57" 0),

and we conclude @payo, pyen (1) + (6)e) = d1,0()e,5(y), where g (z) = [N (o) |z 2p(0~"2) for
¢ = ¢r with ? = 1,e. Thus 0(¢)(v; ) = >, cj(r(s7)9)a(v) for ¢ = @7 with ? = 1,e. This finishes
the proof of Proposition 2.2. (I

2.3. CM theta series. Recall 7" = T; x T, and the character x : K /K* — C* with x " yx = 9
and x(as) = a®,. We have an exact sequence 1 — G,, — T = T' % G,, — 1 with v(a, 3) =

N(a/B) and 7(a,b) = (abil,agil) = (a, B). Since ¥(N(a))x(ab) = x(aa) " tx(ab) = x(@ 'b) =
X(Bil), by Proposition 2.2, we have for t = N(a7'b) = N(a)"! = N(B)~!

(2.9) / (N () det(91))© a.c.n (zs; p(a)g1, p(b)gr)x(ab)d” ad*b

Deptaenton) [ o) om0z X ad s

— p(det(s)) |

0(61) (war: ag)d*a / 0(6.)(waus Bg1)x(F 1 )dB.
T1(Q)\T1(A)

T(Q\Te(A)
Strictly speaking, the identity at () has to be between the integrals over the image

Im(T(Q)\T(A)/T(R) = T'(Q\T'(A)/T'(R)).
However for the following reason, the identity (x) is valid: By our way of extending the theta series
to S(A) X Oy (A) to Gy(A) for V = D and K, after the integral over O x O C T’ is done, the

result is just constant over the compact set Coker(T(Q)\T'(A)/T(R) = T'(Q)\T"(A)/T'(R)) = I
whose volume is canceled by the equal volume of

Ker(T(Q\T(A)/T(R) = T"(Q\T'(A)/T'(R)) = Io.

Write Y(z) = x(Z~!) and ¢ for ¢.. In this section, we write fTé(Q)Té(R)\Té(A) Oc () (z; B)X(8)d* 3

as a theta series of a Schwartz-Bruhat function ® on Kj4. By (2.7), the infinity part of ¢ is
given by ¢o(n) = n*e(nmi). For g, as in the proof of Lemma 1.7, r(g,)¢oo(n)J(gr, —i)F =
Im(7)*+(/2nke(nir). Then for § € KX, (z,6) € Gy(R) for V. = K and 7 = z(i) € 9, we

have gz (i) = a;&ﬁ)x(i) = N(B)7. We may assume that x5 = gn(z)r. Then

r(52)doo (1) (s, =) 7F = £(gn(3)7)Poo (M) T (gn(a)r, =) 7" = Im(N (B)r) /2 ke (N (B)r),
L(B) o x(s)¢o0 (n) (5, i)™ = Im(r)*+A/D N (3)* 5~ En e i) = Tm (r)*+ (/2B  n e ().
Thus the function 8 — 9((;5)(3:;5))((571) factors through K /KX for ¢oo(n) = cn*e(nii). Now

regard 0(¢)(8; an(g)x)J (2, —i) " as a function of z € S(A) for which we integrate. Let oo = g-
(=7 =12(7)), and we write

(2.10)  0(¢)(B;7) == 6(0)(5; OzN(ﬁ)xoo)J(xoo, —i)7F = 05(6) (8 200) I (0, —) "
= > (L(B) o v(e0)d) () J (oo, —i) F

nekK

= [N(B)[ /> Tm(r)= /2 3™ ) (371 (B ) Ee(N (o) ~ 11777
nekK
Decompose T, (Q)T(R)\T.(A) = [_|?:1 cLl-TE(z)/OX for a; € K with a; y =1 and |N(a)|a = 1.
We can achieve |N(a)|s =1 just taking ao = /N (a) € R} for a = aO N K. Then we have

6(6)(5: )R (B)d" f = |O%| 12 / TR(B)B.

/TE(Q)TE(R)\TE(A) i Te (Z)
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Pick a € K with ay =1, |N(a)|a =1 and ax € R}, and look at

/ ' 0(6)(Base: 7)R(Bae)d* B = X(a) / 6(6a)(8: T)R(B)d* B,
oT.(2)

T.(Z)

where ¢4 (v) = |N(a)|; " *¢(a= ). Then 6(¢a)(3;7) = S ek ®a(B71n; 7) and hence

/ PNCNCECIEDS / o, el TS

nekK
Write ¢(1; 7) = ¢oo (1oo; T) [ [, ¢¢(n¢) for local function ¢, : K, — C with

oo (1 7) = Im(7)* T/ D (ry7r).
2

Then we have, since as, could be a nontrivial scalar with N(as) = a2, = N(a) for a = aONK,

[ ls(anaeyzo)0)a B DX = oloi ) [T [ oraliy Re(500 0
(@) )

for 200 = IID(TY1 (ImO(T) RCI(T)) (= 7 = 2(1)). We write as @, ¢(n,) the individual factor

Jr ) Pea(B7  ne)Xe(Be)d™ By

We have written the set of primes as A UC for A made of prime factors one for each over £ € A

and C those over {¢ € C|v(£) > 0}. Recall v = v({) is the exponent of £ in N. The prime [ in AUC;
was tentatively chosen (before stating Lemma 2.3) when we defined g; . Here we make a specific
choice depending on the conductor € of the characters x and x,, later we introduce:
Definition 2.7. Pick a conductor ideal € of O and assume that N(E)|N# for p > 0. We choose
A and C so that € = TLice, VT TTea VU Tliee, V' with v(£) > fr > fi > 0 for [ € A and
v(l) > f; > fi =0 for L € Cs. We also put Co = {l € Clv({) > f; =0}, Ay = {l € A|f; > 0} and
Ci ={leC|f;>0}.

We take € to be the conductor of . Here is the explicit form of the function ®, ¢

Lemma 2.8. Assume (S1-2), [N(a)|a =1 and ay = 1, and write x°(z) = x(T) and X(z) = x(T ).
(1) If £ is a prime with v(£) = 0, ®y¢(n) = |N(a) ;1/250,Z (a=tn) for the characteristic function
00, of Op. At o0, we have
X(a00)Paoo (157) = N(a) 75~/ Im(r)+ Dk e(N (a) = agiyr),

where a = a0 N K. i
(2) If £ € A (s0, ¢ splits in K/Q) and €, = I/t T with 0 < fi, ff L v, we have,

ooty = | OV 2ol SGODN O~ s (e (T XA >0
T IO/ e~ )N ()50, = N (D 6p10,) (1) () if =0,

where for a character ¢ of O of conductor V', G(¢) = Zaeo/[f (b(a)e(%gm/_di)) and
dx is the characteristic function of X C K.
(3) If t € Cy and v(£) > 0, writing € = ' with 0 < f<v,
[(O/)* |71G(ch)N([)”7"'75@401X (n)do-(np) Xt ()X (¢ =) if f >0 and € =1,
Pae(n) = 4 [(O/1)<|7HN(1)"dev 0, = N(1)" " dpv-10,) (1) 0o (1) f&=¢=1,
0 otherwise.
(4) If £ € Cyps with v(£) > 0, writing € = ¢/ with 0 < f < v, we have
o) = (O T EGONIN (DY 8 s o () Xa(uen) X (U5 7) - if f >0,
’ [0/ )| THN ()60, — N(1)" " op-10,) (m) if € =1,

where u, € OeX as in Lemma 2.5 is equal to 1 except when ¢ = 2 is inert in Ky/Qy.
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Proof. The assertion (1) for finite place ¢ follows from the definition. As for the infinite place, note
that 3 € T.(Z); 50, B = 1, and we get from (2.10) @, (1) = |N(aso )|~ 2aFnFe(N (a) " tn7r).
We now prove (2). As is well known (e.g. [LFE] page 259 (4b)), we have for z € Oy,

. NGB o (@)6 @t ) it f >0,
11) 3 s(e ([Trxya (aavd )] ) = o .
s ¢ [(O/D)*|7HN()dero, = dgr—10,)(x) if f =0.
Since ¢ € A splits in K/Q, we may write § = (a,b) for a € Oy = Z; and b € Oy = Z;. Then, for
¢ € A, we have, noting e,(—¢n) = e([("¥ni]¢) (see Remark 2.6),

Da,e(e3me) 5:/ bee(xe; B ne)X(B)d” B
Te(Ze)
=(Z/e2)*|Pet™) > Xila)Xi(b)do, (e m)ed(— aT ) S s 00 (0 )
a,be (2,0 ) >

=[Z/e2)*|Pe(—") Y Xila)do (e me((Ca o) x> Xg(0)dateron (0 )

a€(Z/ev7)* be(Z/Lr7) >
ean eCINmox (1) - (1(Z/072) |7 R X ()G () Sp-sm g ()i ;> 0,
(Z/trZ)~] (ZJEZ)* |72 (l6ev 0, — Bpv—10,) (1) if fr=0.

