ANTICYCLOTOMIC CYCLICITY CONJECTURE

HARUZO HIDA

ABSTRACT. Let F be an imaginary quadratic field. We formulate certain Gorenstein/local com-
plete intersection property of subrings of the universal deformation ring of an induced represen-
tation of a character of Gal(@/F). As an application, we prove cyclicity of the Iwasawa module
with an anti-cyclotomic branch character over Zy-extensions of F' under mild conditions.

Fix a prime p > 3. We have the following conjecture due to Iwasawa (cf. [CPI, No.62 and U3]):

Cyclotomic cyclicity conjecture: Let Qo /Q be the unique Zy-extension. Let Xy be the Ga-
lois group of the mazimal p-abelian extension everywhere unramified over Q(up-) on which com-
plex conjugation acts by £1. For an odd character v : Gal(Q(up=)/Qo) — pp—1(Zy), define
X_(¢) :=X_ ®Z,[Gal(Qupoe )/ Qoo )]0 Lp (the v-eigenspace of X ). Then identifying Gal(Q(up)/Q) =
Zy = pp—1 x I' and regarding X_ () as Zy|[[T']]-module naturally, if X_(¢) # 0, X_(¢) is pseudo
isomorphic to Zy[[T]/(fy) for a power series fy prime to pZy[[I]].

This conjecture asserts the cyclicity (up to finite error) of X_ (1) as an Iwasawa module. Under
the assumption that X = 0 (the Kummer—Vandiever conjecture), Iwasawa proved (along with his
main conjecture) pure cyclicity without finite pseudo-null error [CPI, No.48]. The fact p t fy is a
combination of the vanishing of the p-invariant of the Kubota—Leopoldt p-adic L-function (proven
by Ferrero-Washington) and the proof of Iwasawa’s main conjecture by Mazur—Wiles. There are
some results towards this conjecture via Galois deformation theory (e.g. [Ku93], [003], [Walb]
and [WE15]), relating it to Ribet’s proof of the converse of Herbrand’s theorem, Iwasawa main
conjecture, Sharifi’s conjecture, a generalized version of the Kummer—Vandiver conjecture (which
sometimes fails) and a conjecture of Greenberg.

Let F be an imaginary quadratic field inside a fixed algebraic closure Q of Q with discriminant
—D and integer ring O. Assume that the prime (p) splits into (p) = pp in O with p # p. Let
FZ/F be the anti-cyclotomic Z,-extension with Galois group I'_ := Gal(F/F); so, coc = o~ !
for complex conjugation ¢ and 0 € I'_ = Z,. Fix a Witt vector ring W = W(F) with finite
residue field F of characteristic p, and take a branch character ¢ : Gal(Q/F) — W*. Regard
it as a finite order idele character ¢ : F/F* — W>. Most of the time, we suppose that ¢ is
anticyclotomic; so, ¢(x¢) = ¢~1(z). For an anticyclotomic ¢, we always find a finite order character
@ of F)/F* such that ¢ = ¢~ for ¢~ given by ¢~ (z) = p(z)p(z¢)~* (e.g., [HMI, Lemma 5.31]).
However, controlling the conductor of ¢ is a difficult task. Consider the anticyclotomic Iwasawa

algebra W[[I'_]] = @nW[F,/F{L]. Let F(¢)/F be the abelian extension cut out by ¢ (i.e.,
F(¢) = @Kcrw)). Let Y~ be the Galois group of the maximal p-abelian extension unramified outside

p over the composite F._(¢) := F F(¢). When we impose total p°-splitting condition in addition to
unramifiedness outside p, we add subscript/superscript “sp” (i.e., we write Y, instead Y ~), though
often unramifiedness at p° implies splitting (see Proposition 7.1). Since Gal(F(¢)/F) acts on Y~
naturally as a factor of Gal(F(¢)/F), we have the ¢-eigenspace Y~ (¢) = Y~ Qg (cal(F(4)/F)}.¢
Zy(¢), where Zy(¢) is the W-free module of rank 1 on which Gal(F(¢)/F) acts via ¢.

Anticyclotomic cyclicity conjecture: Assume ¢ # 1 and that the conductor ¢ is a product of split
primes over Q. If the class number of F is prime to p and Y~ (¢) # 0, then the W[[['_]]-module
Y7 (@) is pseudo isomorphic to W[[L'_]]/(f;) as WI[[L'_]|-modules for an element f; € WI[I'_]|
prime to pW[[T_]].

We prove in this paper:
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Theorem A: Let the notation be as above. Assume that ¢ = @~ for the Teichmiiller lift ¢ of a
modulo p Galois character @ of prime-to-p conductor ¢, and let N = DNpq(c). Suppose

(h0) p > 3 is prime to N ;5 (I — 1) for prime factors | of N,

(h1) ¢ is prime to D, and Npq(c) is square-free (so, N is cube-free),

(h2) 7 : Gal(Q/F) — F* is unramified outside cp with Teichmiller lift ¢ (so, writing C(det(p))

for the conductor of det(p) for p := Indg @, we have N|C(det(p))|Np),

(h3) ¢~ has at least order 3,

(h4) ¢~ (Gal(Q,/Qy)) is not trivial,
If the class numbers of F and F(p~) are both prime to p, then the Iwasawa module Y~ (p~) is
isomorphic to W[[L_]|/(f;) as W[[l'-]]-modules for an element f; € W[[I'_]| prime to pW[[I'_]].

The proof of this theorem is technical, ring theoretic tools applied to a local ring of the big Hecke
algebra. To give an outline of our argument without going into technicality, let us state a theorem
which describe ring-theoretic properties of the Hecke algebra equivalent to anti-cyclotomic cyclicity
(i.e., without pseudo-null error) of Y~ (¢ 7). As a base ring of the Galois deformation theory, we take
the Witt vector ring flat over the p-adic integer ring Z,. Here C,, is the p-adic completion of a fixed
algebraic closure @, of Q, under its norm |- [, normalized so that |p|, = %. We identify the Iwasawa
algebra A = W{[I']] with the one variable power series ring W[[T]] by ' 3 v = (14p) — t = 1+T € A.
Take a Dirichlet character ¢ : (Z/NpZ)* — W*, and consider the big ordinary Hecke algebra h
(over A) of prime-to-p level N and the character 1) whose definition (including its CM components)
will be recalled in the following section. We just mention here the following three facts

(1) h is an algebra flat over A interpolating p-ordinary Hecke algebras of level Np"™+! of weight
k+ 1 > 2 and of character epw™* for the Teichmiiller character w, where € : Z; — Upr
(r >0) and k > 1 vary. If N is cube-free, h is a reduced algebra [H13, Corollary 1.3];
(2) Each prime P € Spec(h) has a unique (continuous) Galois representation pp : Gal(Q/Q) —
GLy(x(P)) for the residue field x(P) of P;
(3) pp restricted to Gal(Q,/Q,) (the p-decomposition group) is isomorphic to an upper trian-
gular representation whose quotient character is unramified.
By (2), each local ring T has a mod p representation p = pm, : Gal(Q/Q) — GLy(F) for the
residue field F = T/my. If p = Ind%@ for the reduction ® modulo p of ¢, we have an involution
o € Aut(T/A) such that copp = pp®yx for x := (M) For a subscheme Spec(A) C Spec(T) stable
under o, we put Ay := {z € A|o(z) = £x}. Then Ay C A is a subring and A_ is an A;-module.

Let Q be a finite set of rational primes in F//Q prime to Np. Let QT be the subset of primes in
@ split in F'. Write K¢ for the ray class field over F' of conductor €p™ [] geq+ 4 for € :=c¢Nc‘, and
let K /F (resp. K¢, ) be the maximal p-abelian anticyclotomic sub-extension of K¢ /F (resp. the
intersection of K with the ray class field over I of conductor €p[] o+ q). Put Hg = Gal(K, /F)
and Cg = Gal(KgQ/F). When @ is empty, we drop the subscript @ (so, H = Hy). Note here Hg =
Hg+ by definition. Moreover the fixed points Spec(T)°=! is known to be canonically isomorphic
to Spec(W][H]]), and Y~ (¢~) # 0 if and only if o is non-trivial on T (and hence T # W{[[H]]; see
Corollary 2.5). The ring T is reduced (if N is cube-free), and for the kernel I = T(0—1)T = Ker(T —
W{[H]]), the I-span X := I -Frac(A) in T @, Frac(A) is a ring direct summand X complementary
to Frac(W[[H]]). We write T™™ for the image of T in the ring direct summand X (and call it the
non-CM component of T). Plainly T"°™ is stable under o.

Theorem B: Let Spec(T) be a connected component of Spec(h) associated to the induced Galois
representation p = Indg P for the reduction @ modulo p of ¢ satisfying (U(p) mod mr) = pg(Frob,).
Suppose (h0-4) as in Theorem A. Then if the class number of F is prime to p, then the following
four statements are equivalent:
(1) The rings T*™ and TY™ are both local complete intersections free of finite rank over A.
(2) The ideal I = T(o0 —1)T C T*™ is generated by a non-zero-divisor § € T*™ with 6% € T5™
(i.e., 8 generates a free T"™-module T_), and T*™ = T4 [0] is free of rank 2 over TH™.
(3) The Iwasawa module Y~ (¢~ ) is cyclic over W[[I'_]].
(4) The Iwasawa module Y~ (¢~ w) is cyclic over W[[T'_]].

Under these equivalent conditions, the ring T is a local complete intersection.
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Write Clx for the class group of a number field X and put hx = |Clx| (the class number).
The condition p { hphp,-) could be an analogue of Iwasawa’s assumption X; = 0, and the
cyclotomic cyclicity and anti-cyclotomic cyclicity could be closely related (as pointed out to the
author by P. Wake). We may replace Y~ (¢7) in Theorem A by Y (¢7), as Y~ (¢~ ) = Y, (97 );
see Proposition 7.1).

We will prove the assertion (4) in Theorem B at the end of Section 6 and hence a slightly stronger
version of Theorem A (Theorem 6.3) asserting cyclicity over W[[H]] without assuming p t hp.
Therefore if p|hp, Y~ (¢) for ¢ = ¢, ¢~ w may not be cyclic over W[[I'_]] unless H = I'_. The fact
that f, in the conjecture is prime to pW/[[I'_]] follows from the vanishing of the p-invariant of the
anti-cyclotomic Katz p-adic L-function [H10] (and [EAI, Theorem 3.37]) and the proof of the main
conjecture by Rubin [Ru88], [Ru91], Tilouine [T89], Mazur [MT90] (and the author [HO6]).

A slightly stronger and detailed version of Theorem B will be proven as Theorem 5.4 (and Corol-
lary 2.5). In Section 7, we extend the cyclicity to non-anticyclotomic Z,-extensions of F' via Rubin’s
control theorem (see Corollary 7.4). The proof of equivalence of the assertion (4) and the rest of
Theorem 5.4 relies on a new type of the Taylor-Wiles system argument proving Theorem 4.10 in
Section 4 (and on the theory of relative dualizing modules of Grothendieck—Hartshorne-Kleiman
recalled in Section 10). The Taylor-Wiles system is made of the deformation rings R of p and the
corresponding local rings Tq of the Hecke algebras (of level Ng := N []  ¢) allowing ramification
at primes in @ (for a suitably chosen infinite sequence of finite sets @ of primes ¢ with ¢ =1 mod p;
see Section 4 and [TW95]).

Here is a sketch of the proof of the equivalence of (2) < (3) in Theorem B. For any commutative
ring A, we write Frac(A) for the total quotient ring of A (i.e., Frac(A) is the ring of fractions
inverting all non-zero-divisors of A). We simply write K for Frac(A). As is well known, under (h1),
Frac(T) can be decomposed as an algebra direct sum Frac(W[[H]]) ® X in a unique way. Write
T=™ for the projected image of T in X. Then we have I — T"°™, and via the deformation theoretic
technique of Mazur-Tilouine [MT90] (see also [H16, §6.3.6]), we show that Y~ (¢7) ®z [,-) W is
isomorphic to I/1? (by an old formula in [H86¢c, Lemma 1.1]). Assume that the class number hp of F'
is prime to p. Then the projection of H to I'_ is an isomorphism. By the proof of the anticyclotomic
main conjecture in [T89], [MT90] and [HO6], for the Katz p-adic L-function L, (¢~) with branch
character ¢~ giving the characteristic ideal of Y~ (¢ ™), we have W[[I'_]]/ (L, (¢7)) = T**"/I (which
also shows that the generator of I is a non zero-divisor of T™). Since I is principal generated by a
non-zero divisor, we have I/I? &= T"™ /I = W/[['_]]/(L, (¢~)), getting the anticyclotomic cyclicity
conjecture. If H — T'_ has non-trivial kernel (which implies p|hr), Theorem 5.4 tells us that
Y~ (¢7) ®z,[,-) W is not cyclic over W[[T'_]].

To reach (2) < (4) in Theorem B, following the techniques of [H98] and [CV03], we construct
an involution ¢ of T (Corollary 2.3). By Taylor-Wiles [TW95], T is known to be a local complete
intersection over A (so, is Gorenstein over A). Adding to the data of the Taylor—-Wiles system the

involution o coming from the twist by x = (w) , we argue in the same way as Taylor and Wiles did.

The limit ring R (the system produced) is a power series ring over A with the induced involution
o, and the ring R, fixed by involution is proven to be Gorenstein. By the theory of dualizing
modules/sheaves for Gorenstein covering X — Y (studied by A. Grothendieck [SGA 2.VI-V], R.
Hartshorne [RDD] and S. Kleiman [KI180]), this is close to the cyclicity of R_ = {x € Rlo(z) = —z}
over R4 (see Lemma 10.4), but we are bit short of proving it. Instead, we prove that the number of
generator of R_ over R, is actually given by the number of generators of Y~ (¢~ w) over W{[[I'_]]
via a refinement of the original Taylor-Wiles argument. Since T_ = {z € T|o(z) = —xz} is the
surjective image of R_, it is generated over T4 = {x € T|o(z) = x} by a single element which is a
generator of I, and essentially (4) < (2).

The Gorenstein-ness of the rings T4°™ and T"™ (i.e., (1)) implies (2) by Lemma 10.4 in the
theory of dualizing modules). The identity T"™/(6) = T} /(6%) = W[[H]]/(L, (¢~ )) tells us that
T4e™ and T"“™ are actually local complete intersections; so, (2) = (1).

The same ring theoretic analysis can be done for a real quadratic field F', as the conditions (h0—4)
do make sense for real F. We hope to come back to this problem for real quadratic fields in our
future work. An example of T # A given in [H85] is for F = Q[v/—=3], p = 13 and N = 3. This prime
13 is an irregular prime for Q[y/—3] in the sense of [H82] and in the list [H81, (8.11)]. Of course, as
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easily checked (from the numerical values given in [H85]) the equivalent conditions of the theorem,
and actually (the distinguished factor of) L, (¢7) is a linear polynomial in this case.

The condition (h3) implies an assumption for “R = T” theorems of Wiles et al [Wi95] and [TW95]:
(W) 7 restricted to Gal(Q/M) for M = Q[/(—1)®~1)/2p] is absolutely irreducible,

and the main reason for us to assume (h3) is the use of the “R = T” theorem for the minimal
deformation ring R of p (see Theorem 2.1) though we need this condition for some other purposes.
The condition (W) is equivalent to the condition that the representation 5 is not of the form Ind%f
for a character ¢ : Gal(Q/M) — F* by Frobenius reciprocity. The implication: (h3) = (W) follows
from [H15, Proposition 5.2]. Actually (W) also follows from the following condition:

(h5) @~ ramifies at a prime factor | V.

Indeed, if p = Ind%{ for another quadratic field K # F, by [H15, Proposition 5.2 (2)], KF is
uniquely determined degree 4 extension of Q by p, and the prime [/ in (h5) ramifies in KF/F as
Plr, = & @0, for the inertia group I; € Gal(Q,/Q;) with unramified ;. This is impossible if K = M
as only p ramifies in M/Q. Instead assuming (h5), we hope to eliminate the condition (h3) in our
future work. By (h2), writing ﬁ|Gal(@p /o, €@ 0 with 0 = Py unramified, we conclude from (h4)

(Rg) d # &

Here is a brief outline of the paper. In Section 1, we recall the theory of big ordinary Hecke
algebras, paying particular attention to the Hecke algebra h® of auxiliary Q-level used to construct
Taylor-Wiles systems and its CM components W[[Hg]] as their residue rings. In Section 2, we recall
the original R = T theorem proven by Taylor—Wiles, and in Section 3, we recall some technical details
of the Taylor-Wiles argument and prove that r_ = dimg Homyyr_j (Y~ (¢~ w),F) gives an upper
bound of the number of generators of R_ over Ry (see (3.9)). In Section 4, we prove a sufficient
condition for the local intersection property of the subring T4 of R = T fixed by the involution
o, employing the method of Taylor-Wiles adding the datum of the involution (Theorem 4.10). In
the following Section 5, we prove a finer version of Theorem B (Theorem 5.4), applying the result
of Section 4 to a residual representation induced from an imaginary quadratic field. By a Selmer
group computation, we show that the number r_ is equal to the number of such inert primes in @
and in turn is equal to the minimum number of generators of Y~ (¢ ™) over the Iwasawa algebra.
In Section 6, we prove r— < 1 via classical Kummer’s theory applied to units in F'(¢~) and hence
a finer version (Theorem 6.3) of Theorem A from Theorem B. In Section 7, we show by a control
theorem of Rubin that cyclicity of Y~ (™) implies cyclicity of the Iwasawa module over K with
branch character ¢~ and ¢~ w for any Zy,-extension K/F. In Section 8, we study CM irreducible
components when the class number of the CM imaginary quadratic field is divisible by p and shows
that the component is often far larger than the weight Iwasawa algebra A. In Section 9, we explore
the close relation of a generator of the ideal I and the adjoint p-adic L-function. In the final section,
we gather purely ring theoretic results on Gorenstein local rings and their duality theory used in the
proofs of our main results.

Throughout this paper, we write Q (resp. @p) for an algebraic closure of Q (resp. @Q,) and fix

embeddings @p & Q I, C. We write C,, for the p-adic completion of @p. A number field is a
subfield of Q by a fixed embedding. We assume p := {z € O : |z|, < 1}. For each local ring A4,
we write m4 for the maximal ideal of A. For any profinite abelian group G, we write W[G] for its
group algebra, and put W[[G]] = lim  W[G/H] for H running over all open subgroups of G so,
WI|G]] = WG] is G is finite. For a character ¢ : Gal(F(¢)/F) — W* and A = W, F, we put

(Clp(gy @z A)[¢] = {x € Clps) @z Alz™ = ¢(r)a for all € Gal(F(¢)/F)}.

