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Abstract: In this paper, for an odd cyclic totally real extension F/Q, as-
suming Serre’s modularity conjecture of 2-dimension odd mod p Galois rep-
resentations, we give an elementary proof of the Langlands base change from
a space of automorphic forms on the multiplicative group of a definite quater-
nion algebra B/Q to the corresponding space on the multiplicative group of
BF = B⊗QF (under some mild assumptions). More generally, for a general
totally real Galois extension, we state a conjecture describing the action of
Gal(F/Q) on the 0-dimensional automorphic variety of B×

F which implies
the existence of base-change relative to F/Q.
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1. Introduction

For a totally definite quaternion algebra B = BQ over Q, we consider the
associated algebraic Q-group G defined by G(A) = (B ⊗Q A)× for commutative
Q-algebras A. For a totally real finite Galois extension F/Q with Galois group
∆ = Gal(F/Q), the quotient space G(F )\G(FA)/U · G(R) for an open compact
subgroup U ⊂ G(F (∞)

A ) is a finite set of points on which ∆ acts through its
action on G(FA) if U is stable under ∆. We present in this paper an elementary
conjecture (Conjecture 1.2) on this permutation representation which (together
with Serre’s modularity conjecture) implies the existence of base-change of elliptic
modular forms to Hilbert modular forms over F (under certain conditions on
level and Nében characters and the cohomological structure of the Galois group
Gal(F/Q)). Moreover, we prove the conjecture for any cyclic groups.

We fix a definite quaternion algebra B = BQ over Q with a fixed maximal
order R. Write Z for the center of G. We have the reduced norm map N :
G/Q → Gm/Q. We define G1/Q = Ker(N), which is the derived group of G/Q.
We put BF = B ⊗Q F . Assuming that B ⊗Q Fl is a division algebra at a prime
ideal l if and only if B ⊗Q Q` is a division algebra at (`) = l ∩ Z, we can take a
maximal order RF stable under the action of ∆ with H0(∆, RF ) = R in B. Let
Σst be a set of prime ideals q of O for which Bq = B ⊗Q Fq is a division algebra.
We identify R` = RF ⊗Z Z` with M2(O`) for all rational primes ` outside Σst (as
rings and as ∆-modules), where Ol = lim←−n

O/ln and O` = lim←−n
O/`nO. Then for

an integral ideal N outside Σst, consider an open compact subgroup

U = U0(N · d(BF )) =
{

x ∈ R̂×
F

∣∣xN ≡ ( ∗ ∗0 ∗ )
}
⊂ G(F (∞)

A ),
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where R̂F = lim←−n
RF /nRF with n running through positive integers, F

(∞)
A is the

ring of finite adeles of F , d(BF ) =
∏

q∈Σst
q and xN is the projection of x to

RN = lim←−n
R/Nn. Write Ô = lim←−n

O/nO for n running through all positive in-
tegers. Let ε = (ε1, ε2, ε

−, ε+) be a set of four continuous finite order characters
εj : Ô× → C×, ε− = ε−1

2 ε1, ε+ : F×
A /F× → C× with ε+(a) = ε1(a)ε2(a) for

a ∈ Ô×. Then if the conductor c(ε−) of ε− is a factor of N, we have a character
ε : U → C× given by ε(zu) = ε+(z)ε−(aN)ε2(N(u)) for u ∈ U and z ∈ Z(F (∞)

A ).
We consider the space MF (ε) of automorphic forms f : G(F )\G(F (∞)

A ) → C sat-
isfying f(xzu) = ε+(z)ε(u)f(x) for z ∈ Z(F (∞)

A ) and u ∈ U0(c(ε−)d(BF )) (this
space was originally introduced in [HMI] Section 3.1 and in some of my earlier pa-
pers). For each principal local representation πv = π(α, β) of GL2(Fv) for a place
v, take εv = (α|O×v , β|O×v , β−1α|O×v , αβ). Then there is a unique 1-dimensional
subspace V (α, β) made up of vectors satisfying πv(zu)v = ε+(z)ε(u)v. Such a
vector is called a minimal vector of πv. Thus the Hecke eigenforms in MF (ε)
is in bijection (up to scalar multiple) with isomorphism classes of locally princi-
pal (outside d(BF )) automorphic representations with given Neben types ε, and
we expect them to be in bijection with compatible systems of representations of
Gal(Q/F ) with ramification data governed by ε and d(BF ). Indeed, an appro-
priate p-adic Galois deformation ring with ramification governed by ε and d(BF )
is identified with a local ring of the p-adic Hecke algebra of MF (ε) in the work
of Fujiwara ([F1], [F2] and [HMI] Chapter 3). In this sense, MF (εF ) has a more
direct connection to compatible systems than the (slightly undeveloped) space in-
troduced earlier in [H88] (based on the theory of new forms rather than minimal
forms).

Let εQ be the character as above for F = Q, and we define εF by the pull back
of εQ via the norm map NF/Q. We shall prove the following theorem.

Theorem 1.1. Let F/Q be a totally real finite simply 2-connected Galois exten-
sion. Suppose Conjecture 1.2 following this theorem and Serre’s conjecture on
mod p representations of Gal(Q/Q) for all sufficiently large odd primes p outside
the level N = c(ε1,Q)c(ε2,Q)d(BQ). In addition to this assumption, we assume

(R1) BQ ⊗Q Fl is a division algebra for every prime factor l of d(BQ);
(R2) q|d(BQ) if a prime q ramifies in F/Q.
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Let π be the infinite dimensional automorphic representation π of G(A) associated
to a Hecke eigenform in MQ(εQ). Write ρ = {ρl}l for the strictly compatible
system (associated to π) of l-adic representations of Gal(Q/Q) with coefficients in
the Hecke field T of π. Then, we have a base-change automorphic representation π̂

on G(FA) whose strictly compatible system of Galois representations is isomorphic
to the restriction of ρ to Gal(Q/F ) and π̂ is generated by a Hecke eigenform in
MF (εF ).

Here are some remarks about the theorem:

(1) We call a Galois extension F/E simply 2-connected if Hj(Gal(F/E), µ2) =
0 for j = 1, 2 (with µ2 = {±1} ∼= Z/2Z on which Gal(F/E) acts triv-
ially). A finite group Γ is called simply 2-connected if Hj(Γ, µ2) = 0 for
j = 1, 2, where Γ acts trivially on µ2. By a result of Steinberg, for all
simply-connected simple Chevalley groups G/Z, the group G(Fq) for the
finite field Fq of q-elements is simply 2-connected except for the 8 specific
exceptional cases ([St1] Theorem 1.1). In particular, if q > 4 or q is odd,
G(Fq) is simply 2-connected. See Section 7 for an almost complete list of
simply 2-connected simple groups.

(2) C. Khare proved in [Kh] Serre’s conjecture in the level 1 case. Since [KW]
Theorem 1.2 went farther and announced a proof of Serre’s conjecture
under a hypothesis in the even conductor case which has been removed
by Kisin [Ki] (and Conjecture 1.2 is proven in this paper in the cyclic case;
see Proposition 2.5), the theorem will be valid (in due course) under the
conditions (R1–2) without assuming any conjectural statements for odd
cyclic extensions F/Q, giving a new proof of the base-change theorem of
Langlands from Q to odd cyclic extensions without using much harmonic
analysis. By using congruence argument, we can also make base-change
to F/Q of any everywhere principal elliptic cusp form without assuming
the division property of BQ ⊗Q Fl for l|d(BQ) (see Remark 6.1). We
can also prove a similar result for elliptic cusp forms of higher weight
as long as π is ordinary for a sufficiently large prime `. These more
general results will be discussed in our subsequent paper. We also hope
to be able to treat automorphic representations which have supercuspidal
local components at some finite places in our future work. Here a Hecke
eigenform f ∈ M(εQ) with f |T (p) = a`f is called ordinary at a prime `
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if there exists an embedding i : Q ↪→ Q` such that the image i(a`) is an
`-adic unit (⇔ |i(a`)|` = 1). An irreducible automorphic representation
π is called ordinary at ` if it is generated by a Hecke eigenform ordinary
at `.

Now we introduce some more symbols to state the conjecture we mentioned
in the theorem. The reduced norm map induces N : G(F (∞)

A ) → F
(∞)×
A and

N : G(F ) → F×
+ (for the subgroup F×

+ of F× of totally positive elements),
and we consider the pull back image G = N−1(F×

+ (F (∞)×
A )2Ô×), which can be

written as G = G(F )G1(F
(∞)
A )Z(F (∞)

A )U for G1 = Ker(N : G → Gm), where
Z ⊂ G is the center of G. Put M(1)

F (ε) :=
{
f |G

∣∣f ∈MF (ε)
}
. Decomposing

UxU ⊂ G into
⊔

α∈Ω αU , we have a Hecke operator [UxU ] acting on M(1)
F (ε)

by f |[UxU ](g) =
∑

α∈Ω f(gα). Let hF (ε) ⊂ EndC(M(1)
F (ε)) be the C-subalgebra

generated by [UxU ] for x ∈ G with xq = 1 for q|d(BF )c(ε1)c(ε2). Then hF (ε) is
a semisimple commutative algebra of finite dimension over C whose dimension is
equal to dimCM(1)

F (ε). Since BF = B ⊗Q F , ∆ acts on BF by (x⊗ ξ)σ = x⊗ ξσ

for ξ ∈ F and x ∈ B, and this action extends to G(F (∞)
A ) with the set of ∆-fixed

points given by G(A(∞)). For U = U0(c(ε−)d(BF )), the Galois group ∆ acts on
SF (ε) = G(F )\G/Z(F (∞)

A )U , which is a finite set by the approximation theorem.
If ε is ∆-invariant (that is, εj(xσ) = εj(x) and ε+(xσ) = ε+(x) for all x and
σ ∈ ∆), we can let σ ∈ ∆ acts on M(1)

F (ε) by σf(x) = f(xσ). Then the Galois
group ∆ acts on hF (ε) by h 7→ σhσ−1. Thus we have two ∆-sets, SF (ε) and
Spec(hF (ε))(C). Here is the conjecture assumed in the theorem:

Conjecture 1.2. We have a ∆-equivariant bijection SF (εF ) ∼= Spec(hF (εF ))(C)
if d(BF ) is a product of all primes of F above d(BQ) where εF = εQ ◦NF/Q.

As is well known, for cyclic ∆, this is equivalent to the identity

C[SF (εF )] ∼= C[Spec(hF (εF ))(C)] ∼= hF (εF ) (as ∆-modules)

of linearized representations (e.g. [LRG] Exercise 13.5). It is easy to prove the
above identity of linearized representations (see Proposition 2.5). Under a mild
condition on B, Langlands’ theory of soluble base-change proves the conjectural
identity as ∆′-sets for all soluble subgroups ∆′ of ∆ (see Proposition 4.5), which
implies Z`[SF (εF )] ∼= Z`[Spec(hF (εF ))(C)] as ∆-modules for all primes ` (see
[Sc]). The author asked group theorists L. Scott and R. Guralnick if SF (εF ) ∼=
Spec(hF (εF ))(C) as ∆-sets under the condition that SF (εF ) ∼= Spec(hF (εF ))(C)
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as ∆′-sets for every proper subgroup ∆′ ( ∆, hoping to apply an induction on
|∆| to prove the conjecture. Their answer is negative. First Scott supplied us
with a counter example when ∆ = µ2

2 (see [LRG] Comments after Exercise 13.5).
According to Guralnick, the space of functions with values in Q on conjugacy
classes of subgroups (including ∆) is the scalar extension of the Burnside ring
(defined over Z) to Q, and the generalized permutation characters θX for ∆-sets
X assigning to each subgroup H ⊂ ∆ the number |XH | of H-fixed points generate
the Burnside ring over Q. In particular, writing the characteristic function of ∆
(on the set of conjugacy classes of subgroups of ∆) as χ∆, we can write mχ∆ =
θX − θY for two ∆-sets X and Y for a sufficiently large positive integer m (to
eliminate the denominators), and these two sets X and Y give us a counter
example for any group. Thus we really need to study our specific ∆-sets as in
the conjecture number-theoretically. We are grateful to Professors Guralnick and
Scott for their comments.

By the following result, in theory (but not in practice yet; see the remark
following the theorem), one should be able to reduce the (totally real) base-
change problem of GL(2) to that of simply 2-connected extensions, because the
base-change problem is solved by Langlands for soluble extensions ([BCG]):

Theorem 1.3. Let F0/Q be a totally real finite Galois extension with Galois
group ∆0. If H1(∆0, µ2) = 0, there exists a finite abelian totally real 2-extension
F/F0 Galois over Q with simply 2-connected Galois group ∆ = Gal(F/Q). The
extension ∆ ³ ∆0 is central.

Here we mean by an abelian 2-extension an abelian extension with Galois
group killed by a 2-power. Suppose that a Galois extension F/Q is not simply 2-
connected (with H1(Gal(F/Q), µ2) = 0). Take a totally real abelian 2-extension
F ′/F such that F ′/Q is simply 2-connected whose existence is claimed in Theo-
rem 1.3. Then, we first make base-change from Q to F ′ by Theorem 1.1, and then
we would like to make a sequence of quadratic descent down to F by Langlands’
theory to remove the simple 2-connectedness assumption of Theorem 1.1. By the
assumption (R2) of Theorem 1.1, at present stage, without having good control
of ramification of F ′/F (say, ideally, unramifiedness), we cannot go further this
way. In our future work, we hope to remove the assumption (R2), and if suc-
cessful, we expect to be able to remove the simple 2-connectedness assumption
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(replacing G by split GL(2)). An outstanding cause why we need to impose (R2)
is the following.

(3) Though computation of traces of automorphic representations with a
given central character is effective to lift automorphic representation from
a field to its prime cyclic extension, it is not as effective for cyclic de-
scent. In particular, quadratic descent is very subtle, because even in
the simplest case where F ′/F is quadratic, we have two choices πv and
πv ⊗

(
F ′v/Fv

)
(with the same central character) whose base-change is a

given Galois-invariant local representation of GL2(F ′
v) for each place v of

F .

Because of non-uniqueness of descent, the comparison of permutation charac-
ters of SF (εF ) and Spec(hF (εF ))(C) becomes technically more demanding if it
involves 2-extensions. Some more explanation of this difficulty will be given in
Remark 5.1.