We prove (3). Write ¢&; = /. We have

D o(ze;m0) 3:/ beo(ze; B o)X (B)d* B

Te(Ze)

=|z/en* Y xla)xab)ed = a  n)do, (a” )do- (b )
a,be(Z/ v 7)*
- (Z/EZ) |~ X)X ) G () 8g—s 0 ()d0: (1) if f > 0 and & =1,
=" 1@/ tz)|7 (loevo, — dp-10,) (1) d0- (1) it =¢=1,
0 otherwise.

We prove (4). We have ¢.(n) = 0o, (n)ec(—0" Tr(uen/Vd)) = 8o, (n)e([¢ Tr(uecn/vd)]) and

D o(xe;m0) 3:/ beo(ze; B o)X (B)d* B

Te(Ze)
=[(0g/0)*I7F > Xula)e([¢VTr(a  uen/Vd))o).
a€(Op /v Op)*

Then the same computation as in (3) produces the result. O

We embed T into G(A) by (£,n) — (vane,-1); p(§)g1, p(1)g1) for the choice of g1 € GLa(A) we
made in Section 2.2, and computed the pull-back integral of 6 (¢1,1). The corresponding embedding
of the quadratic space K7 < D, is given by (&, 1) — g7 (p(€) + p(n)€)g1.

To state the result, we fix some symbols: Write ¢ = /1. Let Co = {l € C|f; = 0,v(¢) > 0},
Ao ={l€e Alf;=0}, CL ={l€C|fy >0}, Ay = {1 € Alf; > 0}, Ay = {l € A|f; > 0}. We then

define
t:1—[[1,(@?/(12) Hfu(@ H [U(E), 5 — H [u(e)ffT, and 5o = H [U(E),

leA LeCs LECns leAUC e ApUCo

L =Tlicave,uc, b o5 = HIGAT, ay=[lies L 875 =s/ayand so,; = s0/ay for a subset J C AgUCo,
where ag = O. For each Hecke character A\ with A\(z) = z* and for each ideal a prime to the
conductor ¢ of \, we have the corresponding ideal character given by A(a) = A(a()) where a is an
idele a with a = K N (a0). We agree to put A(a) = 0 if a + ¢ C O. Then we define

Oz(N (1) = > Aa)gV®

aCO
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for ¢ = e(7), where a runs over O-ideals prime to all J] 4 [. For any positive integer m and
f: % — C, we define f|[m](7) = f(m7). Then the result is

Lemma 2.9. Let x : K /K* — C* be a Hecke character of conductor € with x|yx = Pt
Put \N(z) = X(x)"N(z)|F = X(E)il (50, Mzoo) = xF and X\* := M|\ = x~). Decompose

¢ = [licave. [f‘ijH[eCm o with 0 < fi, ff < v(€) as in Definition 2.7, and assume that fi = 0 if
either 1 € C is split in K or £ ¢ AUC. Then the classical cusp form giving rise to the theta integral

fTE(Q)TE(R)\TE(A) Oc ((bé)(x;ﬂ)x(gil)dxﬂ is a CM theta series given by
CLm(r)* V23~ g ()N (s/9)M(s0/9) O (AN (s/1)]

9lso
for a constant C' = e(—N;1)|(O/t)X|71(H[€A+UC+ N(O)FEO=F (7O~ fru=¢)G(x; o ¢)), where
Na = [lyea Ne, ue is as in Lemma 2.5 and is equal to 1 unless 1|2, and the Gauss sum G(xioc)) is
as in Lemma 2.8 (2). Here px is the Moebius function (for K) and d* 3 is the Haar measure with

Proof. Each term of 0(¢)(x; ) is given by ®,(z;£) which has been computed in Lemma 2.8. By
our choice, a; v = 1 and |[N(a;)|a = 1 with scalar a; o € RY. Since 0(¢)(af;s ) = 0(¢ap)(s)
with ¢q(z) = |N(a)|g1/2¢(a*1x) = ¢(atx), we may forget about the factor |N(a)|lg1/2 (and we
disregard N(a)~'/? in @, o in Lemma 2.8 (1)). Note N(sg)" = [Tic.4, e, N(DF¥ O/ and

H N([)U(e)iﬁiseu(zyf?ox H (N([)V(E)KSEV(Z)OI — N([)U(e)ilisgu(z)ox)
[€A+UC+ [eAgUCo

= > (DVYIN(s)ds,00 =D (9)N(s/9)0 o, -
JCApUCo ylso
Then we have

Im(7) 7= /26;(@) = X(ai)N(a;) /2 Im(T)k(l/Q)/T(z)/OX 0(¢a,)(B; T)X(B)d B

= ON(sp) MO [TR@™IN@) ™ Y ()VING) D> Xe(€)Ehe(€EN (@) '),
JCAoUCo f€(sya;)X
where (s57a;)* is the subset of sya; made of elements § with {O; = O; for all [ € A and {OF = s¢.
If £ € (s70:), &Og = s and we have xg(§) = N(sg)¥Az'(€) from XA = [N(-)|,*. Similarly,
F(al®)N(a;)™* = A1 (a>). Thus, we have

% =Clo*[t > () THEPINGE) YD AZH (O e(€EN (a) T ),
Im(7) JCAGUCH £e(srm)
Since Ag(g)xl(§@>°>)§k =1, 885" = 59,7 and A1 (£(@0)) = A1 (Esgh) for € € (s70:), we have
% =107 Y (CDVYINGEIAT @)As00) DL MEsyHe(¢EN (ai) M),
Im(7) JCAGUCH £e(srm)

Then by computation, we get

(&a;'s5h)

— N

M@ DT Mesye(€EN(ai) ) = > Mear '3 el ==
£€(sai)x €a;'s;1COEa;  +ag=0 J

Changing variable a; 's ;' + a, this is equal to >, A(a)e(N(ass)7) = O%(\)|[N(s,)], where a runs
over all integral ideals prime to s; equivalent to a;lsjl. Summing up over ideal classes a;, we get
the desired formula. O

—1 . 3
Corollary 2.10. The cusp form fTE(Q)TE(R)\TE(A) Oc(pe)(z; B)x (B )d*pB is on T'o(N.) with Neben

character v~ xic for xic = (X£2), where N, = d(K)| TTieace NO" Tz, N(F) TTiea, N ().

7).
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Proof. The primitive theta series ®()) associated to ©—%(A) is on I'g(|d|N(€)) with character
Maxxx = ¥ 'xx (e.g., [HMI] Theorem 2.71). Replacing ©()\) by ©— 4(A), the level adds up
only for a single power of [ € Ag. Thus ©—|[s] has the highest level: d - N( )N (5) [T1ca, N(1) for
d = d(K). Since

[dIN(©)N(s) = [dIN@)N(s) = |d| ] NO N =(d T N0 © [T v,

e AUC e AuC TeA,

we get the desired result. O

2.4. The Siegel-Weil formula. We now compute the first integral:

ba o) i a)d*a = [ b (61) (w5 @)d*a.

/Tl(Q)Tl(R)\Tl(A) KX K\K]

In this section, we write ¢ for ¢1. By (2.7), we have ¢oo(€) = Im(7)Y/2e(¢€7). By the same
computation as in the previous subsection, we can verify that the function « — 05 (¢)(z; ) factors
through K /KX, and the above integral is well defined.

Let Kg> — {2z e K}||N(x)[a=1}. Then K" /K} — Q% by N : z — |[N(2())[;! = N(z.0).
If £ € QF is in the image of NV : Klgl)/K}sx — QZ, ¢ is local norm at every finite place up to units,
and Im(N) = |N(K1;<(oo))|A' Thus we have

N(K[)  NEEKIKY) N(K)
N(KXN(KX) ~ NK*KX) — NK<KL)NNED)

In particular, 77 is a compact topological group. Indeed,
N(KL)

T/N(O*) = N(K*)N(KX)N(O%)

is a quotient of the class group Cl.