The author would like to thank R. Greenberg and R. Sharifi. Greenberg pointed out the missing
hidden assumption (Rm) of Theorem A in the first draft of this paper by counter-examples pre-
sumably exist. Sharifi read the paper carefully and suggested many improvements. The author also
appreciates the comments on the results of the paper made by P. Wake.
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1. BiG HECKE ALGEBRA

We recall the theory of h to the extent we need. We assume that the starting prime-to-p level N
is as in (hl); in particular, N is cube-free and its odd part is square-free. We assume that the base
discrete valuation ring W flat over Z,, is sufficiently large so that its residue field F is equal to T/mr
for the maximal ideal of the connected component Spec(T) (of our interest) in Spec(h).

The base ring W may not be finite over Z,. For example, if we deal with Katz p-adic L-functions,
the natural ring of definition is the Witt vector ring W (F,) of an algebraic closure F, (realized in
C,), though the principal ideal generated by a branch of the Katz p-adic L-function descends to an
Iwasawa algebra over a finite extension W of Z,, (and in this sense, the reader may assume finiteness
over Zy of W just to understand our statement as it only depends on the ideal in the Iwasawa algebra
over W).

We consider the following traditional congruence subgroups
4 Lo(Np") :={y=(2}4) € SL2(Z)|c=0 mod Np"},

' Ty (Np") = {”y:(gg) e€To(Np"))|d=1 mod Np"}.

A p-adic analytic family F of modular forms is defined with respect to the fixed embedding i, :
Q < C,. We write |a|, (o € Q) for the p-adic absolute value (with |p|, = 1/p) induced by i,. Take
a Dirichlet character ¢ : (Z/Np"Z)* — W* with (p { N,r > 0), and consider the space of elliptic
cusp forms Sk41(To(Np™t1),9) with character ¢ as defined in [IAT, (3.5.4)].
For our later use, we pick a finite set of primes @) outside Np. We define
Lo(Q) :={y=(2Y) € SL2(Z)]c=0 mod g for all ¢ € Q},

Q) :={y=(2%) €lo(Q)]d=1 mod g for all ¢ € Q}.

Let Fg) be the subgroup of I'y(Q) containing I'1 (@) such that FO(Q)/Fg) is the maximal p-abelian
quotient of T'o(Q)/T'1(Q) = [[,cq(Z/qZ)*. We put

(1.3) Do =T nTo(Np"),

(1.2)

and we often write I'g for I'g , when r is well understood (mostly when r = 0,1). Then we put

(1.4) Aq = (To(Np") NTo(Q))/Tq.r,

which is canonically isomorphic to the maximal p-abelian quotient of T'g(Q)/T'1(Q) independent of
the exponent r. If @ = 0, we have I'q, = TI'o(Np"), and if ¢ # 1 mod p for all ¢ € Q, we have

['1(Ngp") C Tq,» = Lo(Ngp") for N := N[ cq 4-

Let the ring Z[¢)] C C and Z,[¢)] C Q, be generated by the values ¢ over Z and Zj,, respectively.
The Hecke algebra over Z[)] is the subalgebra of the C-linear endomorphism algebra of Sk1 (g, ¥)
generated over Z[y] by Hecke operators T'(n):

h=Z[Y)[T(n)ln=1,2,---] C Ende(Sk41(Tqr, ¥)),
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where T'(n) is the Hecke operator as in [IAT, §3.5]. We put

hQ,k,w/W = hk(FQ)T, P; W) =h Q7] w.

Here hi(Tg,r, ;W) acts on Sky1(T'g,r, 1; W) which is the space of cusp forms defined over W
(under the rational structure induced from the g-expansion at the infinity cusp; see, [MFG, §3.1.8]).
More generally for a congruence subgroup I' containing I'1 (Np"), we write hg (T, ¢; W) for the Hecke
algebra on I" with coefficients in W acting on Sk41 (T, ¢; W). The algebra hy (T, ¢; W) can be also
realized as W[T(n)ln = 1,2,---] C Endw (Sk+1(T,¢; W)). When we need to indicate that our
T(l) is the Hecke operator of a prime factor [ of Np", we write it as U(l), since T'(I) acting on a
subspace Sk11(To(N'), %) C Sk41(To(Np™), ) of level N'|Np prime to I does not coincide with U (1)
on Sy1(To(Np"), ). The ordinary part hq i y»/w C hqg i,y /w is the maximal ring direct summand
on which U(p) is invertible. If Q = 0, we simply write hy, ,,/w for hg i /. We write e for the
idempotent of hq j 4 /w, and hence e = lim,, U(p)™ under the p-adic topology of hq.k,p/w- The
idempotent e not only acts on the space of modular forms with coefficients in W but also on the
classical space Sk41(T'g.r, %) (as e descends from Siy1(Tg,r, w,@p) to Sk41(To.r, 1, Q). We write
the image M := (M) of the idempotent attaching the superscript “ord” (e.g., Sp=4)).

Fix a character ¢y modulo Np, and assume now ty(—1) = —1. Let w be the modulo p Teichmiiller
character. Recall the multiplicative group I' := 1+4pZ,, C Z; and its topological generator v = 1+p.
Then the Iwasawa algebra A = W([I']] = pinnW[F/Fpn] is identified with the power series ring
WI[T]] by a W-algebra isomorphism sending v € " to ¢t := 1+ T. As constructed in [H86a], [H86b]
and [GME], we have a unique ‘big’ ordinary Hecke algebra h® (of level T'q ). We write h for h?.

Since Np = DNp/q(c)p > Dp > 4, the algebra h® is characterized by the following two properties
(called Control theorems; see [H86a] Theorem 3.1, Corollary 3.2 and [H86b, Theorem 1.2] forp > 5
and [GME, Corollary 3.2.22] for general p):

(C1) hQ is free of finite rank over A equipped with T'(n) € h® for all 1 < n € Z prime to Np and

U(l) for prime factors [ of Np,
(C2) if k > 1 and €: Z) — ppe is a finite order character,

h9/(t — e(v)7*)h® 2 hg g ey (7 = 1 +p) for ¢y := how™*,
sending T'(n) to T'(n) (and U(I) to U(I) for [|Np).
Actually a slightly stronger fact than (C1) is known:

Lemma 1.1. The Hecke algebra h@ is flat over A[Ag] with h® /Ax,h@ = h? for the augmentation
ideal An, C A[Ag].

See [H89, Lemma 3.10] and [MFG, Corollary 3.20] for a proof. Hereafter, even if k < 0, abusing
the notation, we put hg ey, := h?/(t — €(7)7*)h® which acts on p-ordinary p-adic cusp forms of
weight k and of Neben character e;. By the above lemma, hg x ¢y, is free of finite rank d over
W[Aq] whose rank over W[Ag] is equal to ranky hy j ¢y, (independent of Q).

Since Ng is cube-free, by [H13, Corollary 1.3], h® is reduced. Let Spec(I) be an irreducible
component of Spec(h®?). Write a(n) for the image of T'(n) in I (so, a(p) is the image of U(p)).
If a point P of Spec(I)(Q,) kills (t — e(y)7*) with 1 < k € Z (i.e., P((t — e(y)7*)) = 0), we
call P an arithmetic point, and we write ep := ¢, k(P) := k > 1 and p"(") for the order of ep.
If P is arithmetic, by (C2), we have a Hecke eigenform fp € Spy1(I'q,r(p)+1,€¥x) such that its
eigenvalue for T'(n) is given by ap(n) := P(a(n)) € Q for all n. Thus I gives rise to a family
F = {fplarithmetic P € Spec(I)} of Hecke eigenforms. We define a p-adic analytic family of slope
0 (with coefficients in I) to be the family as above of Hecke eigenforms associated to an irreducible
component Spec(I) C Spec(h®?). We call this family slope 0 because |ap(p)|, = 1 for the p-adic
absolute value | - |, of @, (it is also often called an ordinary family). This family is said to be
analytic because the Hecke eigenvalue ap(n) for T'(n) is given by an analytic function a(n) on (the
rigid analytic space associated to) the p-profinite formal spectrum Spf(I). Identify Spec(I)(Q,) with
Homyy a5 (I, Q,) so that each element a € I gives rise to a “function” a : Spec(I)(Q,) — Q, whose
value at (P : I — Q,) € Spec(I)(Q,) is ap := P(a) € Q,. Then a is an analytic function of the

rigid analytic space associated to Spf(I). Taking a finite covering Spec(I) of Spec(I) with surjection

Spec(I)(Q,) — Spec(I)(Q,), abusing slightly the definition, we may regard the family F as being
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indexed by arithmetic points of Spec(I)(Q,), where arithmetic points of Spec(I)(Q,) are made up

of the points above arithmetic points of Spec(I)(Q,). The choice of T is often the normalization of I
or the integral closure of I in a finite extension of the quotient field of I.

Each irreducible component Spec(I) C Spec(h®) has a 2-dimensional semi-simple (actually abso-
lutely irreducible) continuous representation py of Gal(Q/Q) with coefficients in the quotient field of
I (see [H86b]). The representation pr restricted to the p-decomposition group D, is reducible with
unramified quotient character (e.g., [GME, §4.2]). As is well known now (e.g., [GME, §4.2]), py is
unramified outside Ngp and satisfies
(Gal) Tr(py(Frobr)) = a(l) (11 Np), pr((v*, Qpl) ~ (5 1) and pr(fp. Qp)) ~ (0 ap) ) »
where v = (1 +p)* = Y07 (3)p" € Z, for s € Zy and [z,Qy] is the local Artin symbol. As for
primes in ¢ € @, if ¢ =1 mod p and p(Frob,) has two distinct eigenvalues, we have

(Galy,) pi([2,Qq)) ~ (aqO(z> ﬁq(zz)) with characters ag and 3, of Q) for z € Q)

where one of ag and f§; is unramified (e.g., [MFG, Theorem 3.32 (2)] or [HMI, Theorem 3.75]). For
each prime ideal P of Spec(I), writing «(P) for the residue field of P, we also have a semi-simple
Galois representation pp : Gal(Q/Q) — GLa(k(P)) unramified outside Ngp such that Tr(pp(Froby))
is given by a(l) p for all primes I { Ngp. If P is the maximal ideal my, we write p for pp which is called
the residual representation of py. The residual representation p is independent of T as long as Spec(I)
belongs to a given connected component Spec(T) of Spec(h?). Indeed, Tr(pp) mod my = Tr(p) for
any P € Spec(T). If P is an arithmetic prime, we have det(pp) = Gpwkl/g for the p-adic cyclotomic
character v, (regarding ep and 1 as Galois characters by class field theory). This is the Galois
representation associated to the Hecke eigenform fp (constructed earlier by Shimura and Deligne)
if P is arithmetic (e.g., [GME, §4.2]).

A component I is called a CM component if there exists a nontrivial character y : Gal(Q/Q) — I*
such that pr = pr ® x. We also say that 1 has complex multiplication if I is a CM component. In this
case, we call the corresponding family 7 a CM family (or we say that F has complex multiplication).
If F is a CM family associated to I with py 2 py ® ¥, then x is a quadratic character of Gal(Q/Q)

which cuts out an imaginary quadratic field F', i.e., x = (ﬂ) Write I for the integral closure of

A inside the quotient field of I. The following three conditions are known to be equivalent:
(CM1) F has CM with py = py & (ﬂ) (& p1 = Indg X for a character X : Gal(Q/F) — IX);

(CM2) For all arithmetic P of Spec(I)(Q,), fp is a binary theta series of the norm form of F/Q;
(CM3) For some arithmetic P of Spec(I)(Q,), fp is a binary theta series of the norm form of F/Q.

Indeed, (CM1) is equivalent to py = Indg/): for a character A : Gal(Q/F) — Frac(I)* unramified
outside Np (e.g., [DHI98, Lemma 3.2] or [MFG, Lemma 2.15]). Since the characteristic polynomial
of pi(o) has coefficients in I, its eigenvalues fall in I; so, the character A has values in I* (see,

[H86¢, Corollary 4.2]). Then by (Gal), Ap = PoX: Gal(Q/F) — @; for an arithmetic P €

Spec(I)(Q,) is a locally algebraic p-adic character, which is the p-adic avatar of a Hecke character
Ap @ F/F* — C* of type Ag of the quadratic field F/g. Then by the characterization (Gal)
of pr, fp is the theta series with g-expansion Y Ap(a)q’V (9) where a runs over all integral ideals
of F. By k(P) > 1 (and (Gal)), F has to be an imaginary quadratic field in which p is split
(as holomorphic binary theta series of real quadratic field are limited to weight 1 < k = 0; cf.,
[MFM, §4.8]). This shows (CM1)=(CM2)=(CM3). If (CM2) is satisfied, we have an identity
Tr(pr(Froby)) = a(l) = x(I)a(l) = Tr(pr ® x(Frob;)) with x = (M) for all primes [ outside Np. By
Chebotarev density, we have Tr(pr) = Tr(p1®x), and we get (CM1) from (CM2) as py is semi-simple.
If a component Spec(I) contains an arithmetic point P with theta series fp as above of F/Q, either
I is a CM component or otherwise P is in the intersection in Spec(h?) of a component Spec(I) not
having CM by F and another component having CM by F (as all families with CM by F' are made
up of theta series of F' by the construction of CM components in [H86a, §7]). The latter case cannot
happen as two distinct components never cross at an arithmetic point in Spec(h®) (i.e., the reduced
part of the localization hIQD is étale over Ap for any arithmetic point P € Spec(A)(Q,); see [HMI,
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Proposition 3.78]). Thus (CM3) implies (CM2). We call a binary theta series of the norm form of
an imaginary quadratic field a CM theta series.

We describe how to construct residue rings of h? whose Galois representation is induced from a
quadratic field F (see [LFE, §7.6] and [HMI, §2.5.4]). Here F' is either real or imaginary. We write
¢ for the generator of Gal(F/Q) (even if F is real). Let ¢ be the prime-to-p conductor of a character
© as in Theorem B in the introduction (allowing real F). Put € = ¢n¢®. By (hl), ¢ is a square
free integral ideal of F' with ¢ + ¢ = O (for complex conjugation ¢). Since @ is outside N, @ is a
finite set of rational primes unramified in F/Q prime to €p. Let Q% be the subset in @ made up
of primes split in F'. We choose a prime factor q of ¢ for each ¢ € QT (once and for all), and put
Q= [[,co+ 9 We study some ray class groups isomorphic to Hg. We put €+ 1= C[] o+ ¢-
We simply write € for €. Consider the ray class group Cl(a) = Clp(a) (of F') modulo a for an
integral ideal a of O, and put
(1.5) Cl(eQ"p™) =lm Cl(cQ*p"), and Cl(€q+p™) = lim Cl(Cq+p").

—
T

On Cl(€g+p*>), complex conjugation ¢ acts as an involution.

Let Zg+ (resp. 3g+) be the maximal p-profinite subgroup (and hence quotient) of Cl(cQ*p>)
(resp. Cl(€q+p*)). We write Z (resp. 3) for Zy (resp. 3p). We have the finite level analogue Cg+
which is the maximal p-profinite subgroup (and hence quotient) of Cl(¢Q*p). We have a natural
map of (Oy x OF) into Cl(€q+p™) = lim Cl(Cq+p") (with finite kernel). Let Z,, = 3Q+/3C+1
(the maximal quotient on which ¢ acts by —1). We have the projections

T3+ = Zgo+ and T 1 3g+ —>Z§+

Recall p > 3; so, the projection 7~ induces an isomorphism 31Q;C ={z27%2z€3¢+} — Zg+- Thus
7~ induces an isomorphism between the p-profinite groups Z 7+ and 31%. Similarly, 7 induces

3Q+ = Zo+. Thus we have for the Galois group Hg as in the 1ntroduct10n
(1.6) L Zov = Zg, = Hg

by first lifting 2 € Zg+ to Z € 3o+ and taking its square root and then project down to m~ (z1/2) =
Z(1=¢)/2_ Here the second isomorphism Zg+ = Hgq is by Artin symbol of class field theory. The
isomorphism ¢ identifies the maximal torsion free quotients of the two groups Zg+ and Z o+ which
]] which is

we have written as I'_. This ¢ also induces W-algebra isomorphism W{[Zg+]] = W[[Z,,
again written by .
Let ¢ be the Teichmiiller lift of @ as in Theorem B. Recall N = Np/q(¢)D. Then we have a unique

continuous character ® : Gal(Q/F) — W/[[Zg+]] characterized by the following two properties:

(1) @ is unramified outside ¢QTp,

(2) ®(Froby) = p(Froby)[] for each prime [ outside Np and QF, where [I] is the projection to

Zg+ of the class of [ in Cl(¢QTp®).

When F'is real, all groups Zg+, Z,, and Hg are finite groups; so, W([Zg+]] = W([Zg+] for example.
The character @ is uniquely determined by the above two properties because of Chebotarev density.
We can prove the following result in the same manner as in [H86¢, Corollary 4.2]:

Theorem 1.2. Suppose that p(Froby) # @(Frobge) for all q|Q". Then we have a surjective A-
algebra homomorphism h@" — W[[ZQ+]] such that

(1) T(1) = (1) + D(1¢) if I = U with [ # [° and | { No+p;

(2) T(I) = 0 if | remains prime in F' and is prime to Ng+p;

(3) U(q) — @(q°) if q is a prime ideal with q|Q*"¢;

(4) Ulp) — ®(p°).

If F is real, the above homomorphism factors through the weight 1 Hecke algebra hQ+/(tpm — l)hQ+
for a sufficiently large m > 0.