Here is a sketch of our idea of proving Theorem 1.1 assuming, for simplicity, the
nontriviality of ε−Q and ε−F , d(BQ) to contain a sufficiently big prime and ramified
primes for F/Q, and the odd class number condition for F . We write π◦ for the au-
tomorphic representation of GL2(A) associated to π under the Jacquet-Langlands
correspondence. Note that c(ε1,Q)c(ε2,Q)d(BQ) gives the conductor C(π) of π (and
also of π◦). Assuming Serre’s mod p conjecture of level C(π) for a sufficiently
large prime p, the modular lifting theorem of Wiles tells us that any 2-dimensional
strictly compatible system ρ of conductor C(π) is modular. We note that π◦ is a
Steinberg representation at prime factors of d(BQ). Imposing appropriate local
conditions on ρ|Gal(Qp/Q) at all p ∈ S = {p|C(π)} and unramifiedness outside the
finite set S, there are only finitely many such systems up to isomorphisms. Write
this finite set of isomorphism classes as S. By the Steinberg condition at p|d(B),
ρ ∈ S cannot be of CM type; so, it is irreducible over Gal(Q/F ) for any totally
real field F . Thus if we define the analogous set SF of strictly compatible systems
of representations of Gal(Q/F ), the map ρ 7→ ρF = ρ|Gal(Q/F ) is an injection of
S into SF by simple 2-connectedness. The Galois group ∆ acts on SF by inner
conjugation. By simple 2-connectedness, any system in the ∆-fixed subset S∆

F ex-
tends uniquely to a strictly compatible system of representations of Gal(Q/Q) in
S. Thus S∆

F ↪→ S by extension; so, S∆
F
∼= S. We write MF for the subset of SF

made up of systems associated to Hilbert modular automorphic representations.
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Thus we need to prove |M∆
F | ≥ |S|, which implies that M∆

F = S∆
F
∼= S. Un-

der the simplifying assumptions, the set MF is in bijection with Spec(hF (ε))(C).
Thus M∆

F
∼= Spec(hF )(C)∆. Plainly ∆ acts on the set SF (εF ); so, we have its

fixed point set SF (εF )∆. Then SQ(εQ) gives a subset of SF (εF )∆. By means of
the isomorphisms MQ(εQ) ∼= hQ(εQ) and MF (εF ) ∼= hF (εF ) as Hecke modules
and also as ∆-modules (see Lemma 2.3) and by the conjecture, we know that
|M∆

F | = |Spec(hF (εF ))(C)∆| = |SF (εF )∆| ≥ |SQ(εQ)| = |Spec(hQ(εQ))(C)| =
|S|, because G(Q) ⊂ G(F ) induces SQ(εQ) ⊂ SF (εF )∆.

If base-change/descent can be proven relative to any intermediate field F/E/Q
with ∆E = Gal(G/E), we have the following (hypothetical) “rough” identity:

|Spec(hF (εF ))(C)∆| + |M∆E
F | (1)

= |ME | + |SE(εE)| (2)
= |SF (εF )∆E |.

The equality (1) follows from the existence of base-change/descent. The equal-
ity (2) follows from the argument above Proposition 4.5 under some restrictive
assumptions. This identity for all subgroup ∆E of ∆ produces the identity of
permutation characters of the two ∆-sets Spec(hF (εF ))(C) and SF (εF ), which
is sufficient to verify Spec(hF (εF ))(C) ∼= SF (εF ) as ∆-sets (see Lemma 2.4 and
[LRG] Exercise 13.5). Thus Conjecture 1.2 is “roughly” equivalent to the exis-
tence of base-change. Indeed, we will prove the conjecture in Proposition 4.5 for
soluble extensions (under some mild assumptions) using the existence of base-
change proven by Langlands.

We will state a more general (relative) version (Theorem 8.4) of Theorem 1.3
in Section 8 where we give a proof of Theorem 8.4. It is a cohomological compu-
tation, and the two key ingredients are a theorem of Merkurjev-Suslin telling us
that H2(Gal(K/K), µ2) is generated by the classes of quaternion algebras for any
subfield K ⊂ C and a theorem of Moore–Steinberg of the finiteness of the univer-
sal simply 2-connected covering E of a given finite group ∆ with H1(∆, µ2) = 0.

2. Permutation representations

Let E be a totally real field and F/E be a totally real Galois extension with
Gal(F/E) = ∆ and relative discriminant d(F/E). We consider a quaternion
algebra BE over E with BE ⊗Q R ∼= H[E:Q] for the Hamilton quaternion algebra
H; thus, BE is (totally) definite. We write G for the algebraic group defined over
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E such that G(A) = (B⊗E A)× for E-algebras A. Let G1 be the algebraic group
defined by the kernel of the reduced norm map N : G/E → Gm/E .

Let BF = B ⊗E F . We assume the following condition corresponding to (R1):

(dd) every prime factor of d(B)O is a factor of d(BF ).

and consider the following condition corresponding to (R2):

(df) every prime factor of d(F/E)O is a factor of d(BF ).

We are going to show that, under the condition (dd), there exists a maximal
order RF stable under ∆ containing a given maximal order R of B. Let l be a
prime ideal of E. If Bl

∼= M2(El), we may identify B⊗E Fl = M2(Fl) so that this
identification induces the identification Bl

∼= M2(El). Then we have the ∆-stable
maximal order M2(Ol) of B⊗E Fl. Similarly if Bl and B⊗E Fl both have division
simple factors, the maximal orders are unique, which are Galois stable. Take a
maximal order RF of BF . Then for almost all primes l of E, RF,l = RF ⊗OE

OE,l

coincides with a ∆-stable maximal order of B ⊗E Fl. Modifying RF,l for a finite
set of primes (for which originally RF,l is not Galois stable), we may assume
that RF,l is Galois stable for all l. Under (dd), only these two cases occur (in
other words, BF,l

∼= M2(Fl) but Bl 6∼= M2(El) does not happen). Since the Hasse
principle holds for maximal orders, we have a maximal order RF = BF ∩(

⋂
l RF,l)

stable under ∆.

Let εE be a quadruple of characters as in the introduction for E. We consider
for a subextension E′/E inside F , and write εE′ for the pullback of εE by the
norm map NE′/E . Write U for the open compact subgroup U0(c(ε−F )d(BF )) of

G(F (∞)
A ). Consider the following finite ∆-set:

SE′ = G(E′)\GE′/UE′Z(E′(∞)
A ),

where UE′ = U ∩G(E′
A) and GE′ = G(E′)G1(E′(∞)

A )UE′Z(E′(∞)
A ). Thus we have

GE′ = N−1(E′×
+(E′(∞)×

A )2Ô×
E′), and G = GF . We consider the space M(1)

E′ (εE′)
of functions f : G(E′)\GE′ → C satisfying

f(zxu) = εE′+(z)εE′(u)f(x)

for u ∈ UE′G(E′
R) and z ∈ Z(E′

A). Let hE′(εE′) be the Hecke algebra over C
acting on M(1)

E′ (εE′) generated by UyU for y with N(y) = 1 and yl = 1 for l

ramifying in BE′ = B ⊗E E′ or dividing the level of U .
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Lemma 2.1. Suppose (dd). Then the automorphic representation of G generated
by functions in M(1)

F (εF ) is multiplicity-free.

Proof. Each irreducible automorphic representation Π of G(FA) generated by a
Hecke eigenform restricted to G remains irreducible. The representation Π is
either infinite dimensional or one dimensional. If dim Π = 1, this is clear. If
dimΠ = ∞, this follows from everywhere non-supercuspidality of Π with a Stein-
berg place q ∈ Σst (see [LL] Lemmas 2.4–2.8 and Section 6). Let us explain
more this point. Start with an irreducible automorphic representation π of G
generated by a function: SF → C in M(1)

F (εF ). We consider the smooth in-

duction IndG(A(∞))
G π. Since G(A(∞))/G is a finite abelian group isomorphic to

F×
A(∞)/F×

+ (F×
A(∞))2Ô× ∼= ClF /Cl2F for the strict ray class group ClF of F , the in-

duction can be performed inside the space of automorphic forms on G(F )\G(A(∞)).

Thus by the multiplicity one theorem (cf. [AAG] Chapter 10), IndG(A(∞))
G π is a

direct sum of irreducible automorphic representations Π with multiplicity 1. By
Frobenius reciprocity (valid for admissible representations), the restriction of Π
contains π with multiplicity at most 1. Since ClF /Cl2F is a (2, 2, . . . , 2)-group, we
have a filtration of normal subgroups G(A(∞)) = G0.G1.G2.· · ·.Ge = G so that

Gi/Gi+1
∼= {±1}. We can perform induction at each step. Since IndG(A(∞))

G π is
decomposed into a direct sum of nonisomorphic irreducible representations, start-
ing from any irreducible automorphic representation πi of Gi appearing in the
restriction Π|Gi , the smooth induction IndGi−1

Gi
πi is again a direct sum of irre-

ducible automorphic representations of Gi−1 with multiplicity at most 1. Since
Gi−1/Gi

∼= {±1}, IndGi−1

Gi
πi is either irreducible or a direct sum of two noniso-

morphic representations of Gi−1. If IndGi−1

Gi
πi is irreducible, by rearranging the

filtration, we may assume that i = 1 and Π = IndG0
G1

π1. This implies Π⊗ α ∼= Π
for the character α : G0/G1

∼= {±1}. Since α is quadratic, there is a qua-
dratic extension M/F such that α =

(
M/F

)
by class field theory. Then by [LL]

Proposition 6.5, there exists a Hecke character θ : M×
A /M× → C such that Π cor-

responds to the automorphic induction π(θ) from GL(1)/M to GL(2)/F by the
Jacquet–Langlands correspondence. However, the automorphic induction π(θ)
cannot be Steinberg (see below) at any finite place (in particular at l|d(BF ), it

has to be Steinberg). This is a contradiction. Thus IndG(A(∞))
G π is isomorphic

to
⊕

α:G0/G→{±1}Π ⊗ α over all characters α of G0/G. This implies Π|G = π
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and therefore, any extension Π of π determines π uniquely, and Π|G remains
irreducible.

The l-adic Galois representation for l - N(q) (q ∈ Σst) of Π has infinite image
over the inertia group Iq, because the corresponding representation Π◦ of GL2(FA)
under the Jacquet-Langlands correspondence is Steinberg at q if dim Π = ∞ (see
Lemma 4.4). On the other hand, as seen above, any irreducible automorphic rep-
resentation π on the L2-space of G(F )\G which has a nonzero vector in M(1)

F (εF )
extends to an automorphic representation of G(F (∞)

A ) generated by an element
of MF (εF ), and if Π extends π, all other extensions are of the form Π ⊗ α for
a quadratic Hecke character α : F×

A /F× → {±1} trivial on N(G). They never
overlap because Π ⊗ α ∼= Π happens, by [LL] Proposition 6.5, only when the
Galois representation of Π is an induced representation of a Galois character of
Gal(F/M) for the quadratic extension M corresponding to α (whose image of Iq

for q ∈ Σst has to be finite). ¤

Corollary 2.2. Suppose (dd). Then hF (εF ) is commutative semi-simple, and
we have M(1)

F (εF ) ∼= hF (εF ) as Hecke modules.

Proof. The action of Hecke operators of hF (εF ) with respect to U is still semi-
simple, because π occurs with multiplicity 1 and the action of hF (εF ) determines
π (by Lemma 2.1). Thus hF (εF ) is a semi-simple commutative algebra and we
have M(1)

F (εF ) ∼= hF (εF ) as Hecke modules. ¤

For any ∆-invariant linear form λ ∈ Hom(M(1)
F (εF ),C)∆, we define a pairing

(·, ·) = (·, ·)λ : M(1)
F (εF ) × hF (εF ) → C by (f, h) = λ(f |h). The pairing satisfies

(f |h, h′) = (f, hh′) and (f ◦ σ, h) = (f, hσ) for σ ∈ ∆, where the action of ∆ on
hF (εF ) is induced by UxU 7→ Uxσ−1

U , and this action coincides with the action
h 7→ σ ◦ h ◦ σ−1.

Lemma 2.3. Suppose (dd) and ∆-invariance of λ. Then the above pairing (·, ·)F

is nondegenerate if λ(f) 6= 0 for all nonzero Hecke eigenforms f ∈M(1)
F (εF ) and

the set Σst = {p|d(BF )} of ramified places of BF /F is nonempty.

Proof. Consider the inner product 〈f, g〉 =
∑

x∈SF
f(x)g(x) for f, g ∈ M(1)(εF ).

Take φ ∈ M(1)(εF ) so that 〈f, φ〉 = λ(f). Then φσ(x) = φ(xσ) = φ(x) for
all σ ∈ ∆, because λ is ∆-invariant. Since λ(f) 6= 0 for any Hecke eigenform
f ∈ M(1)(εF ), the automorphic representation generated by all functions in
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M(1)
F (εF ) is actually generated by φ, because, as we have seen, the automor-

phic representation generated by φ is multiplicity-free (by Lemma 2.1), and each
irreducible component π is determined by the eigenvalues on πU = H0(U, π) of
the operators in hF (εF ) (by Corollary 2.2). Thus for any given g ∈ M(1)

F (εF ),
we can find Hecke operators hi such that g =

∑
i φ|hi. If (f, h) = 0 for all

h ∈ hF (εF ), we have 〈f, g〉 =
∑

i〈f, φ|hi〉 =
∑

i〈f |hi, φ〉 =
∑

i(f, hi) = 0, because
operators in hF (εF ) is self-adjoint under the inner product 〈·, ·〉 (e.g., [HMI]
Lemma 3.5). Since g is arbitrary, we have f = 0 by the nondegeneracy of 〈·, ·〉.
Let M⊥

F ⊂ hF (εF ) be the orthogonal component of the entire space of M(1)
F (εF ).

Then dimhF (εF )/M⊥
F = dimM(1)

F (εF ). Since we know by the multiplicity one
theorem, dim hF (εF ) = dimM(1)

F (εF ), we conclude M⊥
F = 0, and the pairing is

nondegenerate. ¤

Remark 2.1. Taking a complete representative set Ξ for Spec(hF (εF ))(C)/∆ and
pick a Hecke eigenform fξ ∈ M(1)

F (εF ) with fξ|h = ξ(h)fξ. Then φ =
∑

f∈Ξ̃
f is

∆-invariant for Ξ̃ = {fσ
ξ |ξ ∈ Ξ, σ ∈ ∆}, and for λ(f) = 〈f, φ〉, λ is ∆-invariant

and does not vanish on any nonzero Hecke eigenform. We may ask if 〈f, δ〉 6= 0
for all nonzero Hecke eigenforms f for the function δ ∈ M(1)

F (εF ) supported
on G(F )U0(c(ε−F )) in M(1)

F (εF ). It is likely that this is true, and φ could be a
constant multiple of δ.

For a finite set Ω with a left action of ∆, we write K[Ω] for a field K the vector
space of formal linear combination of elements of Ω. Then we let ∆ acts on K[Ω]
by δ(

∑
s∈Ω ass) =

∑
s∈Ω asδ(s). We call ϕΩ = K[Ω] the K-linearized permutation

representation of Ω. For any subgroup ∆′ ⊂ ∆, we define θΩ(∆′) = |Ω∆′ |, where
Ω∆′ is the set of fixed points of ∆′. The following lemma is a part of Exercise
13.5 of [LRG]:

Lemma 2.4. Suppose that K is of characteristic 0. Let Ω and Ξ be two finite
∆-sets. Then we have

(1) ϕΩ
∼= ϕΞ as linear representations of ∆ if and only if θΩ = θΞ over all

cyclic subgroups of ∆;
(2) Ω ∼= Ξ as ∆-sets if and only if θΩ = θΞ.