We have
[ enwmada= [ [ s@)emsegaart
KX KXN\K) T JKIKL\K}
where N (&) =t with [N (¢)]a =1 and K* = Ker(Ng/q). By the Siegel-Weil formula [We],
[ e ag)ia=E@)
KKK}

where E(¢1)(owr) =3 e gy 51, (@) (@ (v, &)¢1)(0) for z € S(A) and

L) () (v) = ¢u(v) = N[, P hr(6710) = (&7 0)
as [N(t)|4 = 1. Thus we get

/ B(én)(anem: ) = [ E(dr)(na)d™t,
KX KI\K)

T1

As explained in Section 1.2, we have
(2.12)  (w((§ ,20) v, &)01)(0) = (wlew (§ ) =, §t)¢1)(0)
)r((§ M) 2)61)(0) = lala(r(2)@)(0),

since w(z, &det(z)) = r(xagcltm)L(&dct(m)) L(&aet(x) )T (adct(m) z) (see (1.2)). This shows that E(¢1)
is well defined and is independent of ¢t € 7;. We have proved

Lemma 2.11. We have fKXKOXO\KAX 0c(d1)(z; )d*a = [ d*t- E(¢1)(x).



CENTRAL CRITICAL VALUES 19

2.5. Explicit form of weight 1 theta series. Strictly speaking, the Siegel-Weil formula we used
is in the non-convergent range Weil [Wel] did not cover (though it is briefly explained in [Wa] 1.5).
To show it actually works well and to exhibit the explicit form of the Eisenstein series we need, using
a result of Hecke [H], we compute the theta series

/ Oc(P1)(z; a)d o
T1(Q)T1(R)\T1(A)

in the same way we did in Lemma 2.9. As before, in this section, we write ¢ for ¢; for simplicity.
By (2.7), the infinity part of ¢ is given by ¢uoo(€) = Im(7)"/%e(—£E7).
Decompose T1 (Q)T1(R)\T4 (A) = [_|?:1 a; Ty (2)/0X for a; € K with a; y =1 and |[N(a)|s = 1.
Then we have
h

/ o)) a =107y [ 6(6)(wa)aa.
T1(Q)T1(R)\T1(A) o1 JaTi(2)

Pick a € K with ay =1, |N(a)|a =1 and ax € R}, and look at

/le(z) 9(@5)(55, Oé)dxa = / R 9(¢a>($; Oé)dxa,

T.(Z)

where ¢, (v) = |N(a )|A1/2 P(a™v) = ¢p(a"tv). Suppose that ¢ =[], ¢, for local function ¢g K, —
C and () = 1. Again we have, since a, could be a nontrivial scalar with N(a.) = a2 = N(a)
for a = a0 N K,

oY Too)P)al@ 1) d" a0 = WUy oo (Enc o(a) 1 é)d a
/ o F@re =) % = Yo i) ]| / |, rala S0 o

for oo = Im(7)71 (ImO(T) RCI(T)) (= 7 = 25(1)). We write as ¥, ¢(&) the individual factor
fT(Zz) ¢g7a(a;1§g)dxag. Recall the prime factor [ of £ € AUC we have chosen when we defined g; .
We write this set of primes as A UC for A made of prime factors over A and C those over C. Write
the conductor of x as €. Recall v = v(¥) is the exponent of £ in N. Here is the explicit form of the
function ¥, g

Lemma 2.12. Assume (S1-2), and ay = 1 with |[N(a)|a = 1. The we have

(1) Ifv(£) =0, ¥, (&) = |N(a)|, 1/250,Z (a=X&) for the characteristic function 5o, of Op. At o,
Voo (§57) = N(a) "/ Im(7)2e(~N(a)"1¢&7),
wherexoo()—Tanda—aOﬂK )
(2) If L€ Cs, Wa(8e) = 1.0(&0) = do, (&) (N (D)6 (&) — N (0"~ 0p-1(&)).-
(3) If £ € Cps with v(€) >0, we have U,(8) = |(Oe/ YITHN(T )5[”01 N How-10,)(&).
(4) If L € A, we have \Ifa)g(f) a, 1§V, 1(§) for prime factors I|¢, and
Ta1(§) = [(0/1) | THN()dwo, = N(I""H)di-10,) (&),
U, 1(6) = 10/ | (N (T )bwor — N(fyil)KSTHOT)(&)-

Proof. The proof of assertion (1) is the same as the one for Lemma 2.8 (1). The assertion (2) follows
from the fact that [,x dgmo, (a™ " x)d*a = dpmo, (2).
[

We prove (3). Suppose that £|N is non-split. We have ¢1(£) = do, (£)e([¢ Tr(u1&/V/d)]¢) and

(t
(t

/T (Z)me(xe;a*lsz)dw:|(0e/é”0e>X|*1 > Xela)e([ Tr(a™  uag/Vd),)

a€(Op /¥ Op)*
(2.11) vyX|—1 v v—1
= [(O/) |7 (N()br- 0, = NI )dp-10,)(&1)-

As for (4), the computation is the same as in (3) replacing e([¢~"Tr(a u1&/V/d)]¢) in the above
formula by e([¢=(a; ' & — a;lﬁf)]g). This finishes the proof. O
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Recall t = [ica por? [Teec, [U_(E) [Tecc,, "), and define T =[] por? Miee,, 19, a5 =
[Iic;tfor asubset J C J := AUAUC; UCys and t; = t/a;, where ag = O. We define ©(1) =

]llgf) + Y 0aco @V for the class number A(K) of K.

Lemma 2.18. Let 1 : K /K* — {1} be the identity Hecke character. Then the classical modu-
lar form giving rise to the theta integral |(O/%)*| Im(7)~1/? le(Q)Tl(R)\Tl(A) Oc (1) (x; a)d*« is an
antiholomorphic CM theta series given by Zm,uK(x)N(t/;)ﬁ(lﬂ[N(t/;)]. Here d*« is the Haar

measure with le(Z) d*a=1.

Proof. Each term of 6(¢)(x; «) is given by U, (z;&) which has been computed in Lemma 2.12. By
our choice, a; v = 1 and [N (a;)|a = 1 with scalar a; o € R}. Thus, writing ¥; for ¥,,, we have

(0/%)* | Im(r)~1/26;(¥;) = N(az')’l/z’/ _ 0 (aiessw)da
T1(2)/O%
=1077P Y (=DYIN() Y e(—€EN(a)'T).
JcJ ge(tya;)
Making variable change & a;ltjl — a and summing up over ideals classes a;, we get

D > el=N(a)T) =) e(=N(aty)7) = O(1)|[N(t))],
1 L]|§a;1 a
where a runs over all integral ideals. This shows

[(0/F) [ Im(7) 1/229 =Y (-n”eq) =D uxEN (/OR[N (t/r)]
JCTJ |t

as desired. O

Corollary 2.14. The modular form le(Q)Tl(R)\Tl(A) Oc(¢P1)(x; a)d*a has character xx and level
= |d(K) | TLice NV O TI,e4 €29, and hence NN’ and M|N’ for M in Lemma 1.11.
Proof. Since ©(1)|[t] has highest level in the summand over J C J, the level of ©(1) is |d|, and the

operation [t] add the level N(t) as given in the lemma. Since ©(1) has Neben character x g, the
character of the integral is the same. O

2.6. Explicit form of Siegel Eisenstein series. Recall yx = (K—/Q = (M) By definition,
the Mellin transform of @(1) is given by (x(s) = ((s)L(s, xx ). Then by Hecke [H], we can write
©(1) as an Eisenstein series:

d(K)

(213) @(1) = " Elyl(T; 0)
211
Here for a positive integer L and d = d(K),
1 Xxk,L(n) (L) -
2.14 E 18) = = : =LY (1+2 E ;
( ) k,L(T, S) 2 Z (dLmT i n)k|(dLm7' i TL)|2S ( + SaXK) k,L(Ta S)a

(m,n)ez?

where xx,1.(n) = xx(n) if n is prime to Ld and otherwise xx(n) = 0, and

Ei(ris)= > xx(iln7)Fitn )
Y€l (Ld) /T
with xx (1 5) = xx(0). Here T'oe = {£({7) |m € Z}. We have a relation (e.g. [Shl] (3.3))
(2.15) Er= Y wt)xx ()t Eya|[L/1].
0<t|L

We now write down the integral as a linear combination of Fj .
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Lemma 2.15. Let n be an integral ideal of K. Decompose n = JFF R so that J is a product of
primes ideal inert over Q, R is a product of primes ramified over Q, and § + §¢ = O with §. D §°
for the complex conjugation ¢; so, F§. a product of prime ideals split over Q. Write I := N(J),
R:= N(R) and S := N(F.). Then we have

©1) S neN /00N G/e)] = YR S a0,
rin a|lIRS

where (v (resp. pur) is the Moebius function of Q (resp. K).