The last point of the morphism factoring through the weight 1 Hecke algebra is because theta series
of a real quadratic field are limited to weight 1.
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Note that out of a Hecke eigenform f(z) € Sp11(To(Ng+p"), ¢) with f|T(q) = aqf for ¢ ¢ Q* and
two roots a, B of X2 —a,X +¢(q)g" = 0, we can create two Hecke eigenforms f, = f(2) —3f(qz) and
fs = f(2) —af(qz) of level Ng+q with f,|U(q) = x f, for x = «, 3. This tells us that if we choose a
set ©7 := {@ylq € @} of mod p eigenvalues of p(Frob,) for ¢ € Q= := Q — Q*, we have a unique
local ring T% of h® and a surjective algebra homomorphism T9 — W{[[Zg+]] factoring through
he" - W([Zg+]] such that U(q) mod mpe = @, for all ¢ € Q™. For ¢ € Q7, if f is a theta series
of F, we have aq = 0; so, the residual class (modulo mre) of o and 8 in Zy[a, 5] C @p are distinct
(because of p > 2). Therefore if we change X7, the local ring T® will be changed accordingly. We
record this fact as

Corollary 1.3. Suppose that p(Froby) # @(Frobge) for all q|Q" and that W is sufficiently large so
that we can choose a set ¥~ = {@y; € Flg € Q7 } of mod p eigenvalues of p(Froby) for g € Q~ =
Q — Q7 in the residue field F of W. Then we have a unique local ring T® of h? such that we have
a surjective A-algebra homomorphism T9 — W([[Zg+]] characterized by the following conditions:

(1) T(1) = @(1) + (1) if I = U with [ # 1 and | { Nop;
) T(1) — 0 if I remains prime in F' and is prime to Ngp;

(2

(3) U(q) — @(q°) if q is a prime ideal with q|Q*"¢;

(4) U(q) — £2(q) if ¢ € Q~, where the sign is determined by £®(q) mod mpe = @y;
(5) Ulp) — ®(p°).

If F is real, the above homomorphism factors through the weight 1 Hecke algebra TS /(t?" — 1)T?

for a sufficiently large m > 0.

We will later show that the quotient T? — W{[[Zg]] constructed above is the maximal quotient such
that the corresponding Galois representation is induced from F' under (h0—4) (see Proposition 2.6).
Hereafter, more generally, fixing an integer k£ > 0 and the set ¥~ = {@; € F|¢g € Q™ }, we put

(1.7) To = T9/(t — 4*)T¢.

The choice of q|Q" can be also considered to be the choice T := {@(Frobg:) € F : q|Q7"} of the
eigenvalue of U(g). Thus the local rings T9 and T are considered to be defined with respect to the
choice ¥ = Xt UUX™ of one of the mod p eigenvalues of U(q) for each ¢ € Q. In other words, Tq is a
local factor of hq k 4, with the prescribed mod p eigenvalues ¥ of U(q) for ¢ € Q. Note that T¢ is
classical if £ > 1 but otherwise, it is defined purely p-adically. In the above corollary, we took k = 0
when F' is real.

Assume that F' is imaginary. In this case, we need later a rapid growth assertion of the group
Hg and the group ring W[[Hg]] if we vary @ suitably. This growth result we describe now. We fix
a positive integer r; and choose an infinite set QT = {Q} |m =1,2,...} of ri-sets Q;} of primes
q of O such that N(q) =1 mod p™. We assume that Q;, is made of primes split in F//Q outside
¢p and that q — q N Z induces a bijection between Q. and Q! := {qNZ|q € Q;},}. We regard Q;,
as a set of rational primes. We write ;) sometimes for the product [] qeqr d- Then the inclusion
Z — O induces a natural isomorphism [] .+ (Z/¢Z)* = (0/Q7,)*. We identify the two groups by
this isomorphism, and write AQ% for the p-Sylow subgroup of this group. Then AQ% is the product
over g € Q;, of the p-Sylow subgroup Ay = A, of (O/q)* = (Z/qZ)*. For the ray class group
Cl(cQ;fp™), we have a natural exact sequence of abelian groups

(0/9})* = Cl(eQ}p") — Clep™) — 1
which induces the exact sequence of its maximal p-abelian quotients:
1—Ags — Cl(eQ)p™)p — Cl(cp™)p — 1

since the order of the finite group Ker(%) is prime to p (as p > 3). Passing to the projective limit
with respect to n, we have an exact sequence of compact modules

(1.8) 1—>AQ$—>ZQ$—>Z@—>1.
We consider the group algebra W{[Z, || which is an algebra over W[A,+]. We choose a generator

84 of the cyclic group A4 and put A} to be the quotient of AQ+ by the subgroup generated by
{55"}QGQ+ for 0 < n < m; thus, A} = (Z/p"Z)™+. This include the ordering Q, = {q1,...,¢r, }
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so that the above isomorphism sends Ay, / <5g:> to the j-th factor Z/p"Z. In this way, we fix the
identification of Al with (Z/p™Z)™ for all n and m once and for all. Thus, writing W,, := W/p"W,
we get a projective system

{WalA3] = Wal(Z/p"Z)™ | }nso
sending (Z/p"Z)™+ > x — (z mod p") € (Z/p"Z)™+ for all n. We then have

W[[Sla ) ST+]] = @WH[A:]
sending s; = 1+ S; to the image of §,, in A}l for all j, ¢; € Q;f, and m > n.

Assuming that F' has class number prime to p, the natural isomorphism Z; = O, induces a
group morphism Z; — Cl(cp>), which induces an isomorphism I' = 1 + pZ, = Zy. Then we
can canonically split exact sequence (1.8) so that Z,+ = Ag+ X I', making the following diagram
commutative for all m’ > n/ > n with m > n:

W [IONAL] = W([Zgs 1)/ —— War[[Zy]]

71-2/ J{ ontoJ{

Wal[T[AS] = W[ Zg: /% —— WallZsl],

where 2, := (p",sfn —1)j=1,2,...,r, as an ideal of W([S,..., S, ]]. In this way, we get a (bit
artificial) projective system

’

(WilZgs, )|/ 2o W[ Zg]]/Bnbwsn:

By this map, W{[[Z+ ]|/, is naturally a A-algebra via the canonical splitting Z,+ = A+ x Zp,
and hence a A[[S1,..., Sy, ]]-algebra. Since Zy = T', we get lim W([[Zy+ ]|/, = A[[S1, ..., S]]
We thus conclude

Proposition 1.4. Assume that F' is imaginary with class number prime to p. Identify Hegy with
Zgs by (1.6) (whence Ay, is the ideal of W([[Hgs]]). Then the limit ring lim WI[Hq+ ]|/ is
isomorphic to A[[Sy,..., S]]
This follows from the above argument, after identifying Zo+ with Hge and identifying A with
W]}

We now explore the case where the class number of F' is divisible by p. In this case, we again
study the set QT of r -sets Q of split primes in F outside N such that N(q) = 1 mod p™ with

={(q) =qNZ|q € Q}} with an ordering. We still have the following exact sequence (1.8):

ot
1—>AQ+ —>Z+—>Z@—>1

Write Z, for the maximal torsion subgroup of Zp, and fix a splitting Zy = I'r X Zior with a
torsion-free group I'p. The projection ok identifies the maximal torsion-free quotient of Z + with
p. Write Zg+ 4, Ker(ZQ+ — I'r) (the maximal torsion subgroup of Zgy+). Note that A o <

Zo+ top- For m running over integers with m > n, the isomorphism classes of the set of cokernels
{ZQL,tor/AQ; }m>n of pairs of abelian groups is finite. Here ZQL,tor/AQj;L and ZQ:/)tOT/AQ+/ are

isomorphic if the following diagram for m’ > m is commutative:

AQ;/AZ; I QL,tor/AZ;

zlim,m/ zl

AQ:/ /A;DQ+/ — Q:/ ’tor/A;DQ+/ )

Here 4y, ms is induced by sending the generator dg, Ag; for Qf, = {q1,...,¢r, } to the generator
5(1; Ag;/ writing QF, = {q,...,d. . } according to our choice of ordering. Starting with n =1, we

have an isomorphism class 7 in {Z / Ag+ }m>1 with infinite elements. Suppose that we have

L,tor
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constructed a sequence Z,, — Z,_1 — --- — 77 of isomorphism classes Z; in {ZQL,tor/Aija Fm>j
such that Z+ tOT/Ap]+ € Z; is sent onto to Z tmp/A]”];l inZ;_q forall j =2,3,...,n. Since

n+1

Tnp1 = {ZQ+ tor/AQ+ (2 Qh, tor/AQ+) € Intmznt1
is an infinite set, we can choose an isomorphism class Z,, 11 C I, with |Z,;1| = oo. Thus by
induction on n, we find an infinite sequence --- — 7Z,, — Z,,_1 — --- — Z; as above. Then we
define m(n) for each n to be the minimal m appearing Z,. Thus we have a projection 7,4 ;,, :
pn+l . .
ZQ;(TLH) or] A Ot — ZQ tor/A Qo and a projective system of groups
Z /AP o - T
N —
Q:(nﬂ)vtor Q:(nﬂ) Qm(n+1) Q:(nﬂ) E
T4, to'r‘J{ 7"2+1J{ HJ{
ZQ tor/A o e ZQm(n)/AZ+( : —— I'p.
Passing to the limit, we have an exact sequence:
o
1— hmZ . tor/AQ;( — hmZQ (")/AQ+(H) —Tp—1

Note here the subgroup A :=lim A+ JAP =~ Z," with W[[AL]] = W[[Sl, ooy Sy, ] for

m(n) QF

m(n)

the variable chosen as in Proposition 1.4 and W{[Zs]] for Zg :=lim Z+ / A is an algebra

,tor
m(n)’ m(n)
free of finite rank over W[[As]]. We write I's = Zg/Zs 1or for the maximal torsion subgroup Zs ;or
of Zg. Choose a splitting of the exact sequence Zg ;o — Zg — I's so that I's as a subgroup of
Zs contains Ao. Then W{[[Zs]] = WI[Ts]][Zs.tor] = W][I's]][Zs/Ts]]- By splitting the projection

Zoo = lim ZQm(n)/AgL:(n) — I'p, we have a W{[['p]]-algebra structure of W{[Zx]].

Proposition 1.5. Let the notation be as above. Assume that F is imaginary with class number
divisible by p. Identify Hg. with Zg+ by (1.6). Then there is a subsequence {Qu(n)tn=12,.. C

yeen

Q" such that {WllHg+ 11/%n}n forms a projective system of finite rings and that the limit ring
m(n)

lim WI([H ]|/, is isomorphic to the profinite group algebra W([I'p x I's]|[Zoc/T's], and T's (resp.

L) contains Ao (resp. T') as a subgroup of finite index. In particular, lim WI[H+ ]/ is free

of finite rank over A[[S1,...,S,

]| and is a local complete intersection over A.

2. THE R =T THEOREM AND AN INVOLUTION OF R

We place ourselves in the setting of Theorem B, but we allow any quadratic extension F/Q (which
can be real or imaginary). We assume that the residue field of W is given by F = T/my. For the
moment, we only assume (h0-3) for a fixed connected component Spec(T) of Spec(h) for h := h?
and its residual representation p of the form Ind % for a Galois character @ : Gal(Q/F) — F.

We fix a weight £ > 0 and pick a Hecke character ok : Gal(Q/F) — W of conductor at most
¢p with p-type —ki,|r for the identity embedding ip|p : F' — @p such that ¢ = ¢ mod my. Let
0(¢r) € Sk+1(To(Np), 1) for the corresponding theta series. Then vy, is determined by ¢y (i.e.,
Y = X<pk|AXV5 regarding ¢ and ¢y as idele characters; see [HMI, Theorem 2.71]). When F is
imaginary (that is usually the case), we assume that k > 1.

Recall the identity 1/)kV mod myy = det(p) for the p-adic cyclotomic character vp; so, ¥y is the
Teichmiiller lift of det(p). Hereafter, we simply write v for 1)y = ,w”. Writing ¢ for the prime-to-p
conductor of @, by (h2), Np,g(c)D = N for the discriminant D of F' (cf. [GME, Theorem 5.1.9]).
By (h1), the conductor ¢ is square-free and only divisible by split primes in F/Q. Since p = Indg P,
for {|Np, the prime [ either splits in F' or ramified in F. Write [ for the prime factor of (1) in F.
If (1) splits into ([ and I|N, we may assume that the character % ramifies at [ and is unramified
at [, and hence p|Ga1(Ql/Qz) P ® @ If | = p, for the fixed prime p, we have (p) = pp and

Plea@ /0, =P @Pp I (1) = I? ramifies in F', we have p|;, & 1 & x for the quadratic character
P

= (M) Here I; is the inertia subgroup of Gal(Q,/Q;).
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Write C' Ly for the category of p-profinite local W-algebras with residue field F := W/my, whose
morphisms are local W-algebra homomorphisms. Let QWr) = @ be the maximal extension of Q
unramified outside Npoo. Consider the following deformation functor D : C' Ly, — SET'S given by

D(A) = DY(A) := {p: Gal(QNP) /Q) — GLy(A) : a representation satisfying (D1-4)}/ = .
Here are the conditions (D1-4):

(D1) p mod mu =75 (i.e., there exists a € GLa(F) such that ap(c)a™! = (p(0) mod my) for all
o € Gal(@/Q)).

(D2) p|Ga1(@p/Qp) = (§ ) with § unramified and (6(Frob,) mod m4) = Pg(Froby).

(D3) det(p)|s, is equal to t4 o 1)y for the I-part ¢; of 7 for each prime I[N, where 14 : W — A
is the morphism giving W-algebra structure on A and ; = ®|;, regarding ¢ as a Galois
character by class field theory.

(D4) det(p)|s, = [, mod my.

If we want to allow ramification at primes in a finite set Q of primes outside Np, we write Q(QVP)
for the maximal extension of Q unramified outside QU{l|Np}U{oo}. Consider the following functor

DO (A) := {p: Gal(Q@NP) /Q) — GLy(A) : a representation satisfying (D1-4) and (UQ)}/ =,
where
(UQ) det p is unramified at all ¢ € Q.
We may also impose another condition if necessary:
(det) det(p) =140 1/}’;1/);C for the p-adic cyclotomic character v,

and consider the functor
DG e (A) := {p : Gal(Q@NP) /Q) — GLa(A) : a representation satisfying (D1-4) and (det)}/ = .

The condition (det) implies that if deformation is modular and satisfies (D1-4), then it is associated
to a weight k + 1 cusp form of Neben character vy; strictly speaking, if & = 0 (i.e., F is real), we
allow non-classical p-ordinary p-adic cusp forms. We often write simply D, for Dy iy, when Q
is empty. For each prime ¢, we write DqQ,k,wk for the deformation functor of ﬁ|Ga1(@q /Q4) satisfying
the local condition (D2-4) which applies to g.

By our choice of p = Indg @, we have ﬁ|Gal(@q /) = (Eg 5(1 ) for two local characters ,, &, for all

q € Q. If § # € (ie, (Rg) and (h4)) and &,(Frob,) # d,(Frob,) for all ¢ € Q, D, D?, Dy, and
D k.4 are representable by universal objects (R, p) = (R?, p?), (R?, p?), (Ry, py) and (Rg, PQ)
respectively (see [MFG, Proposition 3.30] or [HMI, Theorem 1.46 and page 186]).

Here is a brief outline of how to show the representability of D. It is easy to check the deformation
functor D°*¢ only imposing (D1-2) is representable by a W-algebra R°*¢ . The condition (D4) is
actually redundant as it follows from the universality of the Teichmdiiller lift and the conditions
(D1-2). Since N is the prime-to-p conductor of det p (h2) and p is unramified in F/Q, if [ is a prime
factor of IV, writing p|7’ for its semi-simplification of p over [;, we see from (h0) that (p|r,)** = e, @4
for two characters ¢; and §; (of order prime to p) with ¢; unramified and ¢; = v|;, mod m4. Thus
by the character ey := H” ye of Iy = H” ~ 11, A is canonically an algebra over the group algebra
W{[Ix]. Then R is given by the maximal residue ring of R°™d on which Iy acts by ¥ y = H”N U|1,;
so, R = Ro*d ®W(In]wr x W, Where the tensor product is taken over the algebra homomorphism
W{[In] — W induced by the character 1 n. Since p is an induced representation, p|y, is semi-simple
and pl;, = € @ &, with € = ¢ mod m4. Similarly one can show the representability of DY and
DQ k,un-

Let T be the local ring of h = h? as in Theorem B whose residual representation is 7 = Indg ©
with (U(p) mod mr) = $z(Frob,). The ring T is uniquely determined by (h1-2) as the unramified
quotient of p at each [|N and quotient of p with specified value at Frob,, at p is unique. Because of
the existence of companion forms, if ¢ is unramified at p, we need to specify the “quotient” character
of p to be given by Py at p.

Since p is irreducible, by the technique of pseudo-representation, we have a unique representation

pr : Gal(QVP) /Q) — GLy(T)
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up to isomorphisms such that Tr(pr(Frob;)) = a(l) € T for all prime I t+ Np (e.g., [HMI, Proposi-
tion 3.49]), where a(l) is the image of T(I) in T. This representation is a deformation of 5 in D?(T).
Thus by universality, we have projections 7 : R = R? — T. such that 7 o p = pr. Here is the
“R =T" theorem of Taylor, Wiles ét al specialized to our case:

Theorem 2.1. Assume (h0-4). Then the morphism 7 : R — T is an isomorphism, and T is a local
complete intersection over A.

See [Wi95, Theorem 3.3] and [DFGO04] for a proof (see also [HMI, §3.2] or [MFG, Theorem 3.31] for
details of how to lift the results in [Wi95] to the (bigger) ordinary deformation ring with varying
determinant character). These references require the assumption (W) which is absolute irreducibility
of plau@/ny for M = Q[y/p*] with p* = (=1)®P=1/2p Note that (W) follows from (h3), as
mentioned in the introduction. To eliminate the assumption (h0), we need to impose in addition
to (D3) that Ho(I;,p) = A for prime factors [ of N with [ = 1 mod p to have the identity R =
T (or work with I'y(I)-level Hecke algebra), which not only complicates the setting but also the
identification of T/I = W[[H]] (for I in Theorem B) could fail if (h0) fails (so, we always assume
(h0); see Lemma 2.4). We will recall the proof of Theorem 2.1 in the following Section 4 to good
extent in order to facilitate a base for a finer version we study there.

Perhaps the following fact is well known (e.g., [Ru91, Theorem 5.3]):

Corollary 2.2. Assume (h0-4) and that F is an imaginary quadratic field of class number prime
top. Then Y~ (p~) has homological dimension 1 (so, it does not have any pseudo-null submodule
non-null). Thus if Y~ (¢~ ) is pseudo isomorphic to a cyclic Z,[¢~|[[T' -]]-module Z, [(pf][[F,]]/(f;,)

with f € Zyplp~][[T-]], it has an injection into the cyclic module with finite cokernel.

Proof. Write the presentation of R = T as R = A[[Ty,...,T]]/(S1,...,Sr) for a regular sequence
(S1,...,8) of A[[T1, ..., T;]]. Then by the fundamental exact sequence of differentials (e.g., [CRT,
Theorem 25.2] and [HMI, page 370]), we get the following exact sequence

0 — EPRdS; = (S1,...,5:,)/(S1,...,5)° = @D RAT;, — Qp/a — 0.