Proof. We have Tr(σ|K[Ω]) = θΩ(〈σ〉). Then from the semi-simplicity of the action
of Ω, the identity of trace gives rise to K[Ω] ∼= K[Ξ].
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We now prove (2). If all points of Ω are fixed by ∆, the same assertion is true
for Ξ; so, we are done. Thus we may assume that one of the ∆-orbits of Ω is
nontrivial. Let M be a subgroup maximal among proper subgroups appearing
as a stabilizer of a point of Ω. If MxH = xH for a proper subgroup H ⊂ ∆
appearing as a stabilizer of a point of Ω, we have x−1Mx ⊂ H. Then by the
maximality of M , we conclude H = x−1Mx. Then θΩ(M) = θΩ(∆) + m(M),
where m(M) is the number of ∆-orbits in Ω isomorphic to ∆/M . Thus if θΩ = θΞ,
there are the same number of orbits isomorphic to ∆/M in Ξ and Ω. Removing
these orbits, we get new ∆-sets Ω′ and Ξ′. Since we have removed nonempty
isomorphic ∆-sets from Ω and Ξ, we have θΩ′ = θΞ′ . Then by induction on |Ω|,
we find Ω′ ∼= Ξ′, which implies Ω ∼= Ξ. ¤

Proposition 2.5. Suppose (dd). Then hF (εF ) is isomorphic to M(1)
F (εF ) as

∆-modules. If further ∆ = Gal(F/E) is a cyclic group, we have a ∆-equivariant
bijection between SF (εF ) and Spec(hF (εF ))(C).

Proof. Since hF = hF (εF ) is a semi-simple commutative algebra, hF is isomorphic
to C[Spec(hF )(C)] as ∆-modules, and by the trace pairing, HomC(hF ,C) ∼= hF as
∆-modules. Taking the pairing between hF and M(1)

F (εF ) as in Remark 2.1, by
Lemma 2.3, M(1)

F (εF ) ∼= C[SF ] for SF = SF (εF ) is isomorphic to Hom(hF ,C) ∼=
hF as C[∆]-modules. This shows the first assertion. Thus we have C[SF ] ∼=
Hom(hF ,C) as ∆-modules, and hence C[SF ] ∼= C[Spec(hF )(C)] as ∆-modules.
Then by Lemma 2.4, if ∆ is cyclic, we have SF

∼= Spec(hF )(C) as ∆-sets. ¤

Here is a relative version of Conjecture 1.2 which should be true for all totally
real finite Galois extensions F/E with Galois group ∆:

Conjecture 2.6. Assume that d(BE) 6= 1 and that d(BF ) is a product of all
primes of F above d(BE). Then SF (εF ) ∼= Spec(hF (εF ))(C) as ∆-sets.

3. Galois invariants

Let E be a totally real number field of finite degree over Q. We consider a
division quaternion algebra B/E such that B⊗QR ∼= H[E:Q]. Take a finite totally
real Galois extension F/E with Galois group ∆. We consider BF = B⊗E F (but
we do not suppose (dd) unless explicitly mentioned). The Galois action on BF is
induced on the right factor F of B ⊗E F . Let G be the algebraic group defined
over E such that G(A) = (B ⊗E A)×. We consider the space G(F )\G(F (∞)

A ).
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Lemma 3.1. The set of Galois invariants

(G(F )\G(F (∞)
A ))∆ = {x ∈ G(F )\G(F (∞)

A )|σ(x) = x for all σ ∈ ∆}

is isomorphic to the image of G(E)\G(E(∞)
A ) in G(F )\G(F (∞)

A ).

Proof. Consider a non-abelian 1-cocycle σ 7→ aσ ∈ G(F ) such that aσaσ
τ = aτσ.

Then we choose b =
∑

τ aτu
τ 6= 0 for a suitable u ∈ G(F ) (such a choice of

u is possible by Dedekind’s theorem). Then we have aσbσ = aσ
∑

τ aσ
τ uτσ =∑

τσ aτσuτσ = b. In other words, aσ = bb−σ. Take x ∈ G(F (∞)
A ) representing an

element in (G(F )\G(F (∞)
A ))∆. Then aσxσ = x so aσ = xx−σ ∈ G(F ). By the

above argument, we can find b ∈ G(F ) such that aσ = bb−σ. Then bb−σxσ = x

and hence b−1x ∈ G(E(∞)
A ), which represents the class of x ∈ (G(F )\G(F (∞)

A ))∆.
Thus the natural map i : G(E)\G(E(∞)

A ) → (G(F )\G(F (∞)
A ))∆ is surjective. If

i(x) = i(y), we have x = γy for γ ∈ G(F ). Since we may choose x and y in
G(E(∞)

A ), we have γ ∈ G(E) = G(E(∞)
A ) ∩ G(F ). Thus i is a bijection, and this

shows the desired result. ¤

Let U be a closed subgroup of G(F (∞)
A ) stable under the action of ∆. Recall

that G1 denotes the derived group of G (that is the kernel of the reduced norm
map).

Lemma 3.2. Let U be an open compact subgroup U ⊂ G1(F
(∞)
A ) stable under

∆, and put UF = U ∩ G1(F ) in G(F (∞)
A ). Suppose one of the following four

conditions

(1) E[µN ] and F are linearly disjoint over E for each integer N > 0 with
dimF F [µN ] ≤ 2, and H1(∆,Z/`Z) = 0 for each prime ` with dimF F [µ`] ≤
2;

(2) UF ⊂ G(E) and H1(∆,Z/`Z) = 0 for each prime ` with dimF F [µ`] ≤ 2;
(3) H1(∆, µ2) = 0 and xUF := xU ∩ G1(F ) = {±1} for all x ∈ G1(E

(∞)
A ),

where xU = x · Ux−1;
(4) xUF = {1} for all x ∈ G1(E

(∞)
A ).

Then the natural map

i : G1(E)\G1(E
(∞)
A )/U∆ → G1(F )\G1(F

(∞)
A )/U
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is an injection, and if we suppose either (4) only or (3) with H2(∆, µ2) = 0, we
have

i :
(
G1(F )\G1(F

(∞)
A )/U

)∆ ∼= G1(E)\G1(E
(∞)
A )/U∆.

Write ϕ(N) = [E[µN ] : E] for a positive integer N . If either H1(∆,Z/ϕ(N)Z) =
0 or N is unramified in F/Q for all integers N > 1 with [F [µN ] : F ] ≤ 2, the
linear-disjointness assumption in (1) of the lemma is satisfied. If U is sufficiently
small, the condition (4) is satisfied.

Proof. We use nonabelian group cohomology Hj(∆, ?) for j = 1, 2 as defined in
[GCH] Chapter 3 or the papers by Springer and Kneser in [AGD] Chapter II.
Suppose the condition (4). If i(x) = i(x′), we have γx = x′u for γ ∈ G(F ) and
u ∈ U . Then γσx = x′uσ for σ ∈ ∆, and hence, γσ−1 ∈ xU ∩G(F ) = {1}. Thus
γ ∈ G1(E) and hence u ∈ U∆, which implies x = x′ in G1(E)\G1(E

(∞)
A )/U∆.

By (4), the stabilizer in G1(F ) of each point of G1(F
(∞)
A )/U is trivial. Let

x ∈ G1(F
(∞)
A )/U . If γσx = xσ for γσ ∈ G(F ) with each σ ∈ ∆, we have

γστx = xστ = (xσ)τ = (γσx)τ = γτ
σγτx,

which implies γστ = γτ
σγτ . Therefore σ 7→ γσ is a nonabelian 1-cocycle with

values in G1(F ). We have an exact sequence:

1 → G1(F ) → G(F ) norm−−−→ F×
+ → 1.

This produces a long exact sequence of sets:

1 → G1(E) → G(E) norm−−−→ E×
+ → H1(∆, G1(F )) → H1(∆, G(F )) = {1}.

Since the reduced norm map: G(E) norm−−−→ E×
+ is surjective ([BNT] Proposition 3

in page 206), we find H1(∆, G1(F )) = {1}. Then as in the proof of Lemma 3.1,
we find b ∈ G1(F ) such that γσ = bσb−1. Thus bσb−1x = xσ and hence b−1x ∈
G1(E

(∞)
A ). This implies that

(
G1(F )\G1(F

(∞)
A )/U

)∆
= G1(E)\G1(E

(∞)
A )/U∆.

Suppose the condition (3). If i(x) = i(x′), we have γx = x′u for γ ∈ G(F ) and
u ∈ U . Then γσx = x′uσ for σ ∈ ∆, and hence, γσ−1 ∈ xU ∩G(F ) = {±1}. Thus
σ 7→ γσ−1 ∈ µ2 is a cocycle, and hence γσ−1 = 1 because H1(∆, µ2) = 0. Thus
u ∈ U∆, which implies x = x′ in G1(E)\G1(E

(∞)
A )/U∆, and hence we get the
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injectivity of i. To prove the surjectivity of i, we may replace G1 by G1 = G1/µ2

because U contains µ2. We thus prove
(
G1(F )\G1(F

(∞)
A )/U

)∆
= G1(E)\G1(E

(∞)
A )/U∆.

By the exact sequence, µ2 ↪→ G1 ³ G1, we get another exact sequence of sets:

1 = H1(∆, G1) → H1(∆, G1) → H2(∆, µ2) = 1.

Thus, we find H1(∆, G1) = 1 under H2(∆, µ2) = 1. By (3), the stabilizer in
G(F ) of each point of G1(F

(∞)
A )/U is trivial. Let x ∈ G1(F

(∞)
A )/U . If γσx = xσ

for γσ ∈ G1(F ) with each σ ∈ ∆, we have

γστx = xστ = (xσ)τ = (γσx)τ = γτ
σγτx,

which implies γστ = γτ
σγτ . Therefore σ 7→ γσ is a nonabelian 1-cocycle with

values in G1(F ). As in the proof of Lemma 3.1, we find b ∈ G1(F ) such that
γσ = bσb−1. Thus bσb−1x = xσ and hence b−1x ∈ G1(E

(∞)
A ) as desired.

We now assume the assumption (1). Since G1(F ) is discrete and U is compact
in G1(F

(∞)
A ), UF is discrete compact, and hence is a finite group. Thus for

ζ ∈ UF − Z(F ), F [ζ] ⊂ D is a quadratic extension generated by a root of
unity. By our assumption E[ζ] is linearly disjoint from F over E. Thus E[ζ]/E

is quadratic. Since [E[ζ] : E] = 2, we have ξ ∈ E such that E[ζ] = E[
√

ξ].
Regarding ∆ ⊂ Gal(F [ζ]/E), the map δ 7→ (

√
ξ)δ−1 ∈ µ2 gives a homomorphism

from ∆ into µ2, which has to be trivial because of H1(∆,Z/2Z) = 0. Thus ∆
fixes ζ, and hence the assumption (2) is satisfied, and thus the proof in the case
under (1) is reduced to the case under (2).

We now suppose the condition (2). Since U is stable under ∆, UF is stable
under ∆. As we remarked already, the action of ∆ is trivial on UF ; so, UF ⊂
G(E(∞)

A ). If i(x) = i(x′), that is, γx = x′u for γ ∈ G(F ) and u ∈ U for
x ∈ G(E(∞)

A ), we have γσx = x′uσ for all σ ∈ ∆. In other words, γ−σγ =
xu−σux−1 ∈ xUF for xU = xUx−1. Thus σ 7→ γ−σγ is a 1-cocycle of ∆ with
values in the group xUF ⊂ G(E(∞)

A ) with trivial ∆-action. Since xUF is soluble, we
have a central sequence xUF = U0.U1.· · ·.Ur = {1} with prime cyclic Uj/Uj+1 of
order ` for primes ` as in the assumption of the lemma. Since H1(∆,Z/`Z) = 0
for primes ` as above, we have H1(∆, Uj/Uj+1) = 0 for all j, which implies
H1(∆, xUF ) = 0 by the long exact sequence of H1. In other words, we find
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γσ−1 = 1 and hence, γ ∈ G(E). Then we have u ∈ U∆, and x = x′ in the source
of i. ¤

Recall that the center of G is denoted by Z.

Lemma 3.3. Let U be a ∆-invariant open subgroup of G(F (∞)
A ) such that

g · Ug−1 ∩G(F ) = Z(F ) for all g ∈ G(F (∞)
A ). Then the inclusion G(E(∞)

A ) 3
x 7→ x ∈ G(F (∞)

A ) induces an injection

i : G(E)\
(
G(E)G1(E

(∞)
A )U∆

)
/U∆ ↪→ (G(F )\G(F )G1(F

(∞)
A )U/U)∆.

If we assume further (dd), (df), U ⊃ Z(F (∞)
A ) and N(U) = Ô×(F (∞)×

A )2, the
map i is surjective.

Proof. The map i as above is induced by

I : G(E)\G(E(∞)
A )/U∆ → (G(F )\G(F (∞)

A )U/U)∆.

Suppose I(x) = I(y) for x, y ∈ G(E(∞)
A ). Then xs = γy for γ ∈ G(F ) and s ∈ U .

Thus xsσ = γσy for all σ ∈ ∆. This shows U 3 s−σs = y−1γ−σγy ∈ y−1G(F )y.
By our assumption, we find aσ = s−σs ∈ Z(F ) is 1-cocycle of ∆ with values in
Z(F ). Since aσ = s−σs ∈ Z(F ), we find γ−σγ = yaσy−1 = aσ. By Hilbert’s
theorem 90, we find δ ∈ Z(F ) such that aσ = δσ−1 = γ−σγ. Since (δs)σ = δs

and (δγ)σ = δγ for all σ ∈ ∆, we have δs ∈ U∆ and x(δs) = δγy implies x = y

in G(E)\G(E(∞)
A )/U∆. This shows that I is injective, and hence, i is injective.

To prove the surjectivity of i, we consider the left G(F )-set X = G(F (∞)
A )U/U ,

where G(F ) = G(F )/Z(F ). If x ∈ X represented by x ∈ G1(F
(∞)
A )U is fixed by

γ ∈ G(F ), we have γx = xu for u ∈ U . Thus γ ∈ G(F ) ∩ xUx−1 = Z(F ). This
shows the stabilizer of x in G(F ) is trivial. If x is fixed by ∆, we have γσx = xσ

for σ ∈ ∆. Then as seen above, σ 7→ γσ is a 1-cocycle of ∆ with values in G(F ).
Write γσ = γσ mod Z(F ), and choose u ∈ G(F ) so that β =

∑
τ uτγτ 6= 0. Then

we have

βσγσ ≡
(∑

τ

uτσγσ
τ

)
γσ ≡

∑
τσ

γτσuτσ ≡ β mod Z(F ),

and γσ = β
−σ

β is a 1-coboundary. This shows that βx = β
σ
γσx = β

σ
xσ.