Proof. First suppose that n4+n® =0 (< IRS =1 < JRF. = O). Then (O1) can be rewritten as

L M M (223) M - M (2;5)
T o MO o) |7 PO Pl [ M) 42,

Now we proceed on induction on the number (counting with multiplicity) of prime factors of JRF..
Pick ¢|[IRS and the prime [ over £. Let n’ = n/l. Write R’ (resp. I’, S’) for the corresponding factor
of N(w') for R (resp. I, S). We assume that

(2.16)
3 ntON G OG0 = VARI) |Z 32 3 M) B
| N(n/ s|S" i|I’ r|R'

By applying N((:,))[ | if ¢|I and ]va((:/)) [/] otherwise to the above identity, we get
(2.17)

S N (/0B[N (/)] = LIEINED 5 S5 iy o)) By e VO

|’ i1’ s|S’ r|R’

If /| N(n"), by (2.15), we have Ey yw)/ir| [N ()] = E1 N(n)/ir- Since

{rII'R'S"|p(r) # 0} = {r[IRS|u(r) # 0},

we are done.
Suppose that [1n’; so, n = n’l. We can rewrite (©1) as

) D nk@N®/HOM)|[N®/)]+ D ()N (n/r)O(1)[[N (n/xD)]

rln’ rln’

= [ D ux@N®/HOQ)[N (W /1) =D ur@N® /H)OQ)[N W /),

rln’ rln’

7”1(;);\[(@ times

which is, by induction assumption, equal to

> N0 (Buoal VO] = 5B v )

all'R'S"
Then we need to show, for a prime ¢|IRS,

1

Ey N [N (D] = N0

Einwy = E1inm) — Eq1 . nmy/e-

1
N(I)
When ¢|RS, by (2.15), we have El,N(n/)HN([)] = El,N(n/[) = El,N(n) and El,N(n/) = El,N(n)/E; and
hence the result follows. Assume that (|I. By (2.15), By ym) = ELN(n/)HéQ] + %ELN(W)HK] and
Ei Nyt = Ev v 14+ %ELN(W). From this, the desired identity clearly follows. |
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3. DERIVATIVE OF THETA SERIES
3.1. Lie derivatives of Schwartz functions. Recall J(g,2) = |det(g)|~/%j(g,2) for (g,2) €
GLy(R) x $. For any function f : $§ — C such that f(y(2)) = det(y)™J (v, 2)*J(7,2) f(2) for a
discrete subgroup T' of PGL3 (R) = GL (R)/Z(R) for the center Z of GL(2), we define f(g) =
f(g(i))J(g,3)"*J(g,—i)~" for g € SLa(R). Similarly, for a function f : GLI(R) x $ — C with

F(7,9(2)) = det(9)™ f(vg, 2).J (g, 2)* T (g, )", we define f(v, g) = f(7,9(i))J(g,1)~*J(g,—i) . Then
f factors through T'\GLJ (R). Further, we define

£(g9) = F(7,9(i))i(g,9) " j(g, —i) ™"

Recall [(25);2z,w] = (2,1)J (24)(}) = (cw+d)z— (aw +b) =
of corresponding functlons on $ and on PGLF (R).

= det(g)~ kD72 f(g).

(cz —a)w+ dz —b. Here is a table

| / [ (mk0) ] ] | ; |
Im(z) (0,—1,-1) 1 det(g)
i(v,2) (=1.-1,0) det(g)"7%j(vg, 1) i(vg, i)
wizw] [ (EL-1,0)| R e VA g o, 1
[v; %, 0] (£1,0,-1) | /528y oh; i, —i] det(g) g~ ‘wh; —i, —i]
mstat | (41,0.0) Geigm g~ vh i, 2ot g~ v )
e(ilbzddl) | (2,0,0) | e(i 32 T (r)|[g"whs i,1]2) | e(i55) Im(r)|lg~"vhs i, 1]])

Let Y € s[(C) and regard it as a left invariant differential operator Yy on SLs(R) for the variable
matrix g € GL2(R) (identifying GL2(R) with SLy(R) x R* by the natural isogeny). Then we have

4 (exp(—tY)g~ vh

Yol o) = & Jeco = ~Yg b
d
(3.1) Yi(g~tvh) = d—(gflvhexp(sY)ﬂS:O =g 'whY
s
d2
Y,Yi (g~ vh) = g ——(exp(—tY)g 'vhexp(sY))|t=s—0 = —Y g 'whY.

Lemma 3.1. Let X = % ( :

Xlg) = ~AnTm(2)0f (& X = ~4n(5,]) & Xf = —4n det(g)(5xF) (9).
(0%F)(9(0))i(g,8)*2(g, =)~ if f is of

) € sl(C) as an invariant differential operator. Then we have

(3.2)

where 2midy, = 2mid,(z) = ﬁm(z) + 2 and (6,F)(g9) :=
weight (7, k,1).

Proof. We have 2X = A —iB +2iC for A= (§ %), B=(%§) and C = (§}); so, exp(tAd) =
(5.2) expB) = (ot aint) and exp(tC) = (31). Let g = (§7); s0, 2 = @+ iy = g(0).

t
1
y) =

Suppose f(v(z)) = f(2)J (v, 2)* for v € T. Write F(x, f(z+1y) as two variable function. Then
Af(0) — d 2t d 2t -\ th _d F 2ty tk
(g) - dt (f(g( )) ) |t 0 = dt (f('r +y€ Z)e ) ’t:O - dt ( (x,ye )6 ) ’t:O
= (200 O (2,2 4 ke F (2, 2) ) limo = 250 (2) 4 K () = 2o (2) 4 K (2),
Ay Ay dy
d(f(z)e'*) , df(x + yt + yi) Of (x + yt + yi) of
Bf(g) = T’tzozklf(z), Cf(g) = T’tzoz 8—x’t:0: 3—x(2)-
These combined, we get the desired assertion. O

Let X = 1 (1 %) € sl(C). To simplify notation, we write [v]+ 4+ = [v; %i, +i]. Then we have the
following table of derivatives:
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| ¢ | Xg¢ Xno | Xy Xn¢ |
9~ whly ¢ —lgvh]_ —lg~Tvh]y - lg~"vh]_
gflvh —— 0 0 0
“Loh) 4 - —[g7tvh] - - 0 0
~Loh]_ 4 0 —[g7tvh] - - 0
0 PO Py e P P e

Using these, we compute Lie derivatives of the function (g, h) — Wy(7;4,4)(g~*vh) considered in
(1.5) roughly of the form: v — [v]* _e(—det(v)T + ial[v]+ +|*) with a fixed 0 < a € R (in our
setting a = @) Since det(g~'vh) is a constant with respect to g,h € SLa(R), we may forget
about e(— det(v)T). We compute Lie derivatives of (g, h) — [v]* _e(ial[g~ vh]; 1 |?), and we get

X, (e(iallg™ vh] 4.+ ) = ~2malg™"oh]_;[g~ oh]_ _e(iallg~ vhly . 1),
59 X, (eiaflg™ vl ) = ~2ralg ™\ ohle—{g™! o] —elillg™ vkl ),
X0 X, (eliallg™ vl 1 %)) = 2ralgvh]® _e(iallg~"vh] +[?)
+ (2ma)’|lg~ vhly - Pl o) _eliallg~ vhly . ).

In general, we get by induction on m,

Lemma 3.2. For m > 0, we have
(3.4) (XnXy)™ (eliallg™ vh]+ +[*))

— (27a)?" g~ oh]2™ e(iallg~ o]+ +1?) Y c;(m)(2ma) | [g b4, [¥
j=0

for constants cj(m). Moreover we have ¢, (m) = 1.