Since the class number of F' is prime to p, the CM component W[[H]] of T = R is isomorphic to A;
so, tensoring A over R, we get another exact sequence:

0 — P AdS; — P AdT; — Qpja Or A — 0.

By a theorem of Mazur (cf. [MT90], [HT94, §3.3], [HMI, 3.89, 5.33] and [H16, §6.3.6]), under (h0)
and (h2), we have Qr/y @r A =Y (¢7) ®z,,-) W. Thus we get a A-free resolution of length 2 of
the Iwasawa module, and hence it has homological dimension 1.

Suppose that we have a pseudo-isomorphism i : Y~ (¢7) — Zy[¢~|[[[-]]/(f_-). Then i is an
injection as Y~ (¢~ ) does not have any pseudo-null submodule non-null, and Coker(3) is finite. [

Since p = Indg P, for x = (M), P ® x = p. By assumption, p splits in F'; so, x is trivial on

Gal(Q;/Q;) for prime factors I of pNp/g(c) and ramified quadratic on Gal(Q;/Q;) for {|D. Thus
p — p®Y is an automorphism of the functor D? and Dgq ., and p — p®y induces automorphisms
oQ of RQ and RQ.

We identify R and T now by Theorem 2.1; in particular, we have an automorphism o = oy €
Aut(T) as above. We could think about h/y, defined over a smaller complete discrete valuation
ring Wy C W (the smallest possible ring is the ring Z,[)] generated over Z, by the values of ).
After extending scalar from Wy to W, we get an involution. We may assume that W = W(F) (the
Witt vector ring of F = T/mr). Since o fixes W as it is an identity on F, we know that o preserves
T before extending scalar to W. Thus we get

Corollary 2.3. Assume (h0-4). Then for a complete discrete valuation ring Wy flat over Zy[y],
we have an involution o € Aut(T /v, ) with o o pr = pr ® X.
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We write T4 for the subring of T fixed by the involution in Corollary 2.3. More generally, for any
module X on which the involution o acts, we put X4 = X* = {z € X|o(x) = +x}. In particular,
we have Ty := {x € T|z” = £z}

We now study the closed subscheme Spec(T)Y fixed by G := (o) C Aut(T,s). Consider the
functor Dp, Dg : CLw — SET'S defined by

Dr(A) ={\: Gal(Q/F) — A*|]A =% mod m4 has conductor a factor of cp},

and
D¥(A) = {\: Gal(Q/F) — A*|]A =% mod m4 has conductor a factor of cp>}.

Let F., be the maximal abelian p-extension of F' inside the ray class field of conductor cp. Put
C = Cy := Gal(F., /F). Similarly, write Fcyo for the maximal p-abelian extension inside the ray class
field over F of conductor ¢p>. Put H := Gal(F p/F'). Note that Fcy /F is a finite extension if F is
real. Then Dp is represented by (W[C], @) where ®(x) = p(z)x for x € C, where p is the Teichmiiller
lift of @ with values in W*. Similarly D is represented by W[[H]] = @H/CH)OPCH W[H/H']. If F
is real, H is a finite group, but it is an infinite p-profinite group if F' is imaginary.

In the introduction, when F' is imaginary, we defined H as the anticyclotomic p-primary part
Gal(K~/F) of the Galois group of the ray class field K of conductor (¢ N ¢®)p>. The present
definition is a bit different from the one given there. However, the present H is isomorphic to the
earlier Gal(K~/F) by sending 7 to 7(1=9/2 = \/7er—1¢=1 by (1.6). Thus we identify the two groups
by this isomorphism, as the present definition makes the proof of the following results easier. We
have the following simple lemma which can be proven in exactly the same way as [CV03, Lemma 2.1]
and [H15, Theorem 7.2]:

Lemma 2.4. Assume (h0-4) and p > 3. Then the natural transformation A — Indg A induces an
isomorphism Dp =2 Dg and DY = DY, where

DI(A) = {p € D(A)lp & x = p} and DY(A) = {p € DI(A)|(C(det p)) > (Np)}
for the conductor C(det p) of det(p).

Proof. Since the proof is essentially the same for the two cases, we only deal with D¥ = DY. By
[DHI98, Lemma 3.2], we have p ® x = p for p € D(A) is equivalent to having A : Gal(Q/F) — A*
such that p = Indg A. We can choose A so that A has conductor a factor of ¢p> by (D4) and
C(det(p))|Np>°. Then A is unique by (D2-3) and (h0). Thus we get the desired isomorphism. [

Since DY, (resp. DY) is represented by T/(TT+1) = T/I®xA/(T) (vesp. T/I) for I = T(s —1)T,
this lemma shows

Corollary 2.5. Assume (h0-4). Then we have T/I @p A/(T) =2 W[C] and T/I = W{[[H]] canoni-
cally.

In the proof of Theorem 2.1, Taylor and Wile considered an infinite set Q made up of a series of

finite sets @ of primes ¢ =1 mod p outside Np such that p(Frob,) ~ (Oéq 50 ) with oy # Bq eF.
Over the inertia group I, p% has the following shape by a theorem of Faltings

8, 0
21) o, = (% 5,)

for characters dy,d, : Gal(Q,/Qq) — (R?)* such that &,|7, = 5;1 and d4([q, Qq]) = @; mod mr
(e.g., [MFG, Theorem 3.32 (1)] or [HMI, Theorem 3.75]). Since p is unramified at ¢, d, factors
through the maximal p-abelian quotient Ay of Z; by local class field theory, and in fact, it gives an
injection &, : A, — R? as we will see later. Note that p — p ® x is still an automorphism of D%
and hence induces an involution o = o¢ of RY.

We can choose infinitely many distinct Qs with 5(Frob,) for ¢ € @ having two distinct eigenvalues.
We split @ = Q1T Q™ so that QF = {q € Q|x(¢q) = £1}. By choosing an eigenvalue @, of p(Frob,)
for each ¢ € @, we have a unique Hecke algebra local factor T of the Hecke algebra hg iy, , whose
residual representation is isomorphic to 5 and U(g) mod mre is the chosen eigenvalue @,. This
follows from Corollary 1.3 in the following way: We choose o for ¢ € @~ as in Corollary 1.3. For
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q € QT, we choose a unique prime factor qlg so that p(Frobg.) = @,. In this way, we get a local
factor T% of h? which covers W{[[Zg]] as in Corollary 1.3. Recall (1.7):

T =T?/(t —~*)T%
which is a local factor of hg 4, with the prescribed mod p eigenvalues of U(q) for g € Q.

By absolute irreducibility of p, the theory of pseudo representation tells us that the Galois repre-
sentation pre in Section 1 can be arranged to have values in GLy(T?) (e.g., [MFG, Proposition 2.16]).
The isomorphism class of pre as representation into GLo(T?) is unique by a theorem of Carayol-
Serre [MFG, Proposition 2.13], as Tr(pre (Frob;)) is given by the image of T'(I) in T for all primes
[ outside Ngp by (Gal) in Section 1 (and by Chebotarev density theorem). We need to twist pre
slightly by a character ¢ to have pre ® § satisfy (UQ). This twisting is done in the following way:
By (Galy), write pro ~ (56? 2) as a representation of the inertia group I, for ¢ € Q. Then ¢, = 1
mod mpe as p is unramified at ¢q. Thus €, has p-power order factoring through the maximal p-
abelian quotient Ay of Z;; so, it has a unique square root ,/€; with /€, =1 mod mre. Since A,
is a unique quotient of (Z/qZ)* = Gal(Q(x,)/Q), we can lift /€, to a unique global character of
Gal(Q(uq)/Q). Write e := [],cq /€ as a character of Gal(Q(uq)qeq/Q) = [[,c0(Z/qZ)*. Then
we define

(2.2) p? = pro @ VE
Then p@ satisfies (UQ) and p® € DY?(T®). In the same manner, we can define a unique global
character & : Gal(Q(g)qeq/Q) — (R?)* such that 8|7, = 64 for all ¢ € Q.

By local class field theory, we identify A, with the p-Sylow subgroup of Z;. Then the p-abelian
group Aq defined above Theorem 1.2 has a canonical factorization: Ag =[] 4€Q Ay. By Lemma 1.1,
the inertia action W[I,] — RY — T% makes T? free (of finite rank) over W[Ag], and hence
Ag — R@ zgld Ag — T@. The character iz : I, — R (resp. 5;1 : I, — R?*) extends uniquely
to 8, : Gal(Q,/Qq) — R (resp. 6:1 : Gal(Q,/Qq) — R) so that

5, 0
(2:3) P°lea@, /e = ( 0 6;)

with d,(¢y) mod mpe = @, (resp. &, (¢y) mod mpe = Bq) for any ¢, € Gal(Q,/Q,) with ¢,
mod I, = Froby (e.g., [MFG, Theorem 3.32] or [HMI, Theorem 3.75]).

We choose q|g for ¢ € Q% so that p(Froby) = @,, and define 9 by the product over ¢ € Q" of
g thus chosen. Define the functor D, : CLw — SET'S by

Dro(A) ={A: Gal(Q/F) — A*|]A =% mod my4 has conductor a factor of Q4 cp™}.

Hereafter we simply write Zg for Zg+. Then plainly Dg, is representable by W([Zg]] = W[[Hg]]
in (1.6). Here is a generalization of Corollary 2.5:

Proposition 2.6. Assume (h0-4). Let I? = R% (0 — 1)R?. Then RP/I® =~ W([[Hg]] and
RO/IC @5 A/(T) 2 W[Cq] for Cq defined above Theorem B.

Proof. Since the proof is basically the same for Hg and Cg, we shall give a proof for Hg. If
a finite group G acts on an affine scheme Spec(A) over a base ring B, the functor Spec(A4)¢ :
C — Spec(A)(C)¢ = Homp_ag(A, C)¢ sending B-algebras C' to the set of fixed points is a closed
subscheme of Spec(A) represented by Ag := A/ 5 A(g—1)4; ie., Spec(A)¢ = Spec(Ag). Thus
we need to prove that the natural transformation \ — Indg)\ induces an isomorphism D, =
(D)9, where (D?)9(A) = {p € D (A)|p® x = p}. If p € D?(A), we have a unique algebra

0d
homomorphism ¢ : R? — A such that p = ¢ o p? and plr, = (¢ O|Iq (¢05|01 ),1). This implies

p®(¢0d)|r, ~(§9) for the global character § : Gal(Q(uq)qeq/Q) — (R?)*, and hence its prime-
to-p conductor is a factor of Ng. On the other hand, for p = Ind% A in DQ(A), if p ramifies at
q € Q, the g-conductor of p ® (¢ 0 &) is Nr/g(q) = ¢°, a contradiction as ¢* { Ng. Thus X is
unramified at ¢ € @7, and we may assume A € DF(A). Indeed, among A, A. for Ac(0) = Aeoe™h),
we can characterize A uniquely (by (h0)) so that A mod my = . Thus D, (A) — (D?)9(A) is an
injection. Surjectivity follows from [DHI98, Lemma 3.2]. O
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3. THE TAYLOR—WILES SYSTEM AND TAYLOR—WILES PRIMES

In their proof of Theorem 2.1, Taylor and Wiles used an infinite family Q of finite sets () made
of primes ¢ = 1 mod p outside N. We can choose infinitely many distinct Qs with 7(Frob,) for

q € @ having two distinct eigenvalues. Recall x = (ﬂ) and p = Ind%@ as in Theorem B. We

split @ = QT U Q™ so that QF = {q € Q|x(¢) = £1}. By fixing a weight k& > 0 and choosing an
eigenvalue @, of p(Frob,) for each ¢ € @, we have a unique local factor T? (resp. Tq) of the Hecke
algebra h? (resp. hq¢.) as in (1.7), whose residual representation is isomorphic to p and U(q)
mod mr, is the chosen eigenvalue @&,;. Though it is not necessary, we assume k > 1 if I’ is imaginary
(to stick to classical modular forms), but we are forced to assume that k = 0 if F' is real (as there
are no holomorphic theta series of a real quadratic field of weight higher than 1; see [MFM, §4.8]).

To describe the Taylor—Wiles system used in the proof of Theorem 2.1 (with an improvement due
to Diamond and Fujiwara), we need one more information of a Tg-module Mg in the definition of
the Taylor-Wiles system in [HMI, §3.2.3] and [MFG, §3.2.6]. Here we choose M¢ := T which is the
choice made in [MFG, §3.2.7] (and [HMI, page 198]), though in the original work of Taylor-Wiles,
the choice is the Tg-factor H1(X(T'q), W) ®ne Tg of the homology group Hi(X(T'g), W) for the
modular curve X (I'g) associated to I'g :=T'g,1 defined in (1.3).

The Hecke algebra hi(Iq,; W) has an involution coming from the action of the normalizer of
I'q. Takingy € SLy(Z) such that v = (9 ') mod D? and vy =1 mod (Ng/D)?, put n:=~ (% 9).
Then 1 normalizes I'g, and the action of 7 satisfies n? = 1, nU(I)n~' = x())U(I) for each prime
[|[Ng/D and nT(I)n~' = x(1)T(1) for each prime [ { Ng (see [MFM, (4.6.22), page 168]). Thus the
conjugation of 1 induces on Tg an involution compatible with cg under the canonical surjection
Rg — Tg. Note that og(U(q)) = —U(q) for ¢ € Q~; so, the role of &, will be played by —a, = Bq.
This affects on the inertia action of A, at g by 6, — 0 L for ¢ € Q~, because the action is normalized
by the choice of @, with @, = U(g) mod mr,, (see Lemma 3.1 and [HMI, Theorem 3.74]). Since T<
is the local component of the big Hecke algebra of tame level I'g whose reduction modulo ¢ —~* is
Tg, again T has involution o induced from 7. We write ']I‘f (resp. ']I‘E) for the fixed subring of

T< (resp. Tg) under the involution.

Since we follow the method of Taylor-Wiles for studying the local complete intersection prop-
erty of Ry = T4, we recall here the Taylor-Wiles system argument (which proves Theorem 2.1)
formulated by Fujiwara [Fu06] (see also [HMI, §3.2]). Identify the image of the inertia group I,
for ¢ € @ in the Galois group of the maximal abelian extension over Q, with Z; by the g-adic
cyclotomic character. Recall the p-Sylow subgroup Ag of Z* and Aq :=[[ o Aqin (1.4). If ¢ =1
mod p™ for m > 0 for all ¢ € Q, Aq/Agn for 0 < n < m is a cyclic group of order p”. We put
A =Ang=1Tlq Aq/Agn. By Lemma 1.1, the inertia action I, - Z; — Rqg — Tq makes Tg
free of finite rank over W[Ag]. Then they found an infinite sequence Q = {Qm|/m = 1,2,...} of
ordered finite sets @ = @, of primes ¢ (with ¢ =1 mod p™) which produces a projective system:

(3.1) By, €= )y By (i = 170 o = S
made of the following objects:

(1) Rpm :=Tg,./(p", 55" —1)4e0.. Tq,, for each 0 < n < m. Since the integer m in the system
(3.1) is determined by n, we have written it as m(n). In [HMI, page 191], Ry, », is defined to
be the image of Tq,, in Endyw(a,](Mn,m) for My, m := Mg, /(p", 07" —1)4eq,, Mg, but by
our choice Mg = Tq, the image is identical to Tq,,/(p", 55" —1)4e0.,.Tq,.. An important
point is that R, , is a finite ring whose order is bounded independent of m (by (Q0) below).

(2) Bnm = Rnm/(0g = 1)gequ»

(3) ap : Wy[A,] — Rpm for W, := W/p"W is a W[A,]-algebra homomorphism for A, =
A, g, induced by the W[Ag, ]-algebra structure of Tq,, (making R, ., finite W[A,]-
algebras).

4) (fr = 1("), o fr= 5")) is an ordered subset of the maximal ideal of R,, ,,.

Thus for each n > 0, the projection 7*! : Ry i1,mm+1) — Bpmn) is compatible with all the
data in the system (3.1) (the meaning of this compatibility is specified below) and induces the

projection 77Tt Ry i1mn+1) — Rpmem)- In [HMI, page 191], there is one more datum of an
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algebra homomorphism 3 : R, ,, — Endr, (My,m) C Endya,)(My,m). Since we have chosen Mg
to be Tg, My m is by definition R,, ,»; so, [ is just the identity map (and hence we forget about it).
The infinite set Q satisfies the following conditions (Q0-8):
(Q0) Mg, =Tq,, is free of finite rank d over W[Aq, ]| with d independent of m (see Lemma 1.1
and the remark after the lemma and [HMI, (tw3), pages 190 and 199] taking Mg, = Tqg,.)-
(Ql) |Qm| =r > dimr Dg,, k. (Fle]) for r independent of m [HMI, Propositions 3.29 and 3.33],
where € is the dual number with €2 = 0. (Note that dimg Dg,, k¢, (Fle]) is the minimal
number of generators of Rg,, over W.)
(Q2) ¢ =1 mod p™ and p(Frobg) ~ (an qu) with &g # Bq eFif g € Qum (s0, |Ay] =:p% >p™).
Actually as we will see later in Lemma 3.2, we can impose a slightly stronger condition:
g =1 mod Cp™ for C = Ngg(c).
(Q3) The set Q@ = {q1,---,¢r} is ordered so that
e A, CAq,, isidentified with Z/p“sZ by d4; — 1550, Ay = A g,y = (Z/p"Z)@m
o A, = (Z/p"Z)Pmm is identified with An+1/Aﬁll = ((Z/p"T'Z) | p™(Z)p" T 7)) @mim
e the diagram

WnJrl[AnJrl] & Rn+1,m(n+1)

! [+

Wha [An] e Rn,m(n)
is commutative for all n > 0 (and by (Q0), «a, is injective for all n).
(Q4) There exists an ordered set of generators {fl("), Ce fﬁ")} C MR, o
the integer r in (Q1) such that w"*l(f;"ﬂ)) = f;") for each j =1,2,...,7.

of Ry m(n) over W for

(Q5) Roo :=lim Ry y(n) is isomorphic to W[[T1, ..., T;]] by sending T} to f;oo) = lim f;") for
each j (e.g., [HMI, page 193]).

(Q6) Inside Roo, lim Wy [A,] is isomorphic to W{[S1,..., S]] so that s; := (1 + .5;) is sent to
the generator d,, Ag: of Ay, / Ag: for the ordering ¢, ..., g of primes in @, in (Q3).