Replacing x by βx, we may assume that x is fixed by ∆. Then xσ = ασx for
α ∈ Z(F ), because the stabilizer of x in G(F ) is Z(F ). Thus σ 7→ ασ is a



98 Haruzo Hida

1-cocycle with values in Z(F ). By Hilbert’s theorem 90, we may assume that
x ∈ G(E(∞)

A ) = G(F (∞)
A )∆. If we start from x ∈ G(F )G1(F

(∞)
A )U , we modified

the original x by multiplication from the left by elements in G(F ); so, we may
assume x ∈ G(E(∞)

A ) ∩ G(F )G1(F
(∞)
A )U . Thus we have N(x) ∈ (F×

+ N(U))∆.
Write N(x) = ξu for u ∈ N(U) and ξ ∈ N(G(F )) = F×

+ . Since x ∈ G(E(∞)
A ),

ξO is a fractional E-ideal. Since N(U) = Ô×(F (∞)×
A )2, we have ξ = z2v for

v ∈ Ô× and z ∈ F×
A . Since the ideal ξO = N(x)O is an E-ideal, we can ask if

ξ ∈ (E(∞)×
A )2Ô× or not. If it is, by modifying x by an element in U∆ (which

contains the center Z(E(∞)
A )), we may assume that ξ = 1; then, u has to be in

U∆; so, x is in the image of i. If not, there exists a prime ideal q of OE such that
ξO is divisible exactly by an odd power of q, z =

√
ξv−1 ∈ F

(∞)
A , and F/E has

to ramify at q with even ramification index; then, BQ has to split over FQ for a
prime Q of F over q, which is impossible under (dd) and (df). ¤

Let Σ be a set of prime ideals of E with |Σ| ≡ [E : Q] mod 2. Then there
exists a quaternion algebra B = BΣ

/E ramified exactly at primes Σ and all infinite
places of E. For a finite set of primes S of F , we put FS =

∏
l∈S Fl, OS =

∏
l∈S Ol

and O(S) = F ∩OS .

Proposition 3.4. Let B/E be as above and S be a subset of the set of primes l of

F above Σ at which Bl = B⊗E Fl is a division algebra. If ζ ∈ R̂×
F Z(F (∞

A )G(FS)∩
G(F ) for any given maximal order RF of BF is not in Z(F ), F [ζ] ⊂ B ⊗E F is
isomorphic to a CM quadratic extension M of the following type:

(1) M is generated over F by an imaginary root of unity;
(2) There exists a totally positive unit ε ∈ O(S) such that M = F [

√−ε].

In particular, if we define M̃S to be the composite of all totally imaginary qua-
dratic extensions of F as listed above, F [ζ] ⊂ B ⊗E F is isomorphic to a CM
quadratic extension M of F inside M̃S.

Proof. Fix a maximal order RF of BF , put R(S) = RF ⊗O O(S), and consider
R̂S = R(S) ⊗Z Ẑ. Then we see easily that R̂×

S = R̂×
F G(FS) for R̂F = R̂∅. If

ζ ∈ G(F ) ∩ R̂×
S Z(F (∞)

A ), ζ = uξ for ξ ∈ Z(F (∞)
A ) and u ∈ R̂×

S . Let ν : G/E →
Gm/E be the reduced norm map. If ν(ζ) = 1, we have ν(u)ν(ξ) = ν(u)ξ2 = 1.
Thus ξ ∈ O×

(S) and hence ζ ∈ R×
(S). Replacing ζ by η = ζ2ν(ζ)−1, we find

that η ∈ R×
(S). We consider the projection R×

S → G(FS). For l ∈ S, RF,l
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is a noncommutative local ring with a unique maximal two-sided ideal m with
RF,l/m = O/l. Thus B×

l = G(Fl) =
⋃

n∈Zmn, and for each x ∈ G(Fl), we can
define ordl(x) ∈ Z so that x ∈ mordl(x) − mordl(x)+1. Then we have an extension

1 → R×
F,l → G(Fl)×

ordl−−→ Z → 0, and G(Gl) = Z n R×
F,l. Then we have an exact

sequence 1 → G1(F ) ∩ R̂×
F → G1(F ) ∩ R̂×

S

ordS−−−→ ZS , where ordS =
∏

l∈S ordl. It
is well known (e.g., [HMI] 2.1.2) that if ν(x) ∈ Ol for x ∈ Bl and l ∈ Σ, we have
x ∈ RF,l. This shows ordS is the zero map, and we have G1(F )∩R̂×

S = G1(F )∩R̂×
F .

Since η ∈ G1(F ) ∩ R̂×
F which is a finite group, we find that η is a primitive nth

root of 1 for some positive integer n. Then ζ2n = ηnν(ζ)n = ν(ζ)n ∈ O×
(S)+,

where O×
(S)+ is the group of totally positive units in O(S). Thus if ζ 6∈ Z(F ), F [ζ]

is a quadratic extension of F . If n has an odd prime factor `, F [ζ] ⊃ F [ηn/`] and
[F (ζ) : F ] = [F (ηn/`) : F ] = 2, which implies F [ζ] = F [η] = F [ηn/`]. Thus in this
case, F [ζ] is a quadratic extension of F generated by a root of unity. Suppose
that n is a 2-power. If n > 2, F [η] 6= F , and again we have F [ζ] = F [η], and F [ζ]
is generated by a root of unity. If n ≤ 2, η = ±1 and ±ζ2 = ν(ζ) ∈ O×

(S)+. Since

F [ζ] is totally imaginary, η = −1 and ζ =
√
−ν(ζ). ¤

Corollary 3.5. Let the notation be as in Proposition 3.4. Then the extension
M̃S/F is finite, and if B ⊗E F ramifies at a prime totally splits in M̃S/F , we
have (gUg−1 · Z(F (∞)

A )) ∩G(F ) = Z(F ) for U = R̂×
F G(FS) = R̂×

S .

Proof. There are finitely many CM quadratic extensions over F generated by
roots of unity. Since isomorphism classes of CM quadratic extensions of the form
F [
√−ε]/F for ε ∈ O×

(S)+ is in bijection with O×
(S)+/(O×

(S))
2 − {1} by F [

√−ε] ↔
ε ∈ O×

(S)+/(O×
(S))

2 − {1}, there are finitely many such extensions. Thus M̃S/F

is a finite (2, 2, . . . , 2)-extension. If BF /F ramifies at a prime q totally splits in
M̃S/F , q splits in any quadratic subfield M/F of M̃S . Such an M cannot be
embedded into BF . This shows the last assertion, because gR̂×

F g−1 ∩B is one of
the maximal orders of BF . ¤

Instead of imposing ramification for the quaternion algebra B, we can enlarge
the level by a square-free ideal outside the given level to assure the condition
xUZ(F (∞)

A ) ∩G1(F ) = Z(F ).

Lemma 3.6. Let the notation be as in Proposition 3.4. Let Q be a finite set of
prime ideals q of O unramified over Q such that
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(1) q - d(BF );
(2) for any totally imaginary quadratic extension M/F inside M̃S, at least

one prime q ∈ Q remains prime in M/F .

Then xUZ(F (∞)
A ) ∩ G1(F ) = Z(F ) for all x ∈ G(F (∞)

A ), where U is the open
compact subgroup U0(Qd(BF )) of G(F (∞)

A ) for Q =
∏

q∈Q q.

Proof. We consider the Eichler order Rq ⊂ M2(Oq) made up of matrices upper
triangular modulo q. Then Rq is a local ring with residue field isomorphic to
O/q. Take ζ ∈ xUZ(F (∞)

A )∩G1(F ) outside Z(F ). Since q is unramified in F/Q,
Oq[ζ] is the q-adic integer ring of Fq[ζ]. If q remains prime in Oq[ζ], Oq[ζ]/q is a
quadratic extension of O/q. Thus Oq[ζ] cannot be embedded in Rq. This shows
ζ 6∈ xUZ(F (∞)

A ) ∩G1(F ), a contradiction. This shows the desired result. ¤

4. Compatible systems

A holomorphic Hilbert modular Hecke eigenform f over a totally real field E

is supposed to be associated to a rank 2 motive M defined over E. For each real
embedding σ : E → R, M ⊗E,σ R has Hodge weight (κ1,σ, κ2,σ) and (κ2,σ, κ1,σ)
with κ1,σ ≤ κ2,σ. Writing IE = Homfield(E,R), we then define the weight of
f to be κ = (κ1, κ2), where κj =

∑
σ∈IE

κj,σσ. The existence of the motive is
only known if κ2 − κ1 > IE in general with equality allowed when [E : Q] is
odd (cf. [B]), where IE =

∑
σ∈IE

σ and the inequality κ2 − κ1 > IE means that
κ2,σ − κ1,σ > 1 for at least one σ. Put kσ = κ2,σ − κ1,σ + 1 (which is classically
called the weight of the Hilbert modular form).

The weight of f can be also detected via the Galois representation attached to
f by the `-adic Hodge-Tate weight if the Galois representation is of Hodge-Tate
type. The easiest case of Hodge-Tate type representations is `-ordinary repre-
sentations. Let us explain this case more. We write N` for the `-adic cyclotomic
character for each prime `. Then N = {N`}` is a strictly compatible system
of `-adic characters with coefficients in Q. Let ρ = {ρl} be a two dimensional
strictly compatible system of Galois representations with coefficients in a number
field T of Gal(E/E) for an algebraic closure E of E. Suppose that ρl ramifies
only at finitely many places of E and is absolutely irreducible. In other words,
ρl ramifies possibly at a finite set S of primes of E (independent of l) and primes
dividing the residual characteristic ` of l. The minimal set S as above is called
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the ramification set of primes for ρ. Let ` be the rational prime in l (the residual
characteristic of l). We call ρl `-ordinary if for any prime L|` of E, ρl restricted
to the decomposition group at L is isomorphic to an upper triangular representa-
tion

( εL ∗
0 δL

)
with δL unramified. In the `-ordinary case, εL = N k−1

` over an open
subgroup of the inertia group IL for a positive integer k, and the Hodge–Tate
weight of ρ is given by (0, (k − 1)IE).

For σ ∈ ∆, extend σ to an element σ̃ ∈ Gal(F/E) and define ρσ
l (g) = ρl(σ̃gσ̃−1)

for g ∈ Gal(F/F ). Then the isomorphism class of ρσ
l is independent of the choice

of the extension σ̃, and ρσ = {ρσ
l }l is another strictly compatible system of

Galois representations. Writing ` for the residual characteristic of l, we have well
defined prime-to–` Artin conductor C(`)(ρl) of ρl (as we recall the definition in
the proof of Lemma 4.4). The p-primary part of C(`)(ρl) for a prime p 6= ` is
independent of l. Define C(ρ) by the least common multiple of {C(`)(ρl)}l. If
ρσ ∼= ρ, C(ρ)σ = C(ρ). If ρl extends to a Galois representation ρE,l of Gal(F/E)
into GL2(TE,l) for a finite extension TE/T for one prime l, ρ extends to a strictly
compatible system of Galois representations ρE (with coefficients in TE) which
has ρE,l as a member (see [Kh1] Section 2 and Lemma 4.2 in the text). The
representation ρl extends to a representation ρE,l if and only if the obstruction
class Ob(ρl) ∈ H2(∆, T×l ) vanishes ([MFG] Theorem 4.35), where ∆ acts trivially
on Tl.

Here is a conjecture generalizing the one by Shimura–Taniyama:

Conjecture 4.1. Let ρ be a strictly compatible system of absolutely irreducible
representations of the Galois group Gal(F/E) with det ρ = N k−1χ for k > 0
and a finite order Hecke character χ : E×

A /E× → Q×. Suppose that ρl is either
`-ordinary for at least one prime l or motivic of weight κE = (0, (k−1)IE). Then
if det(ρ)(c) = −1 for all complex conjugation c ∈ Gal(F/E), ρ is associated to a
cuspidal automorphic representation of GL2(EA) of conductor C(ρ) and of central
character χ| · |2−k

A whose component at each infinite place is in the holomorphic
discrete series of weight k if k ≥ 2 and is the limit of holomorphic discrete series
if k = 1.

The Galois representation of a holomorphic Hecke eigenform is motivic if either
k ≥ 3 or [F : Q] is odd ([B] and [BR]). If k = 2, we always have a prime l splits in
F/E for which a given f is l-ordinary. If k = 1, a modular Galois representation
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is an Artin representation (by a result of Deligne-Serre), it is motivic. Thus the
conjecture covers all weight k ≥ 1. If ρl is ordinary at l or motivic, ρl has `-adic
Hodge-Tate type with weight HT = {0 ≤ k − 1}L for split primes L|` in E (by
our assumption). If we assume that ρ is motivic, the conjecture can be stated
without ordinarity condition for the Hodge-Tate weight κ = (κ1, κ2) (which is
not necessarily of the form (0, (k − 1)IE)).

By the potential modularity by Taylor of mod p representations ([T1]; see
Lemma 4.2) and by the modular lifting theorem in [W] (see also [DFG]), Serre’s
mod p modularity conjecture for k ≥ 2 implies the above conjecture for E = Q
(see [Kh3] Section 6). For k = 1, as was pointed out by Serre, Serre’s conjecture
implies the strong form of Artin’s conjecture [Se]; so, the case k = 1 is also known
for E = Q.

Let F/E be a finite Galois extension with Galois group ∆. Let ρl : Gal(F/F ) →
GLn(Q`) be an absolutely irreducible Galois representation. For δ ∈ ∆, extend
it to δ̃ ∈ Gal(F/E), and define ρδ

l (σ) = ρl(δ̃σδ̃−1). The isomorphism class of ρδ
l

only depends on δ (e.g., [MFG] 4.3.5).

Lemma 4.2. Let F/E be a finite totally real Galois extension with simply 2-
connected Galois group ∆. Assume ρ = {ρl}l to be a strictly compatible sys-
tem as in Conjecture 4.1 of 2-dimensional absolutely irreducible l-adic Galois
representations invariant under ∆ (that is, ρδ ∼= ρ for all δ ∈ ∆) and that
det(ρ) = {det(ρl)}l extends to a strictly compatible system χN k−1 = {χlN k−1

` }l

(of l-adic characters) of Gal(F/E) for a finite order character χ. If k ≥ 2,
there exists a unique strictly compatible system ρE = {ρE,l}l extending ρ with
det(ρ) = χN k−1.