Definition 3.3. Let X = % (1 71) € sl(C) as an invariant differential operator. We define, for a
normalized Hecke eigenform £ € Sg(N, 1) and 0 <m € Z,
fn(g) = (=4m) ™| det(g)] ;" X2 £(9), Wy (2) = (2)|2];™™",  and
O (£)(w; g, h) = (4m) "> det(g~ " h) |, ™ (X Xn )" O (£) (w3 g, B).
By Lemma 3.1, 67"f(goo) = fim(9oc) (and hence the value of f,,, at g1 has rationality after dividing
a CM period; see [Sh]). By Lemma 1.11, we get
Lemma 3.4. For a Hecke eigenform f € S (N, ), we have
O (£) (1 9, ) = (20)* S pu()a(M/t, F)(M/E) ™, (det(9)) Enl 85 () ().
Y
Proof. The proof is the same as the proof of Lemma 1.11, once we remark
(—4m)™ ] [B151)(9) = | det(gB ) |2 " X £ (9B 051) = (M/1)™™ | det(g) ™ (X" ) (9850
= (M/t)™™| det(g)|;™ X" (F(gB731)) = (M/t)~™| det(g)| 7™ X" (£][8573)] (9)-
O
3.2. Lie derivative and derivative of Shimura—Maass. We take p : K — D = M>(Q) and

6,91 € GLa(A) specified in the proof of Proposition 2.2. Write (&,1) = g7 (p(€) + p(n)e)g1 €
Mo (A) for &,n € Klgoo). We summarize a consequence of the proof of Proposition 2.2, in partic-

ular, from the computation in (2.6):
Lemma 3.5. Write, for simplicity, ©(¢)(;g,h) for ©(¢)(g-; g, h)J(g-, —i)* for g- € S(R) with
g:(i) = € $9. Suppose that ¢(v) = ¢ (1)) Tm(r)H [vac]F_e(— det(voe )7+ & Tm(r) [t 4, |
for a Bruhat function ¢ on Dg)o). Then we have
_ _ _ 4 _
O(¢)(r59.h) = Y ¢ (g wh)lg ]’ _e(— det(v)T + 5 Im(7)|[g~vh]|?).

veV
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Moreover, if ) (€,1) = ¢, (6€)) - ¢(n(>)) for Bruhat functions ¢1 and p. on Klgoo), we have
(3.5) ©(¢)(73 91, 91) = (—20)* Im(7)*16(¢1) - Ok (¢c)
for 0(d1) = Y ecre 91(£))e(€€r) and O1.(de) = 32, i De(n )0 e(niyr).

Note here (3.5) follows from the computation in (2.3) and (2.6), noting (2.5): Im(z1) ~![e; 21, 21] =
—24. Similarly, under the assumption of Lemma 3.5, we have

(35)
X XnOUWNT 9 1)) _ $ g o) g~ ohl" (- det (v)7) (X, Knel & ()] g~ vhL < %)

(T

=Y (g vh)[g  wh]* _e(—det(v)7)

veV

x (rIm(r)[g~ k]2 _ + (7 Im(T))Q[g’lvh]?iI[g’lvhlfﬁlz)e(% Im(7)|[g~ vh]+ +]%)).

Note that g1,00 = Im(z1)71 (Imgzl) Rc(lzl)). For v = p(§) + p(n)e, we have

(1.6) [v;Z1,Z1] (23) [€;%1,71]
 Im(z) g Im(z1) ’

2 () |[v; 21, z1]|* (2.9)

(3.7) g7 'vgr] - - l91 "vgr] -+ ()2 4€€.

If ¢ (&,m) = 6, (£0°9)) - pe(n)),

(3.8)  TIm(r)™* Xy X1 ©)()(73 91, 91)
le;71,21) ) 2\l F
= (2 Tm(7))’ ( T ) S 6 n)(An () Tt 4 0t 2eE)e(— €7 + i)
(&mev

(2.5)

(27 Im (7)) (=20)" *2042(6e)810(¢1) (7).

m

In general, for m > 0 and ;" = 0x42m—2 - - - Ok+20k, We get
Lemma 3.6. Let the notation and the assumption be as in Lemma 3.5. Then we have
(3.9)  Im(r) "X XTO(8) (75 g1, 91) = (470) 2™ (= 20)" O 2m (0) (1)070(¢1) (7).

if % (&,m) = 1(£0°9)) - pe(n'>)).

Proof. We can compute explicitly repeating the computation resulting (3.8) and get the result by
induction on m. Here we prove this via a short-cut without much computation.

By Lemma 3.2, (2.3), (2.4) and (2.5), we can write the result as 0xyom(¢c) times a linear com-
bination g of (mIm(7))7~™ ([%)J 0(¢y1) for j = 0,...,m. Thus g is in the (weight 1) limit of the
discrete series representation of SLy(R) generated by 6(¢;). In this representation, weight 1 + 2m
vectors form 1-dimensional subspace spanned by §7"0(¢1) (cf. [AFG] Section 1.5). Since g is an
anti-holomorphic modular form of weight 1 + 2m, ¢ is a constant multiple of §7"0(¢1)(7). Then
comparing the terms of (g—T)m 0(¢1) in g and ,0(¢1), we get the result. O

3.3. Torus integral again. Let the notation be as in Lemma 2.1. Recall the central character of
f,, is given by 1, (x) = 1 (z)|z|,*" (see Definition 3.3).

Lemma 3.7. Let X = Xm : K;/K* — C* be a Hecke character with x(zx) = 1, (2)x(z) for
z € A% and x(aso) = aF?™. Then a — £,(p(a)g1)xm(a) factors through Iz == K JK*AXKZX
(the anticyclotomic idele class group of K ).

Proof. For z € Z(A), we have f,,(zx) = ,,(2)fn(x); so, a — xm(a)fn(p(a)zr) factors through
KX\K[JA*. We take asc € KZ. Then p(as)g1(i) = p(ass)(z1) = 21, and we have, writing f’ for



CENTRAL CRITICAL VALUES 25

f () as in Section 1.1,
m,g,

Fr(p(a00)91) = ' (p(a00)91,00(1)) (000 )91 00, 1) TF 72

= f'(p(ase)(21))i(p(ase), 21) ™ F 7™ (g1 00, 1) F 2™
= i (plase),20) ™ g1 1) = B o)z

kr2m we have £,(p(@o0)91)Xm(@oo) = £m(g1), and it factors through . O

Since x(aoo) = aid

We again put for f € Sg(N, 1)

L) = [ Enlplalg) v (@)0%a and L., (Gl = / £l 185 (p(@)91) Xm(@)d%a.

Recall M' = [[,cc. Ne- By Lemma 3.4, writing 7 := T(Q)T(R)\T'(A) and noting that f,, is of
weight k 4 2m, we get

> u®a(M/t, )M/ Ly, Enl 1B1757]) Lo ()

0<t|M

(2i)” /¢ (a) det(g1))O%") (£)(p(a)g1, p(b)g1)Xm (@) Xm (b)d* ad*b.
We note

Lemma 3.8. There exists &0 € K, (.., such that f,(p(a )glﬂt(/oj/)[) = fn(p(ae/ar)g1). The projec-

tion §t/M,M IS HEGC < of {t/M is uniquely determined by ﬂt/M and satisfies ExmEr = g M
for fractions J and J’ wzth MJJ €Z. So, L,,, (fm|[6t(/oj/)[]) = Xm(fti/}wyM)Lxm (fn).

ag 0

Proof. Since M is a product of primes split in K, at £|M, g;%p(a)gu = ( S El), we find G /00 €
giép(K )g1,e. We remark 6t/ Meo) ¢ Ty (N - d(K))®). Hence we can find &/m € K such that

p(&e/ar)gr = 918 /mu with u € Fl(N -d(K)). By our construction, &y s is uniquely determined,
and indeed, & /pr0 = ((t/M)e,1) € Ky x Ky for [ € AUC; over £. This & /s does the job. The last
assertion follows from the variable change: a — & /s ara of the integral defining L, . O

By this lemma, we have
(3.10) > uO)a(M/t, P)xm Epprn) M/ | L, (£)?
0<t|M

(2i)” / (N (@) det (91))0) () (p(a)gn, p(b)g1)x(a)x (B)d* ad .