(Q7) Roo/(S1,...,5;) = lim En,m(n) >~ Ry = Ty, where Ry is the universal deformation ring for
the deformation functor Dy j, y, and Ty is the local factor of the Hecke algebra hy j, , whose
residual representation is isomorphic to p.

(Q8) We have Rq,, = Tq,, by the canonical morphism, and Rg,, = Reo/q,, R for the ideal
Ao, = (1+ Sj)lqul —1)j=1,2,..r of W[[S1,...,S5,]] is a local complete intersection.

All the above facts (Q0-8) follows, for example, from [HMI, Theorem 3.23] and its proof. Since m(n)
is determined by n, if confusion is unlikely, we simply drop “m(n)” from the notation (so, we often
write R, for Ry, p(n)). For ¢ € Q@ = Qm, we write S, for the one of the variables in {S1,...,S,} in
(Q6) corresponding to q.

Lemma 3.1. Let x := (w) as before. Then the involution 0q,, on Tq,, acts on d,|1, (the image

of s¢ =1+ 8,) for q € Qm by 0, (54|1,) = (6411,)X 9. In particular, the ideal (p", 5gn —1)geq.. of
Tq,, is stable under oq,,, and the involution oq,, induces an involution o = oy, of Ry, = Ry m.

Proof. For each q € Q, by (2.1), the restriction of p% to the inertia group I, C Gal(Q,/Qq) has the
form (50q 591 ) and the choice of the eigenvalue @, determines the character d, (i.e., @ -eigenspace

of p(Frobg) is the image of 6;1—eigenspace in p by (2.3); see also [MFG, Theorem 3.32 and its proof]

or [HMI, Theorem 3.75]). By tensoring x, @, is transformed to x(¢)@, = f,, and hence §, will

q’
be transformed to 6;‘<q> under oq,,. Thus, we get the desired result as the canonical morphism
Rg,. — To,, is W[Ag,,]-linear.

Since 5;7”" -1 = —5(;?" (5gn — 1), the ideal (p",55" — 1)geq,. of Tg,, is stable under ogq,,.

Therefore og,, € Aut(Tg,,) induces an involution o, on R,, = Ry .m = Tq,,/(p™, 55" —1)geq,,. O

We recall the way Wiles chose the sets Q as we make a finer choice building on his way relating
¢ € @~ with generator choice f;. Write Ad for the adjoint representation of p acting on sly(F) by
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conjugation, and put Ad* for the F-contragredient. Then Ad*(1) is one time Tate twist of Ad*. Note
that Ad* = Ad by the trace pairing as p is odd. Let Q) be a finite set of primes, and consider

B : H'(QON?/Q, Ad) — [ H'(Qq, Ad),

acQ
B - HY QP /Q, Ad* (1) — [] H'(Qq, Ad*(1)).
acQ
Here is a lemma due to A. Wiles [Wi95, Lemma 1.12] which shows the existence of the sets Q,,. We

state the lemma slightly different from [Wi95, Lemma 1.12], and for that, we write K7 = @Kcr Ad

(the splitting field of Ad = Ad(p)). Since Ad =X @ Ind2%~, we have K; = F(¢™).
Lemma 3.2. Assume (W). Pick 0 # x € Ker(8) and 0 # y € Ker(8q), and write

fo : Gal(QONP) /Ky (1)) — Ad*(1) € Homgal(xc, () /) (Gal(Q NP /K (1), Ad* (1))
fy : Gal(QONP) /K1) — Ad € Homga(x, /g)(Gal(Q@NP) /Ky, Ad)

for the restriction of the cocycle representing x and y to Gal(Q@NP) /K| (u,)) and Gal(Q@NP) /K;),
respectively. Let p be the composite of p with the projection GLa(IF) — PGLy(F), and pick a positive
integer C' which is a product of primes | # p split in F/Q. Then, f, (resp. fy) factors through
Gal(QWP) /K () (resp. Gal(QWVP) /K1), and there exists a» € Gal(QWNP) /Q) for ? = x,y such
that

(1) Plow) £1 (s0, Ad(os) £1),
(2) o7 fizes Q(ucpm) for an integer m > 0,
(3) f2(0%) #0 for a:=ord(p(o7)) = ord(Ad(o7)).

We only use the result for  in this paper. The argument is the same for = and y, we give Wiles’
proof in details for « and indicate how to modify the argument for y at the end of the proof. Strictly
speaking, [Wi95, Lemma 1.12] gives the above statement replacing K; by the splitting field Ky of
p. Since the statement is about the cohomology group of Ad (and Ad*(1)), we can replace Ky in
his argument by K;. We note also Ker(Ad(p)) = Ker(p) as the kernel of the adjoint representation:
GL(2) — GLg is the center of GLy (so it factors through PGLs).

Proof. Since z € Ker(f,), f, is unramified at ¢ € Q; so, f, factors through Gal(QWP) /Ky (1))

We have two possibilities of F’ := K; N Q(pcpm); ie., F' = Q or a quadratic extension of Q
disjoint from F. Indeed, the maximal abelian extension of Q inside K is either F' (when ord (@)
is odd > 1) or a composite F'F’ of the quadratic extensions F' and F’ over Q (if ord( ™) is even
2n > 2). If o~ has odd order, F’ = Q(ucpm)NK' = Q as it is a subfield of F' and Q(ucpm) (because
(C,D)=1and FNQ(u,) = Q).

Assume that ord(@~) = 2n > 3. Let D := Gal(K;/Q) and C := Gal(K;/F). Then C is a cyclic
group of order 2n. Pick a generator g € C. Then D = C U Cc for complex conjugation ¢, and we
have a characterization Cc = {7 € D|rgr~! = g1, 72 = 1}. For the derived group D’ of D, we have
D .= DD’ = (Z/2Z). We have KP' = FF', and Gal(K,;/F’) is equal to C? x (¢) (a dihedral
group of order 2n). If n > 2 (so, 2n > 4), Indg @~ restricted to Gal(K;y/F') is still irreducible
isomorphic to Ind?j @ . If n =2, F' is a unique quadratic extension in KP " unramified at D. In
any case, F’ # F which is quadratic over Q. Since F’' = Q(ucpm) N K is at most quadratic disjoint
from F, we can achieve (1)—(2) by picking up suitable o, in C? x {¢) because Ad =X & Indg o .

Let M, := Q@ V"), Then Y := Gal(M,/K1(sp)) is embedded into Ad*(1) by f, and f, is
equivariant under the action of Gal(XK;(pp)/Q) which acts on Y by conjugation. Since Ad =Y &
Indg @, we have two irreducible invariant subspaces X C Ad*(1): X = Yw and Ind% (p~w). Thus
f+(Y) contains one of X as above. By (1), we have p(c) ~ (§ ) with a # 8. By (2), we have
aff = det(ﬁ)|Gal(@/Q(#cpm))(a) = x@™ (o) = X(0) for some ko (since det(ﬁ)|Gal(@/Q(#cpm)) is equal
to X up to a power of @). The eigenvalue of Ad*(1)(c) = Ad(c) is therefore X(o)a?, 1,x(0)a"2. By
(1), we have o? # X(0).

If f-(Y) D X, we claim to find o satisfying (1) and (2) and having eigenvalue 1 in X. If X = Y,
the splitting field of X is F'(pp). Note that F'(ucpm) is abelian over Q. Thus choosing ¢ fixing
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F(pcpm) with o € C?|k, and having ord(p™ (o)) > ord((®)?) = |C?| > 2, we have o having
eigenvalue 1 on X = yw.

X = Indg @~ w, we just choose o € Gal(Ki (ucpm)/Q(pcpm)) inducing the non-trivial automor-
phism on F (i.e., the projection to the factor {¢) of C* x (c) is non-trivial). Since o fixes Q(ucpm ),
we have w(o) = 1; so, we forget about w-twist. Then on X, Ad(c) has eigenvalue —1, and hence
Ad(o) has to have the eigenvalue 1 on Ind%(@f).

Since f,(Y) D X[1] = {v € X|Ad(o)(v) = v}, we can find 1 # 7 € Y such that f,(7) € X[1];
50, fz(7) # 0. Thus 7 commutes with o € Gal(M,/Q). This shows (o7)* = ¢%7%, and f((o7)*) =
f(o%m®) = afy (1) + f(c®). Since afy(7) # 0, at least one of f(c?7%) and f(c®) is non-zero. Then
0y = 0 Or 0, := o7 satisfies the condition (3) in addition to (1-2).

Now we describe the case for f,. In this case, we write M, for the splitting field of f, over Kj.
We put YV := Gal(M,/K,). Since Ad =X & Indg @, for X =X or Indg %, we have f,(Y) D X.
Then we argue in exactly the same way as above and find o, with the required property. O

Let Q = () and choose a basis {z}, over F of the “dual” Selmer group Selj (Ad*(1)) inside
HY(QWP) /Q, Ad*(1)) (see (3.2) below for the definition of the Selmer group). Then Wiles’ choice of
Qm is a set of primes ¢ so that Frob, = 0, on M, as in the above lemma. By Chebotarev density,
we have infinitely many sets @Q,, with this property.

Corollary 3.3. Let the notation be as in Lemma 3.2 and its proof. If 0 # f.(Y) C Indg P w,

the field automorphism o in Lemma 3.2 satisfies (%) = —1. Otherwise, we can choose o so that

()

Proof. In this case, we can have X[1] C Indg P w # 0; so, Ad(0)(1) = Ad(o) (as w(o) = 1) must
have two distinct eigenvalues {1, -1} on Indg @, which implies (%) = —1 as Ad(o) has to have
eigenvalues —1 with multiplicity 2. O

Definition 3.4. Let Y~ (resp. Vg,, V5,) be the Galois group over K F(¢) of the maximal p-

S

abelian extension Lg (resp. L, L%Sp ) of K F(¢) unramified outside p (resp. totally split at p¢ and
unramified outside p, totally splits at all prime factors of p°N and unramified outside p). Regarding
Gal(F(¢)/F) as a subgroup of Gal(KyF(¢)/F) = Gal(F(¢)/F) x Gal(Ky/F), define, for ? = sp, tsp,

V() =Y ®z,(calF(e)/F)]¢ Lp(d) and Yy (¢) =Yy @z, (Gal(F(6)/F).6 Lp(P)-

More generally write Yo for the Galois group over K, oF (¢) of the maximal p-abelian extension L¢
of K, F(¢) unramified outside p and Q. Then define Y, (¢) := Vg ®z,(Gal(F(s)/F)],¢ Lp(®)-

Thus we have a natural restriction map Y~ — Y~ which is an isomorphism if p t hp. In particular
V= (¢) =Y (¢) if pt hp. As we will see later in Proposition 7.1, for example if ¢ = ¢~ w, we can
replace the requirement “total splitting at p” (and unramifiedness at N) in the above definition
by a stronger condition “total splitting at all prime factors in p°N” and the resulting Iwasawa
module is the same (i.e., Y7 (¢~ w) = Vg, (¢~ w) = Vi, (¢~ w)). This is important because the dual
Selmer cocycle has to be not just unramified at p°/N but trivial at p°N. Proposition 7.1 also shows

YV (¢7) =Y, (p7), and we can replace “total splitting at p¢” just by the “unramifiedness at pe”.

Let Dg := Dg iy, and DlQ for the corresponding local functor at a prime {[Ngp defined below
(det) in Section 2. For a prime {|Np or | € @, regard DlQ (F[e]) for the dual number € as a subspace of
H'(Qq, Ad) in the standard way: For p € D}(F[e]), we write pp~' = 14 eu,. Then u,, is the cocycle
with values in sl3(F) = Ad. Thus we have the orthogonal complement DlQ (Fle])* € HY(Qy, Ad*(1))
under Tate local duality. We recall the definition of the Selmer group giving the global tangent space
D¢ (Fle]) and its dual from the work of Wiles and Taylor-Wiles (e.g., [HMI, §3.2.4]):

Selg(Ad) := Ker(H'(Q9"?) /Q, Ad) — [ H*(Qu, Ad)/Dp(Fe])) (= Do (Fe])).
(3.2) e
Sels(Ad* (1)) = Ker(H'(Q9NP) /Q, Ad*(1)) — []

[ Np

H'(Q, Ad*(1))

o g < 1L @Az )

q€Q
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Remark 3.5. As noticed in [CV03, Theorem 3.1], the decomposition Ad = Y@Ind% @~ forx :=(x
mod p), Selg(Ad) (resp. Selé (Ad*(1))) induces the direct sum of the Selmer groups Selg(X) (resp.
Sels; (x@)) and Selg(Ind% %) (resp. Selj(Ind} 7 @)).

To prove the direct sum decomposition in Remark 3.5, we need to decompose DlQ (Fle])* asin (3.3)
below (which is equivalent to the decomposition of the original DlQ (Fle])). We consider Selé (Ad*(1))
(whose decomposition as above is equivalent to (3.3) below). Then Df)(F[e]) is made of classes of
cocycles such that w,|7, is upper nilpotent and up|Ga1(@p /@) is upper triangular. Thus we confirm
for [ = p that

(3-3) Dy (Fle)* = (DL(Fle)" N H' (Q, x@)) ® (DH(Fld)*" N H' (@i, Ind} @),

and D) (Fleh) NHY(Q,, Indg P~ w) is made of upper nilpotent matrices in Ad*(1) (since Indg 7 (1)
is the direct sum of the upper nilpotent Lie algebra and the lower nilpotent Lie algebra). Therefore
D) (Fle]) =N HY(Qy, Ind2 %~ ©) is the direct factor H'(Fy, 3~ @) of
HY(F,,IndY % @) = H'(F,, 7 ©) @ H'(F,, 7 ),

where 7, (1) = ¢ (cre¢™t) = () 71(7) for complex conjugation c. This implies
(3.4) acocycle u giving a class in Selé (Indg @ w) is possibly ramified at p but trivial at p°N.
We now compute Dp) (Fle])- N H' (Qy, xw). Since X is trivial on Gal(Q,/Qy), we have H'(Qp, xw) =
H' (Qp, pp) = Q) /(Q; )P by Kummer theory. Since @ ramifies at p, we have H(I,,Xw) = 0, and
by inflation and restriction sequence, we have an exact sequence:

0= Hl(FFObg, HO(Ipa Xw)) — Hl(Qpa Xw) — Hl(Ipa Np)Fmbp:l - HQ(FFObg, HO(Ipa Xw)) = 0.
This implies all non-zero classes in H*(Q,, Xw) is ramified.

We study the cohomology group H'(Qy,X) to determine D) (Fle]) N H'(Qp,X). Since X is un-

ramified and Z has cohomological dimension 1, we have a commutative diagram with exact rows:

H'(Frob,,x) —— HYQpX) ——— HY(I,x)b=!

?J{ zJ{ ?J(
Hom(Frobg,IE‘) — Hom((@;,ﬂ?) — Hom(Z;,F)Frobpzl'

By the requirement of the cocycle in Dg (F[e]) being upper nilpotent over I, and being upper trian-

gular over D, := Gal(Q,/Qp), we have Dg (Fle)) N HY(Qyp,x) = Hom(Frobg ,IF) whose p-local Tate
dual is (p”/p"") @z F C (Q)/(Q))?) ©z F = H'(Qp,w) by Kummer theory. Thus we have
DY (Fle) N HY(Qp, xw) = H' (I, )™= = (Z /(Z))?) @z F.
So, it is ramified, and hence
(Km) the Selmer cocycle u in Selé (xw) for Yw can ramify at p and is a Kummer cocycle in
(Zy [(Z;)P) @, F C (Q) /(Qy)P) ®r, F projecting down trivially to I by sending 2 € Q
to its p-adic valuation modulo p.

For a prime I|Np/g(c), Ad 2 X&p & (7)) ! and Ad*(1) = xwap we(p ) '@ over Gal(Q,/Q)
(as F; = Q, & Q;). Write @' (resp. X') for o and @ (resp. for ¥ and xw) in order to treat the
two cases at the same time. We normalize Ad so that the character X is realized on F (§ %)
and @~ appears on the upper nilpotent matrices and () ~! acts on lower nilpotent matrices, and
we also normalize Ad*(1) accordingly. By (h3), $~ has ordr > 3, and via this action, the upper
nilpotent subspace is distinguished from lower nilpotent subspace. Since H%(I;,%’) = 0, we have an
isomorphism H(Q;, @) = H(I;, ) °"=! by the restriction map. Since @ is unramified at I, we
have p~w|;, = @ |1,- We have the following inflation-restriction exact sequence for K := Ker(@'|,):

0— HY@'(I),%") — H'(I;, %) — Homg (1) (K, %) — H* (¥ (L), ¥).
Here g € @'(I;) acts on K by k — g(k) := gkg~! taking a lift g € I, of g, and for ¢ : K — T,
¢ € Homg (;,)(K,¥’) implies ¢(g(k)) = @' (9)¢(k). Since ¢ has order a factor of p, ¢ factors
through the tame quotient of K of K, which is abelian; so, the tame quotient K® embeds into
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the tame quotient I} of I;. Thus g(k) = k on K*'. Since ¥ ([;) has order prime to p, we have
HI(@'(I;),%) = 0 for all j > 0. Since ¢’ is non-trivial, we have ¢(k) = ¢(g(k)) = ? (9)¢(k) for
some g € I; with $'(g) # 1; so, we conclude H'(I;,p') = Homg/(1,)(K,§’) vanishes. Thus we
get H'(Qi, Ad) = Hom(Gal(Q,/Qu),F (§ %)) = F and H'(Q, Ad*(1)) = H'(Q,F (§ ) @ @) =
H*(Frob},F (§ %) ® @) = F, which is the Tate dual of H'(Q;, Ad). This tell us that the Selmer
cocycle u, giving a class in D, (F[e]) for Ad has values inF (§ ° ) over Gal(Q;/Q;) and is unramified.
In other words, we have DlQ (Fle]) = HY(Qq, Ad); so, again the direct sum decomposition (3.3) holds,
and we find DZQ(IF[G])l = HY(Q, Ad)* =0.

At D, 27 |gam,/m) i trivial. Thus we have Ad = Y@Ind%i ~x@® 1Y over Gal(Q;/Q;). The
first factor X is realized in F (§ % ), the last factor Y is realized on F ( ° §) and the middle factor
1 is realized on Ad"* = F({}). Arguing in the same way as we showed H*(Q;, %) = 0, replacing
@ by X, we find that H'(Q;, %) = 0. We have H'(Q;,nd%1) = H'(F},F) = Hom(F*,F) = F by
(h0). Thus the cohomology classes in H'(Qy, Ad) is represented by cocycles with values in F (9 }).
Therefore we get H'(Qq, Ad) = Hom(Gal(Q;/F)),F(9})), and p € DZQ(IF[e]) if and only if u, has
image in Ad(F)"* =F (9 §) and is unramified. In particular, Df,(Fle]) = H'(Q;, Ad) = F.