Proof. More generally, we start with n-dimensional strictly compatible system
ρ. If ρδ

l
∼= δl for all δ ∈ ∆, as is well known (e.g., [MFG] 4.3.5), we can asso-

ciate a unique obstruction class Ob(ρl) ∈ H2(∆,Q×` ), where ∆ acts trivially on
Q×` . Then Ob(ρl) = 0 if and only if ρl extends to a continuous representation
ρ̃l : Gal(F/E) → GLn(Q`). All other extensions of ρl to Gal(F/E) (if one ρ̃l ex-
ists) are of the form ρ̃l⊗ϕ for a character ϕ : ∆ → Q×` (see [MFG] Theorem 4.35).
If det(ρl) extends to Gal(F/E), we have n · Ob(ρl) = 0 in H2(∆,Q×` ), because
Ob(det(ρl)) = n ·Ob(ρl) (see [MFG] proof of Lemma 5.32). Thus if n = 2, Ob(ρl)
is in H2(∆,Q×` )[2], which is a surjective image of H2(∆, µ2) (see Lemma 7.3).
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Assume n = 2. By the simple 2-connectedness of ∆, we find Ob(ρl) = 0 for all l,
and ρl extends to a Galois representation ρ̃l of Gal(F/E) into GL2(Q`). Taking
the determinant, det(ρ̃l) is an extension of det(ρl). Thus det(ρ̃l) = χlN k−1

` ϕ

for a character ϕ ∈ Hom(∆,Q×` ) = H1(∆,Q×` ). By the simple 2-connectedness,
H1(∆, µ2) = 0, which implies H1(∆,Q×` )[2] = 0 by Lemma 7.3. Thus the mul-
tiplication by 2 is an automorphism of Hom(∆,Q×` ), and we can find a unique
ψ ∈ Hom(∆,Q×` ) with ψ2 = ϕ. The ρE,l = ρ̃l⊗ψ−1 is an extension of ρl with de-
terminant χlN k−1

` . By the uniqueness of ψ as above, the extension ρE = {ρE,l}l

with det ρE = χN k−1 is unique.

To prove the strict compatibility when k ≥ 2, we may assume that ρl⊗ϕ 6∼= ρl

for any Galois character ϕ of Gal(F/E), because otherwise, ρ = IndF
M φ for a

compatible system φ of characters of a quadratic extension M/F (an in that
case, results follows from class field theory). By [T2], if one can find a prime l

with ` ≥ max(k, 5) such that ρl mod l has nonsoluble image and a totally real
finite extension F ′/F inside F unramified at ` (over Q) such that ρl mod l is
associated to a Hilbert Hecke eigenform on GL2(F ′

A), then there exists a holo-
morphic automorphic representation π′ of weight k such that the associated strict
compatible system ρπ′ is isomorphic to ρ|Gal(F/F ′). The existence of such F ′ was
proven in [T1] if F = Q, and it is generalized to general F by C. Virdol assuming
that k ≥ 2, and also it is proven that F ′ can be chosen to be a Galois exten-
sion over Q in [V] Theorem 2.1. By the independence of weight of the universal
nearly ordinary Hecke algebra of level Np∞ (cf. [H88] and [H89a]), residual mod-
ularity of weight 2 forms implies residual modularity of higher weight modular
forms. Thus by [T2], we can find an automorphic representation π′ on GL2(F ′

A)
as above. Hereafter we follow [Kh1] Section 2 to prove strict compatibility of
ρE . By [SBT] Theorem 4.2 (d), for any subfield L ⊂ F ′ with soluble Galois
group Gal(F ′/L), one can find an automorphic representation πL on GL2(F ′′

A)
such that ρπL |Gal(F/F ′)

∼= ρ. We can write the trivial character 1 of Gal(F ′/E) as∑
j mj IndE

Lj
χj for integers mj (virtual multiplicity) by an argument of Artin–

Brauer for abelian Galois characters χj of Gal(F ′/Lj) for intermediate fields
E ⊂ Lj ⊂ F ′ with soluble Gal(F ′/Lj). Then we have a virtual identity

ρE,l
∼=

∑

j

mjρ⊗ IndE
Lj

(χj ⊗ ρπLj
,l),

which shows the strict compatibility of ρE because ρπLj
is strictly compatible. ¤
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Write P for a prime factor of rational prime p in O. We put p = P∩OE , and
we write Dp (resp. DP) for the decomposition group of p (resp. P) in Gal(F/E)
(resp. Gal(F/F )). We take Dp so that Dp ⊃ DP.

Lemma 4.3. Let the notation and the assumption be as in Lemma 4.2. Suppose

(1) for a prime P - `, ρl|DP
∼=

(
η1,P ∗

0 η2,P

)
for characters ηj,P : DP → Q`;

(2) ηj,P extends to a character Dp → Q×` ;
(3) if P ramifies over p, either η1,P 6= η2,P or ρl|DP

is not semi-simple or
Dp/DP does not have dihedral, tetrahedral or octahedral quotient.

Then ρE,l|Dp
∼=

(
η1,p ∗
0 η2,p

)
for one of the extensions ηj,p of ηj,P. If P is unramified

over p, the restriction of ηj,p to the inertia group Ip of p is determined by ηj,P

(j = 1, 2).

Proof. The last assertion follows from the fact that IP = Ip if P is unramified
over p.

Since ρ extends to a compatible system of representations of Gal(Q/E) with
given determinant, ϕ = ρl|Dp extends φ = ρl|DP

. We may assume that φ is upper

triangular of the form
(

φ1 ∗
0 φ2

)
. Then for σ ∈ Dp, we have

(
φσ

1 (g) ∗
0 φσ

2 (g))

)
= ϕ(σgσ−1) = ϕ(σ)

(
φ1(g) ∗

0 φ2(g)

)
ϕ(σ)−1

for φσ
j (g) = φj(σgσ−1). Thus Dp acts on {φ1, φ2}. Let D1 be the stabilizer

of φ1 in Dp. Then there are two possibilities, Case 1: D1 = Dp and Case 2:
[Dp : D1] = 2. In Case 2, ϕ = ρl|Dp

∼= IndDp

DP
φ1 is irreducible and φj does not

extends to Dp; so, by our assumption (2), we are in Case 1. If φ1 6= φ2 or φ

is not semi-simple, ϕ has to be upper triangular, and we get the desired result.
Thus we may suppose that φ1 = φ2 and φ is semi-simple. In this case, ϕ is either
upper triangular or a factor of IndDp

DP
φ1 = ϕ1 ⊗ IndEp

FP
1 for an extension ϕ1 of

φ1. If P is unramified over p, Dp/Dp is an abelian cyclic group, and IndDp

DP
φ1 is

the sum of characters. Thus ϕ must be reducible. Suppose that P ramifies over
p, φ1 = φ2 with semi-simple φ and that ϕ is irreducible. Then IndEp

FP
1 contains

an irreducible factor ϕ′ such that ϕ ∼= ϕ1 ⊗ ϕ′. The image ϕ′(Dp) modulo center
is either a dihedral, tetrahedral or octahedral group, because Dp is soluble. The
dihedral, tetrahedral or octahedral image is prohibited by our assumption. ¤



Serre’s Conjecture and Base Change for GL(2) 105

Lemma 4.4. Let the notation and the assumption be as in Lemmas 4.2 and 4.3.
For a prime P - ` of O, suppose ρl|IP

has infinite image. Then we have

(1) ρE,l|Dp
∼=

(
ηN` ∗
0 η

)
for a character η : Dp → Q×` ;

(2) η2 = (χlN k−2
` )|Dp;

(3) ρE,l|Dp is not semisimple.

Proof. We first recall the definition of the conductor ideal 0 < C(ϕ) of O of
a general strictly compatible system ϕ = {ϕl}l of two-dimensional Galois rep-
resentations of Gal(F/E) with coefficients in a number field T . We write the
p–primary part of the ideal C(ϕ) as cp(ϕ). Let p be the residual characteristic of
p. This ideal cp(ϕ) = pe can be determined by choosing a prime ideal l prime to
p and looking at the restriction of ϕl to the inertia group of Ip. We take cp(ϕ) to
be the Artin conductor given in [GME] (5.2) if ϕl(Ip) is finite.

We would like to show that the definition of cp(ϕ) is independent of the choice
of l (assuming the finiteness of ϕl(Ip)). Let q be another prime of E outside p.
Let S be the finite set of ramified primes of ϕ. Let GF be the Galois group of
the maximal extension of F unramified outside S and `q for (`) = l ∩ Z and
(q) = q ∩ Z.

Let I1 be the wild inertia subgroup of Ip. Since I1 is p–profinite (see [MFG]
3.2.5), ϕl(I1) is finite for all l prime to p (see [MFG] Lemma 2.19). Take σ ∈ I1.
Since ϕl(σ) and ϕq(σ) are of finite order, these two matrices are semi-simple.
Take τ sufficiently close to σ in G so that for a given positive integer N

P1(X) = det(X − ϕl(σ)) ≡ det(T − ϕl(τ)) = Q1(T ) mod lN and

P2(X) = det(X − ϕq(σ)) ≡ det(X − ϕq(τ)) = Q2(T ) mod qN

Since the eigenvalues of ϕq(σ) and ϕl(σ) are all in µM for sufficiently large in-
teger M , if we take N large, the characteristic polynomial of τ determines all
eigenvalues of the two polynomials Pj(T ). By the Chebotarev density theorem,
we can take τ = Frobx for a prime x unramified for both ϕl and ϕq. Then by
compatibility, Q1(T ) = Q2(T ) and hence P1(T ) = P2(T ); so, ϕl(σ) and ϕq(σ)
have the same characteristic polynomial. Since ϕl(I1) and ϕq(I1) are both finite,
we now know that the two representations factoring through a finite quotient of
I1 are semi-simple and have the same trace. This tells us the two representations
of I1 are equivalent over any algebraically closed field containing El and Eq (cf.
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[MFG] Corollary 2.8), and the conductor defined for ϕl|Ip and ϕq|Ip are equal.
Thus cp(ϕ) is well defined independently of l - p. In particular, if ϕl is unramified
at p, then cp(ϕ) = 1.

We now show that ϕl(Ip) is finite if and only if ϕl|Ip is semi-simple. We quote
the following facts from [MFG] 3.2.5: Dp = φẐ n Ip; Ip = Ẑ(p) n I1 for the p–
profinite group I1 (the wild inertia group) and a lift of Frobenius element φ; the
element φ acts on Ip/I1 by φσφ−1 = σP for P = NF/Q(p) = |O/p|.

By the above formulas, we may regard G/Ip as a subgroup of G. Then by
φσφ−1 = σP , the set of eigenvalues {ζ, ξ} of ϕl(σ) for σ ∈ Ip/I1 has to sat-
isfy {ζP , ξP } = {ζ, ξ}. Thus they are in µP 2−1, and hence the abelian group
ϕl((Ip/I1)P 2−1) is contained in a unipotent subgroup of GL2(El). If the restric-
tion of ϕl to Ip is semi-simple, ϕl has finite image over Ip. In particular, if
ϕl(I1) has non-central element, its normalizer is a normalizer of a torus; so, ϕl is
semi-simple, and ϕl has finite image on Ip.

Suppose that ϕl has infinite image on Ip. Then by the above argument, ϕl(I1)
is central, and we may assume to have σ ∈ Ip/I1 such that ϕl(σ) is non-trivial
upper unipotent matrix. Then again by φσφ−1 = σP , ϕl(φ) is a diagonal matrix
having two eigenvalues with ratio P . Since the image under ϕl of Ip/I1 is abelian,
we conclude that on G

ϕl(σ) ∼=
(
N`η ∗
0 η

)

for a character η : Dp → T×l . By local class field theory, we may regard η as a
character of F×

p . Then we define the conductor C(η) of η by the minimal power
pe such that x ≡ 1 mod pe ⇒ x ∈ Ker(η). Then, we define cp(ϕ) = C(η)2 if
C(η) ( O and cp(ϕ) = p if C(η) = 1. We can easily check by strict compatibility,
this definition does not depend on the choice of l.

Applying the above argument to the strictly compatible system {ρE,l}l of repre-
sentations of Gal(F/E) extending the given one {ρl}l of Gal(F/F ) in the lemma,
we get the desired assertion. ¤

Suppose the conditions (df) and (dd) in Section 2. Thus Σst 6= ∅ contains
all primes ramified in F/E, and Σst is made up of all primes above d(BE).
In particular, any ∆-invariant automorphic representation of G(F (∞)

A ) is one-
dimensional at primes dividing d(BE). We write MP

F (εF ) for the set of isomor-
phism classes of projective compatible systems of modular Galois representations
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associated to irreducible infinite dimensional automorphic representations gener-
ated by elements of MF (εF ). The local representation ρl|DP

is then isomorphic

to
(

η2,P ∗
0 η1,P

)
, and we can order the two characters ηj,P so that ηj,P = εj,P

on the inertia subgroup IP ⊂ Gal(Q/F ), where we regard εj,P as Galois char-
acter by local class field theory (see [HMI] Theorem 2.43). Thus εp is deter-
mined by εP for primes P unramified in F/E. For primes P ramified in F/E,
they are in Σst, and hence ρl|Dp is determined by ρl|DP

up to character twists
by Lemma 4.4. In other words, ρf = ρf ′ as elements of MP

F (εF ) for Hecke
eigenforms if and only if they are isomorphic each other as representations into
PGL(2). Since the (Langlands dual) L-group of SL(2) is PGL(2), by Lemma 2.1
and Corollary 2.2, we know that Spec(hE′(εE′)(C) ∼= MP

E′(εE′) as Gal(F/E′)-
sets for any intermediate extension F/E′/E (cf. [ARL] and [BCG] Chapter 1).
Again by Langlands’ functoriality (cf. [ARL]), for any soluble subgroup ∆′ =
Gal(F/E′) of ∆ = Gal(F/E), we have MP

F (εF )∆
′ ∼= MP

E′(εE′) because any pro-
jective representation of Gal(F/F ) invariant under Gal(F/E′) extends to a pro-
jective representation of Gal(F/E′). Since MP

E′(εE′) ∼= Spec(hE′(εE′))(C) and
|Spec(hE′(εE′))(C)| = dim hE′(εE′) = |SE′(εE′)|, we get the identity of general-
ized permutation characters: θSF

= θSpec(hF (εF )(C) from Lemma 3.3 if we have
base change relative to F/E′ for all intermediate fields E′ between F and E and
Σst contains a sufficiently big prime of E which totally splits in M̃∅/E for the
number field M̃∅ in Proposition 3.4 for S = ∅ (to make sure the assumptions of
Lemma 3.3 are met). Since base-change exists when F/E is soluble (see [BCG]),
we get

Proposition 4.5. Choose a prime q of E which totally splits in M̃∅/E for the
number field M̃∅ in Proposition 3.4 for S = ∅. Suppose (dd), (df) and that
q ∈ Σst. If F/E is a soluble Galois extension of totally real fields, then SF (εF ) ∼=
Spec(hF (εF ))(C) as Gal(F/E)-sets.