Since &/ = (t/M,1) € K¢, xKp_for Ke, = [[ice. Kiand Kz = []cc. K7, we have xm (&/n,) ™" =
Xm (I"O~1) | and assuming a(f, f) # 0

(311) Y p(t)a(M/t, f)xm Eepnann) (M /1)

0<t|M

1
_ gu(f) Oy pr @O (A+m)(q _
= 1 o, Dn ) O~ 2@ oo

If a(¢, f) = 0 for one prime factor £ € Cs, the left-hand-side of (3.10) vanishes. Thus we hereafter
assume that a(¢, f) # 0 for all £ € Cs.

).

3.4. Factoring again the theta series. We now study
(3.12) O cNm(T;g,h) = (47) 2" det (g7 h) |1 " (Xgoo X1 )" Oa.cn(z; 9, h).

By the same computation as in Section 2.2 combined with Lemma 3.6 (for the infinite place), we get
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Proposition 3.9. Assume (S1-2). We have a decomposition

IN (@)@ .covm (3 p(@)g1, p(B)g1) = (20) (—1)*F™0(11m) (2, 0)0(Scm) (2, B).
Here

D100 (€) = DLmioo(€59) fOr d1m.oo(€;7) = Im(7) /207 e(EET)
Gemoo(1) = Gem,oo(1137) JO Gem oo(n; 7) = Im(7)FH2m T/ pkt2me (pr),

The finite part of ¢;.m for j =1, € is independent of m as the differential operators only affect infinity
type; so, its explicit form is given by (2.8).

(3.13)

For the quadratic space (K, —Ng/qg), we have r(g:)d1,m,00(€)J (g7, —1) 172" = ¢1,00(75€) and

for the quadratic space (K, N/q), we have r(g;)¢e,0c(1)J (g7, 1) F 72" = de oo (T3 7).
Since 1, (N(a))Xm(ab) = xm(a@) " xm(ab) = xm(@ 'b) = Xm(B 1), by the same computation

as in (2.9), we have again, for t = N(a='b) = N(a)™! = N(B)7 1,
319 [ 0 (V@O rcvm sl p0)g2) ) ad b
-/ IN(@)[50(61,1m) (wes: 000)0(b (s B (B )
T'(Q\T(A)

- / IN(@)[6(61 ) (wars; agr)d* / 0(6em)(wacss Bg1)om (B )d* .
T1(Q)\T1(A) T(Q\Te(A)

3.5. CM theta series of higher weight. In the same manner as in Section 2.3, we again compute
—1
/ O (Geam) (3 D) (5 ).
Te(QTe(R)\Te(4)
In this section, we write ¢ for ¢ ,,. By Proposition 3.13, the infinity part of ¢ is given by

oo (n) = Im(7)FT2mHA/2)pkt2me ().

Let 7o, = Im(T)fl (ImO(T) Be(M) (= 7 = 2(i)), and as in (2.10), we write

(3.15) 6(¢)(8;7) := Y (L(B) o x(w0)$) () (oo, —i)~F 72"
nekK

= [N(B)[; "/ Im(r)FF2m (/2§ 6000 (51 (B 1) 2 (N (oo ) ~ L)
nekK

Write Xom(2) = Xm(Z™1). Then the computation resulting Lemma 2.9 using Lemma 2.8 is the

same, because of (;520;) = ¢>£°°>. We thus have

Lemma 3.10. Let the assumption and notation be as in Lemma 2.9. Let xm : K /K* — C* be a

Hecke character of conductor € with x|y = " Put A (x) = Xm(z) N ()| 72™ = xm(T)
(50, Am(Too) = 22 F72™ and M| 5% = Xmlg« ). Then the classical cusp form giving rise to the theta

integral fTé(Q)TE(R)\TE(A) 0c (Pe.m)(x; g)xm(gfl)dxﬁ 1s a CM theta series given by
i Im(r) 272N 7 g (0) N (5/9) A (50/9) O (M) [N (5/9)]
9lso
for the constant Cy, given by
(=N [T NOEEmE Oy (O )G om0 o))
leALuUCy

where u, is as in (2.8), and the standard Gauss sum G(xyo c) in Lemma 2.8).
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3.6. The derived weight 1 theta series. We look into

|N@W@dmwxxwwa:/’ IN (@) (S1.0m) (5 @)

/Tl(@)Tl(R)\Tl(A) KX RNK

In this section, we write ¢ for ¢; for simplicity. By Proposition 3.13, the infinity part of ¢ is given
by ¢eo(&) = Im(7)1/25{”e(§§7)’72i. As before, we get

Lemma 3.11. Let 1: K /K* — {1} be the identity Hecke character. Then the classical modular
form giving rise to the integral |(O/%)*| le(Q)Tl(R)\Tl(A) |N(a)|R0c (d1.m)(x; @)d*a« is an antiholo-

morphic derivative of a CM theta series given by Im(7)'/? 2ot bi ()N (/)07 O (1) [N (t/7)].

4. MAIN THEOREM

Let fo € Sk(T'o(No), ) be a normalized Hecke eigenform with corresponding adelic form fy €
Sk(No, ). Assume that fo has conductor Ny. Recall K = Q[/d(K)] with the discriminant 0 >
d(K) € Z. Write d = |d(K)|, and recall do(K) = d/4 if 4|d(K) while do(K) = d otherwise. Pick
a Hecke character x,, of K with conductor ideal € of O and y,,(ax) = a®F?™. For a suitable
normalized Hecke eigenform f in the automorphic representation generated by the unitarization
£ (depending on €), we compute the L-value which Ly, (f,,)? represents by a version of Rankin
convolution method, where f,,, is the m-th derivative defined in Definition 3.3. The form f is in
Sk (N, 1) for the least common multiple N” of N and do(K) for a suitably chosen multiple N of Np.

To specify N, recall the prime factorization € = [], . If £ is a prime factor in N(€) splitting in
K, we choose a prime factor [|¢ in K so that 0 < fi < f; (we tacitly agree to write f{ = f;if [ = I).
Let A= {l|fi > 0,1 # [}, and define A = {N(I)|l € A}. Let C be the set of rational prime factors in
N(€)do(K)No outside A. Define N = [[,c ¢ £ for the exponent v(¢) given by

(4.1) v(¢) = max( f;, ords(Ny)),

where for any non-zero integer n, its prime factorization is given by n =[], gorde(n),

The sets A and C are already given. Recall Na = [[,c4 ¢*®) and other finite subsets Cy and
Cy of C defined in Definition 1.5 relative to N: Cy is made up of all prime factors of do(K) with
C =CoUCy. Then Cy = {¢ € Clv(f) > 0} contains Cy. We decomposed Cy = C; U Cs U Cy so
that C; is made of primes inert in K and C, = {2} if ord2(d(K)) = 2 with v(2) > 0 and otherwise
C =0 (so, Cjs is made of split primes). Since C; UC,.UC} is made of primes in C non-split in K/Q,
we wrote C,s for C; U C. U C1. We chose a set Cs of prime ideals of K so that [€ Cs & f;> fi=0
and [ # [. For non-split primes over C, there is a unique choice of primes over £ in K. We write
Cps for the set of the non-split primes of K over primes ¢ € C,,s N C,. Then we put C = Cs U Cys.

Decomposing € = []cc. ijHreA [flijTHreCm t/r, we put Co = {l € C|f; = fi = 0,v(¢) > 0}, and
Ci = {1 € C|f; > 0}. We introduce C? = Cs N Cy and CF = C; N C4 anew.