By the same argument applied to Ad*(1)|caiq, /) = X@Pw®xw with H*(Q;, xw) = 0, Kummer’s
theory tells us that H*(Q;, Ad*(1)) = Q/(Q;)? ®r, F = F, which is represented by cocycle with
values in F (9 }) on which Gal(Q,/Q;) acts by @ as a factor of Ad*(1). Therefore the direct sum
decomposition (3.3) holds, and D, (Fle])* = H'(Q;, Ad)* = 0. We record this fact as

(Dn) Cohomology classes in Selé(Ad ®w) is trivial at all primes [|N.
Thus, for the dual Selmer groups of Indg P w and Yw, triviality at I|N is imposed (under (h0)).
In particular, for the splitting field K of xw, writing Cly.,(p*°) = @n Clyw(p™) for the ray class
group modulo p" (n =0, ...,00) of K, we have

Sely (x@) — Hom(Cly, (p™), F)[xw],

where Hom(Cl,.,(p™), F)[x@] is the Xw-eigen subspace of Hom(Cl,., (p>°),F) under the action of
Cal(K/Q) and by (Km) the cocycles in the image of Selj (@) in Hom(Clg(yuw)(p™), F)[x@] give rise
to locally at p a Kummer cocycle coming from Z; / Z;p . Note that ®~ ramifies both at two primes
[ and [ over I|Np/q(c). Since ¢~ is anti-cyclotomic, any prime [|D is fully split in F(¢™)/F.

Recall the splitting field Ky of p. Let F? be the maximal extension of K, unramified outside
Q@ and p. By (h0), all deformations of p = Ind%@ satisfying (D1-4) factors through Gal(F?/Q).
Write My, for the maximal p-abelian extension of F(¢~w) inside F® unramified outside N, Q and p
in which all prime factors of pN totally split (by (3.4)). By Proposition 7.1, as mentioned already,
we can replace “total splitting at p°N” by “unramifiedness at p¢N” without changing the Iwasawa
module (in other words, for the Galois extension L/ F_F (¢~ w) with Gal(L/F_F (¢ w)) = V(¢ w),
prime factors of p¢ N automatically split). Thus we conclude

Selj (nd% 7~ @) 2 Selj (7™ @) = Homgayr(p-w)/r) (Gal(My/F (¢~ w)), 7).

Since p t hr, Ky /F is fully wild p®ramified, while F'(p~w) is at most tamely p°-ramified. There-
fore the inertia subgroup of p¢ for the extension K F'(¢~w)/F(¢~w) is the entire Galois group
Gal(K F(¢~w)/F(¢~w)). This tells us that My N Ky F(p~w) = F(¢~w). Thus, we have the
vanishing of the ¢~ w-eigenspace

Coker (Y™ % Gal(My/F(¢™w))lp™w]
= Coker(Y~ 2% Gal(Mp/F(p~w))) @z, [Gal(F(o-w)/F)lp-w W =0,
and we find Gal(My/F (¢~ w))[p~w] =Y~ (¢ w)n = Ho(H,Y™ (¢~ w)) and
Homga(r(o-w)/r) (Gal(Mp/F (¢~ w)),® W) = Hom(Y™ (¢~ w)u, F) = Hompy 1) (V™ (¢~ w), F).

Proposition 3.6. Let Cl,. = {z € Clg+|c(z) = z71}, and write Cly, (p™) for the class group of
the splitting field of xw. Then, under (h0-4), we have Yq(¢™) @w(ng) F =Y~ (¢7) @wimy F for
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QeQ
(3.5) Selq(Ad) = Hom(Clg,.., F) & Homw i) (¥~ (¢7), F) including Q = 0,
Selg (Ad"(1)) = Sely (X@) & Homy ) (V™ (9™ w), F),
and
Selo(x) = Hom(Clg,, ,F) including Q = 0,
(3.6) Selg(Ind% %) 22 Homyy(zy (V™ (¢~ ), F) including Q = 0,
Sely (x@) — Hom(Cloyw) (r™), F) 3]

Sel(D (IndF<p W) = Homyy(a (V™ (¢~ w), F),

where the cocycles in the image of Sely (X@) in Hom(Clgyw) (p™), F)[x@] give rise to locally at p a
Kummer cocycle coming from Z;DX/ng.

Proof. We have already proven the last two identities of (3.6) and the second identity of (3.5). Thus

we deal the rest. The subspace Dg (Fle]) is made of classes of cocycles with values in Ad = sl (F)

such that w,|z, is upper nilpotent and u,|p, (D, := Gal(Q,/Q,)) is upper triangular. Similarly

DY(F[e]) for I|N is made of classes of unramified cocycles u, with values in diagonal matrices over

D;. Then by the same argument proving (3.3) (or by the dual statement of (3.3)), we note that
Selg(Ad) = Selg(X) @ Selg(Ind2 ™),

where Selo(X) = Ker(H'(Q@N?)/Q,%) % [T, n, H' (11, X)) and

Q——
(37) Selo(nd?7~) = Ker(HL(Q /@, IndB ) 2 [ &1

1N D!(Fle])
= Ker(H'(QO"?) /Q, Ind} 77) ™= HY(F5,57) x [[ H' (I, Ind} 7).
N
By the inflation restriction sequence,
Selg(x) & Ker(Homeayr/q)(Gal(F?/F), x) — [[ H' (I, x)) = Hom(Clg,, F).
N

However the order of Ker(Clg, Cly,) is [[,cq- (¢ + 1), which is prime to p; so, we conclude
Selo (1) = Hom(Clg, ) = Hom(Clg, . F).

Again by the inflation restriction sequence, identifying Gal(Q,/Q,) with the decomposition group
at p, we have an exact sequence

0 — HY(Frob, HO(Ty, 7)) — HY(Fp, @) — HY (55, F(g ™)™ — 0.

If o is ramified at p (so, ¢~ ramifies at p and p), we conclude H%(I,, %) = 0. If ¢ is unramified at

p, we have H'(Frob,, H(I,, %)) = % /(Frob, — 1)~ = 0, since ¢~ (Frob,) # 1 by (h4). Thus we
conclude

Ker(H'(Fy, 37) =% H'(I5,37)) =0,
and Selg (Ind% 77) is actually given (by replacing H'(Fg, %) by H (I, ) in (3.7))

(3.8) Ker(H Q@) /Q,nd257) ™% HY (5,77 ) x [[ H'(1, Ind% 7).

IIN

By the inflation-restriction sequence, we have an exact sequence H 1(Froblz, (@ )) — HY (D, ™) —
HY(I,,%) with (p~)!t =0 for I|N, and hence by Shapiro’s lemma (and (h0), we can rewrite

Selo(Ind® 7™) = Ker(H (QON?) /Q, ™) ™= HY (5,77 ) x [[H' (1.7)),
IIN
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where [ running over all prime factors of N in F'. Thus, restricting to the Galois group over F (@),
by the restriction-inflation sequence, we have

Selg(Ind} ) = Homy i,y (Vg (7). F).
Similarly, Selg(¥) = Homgay(r/g)(Gal(Q@N?) /F), %) = Hom(Clg, F). Therefore the first identity
of (3.5) follows if we prove Y5 (¢™) ®@w(ag) F =Y (¢~) @wimy F.
To prove Y, (¢7) @wiaen F = Y~ (¢7)@wm) F, writing Igab for the maximal p-abelian quotient
of the inertia group Iq C Gal(@/KéF(gf)) of a prime Q|q in K F'(¢~ ), we have an exact sequence

I B*-y,-y —o0
Q|q,9€@Q
as Ker(Y, — Y7) is generated by the image I3 > =~ 7., The surjectivity of the restriction map:
Yo — Y~ follows from linear-disjointness of Ly and K, F(¢~) over K~ F(p~) as at least one of
q € Q ramifies in any intermediate field of K F'(¢~)/K~F(¢~). Note that ¢ € @~ totally splits in
KoF(¢™)/F. Thus I = Hﬂlqlgab for ¢ € @~ is isomorphic to

Gal(K, F(p™)/F)
g

Z = Lp[[Gal(K o F(p™)/ F)]] = Zy[[Hel][Im(e™)]

as Zp[[Gal(K, F(¢~)/F)]]-modules. Since I{) ab > 7, is the quotient of the maximal g-tame quotient
of I, Frobg (for the prime q|¢g € Q~ in F) acts on it via multiplication by ¢*. Since ¢~ (Frobg) = 1,
the map I, ®z, 1m(,-)),0- W — Vg (¢~ ) factors through

I, (07) =1 @z tm(e-)o- W = WI[HQ]l/(¢* - 1).

Thus we have Z, (¢~ ) @w/irg) F = F(¢™) (one dimensional space over F on which Gal(F'(¢~)/F)
acts by 7). Note that Frob, acts on Z, (¢7) ®wm,) F via multiplication by ¢, which is trivial
as ¢ = 1 mod p. Thus the image of 7, (¢™) ®wymg) F in Vg (¢™) @wimey F is stable under
Frob, = ¢, and hence stable under Gal(F(%~)/Q). The Gal(F (¢~ )/Q)-module Indg ¢~ is absolutely
irreducible by (h3). Since T, (¢~ ) @wyu,) F = F(¢™), if the image is non-trivial, it must contain
the irreducible Gal(F (¢~ )/Q)-module Ind% ¢, which is impossible as the image has dimension < 1.
Thus the image of Z; (¢7) @wiimg) F in Vg (¢7) @wime F is trivial.

The set Qf of primes Q in Ko F(p~) above qlg € Q@7 is a finite set on which the Galois group
Gal(K, F (™ )/F) acts by permutation. Then, writing D(Q/q) C Gal(Kg5F(¢™)/F) for the de-
composition grup of £, we have

= ] 3™ =2 = 2,[Gal(k, F(e)/F)/D(9)/q)]
Qe

on which Frobg acts by 0D(Q/q) + goFrobsD(Q/q) = qoD(Q/q) for o € Gal(K, F(¢™)/F) and
Ay C Hg act trivially. Thus putting I;L (p7) = I;L ®z,[o-,o- W, we conclude from ¢ =1 mod p

_ 0 if o7 (Frobg) # 1
It ® F = q )
0 (¢7) Ewira) {IF if ¢ (Frobg) = 1,

since ¢ =1 mod p (i.e., after tensoring F, Frobq acts on F|Gal(Kg F'(¢7)/F)/D(2/q)] by multipli-
cation by ¢ =1 mod p). By our choice of @ € Q, 5(Frob,) has two distinct eigenvalues, and hence
¢~ (Frobg) # 1. Thus we get the following isomorphism:

Vo (7)) Owimen F =Y (¢7) @wyay F
as desired. O
The primes ¢, € Q,, is indexed by a basis {x}, of the Selmer group Selé (Ad*(1)) so that f, as

in Lemma 3.2 has non-trivial value at Frob,,. Thus writing Q= := {q € Qu|x(q) = 1}, we get
from our choice in Corollary 3.3

(3.9) Q| = dimp Homyy () (V™ (¢~ w),F) and |Q;| = dimg Sely (x@).
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4. A SUFFICIENT CONDITION FOR COMPLETE INTERSECTION PROPERTY FOR RJr

We now claim to be able to add the compatibility (Q9) to the above list of the conditions (Q0-8):
(Q9) oo,y =0,0m L and the set {fl("), e f,gn)} is made of eigenvectors of o, for all n
(e, on(fi™) = ££7).
Lemma 4.1. We can find an infinite family Q@ = {Qm }m of r-sets of primes outside Np satisfying
(Q0-9).
Proof. Pick an infinite family Q satisfying (Q0-8). We modify Q to have it satisfy (Q9). Since

p > 2, plainly, R, is generated over W by o,-eigenvectors {an(f;")) + f;")}jzlwyr. Since r is
larger than or equal to the minimal number of generators dimyty < dimgp Dq,, k4, (F[e]) for the
co-tangent space t}, :=mpg,/(m% + mw), we can choose r generators among {o,( fj(")) + fj(")}

n—+1 _ n—+1
o g1 = op ot

T o () £ f) = o (1) £ £

Once compatibility 7 is shown, we get

for each j from 771 ( f;"H)) = f;"); so, we may assume that the set of generators is made of

eigenvectors of the involution (and is compatible with the projection 77*1).
We now therefore show that we can make the system compatible with the involution. The triple

with 0 < n < m(n):
((Rn,m(n); O[), Rn,m(n); (fla SERE fr))
in the system (3.1) actually represents an isomorphism class ZI" made of infinite triples

{((Ram, @), Ry (f1, -5 ) m>n
satisfying (Q0-8) with m varying in the choosing process of Q (of Taylor-Wiles; see [HMI, page
191] or [MFG, §3.2.6]). Then m(n) is chosen to be minimal choice of m in the class ZI'W; so, we
can replace m(n) by a bigger one if we want (as ZI" is an infinite set). In other words, choosing
m appearing in Z!" possibly bigger than m(n), we would like to show that we are able to add
the datum of the involution ¢ induced by oq,,. Therefore, we look into isomorphism classes in the
infinite set of (o0-added) quadruples (varying m)

{((Rn,m; O[), Rn,m; (fl; ey fr)); Un,m}m2n+l

of level n in place of triples {((Rn,m, @), Rn.m, (f1,-- - fr))}m>n, where oy, », indicates the involution
of R, m induced by oq,, (which is compatible with the projection R, m — Ry m).
We start an induction on n to find the projective system satisfying 77! 0 0,11 = 7, o 771

The projection 7g,, : Rg,, — Ry (for any m > 1) of forgetting ramification at @, is o-compatible
(by definition) for the involution oq,, and oy coming from the y-twist, which induces a surjective
W-algebra homomorphism 7§ : Ry, — Ri o for Ry = Ty /pTy satisfying m{ooy = ogon. Thus the
initial step of the induction is verified. In the same way, the projection R, ,, — Enym is compatible
with the involution.

Now suppose that we find an isomorphism class Z,, of the (o-added) quadruples (indexed by r-sets
Qm € Q satisfying (Q0-9) varying m with m > n) containing infinitely many quadruples of level
n whose reduction modulo (p™~1, 55"71 — 1)4eq is in the unique isomorphism class Z,,_; (already
specified in the induction process). Since the subset of such @ € Q of level m > n+1 (so ¢ =1
mod p"*? for all ¢ € Q) whose reduction modulo (p”, 55" — 1)4eq falls in the isomorphism class Z,,
is infinite, we may replace Z,, by an infinite subset Z!, C Z,, coming with this property (i.e., m > n),

and we find an infinite set Z;,  ; of {((Rn,m+1, @), Rnm+1, (f1,- -5 fr), Onymt1) fm>ny1 which surjects
down modulo (p", 55" — 1)4eq isomorphically to a choice

((Rn,m; O[), Rn,ma (fl; . '7f1”)5 Uﬂ,m) € IT/l

at the level n. Indeed if all ¢ € Q satisfies ¢ = 1 mod p"T!, as we now vary m so that m > n
(rather than m > n), we can use the same @ = @, to choose the isomorphism class of level n + 1.

Therefore, for R ; = Tq/(p?, 55] — 1)4eq, the projections

~ n n41 ~ n n
Rgn+1 — Ron and Rgni1 = RQ/(p +1, 55 - 1):16@ - Romn = RQ/(p a5§ - 1):16@
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are compatible with the involutions induced by o¢, and hence for the same set of generators { f;};,
the two quadruples

{((Rgjs ), Rajs (fr,- o, fr)io)}i

of level j = n + 1,n are automatically o;-compatible.

Since the number of isomorphism classes of level n+1 in Z, is finite, we can choose an isomorphism
class Z,,+1 of level n + 1 with |Z,, 41| = oo inside Z/, whose members are isomorphic each other (this
is the pigeon-hole principle argument of Taylor-Wiles). Thus by induction on n, we get the desired

reduction

compatibility 72t o 0,41 = 0, 0 T for T,4q; ie., Ty ——— Ty — Zpnqg — - — Iy
with |Z;] = oo for all j = 1,2,...,n + 1. We hereafter write m(n) for the minimal of m with
((Rum» @)y Ry (f15- - -5 fr), On,m) appearing in Z,,. O

Lemma 4.2. Suppose that the family Q = {Qu|m =1,2,...} satisfies (Q0-9). Define Q- = {q €
Qmlx(q) = £1}. Then |Q;,| (and hence |Q}\|) is independent of m for Qm, € Q.

Proof. Since |Q;,| = dimp Homyy 1 (Y~ (¢~ w),F) by Proposition 3.6, it is independent of m. O

By (Q9), we have the limit involution o, acting on R, = lim Ry m(n), and we may assume

that the generators ( fl(") o 1) to satisfy o ( f(")) =+ f("). Therefore we may assume that
(Fm )y = (ff"j,...,ffﬁ, o ff}[)mth aoo(f(")) + /") for 7 =1/ ++", and hence,

we may assume that
R = W[[T1,+a SRR TT/,+5 Tl,fa SRR TT”,*]]
with variables T; + satisfying 0o (T},+) = £T; + for r = v’ + ", and we have the following presen-
A,
tation for g := (SL ul _ 1);:
(4.1) Roo/g = W([Titr . Ty To s, Ton ]}/ = Ta.

Strictly speaking, we may have to modify slightly the isomorphism class Z,, of tuples for each n to
achieve this presentation (see the argument around (4.7) in the proof of the following Theorem 4.10).