5. Base change

Since a proof of Serre’s conjecture has been announced by Khare–Wintenberger
([KW] and [KW1]) and Kisin [Ki] for general mod p 2-dimensional odd Galois
representations, Conjecture 4.1 will be valid for π as in Theorem 1.1 (once their
proofs are confirmed). In any case, Serre’s mod p modularity conjecture implies
Conjecture 4.1 for E = Q, and to prove Theorem 1.1, we therefore need to deduce
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the existence of the base-change π̂ assuming Conjecture 4.1 and Conjecture 1.2.
We shall do this slightly more generally for the totally real (finite) Galois exten-
sion F/E in place of F/Q in Theorem 1.1. Though Theorem 1.1 is formulated
as an existence theorem for base-change, the method employed is actually a de-
scent as sketched in the introduction. This relative setting is important, because
we hope to implement a series of descent to remove redundant assumptions of
Theorem 1.1. If we have an intermediate Galois extension F/E/Q and an auto-
morphic representation Π of G(FA) invariant under Gal(F/Q). Suppose we can
make descent of Π to an automorphic representation πE of G(EA) so that Π is a
base-change of πE to F (in other words, Π descends to πE). In order to continue
this process to descend further πE to G(A), we need to guarantee the invariance
of πE under Gal(E/Q). If πE with a given compatible (Galois invariant) Neben
character is uniquely determined by Π, this Galois invariance of πE follows from
that of Π. The importance of simply 2-connectedness of Gal(F/E) comes from
this point. As indicated in the remark (3) following Theorem 1.3, even for qua-
dratic descent (the simplest case of the failure of simply 2-connectedness), this
uniqueness of descent often fails; so, we need to impose many conditions including
the 2-connectedness in our main result Proposition 5.2 in this section, and this is
the main obstacle to removing the restrictive assumptions of Theorem 1.1 even if
we have a 2-extension F ′/F which is simply 2-connected over Q (Theorem 1.3).
We write ∆ = Gal(F/E).

We start with the simplest case of base change. We choose a prime q of E

which totally splits in M̃∅/E for the number field M̃∅ in Proposition 3.4 for
S = ∅. Choose a finite set Σ of primes of E such that |Σ| ≡ [E : Q] mod 2 and
Σ contains q. Take the definite quaternion algebra B/E = BΣ exactly ramify-
ing at Σ. As in the introduction, we fix a quadruple εE = (ε1,E , ε2,E , εE+, ε−E)
of finite order characters unramified at Σ of U0(c(ε−E)d(B)) ⊂ G(E(∞)

A ). We
write εF for the pullback of εE to groups with coefficients in F . We con-
sider the space ME(εE) of automorphic forms on G(EA) as in the introduction,
which is the space of functions on G(E)\G(E(∞)

A ) with values in C satisfying
f(xzu) = εE+(z)εE(u)f(x) for u ∈ U0(c(ε−E)d(B)) and z ∈ Z(E(∞)

A ). If ε−E is
trivial and εE+ is a square, ME(εE) has a nontrivial subspace EE(εE) made up of
functions factoring through the reduced norm map N : G(E(∞)

A ) → (E(∞)
A )×. For

f, g ∈ ME(εE), f(x)g(x) (for complex conjugate g(x) of g(x)) factors through
ShE(ε) = G(E)\G(E(∞)

A )/U0(c(ε−E)d(B)), and 〈f, g〉 =
∑

x∈SE(ε) f(x)g(x) is a
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positive definite non-degenerate hermitian form. We write SE(εE) for the or-
thogonal complement of EE(εE). We also write HE(εE) for the subalgebra
of EndC(ME(εE)) generated by Hecke operators UxU for x ∈ G(E(∞)

A ) with
xl = 1 if l|c(εE,1)c(εE,2)d(BE). Then HE(εE) is a semi-simple commutative al-
gebra and HE(εE) ∼= ME(εE) as HE(εE)-modules. For any quadratic character
χ : Ô×

E → {±1}, we can think of χεE made up of {χε1,E , χεE,2, εE+, ε−E}. As long
as xUZ(E(∞)

A ) ∩ G(E) = Z(E) (U = U0(c(ε−E)d(BE))) for all x ∈ G(E(∞)
A ), the

space ME(χεE) has dimension equal to |ShE(εE)| = |ShE(χεE)|, which is inde-
pendent of χ (because ShE(εE) only depends on ε−E). Write D for the relative
discriminant of F/E. Thus OD = lim←−n

O/Dn and OE,D = lim←−n
OE/Dn.

Remark 5.1. Suppose that F/E is simply 2-connected. We consider the set of
compatible systems of Galois representations ME(εE) associated to each point
Spec(HE(εE))(C). If the quadratic character χ as above is trivial on NF/E(Ô×) in
Ô×

E , for ρ ∈ ME(χε), the local ramification data of ρF := ρ|Gal(Q/F ) is described
by εF . Thus if base-change exists, we have the restriction map Res : ME(χεE)t
ME(εE) → MF (εE) sending ρ to ρF . We now ask

is this map one-to-one?

If χ extends to a global quadratic character χE : E×
A /E× → C, denoting again by

χE the quadratic character of Gal(Q/E), χE remains nontrivial over Gal(Q/F )
because ∆ = Gal(F/E) does not have quadratic characters (H1(∆, µ2) = 0).
Write M/E for the quadratic extension in Q fixed by Ker(χE). Since χE is trivial
over NF/E(Ô×), the Galois character χF = χE |Gal(Q/F ) is everywhere unramified
quadratic. Note here that if ρ ∈ ME(εE), ρ⊗χE is in ME(χεE). So unless we have
ρ ∼= ρ⊗χE (that is, ρ is an induced representation from Gal(Q/M)), we conclude
ρF 6∼= ρF ⊗ χF . In other words, Res is injective on the subset of representations
not induced from Gal(Q/M). Anyway Res : ME(εE) → MF (εF ) is injective. If
we cannot extend χ to a global quadratic Hecke character, we expect that Res :
ME(χεE) t ME(εE) → MF (εE)∆ is injective; so, Res : ME(εE) → MF (εE)∆

cannot be surjective onto MF (εF )∆. Note that the condition (df) implies that
the index [Ô×

E : NF/E(Ô×)] is odd (see the following lemma); so, under (df),
we will not have any quadratic χ factoring through Ô×

E/NF/E(Ô×). Thus this
explains the fact that SE(εE) → SF (εF ) is injective, but without assuming (df),
it may not be surjective onto SF (εF )∆ in view of Conjecture 1.2. Anyway, to
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remove the assumption (R2) from Theorem 1.1 ((R2) is (df) for E = Q), we need
a more careful analysis of the ∆-sets SF (εF ) and MF (εF ).

Lemma 5.1. Suppose a prime P of F ramifies over a prime p of E. If P is a
factor of d(BF ) and ρ is associated to a Hecke eigenform in SF (εF ) invariant un-
der ∆, then ρl|DP

(P - `) extends to a unique representation ρl|Dp representation

isomorphic to
(

ηN` ∗
0 η

)
up to isomorphism for an unramified character η of Dp

with η2 = χl|Dp. If Σst contains all primes ramified in F/E, [O×
E,D : NF/E(O×

D)]
is odd.

Proof. By Lemma 4.4, we have an extension of ρl|DP
to Dp as above, and

η2 = χl|Dp . By this equality, if there exists another extension ρ′l|Dp of ρl|DP
,

it is isomorphic to
(

η′N` ∗
0 η′

)
, and (η/η′)2 = 1. Since η/η′ factors through

Gal(FP/Ep), if it is not trivial, FP contains a quadratic extension M/Ep. Then
B ⊗E M ∼= M2(M), and hence BP = B ⊗E FP

∼= M2(FP) contradicting against
our assumption that BP is a division algebra. Thus η = η′ and the extension is
unique.

The group
O×E,p

NFP/Ep (O×p )
is isomorphic to the inertia subgroup of Gal(FP/Ep).

As seen above, there is no quadratic extension of Ep inside FP, [O×
E,p : NF/E(O×

p )]
has to be odd. This shows the last assertion. ¤

Proposition 5.2. Let the notation and the assumption be as above. Suppose
Conjectures 2.6 and 4.1 for F/E and the following conditions

(1) κ = (0, IE);
(2) ∆ = Gal(F/E) is simply 2-connected;
(3) q|d(BE) for the prime q we have chosen above Remark 5.1;
(4) if a prime l|d(BF ), then l|d(BE) (that is, the condition (dd));
(5) if a prime l ramifies in F/E, l|d(BF ) (that is, the condition (df)).

Let ρf be the two dimensional compatible system associated to a Hecke eigenform
f ∈ SE(εE). Then we can find a Hecke eigenform f̂ on SF (εF ) such that the
compatible system of Galois representations associated to f̂ is isomorphic to the
restriction of ρf to Gal(F/F ). This correspondence f 7→ f̂ gives rise to a bijection
(up to scalar multiple) between the set of Hecke eigenforms in SE(εE) and the set
of ∆-invariant Hecke eigenforms in SF (εF ).
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Proof. We first assume that ε−F 6= 1. We consider MF (εF ). By the existence
of q ∈ Σst, we have xUZ(F (∞)

A ) ∩ G(F ) = Z(F ) for all x ∈ G(F (∞)
A ). Thus by

Lemma 3.3, we get SE(εE) ↪→ SF (εF )∆ and

(5.1) |SE(εE)| ≤ |SF (εF )∆|.
Thus by Conjecture 2.6, we get Spec(hF (εF ))(C)∆ ∼= SF (εF )∆. For each com-
patible system associated to λ ∈ Spec(HF (εF )(C)∆ extends to a unique strictly
compatible system of representations of Gal(F/E) with determinant εE+N . Since
ρl|Dp

∼=
(

η2,p ∗
0 η1,p

)
and ηj,p|Ip gives rise to εE,j,p, if P/p is unramified, εE,j,p is

uniquely determined by εF,P. By the above lemma, even if P ramifies in F/E,
by the assumption (5), εE,j,p is determined by εF,j,P. Thus εF uniquely de-
termines εE . Thus if we write MF (εF ) for the set of isomorphism classes of
compatible systems associated to each points of Spec(HF (εF ))(C), by Conjec-
ture 4.1 and Lemmas 4.3, Lemma 4.4 and 5.1 combined, we have an injection
MF (εF )∆ ↪→ ME(εE). Thus we have

(5.2) |MF (εF )∆| ≤ |ME(εE)|.
For each irreducible automorphic representation π of

G = G(F )G1(F
(∞)
A )U0(c(ε−F )d(BF ))Z(F (∞)

A )

associated to a point of Spec(hF (εF ))(C), we may regard π, by π(σ, g)φ(x) =
φ(xσg), as a representation of (σ, g) ∈ ∆ n G for the semi-direct product G′ :=
∆nG under the natural Galois action of ∆ onG. Since ∆nG is a normal subgroup
of G′0 := ∆ n G(F (∞)

A ) with quotient group ClF /Cl2F , by the same argument as

in the proof of Lemma 2.3 studying IndG
′
0
G′ π instead of IndG0

G π in the proof of
Lemma 2.3, we can extend π to a ∆-invariant irreducible representation of G′0,
and if one fix its extension Π to G(F (∞)

A ) invariant under ∆ with central character
εF+, all other extensions invariant under ∆ are given by Π ⊗ αF for quadratic
characters αF of the strict class group ClF of F . By class field theory using the
assumption H1(∆, µ2) = 0, all such characters invariant under ∆ are of the form
αF = α ◦NF/E for a character α of E×

A /E×
+ trivial over NF/E(Ô×) (and at most

quadratic on Ô×
E). Since Ô×

E/NF/E(Ô×) ∼= O×
E,D/NF/E(O×

D) which has odd order
(Lemma 5.1), α has to be unramified everywhere.

Once a compatible central character εF+ is given, any automorphic represen-
tation π of G generated by a Hecke eigenform in M(1)

F (εF ) extends to an auto-
morphic representation Π of G(F (∞)

A ) generated by an element of MF (εF ), and
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the set of all extension of π is given by {Π⊗α}α:ClF /Cl2F→{±1}, where α runs over
all characters of ClF /Cl2F . Therefore |{Π⊗α}∆

α:ClF /Cl2F→{±1}| = |(ClF /Cl2F )∆| =
|ClE/Cl2E | = 2e. Thus we have

|MF (εF )∆| = 2e|Spec(hF (εF ))(C)∆| = 2e|SF (εF )∆|
by Conjecture 2.6. Thus we have from (5.1)

|MF (εF )∆| ≥ 2e|SF (εF )∆| ≥ 2e|SE(εE)| = |ME(εE)|.
Then (5.2) shows that MF (εF )∆ ∼= ME(εE) as desired.

Now assume that ε−F = 1. This implies that εF+|Ô× = ε2
1. If εF is not a square

character on F
(∞)
A /F×

+ , functions in MF (εF ) (resp. ME(εE)) cannot factors
through the reduced norm map. Then the argument is the same as above. Thus
we may assume that εF+ is a square character on F

(∞)
A /F×

+ . Write εF+ = η2
F for a

Hecke character η = ηF . Then (ησ−1)2 = εσ−1
F+ = 1 for σ ∈ ∆, and σ 7→ ησ−1 gives

a 1-cocycle of ∆ with values in the group generated by η (which is isomorphic
to µ2), and by the triviality of H1(∆, µ2), ηF has to be ∆-invariant, and hence
ηF = ηE ◦NF/E by the triviality of H2(∆, µ2). Thus we have MX(εX) ∼= MX(1)
(X = E, F ) for the trivial character 1 by f 7→ f(x)η−1

X (N(x)). Thus we may
assume that εX = 1. In the same manner as in the case ε−F 6= 1, we get

(5.3) |Spec(HF (1F ))(C)∆| = 2e|Spec(hF (1F ))(C)∆|
= 2e|SF (1F )∆| ≥ 2e|SE(1E)| = |Spec(HE(1E))(C)|.

Let HF be the Hecke algebra for SF (1F ). Since the Hecke algebra of EF (1F ) is
isomorphic to the group algebra C[ClF /Cl2F ], we have HF

∼= HF ⊕ C[ClF /Cl2F ].
Note that

Spec(C[ClF /Cl2F ])(C)∆ = Hom(ClF /Cl2F , µ2)∆ = Spec(C[ClE/Cl2E ])(C)∆,

because (O×
E,D : NF/E(O×

D)) is odd. This combined with (5.3) shows

|MF (1)∆| = |Spec(HF )(C)∆| = |Spec(HE)(C)| = |ME(1)|.
This finishes the proof. ¤

6. Proof of Theorem 1.1

By means of p-adic Galois deformation theory ([F]), we remove the assumption:
q|d(BE) from Proposition 5.2. This finishes the proof of Theorem 1.1.
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Let π be as in Theorem 1.1 with compatible system ρ = ρπ. Let Σ0 be the
set of rational primes at which BQ ramifies. Since ε = εQ has values in W , we
can think of the space MB

Q(εQ;F) of functions f : G(Q)\G(A) → F satisfying
f(xzu) = ε+(z)ε(u)f(x) for z ∈ Z(A(∞)) and u ∈ U0(c(ε−)d(BQ)). We call such
functions mod p automorphic forms. Choosing prime p well, we may assume
that the Artin conductor of ρ = ρ mod mW and ρF = ρ|Gal(Q/F ) is equal to
the conductor of ρ and ρF . Write C = C(π) for the Artin conductor of ρ (thus
C = c(ε−)d(BQ)). We may also assume that ρF is absolutely irreducible over
Gal(Q/F [µp]).