4.1. Statement. The L-value in question is L(3, T¢® x,,,) for x,, in Section 3.3. For a positive inte-
ger S, we write L(%) (s, ¢ ® x;;,) for the imprimitive L-function Euler factors at primes dividing S re-
moved from the primitive one. For the starting normalized new Hecke eigenform fo € Si(T'o(No), %)
with fo|T(n) = a(n, fo)fo, we define ay, B, € C for each prime £ 1 Ny by a(l, fo)/(* /2 = a, + 5y
and B = (€). If £| Ny, we simply put oy = a(¥, fo)/0%*~D/2 and B, = 0. Write fy for the adelic
Hecke eigenform in S(Np, ) corresponding to fo. Let ¢ be the unitary automorphic representation
generated by the unitarization f} whose base-change lift to K we write as 7g. Write the primitive
L-function L(s, Tf @ x,,) as a product [[, E¢(s) for Euler ¢-factors Ey(s). Then for primes ¢, the
Euler factor Ey(s) is given by

/s

_ = _ - 1 ~
[(1 _ azxm([))(l o a”;;"([))(l _ ﬁtzxe,sn(f))(l _ ﬁtzxe,sn([)) if ¢ =1,
(4.2) E¢(s) = [ 2o _ -1

o [ 2/ey (1 e e
(1 - 2eXmWyq 2 X)) if e = (0),

where y, () = 0 if [ is a factor of the conductor € of x;. (z) = xm(T)/|Xm|-
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We now make f explicit out of fy. Recall N’ which is the least common multiple of N and do(K).
The form f is a normalized Hecke eigenform of level N’ with f|T'(n) = a(n, f)f and a(¢, f) = a(¥4, fo)
for all primes ¢ outside N’. So, if N’ = Ny, we put f = fy. Otherwise, we choose f such that for
primes £|N’, a((, f) = a((, fo) if £|No and a(f, f) = at*~1/2 if £ { Ny (this is always possible
and a({, f) # 0 for £1 Ny). We write f for the adelic eigenform corresponding to f. Then f* and
fl generate the same m¢. Since f and f is also a Hecke eigenform of level Ny = N - do(K) (as
¢|N’ & £|Ny), all the result proven for Hecke eigenforms of level N7 can be applied to f.

Assume that a(¢, f) # 0 for all £ € Cs. Recall (3.11) for M = [[,c. N

Z (t) (M )X (€ )71 (M>m+1 H él/(f) Xm0 u(f))éu(f)(erl)(l 1 )
Hw a\—, XmiS L - - —
Y ! A iec, a(l, P)xm (DT
in front of (3.10), which is equal to

v 1
4.3 E"(m ol Qg2 ~ O .
(4.3 = Il 200 )

The factor E”(m) could vanish if a(¢, f)Xm ([)f™! = 1 for one prime ¢ € Cs. Since |xm(l)| =
¢~ (k+2m)/2 "if this is the case, we have |a(l, f)| = £(¥/2)=1; so, 7¢ has to be a Steinberg representation
at £. If m¢ is a Steinberg representation at ¢, the primitive character ¥° associated to v has conductor

prime to £ and a(f, f) = £1/2°(@)¢*/D=1, Thus we must have xm(I) = £/%°()  £~m*/2),
Writing h for the class number of K and take a generator w of [, we find that x,, (I") = @~ (k+2m)h
up to roots of unity, and [ # [ prohibits x,, (I) = £/¢° (é)iléfm*(k/m to happen.

Theorem 4.1. Let fo and f be as above such that

o folT(n) = a(n, fo)fo for all positive integer n;

o a(l, fo) #£0 for alll € Cy;

e the adelic form £y (in 1.1) associated to fo has central character 1 with ¥ (ax0) = a2 .
For an integer m > 0, put 1, (z) = ¥ (x)|z|*™, and take a Hecke character X, : K /K> — C*
with Xm|ax = ¥, and x(ase) = ak+2™. Suppose

(F) Xm has conductor € such that ¢*©) || € for all | € AU Cps (so, fi = fr = v(€) > 0 for
le AUC,s), Cﬂfy(e) for all L € Cs and € is prime to [ for all | € C;.

Let w¢ be the unitary automorphic representation generated by the unitarization of £, set x,, (x) :=

f;(’"(ac))' (the unitary projection), and write T¢ be the base-change lift of m¢ to K. Let f,, be the

derivative of £ as in Definition 3.3. Write L(s, T ®x,,,) for the primitive L-function. Then we have,

I'k+m)I'(m+1 1 1 _
Ly (fm)Q =¢ ( (27-”')]3+1(+2m )E(§)E/(m)L(Nd)(§a T © Xpp)-

The constant ¢ = c1 - G - v with ¢; = e(—N ;') \/d(K)(2i)~ k2™ NE+2m s given by
(4.4)
Meeo,
C2 HeeA él’(l - %)3 HEGCi 621/@)(1 + %)2(1 - %> HEGCTUCLU(E)>O(1 - %),

G=| I xo (@®) " I (C/2smw@-f = (0= (HX (W) GO 0)

teAUC tecsd €A

v =

where x,. , = X77,L|Qz<, Xt = Xomlgexs e = 1 unless |2 and 2 is inert in K, and if (|2 is inert in
’ ? [
K/Q, ue is a dyadic unit in Oy as in Lemma 2.5,

if 24 d(K) or v(2) >
if 4 || d(K) and v(2)
if 8] d(K) and v(2
if 2|d(K) and v(2) =

2

Cy =

0,
0,

N =~ O
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and the modification Euler factors are

m(Dae N 7 —(Da “(08\
o= 11 ((1 - XNEI;SEO 11 <(1 - XN((B)SE)O - XNE[;SEO ’

lleeCs [d(K)
oy T v(€) pu(e) /2 ¢ 1
B/ (m) = [Ticer E(V(’-’)*f;)(MJr(k*l)/?) Hrecg ay O () (1~ W)
o v(0) - @ '
ece, of OO0 = =)

Remark 4.2. (a) Recall the conductor Ny of mg. The theorem covers the value L(§, 7 ® X™)
for all arithmetic characters x~ with anticyclotomic 12)\)(7 at least if the conductor of x~ is
prime to No and the infinity type oo(x~) = k(c — 1) for integers k satisfies |k| > k/2. We
treated explicitly the case where k = (k/2) +m > (k/2). Replacing f by f. and taking the
complex conjugate of the value computed, we get the result for k < —(k/2). In order to treat
the case where |k| < (k/2), we need to replace D by a definite quaternion algebra.

(b) For the conductor € of xm, Suppose (Ng) D €. Then the condition (F) is satisfied auto-
matically for ¢ € Cpns. For split prime factors £, write € = (T for £|Ny. Then we have
fi = f; = v(0) by the condition ¥ = xm|x if (Nol) D €. Thus (F) is satisfied if the
conductor € is deep enough with respect to Ny, and Theorem 4.1 covers such characters.

(c) The only cases which the theorem does not cover are the case (i) where orde(No) > f; > fi >
0 (as we can place £ in C and take v(£) > f; if fi =0) for primes € split in K and the case
(ii) where fi < ordy(No) for £ € Cps. We can actually compute Ly, (£,,)* explicitly in such
an exceptional case, basically by the same argument we give in the following section, but the
outcome turns out to be trivial (that is, Ly, (£5,) = 0); so, we do not give more details.

(d) We have the identity
Ly, (fn) =L 5 (En® ) and L(s, 7 ® x;,) = L(s, Frar @ A 'x;0)

up to finitely many Euler factors for finite order character X : A* /Q* with X=2Ao Nk g :
K /K* — C*. Thus we may assume, after a twist, that f is a Hecke (possibly old) eigen-
form in the automorphic representation generated by a primitive new form with character
xk if k is odd and with the identity character if k is even.

4.2. Proof via Rankin convolution. Actually our computation goes through under the following
assumption milder than (F):

(F") xm has conductor € such that [ | € foralll € AUCys, Cﬂfy(e) for all [ € C; and € is
prime to [ for all [ € Cs.

However as we will see, writing A’ for the subset of A such that ¥} C & for [ € A, if A" # ), the
integral vanishes, and this forces us to assume (F). Anyway for the moment, we assume only (F').
By (3.10), (3.11) and (3.12), noting that det(g1¢) = ¥ € Qy, we get

(45) 20" (det(91)) B ()L (607 = [ (N (@)OL (O)lplahgn, o)1 (aD) b
-/ ( [ NG DO mma i alan p(b)goxmmb)dw*b) F(2)u().
X T

Recall t = [ 4 oy ® [Tree. [ [Tree,. ™ and so = [Tjcc, (). Since the integrand of (4.5)
is invariant under fO(N) for N = N(t) - d(K) by Proposition 3.9, Lemmas 3.10 and 3.11 combined
with Corollaries 2.10 and 2.14, we may integrate over X’ := X (N) in place of X = T'(A, C; N)\9,
though, by our choice of the measure du(x) in Proposition 1.9, we need to divide the outcome by

[F(Aa Ca N) : F(Aa Ca N) N FO(N)] _ C2 HEECi Ng
[Co(N) : T(A, CsN)NTo(N)] - NIy(A =671

(4.6)  [[(A,C;N):To(N)] :=
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By Lemma 3.10 and Lemma 3.11, (4.5) is equal to, up to a non-zero explicit constant, the following
classical convolution integral:

x Y ux(ON/DFTOL)|[N(t/x)] - Fo Im(r)* 2 dp(r).

rt

This integral is absolutely convergent as ©—(\,) is a cusp form and §7°0O(1) is slowly increasing
towards cusps.