Since T9/(t —v*)T? = T, we can lift, as is well known, the above presentation over W and the
involution o to that of T9 over A to obtain:

(4.2) AT gy T g Toy oo T )/ UQA [Ty 4y oo T, Tr—y oy Ty )] 2 T,
where 000 (Tj,+) = £Tj + intact. We write simply R = Roo :=A[[T1 4,..., T+, Th,—, ..., T —_]].
Here is a brief outline how to lift the presentation (cf. [MFG, §5.3.5]): Let f;oo) = lim fj(").
Since f;") is an eigenvector of oy, f;oo) is an eigenvector of oo. Let R := A[[Ty,...,T)]] and
define an involution o on R by o(T;) = £7; < aoo(fi(oo)) = :I:fl-(oo). Choose f; € R such that
f; mod (t —~%) = f;oo) and g; € T = T? such that g; mod (¢t —v*) giving the image of f;oo) in Tp.
We can impose that these f; and g; are made of eigenvectors of the involution. By sending 7T; = f;
to g;, we have R/ApR = T, R* /Ay = T+, R/(t —7*) = R and RT/(t — %) = RL,.
We reformulate the ring WI[S1,..., S]] in terms of group algebras. Let Az = [ .o+ Ag
and AL = quQi Aq/A : 80, A, = A} x A, Define p-profinite groups A and Ay by A =

lim A, =77 and Ay = lim AF = 7Z,* for r+ := |Q5]. Here the limits are taken with respect to
—n —n N P m
gl restricted to Ayt
Set
(43) S = WIIA] = lm W[A/AP'] = lim WA,

for the p-profinite group A = lim Ap = Z;, with A = Ay x A_ and A be a local S-algebra.
Thus by identifying A/AP" with A,, we have the identification S = W][[Sy,...,S,]]. The image
Sy, = Wi[A] (W, = W/p™W) of S in R, is a local complete intersection and hence Gorenstein.
We assume that the ordering of primes in ) € Q preserves Q) and @,,. In other words, the ordering
of (Q3) induces Q;, := {q1,...,¢-_} and Q= {q,_11 =1 q¢],...,qr = gt }. We now write sJjE for
the generator of A corresponding to 0 gF
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Jr
o1

and S; = s; — (s;)fl. Thus UOO(S;E) = :I:S;E. Write G for the subgroup of involutions in
Aut(WI[A]]yw) generated by the involutions b; (i = 1,...,7_) such that b;(S;") = (—1)%s S for
Kronecker’s delta 6;; and bi(S;-r) = S;-r forallj=1,2,....,r,. Put S:=8% =W][A]]°.

Definition 4.3. Write sji for the generator of Ay corresponding to 5q].i- Then define S;-r =s

Since oo acts as 000 (S; ) = —S5; forall j =1,2,...,7_, the group G = (¢) embeds into G so that
0o = [[;b; on WI[A]].
For the ideal a,, := Ker(W[[AL] — W, [A}]) for W,, := W/p"W, we put
Wy =an + ((57)P —1,....(5;. )" =1)CS
as an S-ideal. Then 2, is stable under o, and 2, := Ker(S — W,,[A/AP"]). Put
(4.4) &, :=A, NW[A]C = Ker(W[A]® — W, [A/AP"]%)
=y + ()" =1 +o((s0)" = 1) (50 )7 = 1) +0((s5,.)"" = 1))

By this expression, we confirm the following fact:

Lemma 4.4. The ring S, := S/6,, = W, [A/Apn]G is a local complete intersection over W, :=
W/p"W and is a Gorenstein ring free of finite rank over W, .

Using the natural projection A — Ag, sending sJi to 6+, we get g, = Ker(S — W[Ag,,]).

We define &¢,, := Ker(S — W[Ag,,]). Let A be alocal S,,-algebra for S,, = S/, = W, [A/AP"]
(and hence A is an S,-algebra for S,, = S/&,, C S,,). We suppose that o acts on A as an involution
extending its action on S,. Then o acts on AT = Homg(A4,S,) (resp. A# = Homs(A4,S,)) by
17() = o(f(o(x)). Tndeed, £7(s2) = o(f(o(s2)) = o(f(o(s)o(®)) = o(o())a(f(o(x)) = 57 (x),
and hence f? is S-linear. We put Soo = S and S, = S and allow n = co.

Remark 4.5. Let C' C A be B-algebras. Suppose that

(1) B and C are Gorenstein,

(2) A and C are B-modules of finite type,

(3) C is B-free of finite rank.
Then we have Homp(C,B) = C as B-modules (cf., Lemma 10.1). Thus by [BAL, Proposi-
tion 11.4.1.1],

Home (A4, C) = Home (A, Homp(C, B)) 2 Homp(A ®c C, B) = Homp(A, B).
This isomorphism is sending g € Hom¢ (A, Homp(C, B)) to g € Homp(A®cC, B) given by g(a®c) =
g(a)(c). Applying this to (4, B,C) := (Ry, Sy, Sy) and then to (A, B,C) := (R, Wy, Sp), we get
A# =2 AT = A* as A-modules for A* = Homyy, (A, W,,). The identity A% = AT is valid for n = 0o
also. Since the isomorphism S,, = S can be chosen to be compatible with the action of G (including
o), the isomorphisms

(4.5) A? = AT = A*

can be chosen to be o-compatible. Note that W,,-duality is equivalent to Pontryagin duality for
profinite W-modules as long as W is finite over Z,.

By the above remark, noting R, is free of finite rank over S, we get the following o-compatible
identity:

4.6) limR, 2 lim R# = lim Homg, (Rn, Sy)
i pm i

n n n

M
2 Jim Hom (Roc /2 Roc, S/,) = Homs (Reo, S) = RE = RY.

Here the identities (1) are from Remark 4.5 and the identity (2) is by the fact: R, = Roo/nRoo
and by the definition S, := S§/2,,.
Define
Homp(A, B)* := {¢ € Homp(A, B)|¢p oo = +0 0 ¢}
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for A = ']I‘TQm := Homyy(a,, 1¢(Tq,,, W[Aq,]) or Rf, and B = Tq,, or R, accordingly. Write
Isomp(A, B)* C Homp(A, B)* for the subset made of isomorphisms. Using the Gorenstein-ness
of Tg for @ = Qm or Q@ = 0 (which follows from the presentation (4.1) and for @ = 0 from
Theorem 2.1), by Lemma 10.2 (1) applied to the involution og,, of Tg,,, we have

Isomp, (T}, ,Tq, )" #0
for at least a sign e € {£}.
Lemma 4.6. We have
Isomr,, (TTQM, Tg,. ) #0 < IsomRn,m(RLVm, Rym)® #0
for each 0 <n < m.

Proof. The direction (=) is just reduction modulo (p”, 55" — 1)4eq,.- We prove the converse. If
we have ¢ € Isompg, , (R}, ;s Rnm)®, then o(¢71(1)) = e¢~*(1). We can lift ¢7*(1) to v € ']I‘TQm
with o(v) = ev so that v mod (p", 08" — 1)4eq,, = ¢~ '(1). Define & : Tq,, — ']I‘TQm by ®(t) = tv.
Then ® is a Tg,,-linear map. By definition, & mod (p”, 55" —1)4eq.,. = ¢1; so, by Nakayama’s
lemma, ® is onto. Since Tq,, and ']I‘TQm are W-free of equal rank, ® must be an isomorphism. Thus
@~ € Isomy,, (T}, .Tq,)*- 0

We want to add one more datum ¢,, € Isompg, (R}, R,,)¢ to the data (R, @), Rp, (f1, -, fr)s on)
which is required to satisfy the following compatibility condition:

(Q10) We have ¢,, € Isompg, (R}, R,)¢ with € € {+} independent of n for all n > 0.

Remark 4.7. Let A and B be a finite Gorenstein local rings of residual characteristic p. We suppose
to have a surjective ring homomorphism 7 : A — B. By adding *, we denote the Pontryagin dual
module. Since A and B are Gorenstein, we have isomorphisms A* = A as A-modules and B* & B
as B-modules. Thus we have a diagram

A —" - B

?TQM ?TQBB

A* —Z . B*.
By defining w := (;5]51 omo ¢y, the above diagram is commutative. Thus we can always adjust
A* — B* making the above diagram commutative. Suppose that A and B have involutions ox ~ X

for X = A, B. By duality, the involution ox acts on the dual X*, which we denote by o%. If
¢x 00k =¢eox o ¢x for e = £1 independent of X = A, B and op om =m0 04, we have

wooh =¢zlomopaocoly =gl omocoaoda = ¢zl ocopomops =200y omopa = o ow.

Thus the adjusted w commutes with the involution.

This remark shows that if we have a projective system {((Rp, @), Rp, (f1, . - -, fr); 0n) }n satisfying
(Q0-9), we can add the datum of an R,-linear isomorphism ¢, : R =2 R} =~ R, compatible
with o; i.e., (Q10) is automatically satisfied for ¢, induced by ¢q,, ., , as long as we can take
Qi € Isomqum(n) (']I‘TQm(n) s TQpniny)° With € independent of m(n). Explicitly, the compatibility of
¢rn means the following:

(1) the datum ¢,, satisfies ¢, o o} = €0y, 0 ¢y, for all n and for € as in (Q10) independent of
m = m(n), and

(2) the projections 7y : Ry — Ry, and wy oy, RL/ =R - R} = R} for all n’ > n commute
with the involution in addition to the commutativity of the diagram:

Rn/ —— Rn

Jow e
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Now we again go through the Taylor-Wiles system argument made of the augmented tuples

((Rn; O[), Ena (fla ) fT)a On, (bn)
with ¢, = (¢g,, mod (p”, 55" —1)4eq..) € Isompg, (R}, R,)¢ for m = m(n); then, we obtain R
with the limit involution o+, and the limit isomorphism ¢, € Isomp_ (Rl , Ro). Here Rl =
Homg (R, Sp). Thus we get
Corollary 4.8. Suppose (h0-4). Then we can choose the Taylor—Wiles projective system

((Rna O[), En; (fla SRR fr); On, ¢n)n = ((Rn,m(n); an,m(n)); En,m(n); (fla SRR fr); On,m(n)> ¢n,m(n))n
satisfying (Q0-10). Ife = + in (Q10), then we conclude that RY, is a Gorenstein ring over S = 8¢,
Roo/Q[QmRoo = Ry, =Tqg,,.

Proof. For simplicity, write A := R,/ j(n/) and B := Ry, py(n) for n’ > n and m(n’) > m(n). As we
will see in Lemma 10.2 later, Hom(A*, A)¢ # () and Hom(B*, B)¢ # ) for a suitable choice of sign
g,e. When F is imaginary, always € = € = + as we prove in Lemma 5.3. If F' is real, choosing such

sign and making the diagram in Remark 4.7 commutative, it is easy to see that ¢ = € under these
choices (although we do not need the case of F' real in this paper). O

Here is a prototypical example of the rings of type Roo, RIL corresponding to the choice ry =’ =0
andr_ =7r"=1:

Example 4.9. Consider 0 # § € my and put

Jw+wvs if6 ¢ W2,
Wivel = {{(x,y) €W @ W|(z mod V§) =y mod V§)} ifVseW.
Define
A= {(z,y) € W W[V5]|(x mod §) = (y mod V3)} and B = {(z,y) e W & W]z =y mod (5)}.

Note that A = W/[[T_]]/(S_) with S_ = T_(T? — §) by sending T_ to (0,v/) € A and B =
W([T?]](T-S-) by sending T2 to (0,8) € B. Then W[[T-]] D W[[T?]] and W[[T-]] D W[[S-]]. We
have an involution o of W[[T-]] over W[[T?]] with o(T-) = —T- and o(5_) = —S_.

For Q € Q, recall r_ = |Q~| with
Q™ :={q € Q|qgis inert in F/Q} and Q% := {q € Q|q is split in F/Q}.

Now we would like to prove

Theorem 4.10. Suppose (h0-4). Let Q be the family satisfies (Q0-10). Let Q € Q or Q = (.
Suppose that o is non-trivial on Ty (so, nontrivial on T?). Then we have ¢ = + in (Q10), and the
following three assertions holds.

(1) We have 0 < r_ = dimp Homy g (V™ (¢~ w),F) =",

(2) If r— =1, the Tf—module T is generated by a single element over Tf.

(3) If r— =1, the ring Ty = Tg is a local complete intersection over A. More generally, for
Q € Q, the rings Tf and T® are local complete intersection.

Proof. By (Q9), o is compatible with the projective system of tuples
((Rna O[), Ena (fla MR fT)a Un) 6 In;

and by constancy of e, we can find an isomorphism class Z,, with |Z,| = co of the tuples

((Rna O[), En; (fl; ey fr); On, (bn)

with an extra datum ¢, compatible with projections. Indeed, we will see in Lemma 5.3 that if
= ( for all m, where we recall ']I‘TQm =

o is non-trivial on T?, we have Isomr,, (TTQM,TQM)
Homyy(a,, 16 (Tq,,. W[Aq,,]%), and hence Isomr,, (T}, ,Tq, )" # 0 by Lemma 10.2 (1), proving
e = + for € in (Q10). As explained after Remark 4.7, by Lemma 4.6, we can add the datum ¢,, to
our tuples without changing the isomorphism class Z,, as long as ¢ is constant for all (),,,. In other
words,

((Rna a)a Em (fla SRR fT)a On; (bn) = ((Rna a)a Em (fla SRR fT)a Uﬂ)
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induces a bijection between Z, and Z,,. Then by the finiteness of isomorphism classes of the tuples

((Rna O[), En; (fl; ey fr); On, (bn)

of level n + 1 in Z/, combined with infiniteness of Z/,, the projection maps R, 11 — R, and its dual
are compatible with ¢; € Isomg; (R;-, R;)" (j = n+1,n) for R; = Homg, (R;, S;) with S as in
Remark 4.5). Since Z}, and Z,, are in bijection, hereafter we use the symbol Z,, also for Z,, (identifying
the two index sets).

We have the limit involution o4, acting on R, which is uniquely lifted to an involution ¢ = g4,
acting on R := R for Reo defined just below (4.2). Put

Ry :={z € Rlo(x) = £x}.
Let Ino = R(0c — 1)R = RR_. Note that ry :=|Q+]| is independent of @ by Corollary 4.2.

We now claim that 7_ > 0 if ¢ acts non-trivially on T? = R?. Here is a proof of this claim. First
assume that the class number of F' is prime to p (so, C' = Cj in the introduction is trivial). Note that
T?/I9 = W([[Hg]] for I9 := T?(oc — 1)T< by Proposition 2.6 and Hg = Hg+ by definition. By our
choice of Q, if r_ =0 (i.e., r = r; and hence Q = Q™), by Proposition 1.4, for I, = R(0s — 1)R,
we have R /I = lim W{[Hg, |]/%, = W[[ST,..., S} ]]; s0, dimR = dim R /.

«—n m +
If the class number of F' is divisible by p, by Proposition 2.6, we have a canonical isomorphism

RO [I9m @5 A/(T) = W[Cq,,]

for Cyq,, defined above Theorem B in the introduction. By [H16, Corollary 6.6], the ring W[Cq,,]
determines functorially the group Cg,,; so, the projection R@mm+1 /2, 11 — R /2, induces a
surjective group homomorphism

n+1 n
CQM(n+1) /Ame(n+l) - CQM(n)/A;DQm(n)'

Here Cgq,, is as in the introduction. This tells us that we have a surjective group homomorphism
Zo, /Ag:;ﬂ) = Qi /Agnm(n). Thus the sequence {Qp,(n)}n satisfies the requirement of the
sequence in Proposition 1.5, and by Proposition 1.5, we have R/l = lim W/[[Hq,,]|/2, which is
free of finite rank over A[[A]] = A[[A4]]; so, dimR = dimR /I, without assuming that the class
number is prime to p. Thus, if |Q 7| = 0, then Spec(R/I) contains an irreducible component of
the integral scheme Spec(R). This implies Spec(R) = Spec(R/I), and hence the involution o
acts trivially on R, a contradiction (against the non-triviality of ¢ on T? = R/2pR). Therefore
we conclude that r— = |Q7| > 0. This implies that R/l is a torsion Sy-module of finite type
for Sy = A[[A)(ST)?, ..., (S )] = A®wS with S as in Definition 4.3. Since Ro/ln =
RT /I has finite flat over W[[A]] which is the ramification locus (fixed by o), we find that r’ =
dimy Spec(Roo/Ioo) = dimyy Spec(W[[AL]]) = r4, which implies 0 <r_ =r" asr’' +r" =rp +7r_.
The identity r_ = dimp Homyy gy (V™ (¢~ w), ) follows from (3.9).

Since R is free of finite rank over Sy by the Auslander-Buchsbaum formula (e.g. [CMA, The-
orem 19.9]), regularity of R implies that R is a Gorenstein ring over Sj; in particular, R :=
Homg, (R, Sx) = R as R-modules. By Corollary 4.8 (and (4.6)), ¢oo commutes with oo, and
we conclude that ¢o, : Homg(Ruo, S) & Ry induces ¢t : Homg(RL,S) = R as RI-modules.
Since Ry /(t — Y*)Ry = RL, R, is Gorenstein by [CRT, Exercise 18.1], and by Lemma 10.1,
RL := Homg, (R4, Sa) = R4 as Ry-modules.

Suppose r— = 1" = 1. Let Sy = S®wA = A[[A]]. Then plainly Sa is flat over S} := S{. By
Lemma 10.4, R_ is generated over R4 by a single element § with o(0) = —4d. If a power series
STy 4+,...,Tr—1,4+,Th,—) is fixed by 0, by equating the coefficients of the identity:

STy, To1y T ) = 0(®(Trts o Tror e Th2)) = B(Thgs o Trot iy —T1),
we find that @ is actually a power series of (T 4,...,T,—1 4, Tf_). Thus the fixed part R4 := R
for G = G = {id, 0} is still a power series ring, and we have Ry = A[[T1 ¢, ..., T_1 4, T} ]]. Since
Ty = lim R, by the original Taylor-Wiles argument (e.g., [HMI, page 194]), lifting it to A, we get
T =T = R/AyR and T_ is the surjective image of R_. Since R_ is generated by one element &

over Ry (which can be given by T; _), its image T_ in T is generated by one element 6 over T..
This proves the assertion (2) for Q = 0.
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For a given Q = Qm, # 0, we take ng such that p™ = maxzeq(|A4|). Then we restart the
Taylor-Wiles argument from T¢q in place of Ty. In other words, we consider the projective system
for n > ng:

(4.7) (Buy @), Rous (f1s- - fr)s 00 d0) € T
for EQ,H =R,/((p™) + Ag)Rn. Then by the same argument, we get
Tq = lim R = Roo/Uq-
n>ng

Thus again lifting over A, we get T¢ = R/gR. Since R_ is generated by one element & over R,
T< (which is a surjective image of R_) is generated by a single element 6 over Tf. We may assume
that the projection maps send T1,— +— 6o — 6 in T_. This finishes the proof of the assertion (2).