We pick a prime p of T with residual characteristic p. We extend p to a p-
adic place p of Qp. Then we find a set Σ1 ⊃ Σ0 of primes ` for each integer
n > 0 such that ` ∈ Σ1 −Σ0 splits totally in the splitting field of ρp mod p over
M̃∅ and |Σ1| = |Σ0| + 2. Let B1 be the definite quaternion algebra ramified at
exactly at the places in Σ1. Then by the level raising argument of Taylor (cf.
[T] and [HMI] 3.1.4) applied to the quaternion algebra B, we can find a Hecke
eigenform f1 in MB1

Q (εQ) with p-adic Galois representation ρ1 unramified outside
C1 and Steinberg exactly at Σ1 such that ρp ≡ ρ1 mod mW . Indeed, the elliptic
cusp form f1 associated to ρ1 has level C1 = C

∏
`∈Σ1−Σ0

` and has the same
Neben character εQ mod mW . The semi-simplification of ρ1|Iq for q|C outside
Σ1 is a direct sum of two distinct characters, and f1 lifts to a mod p Hilbert
normalized eigenform f̂1 on the Shimura variety of GL2(FA) by Proposition 5.2
combined with the Jacquet-Langlands correspondence over F (see [H05]). Since
f̂1 is Steinberg at Σ1 ⊃ Σ0, choosing further well Σ1 (and p), we can make level
lowering (see [J], [J1] and [F1]; the result of Jarvis is sufficient for our purpose
as explained in [F1] Lemma 4.1) and find a Hecke eigenform f̂0 of level equal to
the conductor C(ρF ) of ρF such that f̂1 ≡ f̂0 mod mW .

By the Galois deformation theory of Taylor-Wiles and Fujiwara ([F]), the Ga-
lois representation ρF is associated to a Hilbert modular Hecke eigenform f̂ (con-
gruent to f̂0 modulo mW ). Indeed, by our choice of p, we are in the minimal case
treated in [HMI] 3.2.4 if [F : Q] is even, and in this case, by [HMI] Theorem 3.28,
we find f̂ . If [F : Q] is odd, we can use the quadratic base-change and then qua-
dratic descent to find f̂ as described in [HMI] Section 3.3 (or just by the Galois
deformation theory over the odd degree field carried out in [F]).
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Again by the Jacquet-Langlands correspondence, we can find f̂B ∈ MB
F (εF )

associated to the Galois representation ρF (as asserted in Theorem 1.1). ¤

Remark 6.1. The above argument can be also started with empty Σ0 taking
a everywhere principal elliptic Hecke eigenform f of weight 2 using the level
optimization of everywhere principal automorphic forms (see [F1]).

7. Simply 2-connected groups

A (finite) group ∆ is called simply connected in [Mr] if for every central exten-
sion 1 → A → E π−→ ∆ → 1 of ∆ by any abelian group A, there exists a unique
homomorphism ϕ of ∆ to E with π ◦ ϕ = id. The group ∆ is simply connected
if and only if H1(∆,Q/Z) = H2(∆,Q/Z) = 0 (see [Mr] Lemma 1.1). One of
the main results in [Mr] Section 1 is that if H1(∆,Q/Z) = 0 (⇔ [∆,∆] = ∆),
there exists a unique simply connected covering group π : E ³ ∆ with abelian
Ker(π). The group Ker(π) is called the fundamental group of ∆ and is written
as π1(∆). It is known that H2(∆,Q/Z) ∼= Hom(π1(∆),Q/Z) canonically ([Mr]
Theorem 1.1). Any central covering F ³ ∆ with H1(F ,Q/Z) = 0 is covered
canonically by E ³ F and π1(F) ⊂ π1(∆) ([Mr] Lemma 1.6), and in this sense,
E ³ ∆ is universal.

A large class of nonsoluble groups ∆ is simply connected. Plainly any finite
group of odd order is simply 2-connected (though each odd order group is sol-
uble by Thompson’s theorem; so, Langlands’ theory in [BCG] applies to such
a case). As we mentioned already, for any split simply connected simple linear
algebraic groups G1 (Chevalley groups), G1(Fq) satisfies this condition if q > 3
(except for SL2(F9); see [St] and [St1] Theorem 1.1). If H1(∆, µ2) = 0, there is
a unique simply 2-connected central extension ∆̃ ³ ∆ with finite kernel π1(∆)2.
If H1(∆,Q/Z) = 0, the fundamental 2-group π1(∆)2 is the 2-part of the funda-
mental group of ∆ introduced [Mr], and it is a finite abelian 2-group in general.
It is a classical result of I. Schur [Sch] that the alternating group An (n ≥ 5)
is not simply connected with π1(An) ∼= Z/2Z except for n = 6, 7 (for n = 6, 7,
π1(An) ∼= Z/6Z). Thus, by Theorem 1.3, for any totally real An-extension F0/Q,
there exists a totally real quadratic extension F of F0 with simply 2-connected
Gal(F/Q) (in particular, if n = 5 and Gal(F0/Q) = A5

∼= PSL2(F5), we have
Gal(F/Q) ∼= SL2(F5)). For simple finite groups ∆, π1(∆) is completely deter-
mined (see [G1]) and is the Schur multiplier group of ∆ in the terminology of
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[G1]. For example, the monster is simply connected, but the baby monster has
π1 isomorphic to Z/2Z.

We would like to localize the theory of [Mr] at the prime 2 (our theory is valid
actually at any prime p, but we only need the theory at 2). We call a finite
group ∆ simply 2-connected if for every central extension 1 → A → E π−→ ∆ → 1
of ∆ by an abelian 2-group A, there exists a unique homomorphism ϕ of ∆
to E with π ◦ ϕ = id. A finite group ∆ is simply 2-connected if and only if
H1(∆,T2) = H2(∆,T2) = 0 for T2 = Q2/Z2 =

⋃
n 2−nZ/Z (see [Mr] Lemma

1.1).

Proposition 7.1. Suppose that H1(∆,Z/2Z) = 0 (so, H1(∆,T2) = 0). Then
there exists a unique central extension 1 → B → E → ∆ → 1 by a finite abelian
2-group B such that Hj(E ,Z/2Z) = Hj(E ,T2) = 0 for j = 1, 2 (that is, E is
simply 2-connected).

We write the group B as π1(∆)2 and call it the fundamental 2-group. We also
call the group E the universal 2-covering of ∆. If H1(∆,Q/Z) = 0, as in [Mr]
Section 1, we have the fundamental group π1(∆), and in this case, π1(∆)2 is the
2-primary part of π1(∆).

Proof. We first show the uniqueness. We follow the proof of a similar fact for
“simply connected extensions” in [Mr] Lemma 1.2. Suppose we have two exten-
sions πi : Ei → ∆ (i = 1, 2) satisfying the property of the proposition. Let Ai,
be the kernel of the projection πi, and let αi ∈ H2(∆, Ai) be the class of the
extension. We inflate αi to a class in H2(E2, A1) by means of the projection π2.
We then have a central extension

1 → A1 → E12
p2−→ E2 → 1

of E2 by A1. By hypothesis we can find a unique homomorphism ϕ of E2 into
E12 with p2 ◦ ϕ = id. Since the class of the extension E12 is the inflation to E2

of the class of the extension E1 of ∆, there is a homomorphism β of E12 onto
E1 such that π1 ◦ β = π2 ◦ p2. Now let ψ = β ◦ ϕ, which is a homomorphism
of E2 into E1; then π1 ◦ ψ = π ◦ (β ◦ ϕ) = (π2 ◦ p2) ◦ ϕ = π2 by the above,
and so ψ is a homomorphism of group extensions. We reverse the indices and
construct a homomorphism ψ′ of group extensions from E2 to E1. Then ψ′◦ψ = γ

is a homomorphism of group extensions from E1 to itself. Then γ(x)x−1 is an
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element of A1 and since A1 is central this is a homomorphism of E1 into A1 which
is therefore trivial since the commutator subgroup [E1, E1] and E2

1 = {x2|x ∈ E1}
generate E1. Thus γ(x) = x. One proves similarly that (ψ ◦ψ′)(y) = y for y ∈ E2.
Thus E1 and E2 are isomorphic as group extensions.

We now construct a simply 2-connected extension. We follow the proof given
by [Mr] Lemma 1.3 for simply connected extensions. Let L be the Z2-free module
generated by objects a(x, y), x, y ∈ ∆×∆. Let R be the subgroup (topologically)
generated by the elements a(st, r)a(s, t)a(s, tr)−1a(t, r)−1 and a(1, s) and a(s, 1)
for all s, t, r ∈ ∆. Put B0 = L/R, and let β(s, t) be the image of a(s, t) in
this quotient group. Since ∆ is a finite group, L is a Z2-module of finite type,
and hence B0 is a compact Z2-module of finite type. Then it is clear that β as a
function from ∆×∆ to B0 is a 2-cocycle of ∆ with values in the trivial ∆-module
B0. Let E0 be the group extension of ∆ by B0 defined by β; E0 = B0 × ∆ as
sets and (a, g)(b, h) = (abβ(g, h), gh) is the multiplication. Now suppose that F

is any central extension of ∆ by an abelian 2-profinite group D. We choose a
normalized cocycle γ representing this extension and view F as D ×∆ with the
multiplication defined just as above. Here

(7.1) the normalization means γ(1, ∗) = γ(∗, 1) = 1.

Consider now the mapping ψ1 from L to D given by ψ1(a(s, t)) = γ(s, t) on the
generators. It is clear from the fact that γ is a normalized cocycle that ψ1(R) = 1,
and hence ψ1 defines a homomorphism ψ0 of B0 into D with ψ0(β(s, t)) = γ(s, t).
In view of the definition of the group law in E0 and F , one sees that ψ0 extends to
a homomorphism of group extensions, again denoted by ψ0, of E0 into F . Thus E0

has the first part of the universal property required for simple 2-connectivity. Now
let E be the subgroup of E0 generated topologically by the commutator subgroup
[E0, E0] and E2

0 = {x2|x ∈ E0}. Since ∆ is generated by [∆,∆] and ∆2 = {x2|x ∈
∆}, the projection of E onto ∆ is all of ∆ so that E is a group extension of ∆:
1 → B → E → ∆ → 1 where B = B0 ∩ E . Now E0 = B0 · E with B0 central so
that 〈[E , E ], E2〉 = 〈[E0, E0], E2

0 〉 = E , and thus H1(E ,T2) = H1(E ,Z/2Z) = 0. If
F is any central extension of ∆ by a 2-profinite abelian group D, we saw that
there exists a homomorphism ψ0 of group extensions of E0 into F . Thus ψ, the
restriction of ψ0 to E , is also a homomorphism of group extensions. In terms
of cohomology, this says exactly that the inflation homomorphism H2(∆, D) →
H2(E , D) is the zero map for every trivial 2-profinite ∆-module D. In particular,
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H2(∆, 2−nZ/Z) Inf−−→ H2(E , 2−nZ/Z) is the zero map. Since the formation of
cohomology group commutes with injective limit,

(7.2) the inflation map H2(∆,T2) → H2(E ,T2) is the zero map.

We contend now that E is simply 2-connected, and to do this, it suffices to
show that H2(E ,T2) = 0. In view of the Hochschild-Serre spectral sequence for
the group extension E of ∆ by B, we have the following commutative diagram
with exact rows (cf. [ECH] Appendix B):

H2(∆,T2)
i−−−−→ Ker(H2(E ,T2) → H2(B,T2)) −−−−→ H1(∆,H1(B,T2))

‖
y ‖

y
y‖

E2,0
2 −−−−→ E2

1 −−−−→ E1,1
2 .

We show first that the E1,1
2 term, H1(∆,H1(B,T2)), is zero. But this group is

zero since H1(B,T2) is a trivial ∆-module killed by 2 and ∆ is generated by [∆,∆]
and ∆2. If Ker(H2(E ,T2) → H2(B,T2)) = H2(E ,T2), i is the inflation map,
which is the zero map as we have already shown in (7.2). Then one must show
that the restriction homomorphism r : H2(E ,T2) → H2(B,T2) is the zero map.
This is contained in the following lemma (Lemma 7.2 similar to [Mr] Lemma 1.4),
and H2(E ,T2) = 0. Since H2(E ,T2) = 0, by the long exact sequence associated
to the short one: Z/2Z ↪→ T2

2×−−→ T2, we have 0 = H1(E ,T2) → H1(E ,Z/2Z) →
H2(E ,T2) = 0 is exact, and hence H2(E ,Z/2Z) = 0.

Since H2(E ,T2) = 0, by the inflation restriction sequence (and the Hochschild-
Serre spectral sequence), we have the following exact sequence:

0 = H1(E ,T2) → H0(∆,H1(B,T2))

→ H2(∆,T2) → Ker(H2(E ,T2) → H2(B,T2)) = 0,

which shows H1(π1(∆)2,T2) = H0(∆,H1(B,T2)) ∼= H2(∆,T2) canonically by
the transgression map. Since H2(∆,T2) is the Pontryagin dual group of H2(∆,Z2),
π1(∆)2 = B is a finite group, and hence E is a finite group. ¤

Lemma 7.2. If a profinite group E is topologically generated by [E , E ] and E2 and
B ⊂ E is any central 2-subgroup, then the restriction homomorphism H2(E ,T2) →
H2(B,T2) is the zero map.
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Proof. Let α ∈ H2(E ,T2) and F be the corresponding extension of E by T2. If
s ∈ E and t ∈ B, let s′ and t′ be representatives of s and t in F . Then the
commutator [s′, t′] depends only on s and t, and we denote it by ϕ(s, t). We note
that ϕ is a bilinear map from E × B into T2, and since E is generated by [E , E ]
and E2, ϕ(s, t) = 1.

Now let F ′ be the inverse image of B in F . Since ϕ = 1, F ′ is an abelian
2-group. Then F ′ is an extension of B by T2. Since T2 is Z2-injective, this
extension splits, and this says that the restriction of α to B is the trivial class as
desired. ¤

We add one more cohomological lemma. Let ∆ be a finite group. We study
H2(∆, k×) for an algebraically closed field k of characteristic 0. Here ∆ acts
trivially on k×.

Lemma 7.3. Let k be an algebraically closed field of characteristic 0. Then we
have Hj(∆,Q/Z) ∼= Hj(∆, k×) for j > 0. If Hj(∆,Z/2Z) = 0 for j > 0, we have

Hj(∆,Q/Z)[2] = Hj(∆, k×)[2] = 0,

where ∆ acts trivially on the modules appearing in the above statements.

Proof. We consider the exact sequence of the trivial ∆-modules: 0 → Z/2Z ↪→
Q/Z 2×−−→ Q/Z→ 0 and the corresponding cohomology exact sequence:

0 → Hj−1(∆,Q/Z)⊗Z Z/2Z→ Hj(∆,Z/2Z) → Hj(∆,Q/Z)[2] → 0.