To transform this integral into a Rankin convolution integral, we recall the notation introduced
in Lemma 2.15 for n = t: R =[], k) 8 =TTpen @ and I =] cq, £2“. Thus we have

) Y ux(EN /)T OL)|[N(/x)](7)

xft
Lemma 2.15 m
- Qm ZZZ“ (irs)(irs) = 67" Ex,n (1) fins (T3 0)
s|S ilI r|R
(2. 14) VA(K)N(t o
2m L(N(t)) Lxx ZZZ“ irs)(irs) 51 El,N(t)/z‘rs(T§0)-
s|S ilI r|R

Note here LV (s, x ) = LINW/3) (5 y i) if p(irs) # 0. Thus we want to compute

(4.9) Zzzlu(irs)(irs)*l /X/ o(t) - 6" E N(t)/ws( 0) - fo(7) Im(T)kaHd,u

s|S il r|R

for § =37, 4, 1 (DN (5/0) A (50/9)O=(A)|[N (s/1)]. Note (see [Shl] (2.9) or [LFE] 10.2 (13)):

I(s+k)

(4.10) A" e

0 Er, (75 8) = Ej o (155 —m).

Lemma 4.3. Let the notation be as above. We have (0, FE) = fXg(N) OF Im(7)F+2m+1dy = 0 for
=0"EY N(t)/ws( 0) - fe(7) if either a prime L)ir under (F') or L]irs under (F).

Proof. Let N(0) (resp. N(E), N(®), N(f)) for the exact level of 8 (resp. E, © := O(\y,), f).
We first show that ordy(N(®)) > ordy(N(FE)) if a prime f|irs and u(irs) # 0. Note N(©®) =
N(€)d(K) and by definition ord;(N(6)) > ord,(N(®)), and under (F), ord,(N(6)) = ord,(N(®)) =
(2/e) fi + orde(d(K)) for ¢|SIR and under (F’), ord,(N(6)) = orde(N(®)) = (2/e) fi + orde(d(K))
for £|IR for the ramification index e = e(l/¢). The level of EY ; is L - d(K). Then E has level
N(E) at most the LCM of N(t)d(K)/irs and N(f). By our choice, N(f) is a factor of N’ for
the least common multiple N’ of N and do(K), and for ¢|N’, orde(N(f)) = 1 if orde(Ng) = 0
and otherwise, ordy(N(f)) = orde(Ng) > 0. If u(irs) # 0, irs is square-free. Suppose ¢|si. Then
ordg(N(t)) = 2v(f) > v(f) + 1 = orde(N’) + 1 > ord,(N(f)) + 1 as N(I) = ¢2 for I (and ¢ €
A & (]S). This if £|si under (F) (resp. if £]i under (F')), ord¢(N(FE)) < ord,(N(®)). Suppose
lr. Then max(f,orde(Ng)) = v(¢) > 0. If ord,(Ng) = 0, then fi > 0 and ord,(N(t)d(K)) =
v(€) + orde(d(K)) = fi + ords(d(K)) > 2 > 1 =orde(N(f)) by (F'); so, orde(N(E)) < orde(N(®)).
If orde(Np) > 0, then ord,(N(f)) = orde(Ny) < ordy(N) = ord,(N') = v(£) and orde(N(t)d(K)) =
fi+orde(d(K)) = v(€) + orde(d(K)) > ords(N') by (F'). Thus we get ord,(N(®)) > ord,(N(E))
again. Since © is a new form of conductor N(€)d(K), the Petersson inner product of 6 with E
having strictly lower level than @ at the prime ¢ vanishes if irs > 1 under the assumption (F) or

(F"). O

Thus we only care the term with ir = 1. Let A™** C A be such that at £ € A, 0 is local new form.
In other words, for £ € A, we have £*(9) || € < £ € A, Then by the same argument as above, § can
have nontrivial inner product only with fe 3" o ,u(s’)shl(S{”ELN(t)/s/ for S = Tlpen_anew £7©.
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Note that the level of 6 is a factor of N/ [], s ¢. Then (4.9) is equal to

AE)N (1) ) p— .
(4.11) 27 L(N(t))(la XK)/ 5 51+s 1,N(t) (15 8)(T)y" T2 1dM’S:0
/|S/
(410) /d(E) LN (1, x )0 (s + 1 4 m) 9 /L : sth+m—1 4
N 27 (—4m)mT(s + 1) fe Z 1+2m N(t) (38 —m)y M’
/|S/

O0F By g n(o (T —m)y" " tdu

X Xo(y/s)=s' VA(E) LYY (1, x)D(1 +m) > M(S’>/
271'1 (—4m)m oyt Xo(N/s")

. (N() "
2 VN EEEQ X gy ) (3 ) S st N,

/ls/ n

= (=1)™(4n)"* 72" D (k + m)[(m + 1) \/_N Z () L) (1, x ) D(k 4+ m, f @ 6),
/|S/

where we have put D(s, f ® g) = Y, a(n, f)a(n, g)n™° (the Rankin product of f and g) and the
equality (*) follows from the Rankin convolution method (e.g., [LFE] §5.4). Thus if A" # (), we have
> ¢s 1(s") = 0, and we get nothing; so, we now assume (F). Note LN (5, yk) = LN (s, xx)
and [|sg = [ € Cy N Cs by our assumption (F). Then,we have

(4.12) LYY, xx)D(k +m, f @ 0)
= L (1, xx) 3 i (9) N (s/9) A (50/9) Z/\ N(s/0)N(a), [)N(s/0) "N (@) |y 1.0,

y|so

=[S k)N s /9) A (50 /m)a(N (/). 1) | TVD (1, ge) 3 2l (@) )

s=k+m
9lso o N(a)
(2) M H a(éu(f) f)éu(f)(lf(k/Q))X— ([u(e))(l _ 1 )
_\k+m—1 ) m —(k —
N(sg) [€Co and [[€€C, a(l, fO=E2xm (1)
% E(E)L(Nd)(l,ﬁf ®AL)
2 2
O‘M) T v(O) go(0)/24~ () 1 L (vay, L
= H NCOE j)(m+(k 1/2) H oyl m () (A = W)E(§)L (§,Wf®)\m),

tect

where a runs over integral ideals of K outside A, and the equality (xx) follows from, for example,
[LFE] §5.4. This finishes the proof, noting A% = A\, /|Am| = X,

We now compute the constant c. Here is a table of many constants of the right-hand-side we have
computed along the way:

Source Lemma 3.4 (4.12) (4.3) Proposition 3.9 | Lemma 3.10 | Lemma 3.11
Value [ (20) *4p,,,(det(g1)) [ E'(m) | E"(m)" " | )" (-D™™ | [(0/9*[" | [(0/T)*]*
Lemma 3.10 (4.6) (4.11)
[ieane, NOE2WOO-R)y (@O Fy=)Gymi o ¢) | [D(4,C; N) : To()) 1 | YA
(4.11) (4.11) Lemma 3.10
CO @0 7 [T+ mm 1) | e(-N;)

We simply multiply out the constants appearing in the above table to get the constant ¢ = ¢;Gw.
The volume factor v is the product of |(O/t)*|71, [(O/%)*|~! and [['(A,C; N) : Tx(N)]~. Note
G(Xmi0c)=G(x, [) N(nkH2m)mO=fy (gu(f) Fruze) = x; (v O F)pk/2+m) (O =F0) and

det 91 H’l;b éu(f) Nk+2m H X;Lg(él/(g))il
LN Le AuC
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as P, = Xyt on AX and |Xm.¢(¢€)| = ¢7%72™. Thus the other constants aside from the volume factor
v are in the Gauss sum factor G and c¢;. This finishes the proof.
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