From this, we conclude that Hj(∆,Z/2Z) = 0 ⇒ Hj(∆,Q/Z)[2] = 0.

We now consider the following exact sequence of trivial ∆-modules:

0 → Q/Z exp−−→ k× → U → 1.

By definition, U is uniquely divisible; so, Hj(∆, U) = 0 for all j > 0. In particu-
lar, we have Hj(∆,Q/Z) ∼= Hj(∆, k×). ¤

8. Embedding problems of a universal 2-covering group

Let E be a totally real number field of finite degree. Let F0/E be a finite totally
real Galois extension with Galois group ∆0. Suppose that H1(∆0,Z/2Z) = 0.
We shall show that there exists a totally real Galois extension F/E containing
F0 such that Gal(F/E) → ∆0 is the 2-universal covering.
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We define F ′/F0 to be the maximal totally real 2-extension of F0. The Galois
group Gal(F ′/F0) is a 2-profinite group. We pick a Galois extension E′/E inside
F ′ containing F0. Write ∆′ = Gal(E′/E), G′ = Gal(F ′/E′) and G = Gal(F ′/E).
Thus we get an exact sequence 1 → G′ → G → ∆′ → 1. Then by Hochschild–
Serre spectral sequence, we get the following exact sequence:

0 → H1(∆′, µ2) → H1(G, µ2) → H0(∆′,H1(G′, µ2)) → H2(∆′, µ2)

Inf−−→ Ker(H2(G, µ2) → H2(G′, µ2)).

For each normalized 2-cocycle c : ∆0 → µ2 (see (7.1) for normalization), de-
fine the algebra structure on D = F0[∆0] by δaδ−1 = δ(a) for a ∈ F0 and
δ · δ′ = c(δ, δ′)δδ′. In this way, we get a central simple algebra over E whose class
in the Brauer group Br(E)[2] = H2(Gal(F 0/E), µ2) is the inflated image of c. By
Merkurjev’s theorem, elements in H2(Gal(F 0/E),Z/2Z) ∼= H2(Gal(F 0/E), µ2) =
Br(E)[2] is generated by the classes of quaternion algebras. Thus inflated image
is trivialized over a (2, . . . , 2)-extension M of E. Since there are infinitely many
choices of splitting field of a given quaternion algebra, there are infinitely many
choices of M . Indeed, for a quaternion algebra B/E , any field M embeddable into
B splits B. Since M is embeddable into B if and only if Mv/Ev is a quadratic
extension for all places v of E ramified in B, we can impose ramification condition
of M/E freely for any given finite set of places of E unramified in B. Since c get
trivialized over Gal(F 0/F0) and F0 is totally real, it is trivialized over a totally
real (2, . . . , 2)-extension of E. Thus we have proven

Lemma 8.1. We can choose finitely many quaternion algebras B1/E , . . . , Bj/E

such that

(1) Brauer classes of B1/E , . . . , Bj/E in Br(E)[2] ∼= H2(Gal(F 0/E), µ2) gen-
erate a subgroup containing the inflated image Im(Inf) of H2(∆0, µ2);

(2) Bj splits at all real places of E.

Lemma 8.2. Let L be a Galois extension of E in F ′ containing F0. Then we
have Hj(Gal(L/E), L×+) = Hj(Gal(L/E), L×) if j ≥ 1. Here Galois cohomology
group is a continuous cohomology with respect to the Krull topology on Gal(L/E)
and discrete topology on the Galois modules.
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Proof. We first assume that L/E is a finite extension. We have the following
exact sequence:

1 → L×+ → L× π−→ F2[Gal(L/E)][E:Q] → 0

of Gal(L/E)-modules, where L×+ is the subgroup of totally positive elements in
L×. Indeed, the set ∞L of infinite places of L is isomorphic to Gal(L/E)[E:Q]

as Gal(L/E)-set, and π(ξ) =
∑

v∈∞L

1−σv(ξ)/|σv(ξ)|
2 v for the field embedding σv :

L ↪→ R associated to each real place v. The long exact sequence associated to the
above short one tells us Hj(Gal(L/E), L×+) = Hj(Gal(L/E), L×) if j ≥ 2, since
Hj(Gal(L/E),F2[Gal(L/E)]) = 0 for j > 0.

If j = 1, we find

1 → E×
+ → E× π−→ F[E:Q]

2 → H1(Gal(L/E), L×+) → H1(Gal(L/E), L×) → 0

is exact, and π is surjective. Thus again we conclude

H1(Gal(L/E), L×+) = H1(Gal(L/E), L×) = 0.

The general result follows taking the injective limit, because

Hj(Gal(L/E), X) = lim−→
L′/E

Hj(Gal(L′/E), X)

for finite Galois extensions L′/E inside L for discrete Galois modules X (see
[MFG] Corollary 4.26). ¤

Lemma 8.3. We have H2(Gal(F ′/E), µ2) = H2(Gal(F ′/E),T2) = 0, and the
cohomology group H2(Gal(F ′/E), F ′×) is uniquely 2-divisible.

Proof. Let L = F ′ and ∆′ = Gal(L/E). Since Hj(∆′, L×+) ∼= Hj(∆′, L×) by the
morphism induced by the inclusion and L×+ = (L×)2, Hj(∆′, L×) is 2-divisible.

Indeed, L× 2×−−→ L×+ ↪→ L× induces a surjection H2(∆′, L×) 2×−−→ H2(∆′, L×) by
the above lemma, and at the same time, we get H2(∆′, µ2) = H2(∆′, L×)[2]. Thus
H2(∆′, L×)[2] = Br(L/E)[2] is generated by quaternion algebras by a result of
Merkurjev and Suslin (see [MeS] and [Me]). These quaternion algebras are splits
over the totally real field L, and therefore they are split in a totally real quadratic
extension of L, but L does not have any totally real quadratic extension. Thus
we find Br(L/E)[2] = 0, which show H2(∆′, µ2) = H2(∆′,F2) = 0. Since the
formation of the Galois cohomology commutes with injective limit, H2(∆′,T2) =
lim−→n

H2(∆′, 2−nZ/Z) which is 2-torsion module. We have an exact sequence
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0 = H2(∆′,F2) → H2(∆′,T2)
2×−−→ H2(∆′,T2). Thus the multiplication by 2 is

injective. This combined with 2-power torsion property of H2(∆′,T2) implies its
vanishing. ¤

Theorem 8.4. Let F0/E be a totally real Galois extension with ∆0 = Gal(F0/E).
Suppose that H1(∆0,Z/2Z) = 0. If E is the 2-universal covering of ∆0, then there
exists a totally real Galois extension F/E containing F0 such that Gal(F/E) ∼= E,
and in particular, Hj(Gal(F/E), µ2) = 0 for j = 1, 2 and F/F0 is a finite abelian
2-extension with Gal(F/F0) ∼= π1(∆0)2.

Proof. We proceed by induction on |π1(∆0)2|. If π1(∆0)2 is trivial, F0 = F and
there is nothing to prove.

We suppose that H2(∆0, µ2) 6= 0. By the above lemma, we can find a Galois
extension L0/E containing F0 inside F ′ such that H2(E ′0, µ2) = H2(E ′0,T2) = 0
for E ′0 = Gal(L0/E). Let T = T2 or µ2. We thus have an exact sequence
1 → B0 → E ′0 → ∆0 → 1. Let [B0, B0] be the closure in B0 of its commutator
subgroup, and put Bab

0 = B0/[B0, B0]. Since Bab
0 is a compact Z2[∆0]-module, we

may consider DBab
0 =

∑
σ∈∆0

(σ− 1)Bab
0 and B0,∆0 = Bab

0 /DBab
0 = H1(∆0, B

ab
0 ).

We define E1 = E0/DBab
0 and B1 = B0,∆0 . We have a central extension

1 → B1 → E1 → ∆0 → 1.

By the Hochschild-Serre spectral sequence applied to the extension: 1 → B0 →
E0 → ∆0 → 1, we have the following exact sequence

H0(∆0,H
1(B0, T ))

d0,1
2−−→ H2(∆0, T ) Inf−−→ Ker(H2(E0, T ) → H0(∆0,H

2(B0, T ))).

Since H2(E0, T ) = 0, the map: H0(∆0,H
1(B0, T ))

d0,1
2−−→ H2(∆0, T ) is surjective.

Note that H0(∆0,H
1(B0, T )) = H1(B0,∆0 , T ) = H1(B1, T ), and the map

H0(∆0,H
1(B1, T ))

d0,1
2−−→ H2(∆0, T )

is surjective. By the Hochschild-Serre spectral sequence applied to the extension:
1 → B1 → E1 → ∆0 → 1, we have the following exact sequence

H0(∆0,H
1(B1, T ))

d0,1
2−−→ H2(∆0, T ) Inf−−→ Ker(H2(E1, T ) → H0(∆0,H

2(B1, T ))),

and H2(∆0, T ) Inf−−→ H2(E1, T ) is the zero map. Then again by Hochschild-Serre,
Ker(H2(E1, T ) → H0(∆0,H

2(B1, T ))) ↪→ H1(∆0,H
1(B1, T )) is injective. Since
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∆0 acts trivially on B1 and hence on H1(B1, T ) = Hom(B1, T ), we have the van-
ishing H1(∆0,H

1(B1, T )) = 0 because H1(∆0,Z/2Z) = 0. Thus the restriction
map H2(E1, T ) Res−−→ H2(B1, T ) is injective because

Ker(H2(E1, T ) → H0(∆0,H
2(B1, T ))) ↪→ H1(∆0,H

1(B1, T )) = 0.

Now assume that T = µ2. Let E2 = E1/B2
1 and B2 = B1/B2

1 . Since

H0(∆0,H
1(B1, µ2)) = H0(∆0,H

1(B1/B2
1 , µ2)),

H2(∆0, µ2)
Inf−−→ H2(E2, µ2) is the zero map, and H2(E2, µ2)

Res−−→ H2(B2, µ2) is
injective. Let E3 be the subgroup of E2 topologically generated by [E2, E2] and E2

2 .
Then for B3 = B2 ∩ E3, we have an extension

1 → B3 → E3 → ∆0 → 1.

By construction, E3 is topologically generated by [E3, E3] and E2
3 , E3 ³ ∆0 is a

2-covering. In particular, B3 is a finite dimensional F2-vector subspace of B2,
and it has complementary direct summand B⊥

3 in B2 with B2 = B3 ⊕B⊥
3 . Then

E2
∼= E3 ×B⊥

3 . By Künneth formula (cf. [CGP] 0.8 and 5.8), we have

H2(E2,F2) ∼=
⊕

p+q=2,p≥0,q≥0

Hp(E3,F2)⊗Hq(B⊥
3 ,F2).

Via Pontryagin dual, we have

H2(E2,F2) ∼=
⊕

p+q=2

Hp(E3,F2)⊗Hq(B⊥
3 ,F2) ∼= H2(B⊥

3 ,F2)⊕H2(E3,F2).

Since this decomposition is compatible with the inflation map and the restric-
tion map, H2(∆0, µ2)

Inf−−→ H2(E3, µ2) is the zero map, and the restriction map
H2(E3, µ2)

Res−−→ H2(B3, µ2) is injective. Thus E3 → ∆0 is a nontrivial covering
(in the sense of [Mr] Section 1) because H2(∆0, µ2) is nontrivial. Thus B3 6= {1}.
In other words, if E ³ ∆0 is the 2-universal covering group, we have a surjective
homomorphism E → E3 making the following diagram commutative ([Mr] Lemma
1.6):

E onto−−−−→ E3y
y

∆0 ∆0.

Now E3 and ∆0 share the same 2-universal covering group E and E is a finite
group. Thus |π1(E3)2| = |π1(∆0)2|/|B3| < |π1(∆0)2|. Replacing F0/E by the
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Galois extension F1/E with Gal(F1/E) = E3, by the induction hypothesis, we
find a Galois extension F/E containing F1 such that Gal(F/E) = E . ¤
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2006.

[G] R. L. Griess, Jr., Schur multipliers of the known finite simple groups. Bull. Amer.

Math. Soc. 78 (1972), 68–71

[G1] R. L. Griess, Jr., Schur multipliers of the known finite simple groups. III. Proceedings of

the Rutgers group theory year, 1983–1984, 69–80, Cambridge Univ. Press, Cambridge,

1985

[H88] H. Hida, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. 128

(1988), 295–384.

[H89a] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv.

Studies in Pure Math. 17 (1989), 139–169.

[H89b] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables,

Proc. JAMI Inaugural Conference, Supplement to Amer. J. Math. (1989), 115–134.

[H05] H. Hida, The integral basis problem of Eichler, IMRN 2005 no.34, 2101–2122

[HM] H. Hida and Y. Maeda, Non-abelian base-change for totally real fields, Special Issue

of Pacific J. Math. in memory of Olga Taussky Todd, 189–217, 1997.

[J] F. Jarvis, Level lowering for modular mod l representations over totally real fields.

Math. Ann. 313 (1999), 141–160

[J1] F. Jarvis, Mazur’s principle for totally real fields of odd degree. Compositio Math. 116

(1999), 39–79.

[Kh] C. Khare, Serre’s modularity conjecture : The level one case. Duke Mathematical

Journal, 134 (2006), 557–589

[Kh1] C. Khare, On Serre’s modularity conjecture: a survey of the level one case, LMS lecture

notes series 320, 270–299

[Kh3] C. Khare, Modularity of Galois representations and motives with good reduction prop-

erties, J. Ramanujan Math. Soc. 22, (2007) 1-26

[Ki] M. Kisin, Modularity of 2-adic Barsotti-Tate representations, preprint, 2007 (available

at http://www.math.uchicago.edu/~kisin/preprints.html)

[KW] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (I), preprint, 2006

(available at http://www.math.utah.edu/~shekhar/papers.html)

[KW1] C. Khare and J.-P. Wintenberger, Serre’s modularity conjecture (II), preprint, 2006

(available at http://www.math.utah.edu/~shekhar/papers.html)

[LL] J.-P. Labesse and R. P. Langlands, L-indistinguishability for SL(2). Canad. J. Math.

31 (1979), 726–785

[Me] A. S. Merkurjev, Brauer groups of fields. Comm. Algebra 11 (1983), 2611–2624



Serre’s Conjecture and Base Change for GL(2) 125

[MeS] A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the

norm residue homomorphism. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982),

1011–1046 and 1135–1136

[Mr] C. Moore, Group extensions of p-adic and adelic groups, Publ. IHES 35 (1968), 157–

222

[Sc] L. L. Scott, Integral equivalence of permutation representations, In “Group theory”

(Granville, OH, 1992), 262–274, World Sci. Publishing, River Edge, NJ, 1993
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[St] R. Steinberg, Générateurs, relations et revêtements de groupes algébriques, 1962 Col-
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