We now prove (3). Since " =r_ =1, we can write QT = Q. ={q1,...,¢—1} and @~ =Q,, =
{q-}. Recall Sp = S®wA = A[[A]], and write {s; = 145, }j=1,...r for the basis of A corresponding
to lim oy, Since 7"’ =7r_ =1, Ry = A[[T1,4,..., T—1,4, 77 _]] and 5q = g N Sy is generated by
an S-sequence

{s'lA“' -1,..., lﬁqf’l' -1, SLA‘M + sf'A‘”l -2}

(which is hence an R -sequence), R /sqoR+ is a local complete intersection and hence is a Goren-
stein ring (e.g., [CRT, Exercise 18.1]). We have a surjection R4 —» ']I‘f and hence a surjection
R4 /5qR+ — TS C T, Then we have

bQ = Ker(R+/5QR+ — Tf C TQ) = Ker(R — TQ) N R+
= ARNRy = HO(G,AGR) = 5g + (T1—(s,°7! — 5712071,

since AgR/soR is generated by T1_AoR = T1,_sqQR + (TL,(SLA‘”' — sy %ely) Thus bg is gener-
ated by the regular sequence

A [Aq, 4| A —|A
Sll ql' —1 dr—1 —1,T177(SL qr| _ST| qT|)}'

PRI e |

Since S; (j < r—1) is fixed by o, we find that TY = ATy y,..., To1 4, T? _]]/bq is a local complete
intersection. g

5. PROOF OF THEOREM B

In Sections 5-9, unless otherwise mentioned, we assume that p = Ind%@ for the imaginary
quadratic field F. Let Q be either Q € Q as in Theorem 4.10 or Q@ = (. Thus T? = T by our
convention. So, when @ = (), we omit the superscript or subscript “Q” from the notation. Recall
the fixed integer £ > 1 and the local direct summand T¢g = T9/(t — v*)T? of hg j 4,. Since we use
the anticyclotomic Katz p-adic L-function L, defined as an element of W[[H]], the base ring W is a
finite extension of W (F,) (see [Ka78]), though, replacing L, by a generator of the ideal (L,, ) defined
in Wy[[H]] for a finite extension Wy of Z, (see Theorem 5.2), we do not need to take W bigger than
Wo. By Corollary 2.5 and Proposition 2.6, we have T9/I¢ =~ W[[Hg]]. Write K := Frac(A) for the
weight Iwasawa algebra A. Since T is a reduced algebra finite flat over A (cf. [H13, Corollary 1.3]),
we have Frac(T?) = T? ®) K = X @ Frac(W[[Hg]]) for a ring direct summand X. Put T@rem
for the image of T9 in X. Then we have I? = (T@"™ ¢ 0) N T¥ in Frac(T%). In particular, the
involution ¢ preserves the quotient ring T91°™ as an automorphism of Frac(T%).

Since W[[Hg]] is A-free of finite rank, the exact sequence of Proposition 2.6

0—I9 - T9 — W[[Hg]] — 0

is split exact, and hence I? is A-free of finite rank. Recall M"Y = Homp (M, A) for A-modules M.
Since (T?)Y = T by Theorem 2.1 and Theorem 4.10 and W[[Hg]]¥Y = W[[Hg]] as T?-modules,
from the above exact sequence, we get the dual diagram with exact rows:

—

W([Hq]]"! —— (T9)Y —— (9)¥

| | |

WIHg]] —— T9 —— T@nem,
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Thus we get

Lemma 5.1. Suppose (h0-4). Let ag := TN (0@ Frac(W[[Hg]]) = Ker(T% — T@1™). Then ag
is a principal ideal generated by ag € Tf in Tf isomorphic to W[[Hg]] as Tf—modules.

We find ag € ']I‘f since W[[Hg]] is fixed by oq.

If Q@ = (), we have the anticyclotomic Katz measure L, € W[[Z,]] with branch character given
by the anticyclotomic projection ¢~ of the Teichmiiller lift ¢ of P (see [H15, §6]). Identifying H
with Z~ when Q = ), we regard L, € W[[H]]. Then from [H15, Theorem 7.2], we get

Theorem 5.2. Suppose (h0-4) and p > 3. The ideal a = ay is generated by L, € W[[H]].

Let TS = {z € TO2" = %z}, TE™™ = {z € T2 = 42}, TH = {z € Tg|z" = *a}
and If = {x € I?|2° = +z}. Since no irreducible components of Spec(T@ ™) is fixed by o¢ and
19 = T®(0g — 1)T? = T? - T, we have T? = T?"™ = [9. Also I? C TO"™ a5 [ is generated
by T®  T@"™ Taking oq-invariant, from T?/I? = W|[Hg)], we conclude T /I¢ = W[[H]].

We now prove the following key lemma.

Lemma 5.3. Assume (h0-4) and that F is imaginary. Let Q = Q.,, € Q or Q = 0 as in Theo-
rem 4.10. If o acts non-trivially on T = T, then the condition (Q10) is satisfied with € = + and
the ring Tf and Ta are both Gorenstein. Indeed, we have Isomre ((T9)Y, T9)T # 0 and

= @,

Isompe ((T?)Y,T?)~ = Isomr, (Tg, Tg) ™
where M* = Homy (M, W) and MY = Homy (M, A).

In the lemma, we can replace T¢, (resp. (T9)V) by Homg, (Tq, Sq) (resp. Homg, (T, Sx0))
for the image Sq (resp. Sp,q) of S (resp. Sy) in Tg (resp. in T?) (e.g., Remark 4.5).

Proof. Since the proof is the same for any @ including @ = ) and also for T and T?, we prove the
lemma for T} = ']I‘g.

Let C := Gal(F,/F) for the maximal p-abelian extension F,/F' of conductor dividing ¢p. Then
C' is isomorphic to Cy in the introduction as in (1.6). Since T/I = W][H]] by Corollary 2.5 and
W[H]] is A-free of rank |C|, I is a A-direct summand of T, and hence I is A-free. Taking the A-dual
sequence of 0 — I — T — W]J[H]] — 0 (with all A-free terms), we have another exact sequence:
0« IV « TV « WJ[[H]]Y — 0 of T-modules. By Theorem 2.1, T is a local complete intersection.
Since W[[H]] is a group algebra, it is a local complete intersection, and hence they are Gorenstein.
Then we have TV = T and W[[H]]Y = W][[H]] as T-modules. From this, we conclude T"™ 2= [V,
Thus T™™ is A-free and is non-trivial as o acts on T non-trivially. Since T*™ is reduced (by cube-
freeness of N; see [H13, Corollary 1.3]) and there is no irreducible component of Spec(T™™) on
which o-acts trivially, Frac(T"™) = T*™ ®, K is equal to Frac(T}*") @ Frac(T5°™)d for a non-zero
divisor § with §? € Frac(T%™). In other words, Frac(T"™) is a Frac(T%“™)-free module of rank 2,
and T?™ @5 K = T_ ®x K is a Frac(T}™)-free module of rank 1. In particular, we have

(5.1) rankp TE" = ranky T2 = rank, T_ > 0.

The positivity of ranka T_ follows from non-triviality of ¢ on T, and T"°™ is identical to T_ as o
acts trivially on W[[H]]. Since I = Ker(T — W/[[H]]), we have I = T N (0 @ Frac(T"™)) inside
Frac(T), and hence T"*™/I is the congruence module between the two components Spec(T"*™) and
Spec(W[[H]]) of Spec(T). Thus, by Theorem 5.2, we have (cf. [MFG, §5.3.3])

(5-2) T /1 = T @ W([H]| = W[[H]}/(L,),

which is a torsion A-module. Thus we get

(5.3) ranky I = dimg Iy ®x K = dimg Frac(T%™) = rank, T2 (2

Taking the o-invariant of the two sides of the identity T/I = W{[[H]], we have T /Iy = W[[H]].
Thus we get

(5.4) ranky T4 = rankp Iy + ranky W[H]|] = ranky T_ + ranky W[[H]] > ranky T_ > 0.

rankpy T_.
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By Lemma 10.2 (2) applied to A = T and S = A, ¢ € Isomp(TV,T) must commutes with the
involution; so, we get Isompe(TY,T)* # @ and T = TY. Thus T is a Gorenstein ring (by
Lemma 10.1) as well as Isomp(TY, T)™ = (. O

We want to prove the following slightly stronger version of Theorem B in the introduction allowing
the case when plhp:

Theorem 5.4. Assume (h0-4). Suppose that o acts non-trivially on T. Then the following four
statements are equivalent:
(1) The rings T™ and T4™ are both local complete intersections.
(2) The T*™-jdeal I = T(o — 1)T C T™™ is principal and is generated by a non-zero-divisor
6 € T_ = T™™ with 6% ¢ TE™. The element 8 generates a free T"™-module T_, and
Toe™ = T4e™ (0] is free of rank 2 over TH™.
(3) The Iwasawa module Y~ (p~) is cyclic over W[[H]].
(4) The Iwasawa module Y~ (p~w) is cyclic over W[[H]].
Under these equivalent conditions, the ring T4 is a local complete intersection (not just a Gorenstein
ring).

Note here that H = I'_- = T"if p { hp and that ranky W[[H]]/(L,) is the sum of the Iwasawa
A-invariant of the branches of the p-adic L-function L, since the u-invariant of L, vanishes by [H10,
Theorem I]. Thus if p t hp, we have Y~ (§) = Y (&).

Proof. For simplicity, we write A := T"™ and Ay := T} and S = W. Suppose (1). Then A, A,
are local complete intersections; so, Gorenstein. Thus the different inverse 02} A, and DX}W are
A-free modules of rank 1 and Dgi w18 an Ay-module of rank 1. (See Section 10 for the definition
of the different inverse). Since

Spec(4)7=" = Spec(A/1) = Spec(W[[H]]/(L,)) = Spec(A /L),

the ramified locus of Spec(T"") is a non-trivial divisor given by the zero set of L, which is a non-
zero divisor of W[H]]. Thus 04,4, is the characteristic ideal (L, ) (by a theorem of Tate [MR70,
A.3]; see also [MFG, Lemma 5.21]), which is contained in my4. Thus by Lemma 10.4, we get the
assertion (2).

Suppose (2). By the proof of the anticyclotomic main conjecture in [HO6] (see also [H15, Sec-
tion 7]), we have an identity T"“™ /I = W[[H]]/(L, ) and by the technique of [MT90] (see also [H16,
§6.3.6]), we have an isomorphism Y7 (¢7) ®z,(,-) W = Qr/x @1 W[[H]] as A-modules, where ¢
is the unique character satisfying the assumption of the anticyclotomic cyclicity conjecture such
that xp|ax is the Teichmiiller lift of det(p) (i.e., the Neben character of h). Thus we conclude
L, = Ly(¢~) for the Katz measure L, in Theorem 5.2. Then by [H86¢c, Lemma 1.1], we have a
canonical isomorphism of W[[H]]-modules:

Qrya @ W(H] 2 1/17 = (6)/(9)*

whose left-hand-side is isomorphic to Y~ (¢~) ®z_[,-] W. Here 0 is the generator of I as in Theo-
rem 5.4 (2). Since 6 is a non-zero divisor, multiplication by # induces an isomorphism of W{[H]]-
modules

A/(Ly(p7)) = T /(6) =25 (0)/(0)* = V™ (¢7) @, W

This shows the cyclicity of Y~ (¢ ™) over W[[H]], which proves (3).

Assume (3). Then by the above identity, I/I% = Y~ (p~) is cyclic over W[[H]]; so, I is generated
by one element by Nakayama’s lemma. Let t7, be the tangent space of Tq over WI[Ag]. Then
t5 = Selg(Ad) and its minus-eigenspace for o is is isomorphic to Homy iz (Y~ (¢7), F) by (3.5).
Thus Ig /I3 is generated by one element over W[Ag]. Consider the Taylor Wiles system (R, ...)n
as in (3.1). Writing I, = R,(0, — 1)R,, for the involution o, of R,. Since I,,/I? is the image of
19, /Iém(n), it is generated by one element over Ry,. Since Ino/I3, =lim I,/I}, Io /I3 @R F
factor through I,,/I2 @g, F for some n; so, I,/I% is generated by one element over RE . Since
Re = WT{, ..., T, Ty, ..., T], Iso/I2 is generated by r” elements over R, we conclude

y Ll

r" = 1. Since r"" = r_ by Theorem 4.10 (1) and r— = dimHomwz,) (Vg (¢~ w),F) for all @
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including @ = () by Proposition 3.6, we conclude 7~ = 1 and Y~ (¢~ w) is cyclic over W[[H]],
proving (4).

Assume (4). By Lemma 5.3 combined with Lemma 4.6, the assumption of Theorem 4.10 is
satisfied. Then r— = 1 =" by Theorem 4.10 (1). Then T_ is generated by a non-zero divisor 8 by
Theorem 4.10 (2), and I is generated by 2. This implies T /() = W([[H]]/(L, ) = T} /(6?).
Since W[[H]]/(0) is a local complete intersection over W, by Lemma 5.5 below, the assertion (1)
holds. Moreover, by Theorem 4.10 (3), T is a local complete intersection. O

Here is the ring theoretic lemma we used:

Lemma 5.5. Let A be a complete local noetherian ring finite flat over A. Then A is a local complete
intersection if and only if for a non-zero divisor § € ma, A/(§) is a local complete intersection.

Proof. We first prove the “if”-part. Take a presentation A[[x1, ..., Z;,]] — A for the m-variable power
series ring A[z1, ..., zm]] over A. Write the kernel of this map as a. Lifting 6 to § € Af[z1,. .., 2]
so that 0 has image 8 in A, we have A[[z1,..., 2zm]]/(a+ (8)) = A/(8). Write p(b) for the minimal

number of generators of an ideal b of a ring. Smce A/(9) is a local complete intersection of dimension
1, a+ (6) is generated by a regular sequence of length m + 1 as u(a + (9)) is equal to m + 1 =
dimA[[z1, ..., Zm]] —dim A/ () for the complete intersection ring A/(J) (cf. Theorems 17.1 and 21.2
of [CRT]). Since the height of a+ (8) is m+1 and the height of a is m (by dim A = 1+dim A/(8) as
§ is a non-zero divisor; see [CRT, Theorem 17.4]), we conclude p(a+ (8)) = pu(a) +1 =m + 1 from
p(a) < p(a+ (8)). Then by [CRT, Theorem 17.4 (iii)], we conclude that a minimal set of generators
ai,...,a;, of ais a regular sequence. Thus A = Af[z1,...,zm]]/(a1,...,am) is a local complete
intersection by [CRT, Theorem 21.2 (ii)].

We now prove the “only if”-part. Let (ai,...,am,) be a sequence generating a. Pick a non-
zero divisor § € my and lift it to 0 € A[[z1,...,2,]]. Then plainly (ay,...,am,0) is a regular
Al[z1, . .., xm]]-sequence; so, A/(d) is a local complete intersection. O

Conjecture 5.6 (Semi-simplicity). Suppose p > 3. If ¢ is a square-free product of primes split in
F/Q, then the projection of L, to each irreducible component of Spec(W([[H]]) is square-free.

Note that each irreducible component of Spec(W[[H]]) is the spectrum of a regular local ring
A := WIJ[T'_]], which is a unique factorization domain; so, square-freeness of elements of A is well
defined. If ¢ is divisible by non-split primes, there are some cases where L, is divisible by p? (e.g.,
[H10, §5.5]). It is a well known conjecture that the Kubota-Leopoldt p-adic L function is square-free
in the Iwasawa algebra (the semi-simplicity conjecture of Iwasawa; see [CPI, (P3-4), in No.62 and
see also U3]). Thus the above conjecture is an anti-cyclotomic version of Iwasawa’s semi-simplicity
conjecture.

6. PROOF OF r_ = dimgp Selé (Ind(%i @ w) <1 AND THEOREM A

In this section, we first study mod p Selmer groups of an induced representation for F'/Q via
classical Kummer’s theory and prove r_ < 1 which proves Theorem A via Theorem B. Take an
anti-cyclotomic finite order character ¢ of Gal(Q/F), and recall F(¢) which is the splitting field

@Kcr(¢). Write R for the integer ring of F(¢). We study Galois module structure of > ®z Q:
Proposition 6.1. Write a for the order of ¢. Then we have
e ®Z@:{§Gi@b lé dQ z:fa zs even u‘n'tha:2b,
@;:11 dyp ¢’ if a is odd with a = 2b+ 1,

as Gal(F(¢)/Q)-modules, where & : Gal(F(¢)/Q) — {£1} is a quadratic character such that
€lcal(r(g)/F) = ¢ and € is even at the infinite place of Q.

Proof. If a = 2, we have Gal(F(¢)/Q) = {+1}? as Im(Indg ¢) is dihedral of order 4. Since complex
conjugation ¢ € Gal(F(¢)/Q) fixes a unique totally real quadratic extension k'/Q with £ = (k/ﬂ)

Then F(¢) is a CM quadratic extension of k', and the assertion is clear.
Now suppose that a > 2 is even. The fixed field F(¢) of Im(¢?) C Im(p) = Gal(F(¢)/F) is the
composite of F' and another quadratic extension k' of Q. By the argument in the case of a = 2,
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we may assume that &k is real, and F'k’ contains another imaginary quadratic extension F/’Q. Thus

&= (m) has multiplicity 1 in 3% ®z Q as the unit group of &’ has rank 1. The maximal abelian
quotient of Gal(F(¢)/Q) is equal to Gal(Fk’'/Q). Writing a = 2b with 1 < b € Z, the action of
Gal(F(¢)/Q) on R* ®7 Q is therefore isomorphic to

b—1

R* 0z Q= @ P m(j) Indf ¢,

j=1
since {¢7, 677} (j = 1,...,b—1) and {¢" = €|, r)} 8ive conjugacy classes of characters under
conjugation of c. Therefore we have 1+ 3, 2m(j) = a — 1; so,

> m(j) = (b-1).
J

Write 3(¢) for the set of infinite places of F'(¢). The Gal(F(¢)/Q)-module R* @z C is embedded
into the Galois module Im(Trc g : F(¢) ®g R — R¥(®) @p C by the (z,), ® z — (2log |z,|?), for
infinite places v of F'(¢) (e.g., the proof of Dirichlet’s unit theorem). The cokernel of this embedding
is identified with the trivial Gal(F'(¢)/Q)-module C by the degree map deg(z,) = >, .. Let
Gal(F(¢)/Q) act on X(¢) by permutation; so, the space of C-valued functions C[X(¢)] on X(¢) is a
Gal(F(¢)/Q)-module. The Gal(F(¢)/Q)-module Im(Trc/g : F(¢)®gR — R¥®)) @R C is isomorphic
to C[X(¢)]. We claim

b—1
(6.1) CE(¢) = 1@ e PHndg ¢’

j=1

We prove this claim. The complex conjugation g, at v coincide with ¢ on F', and hence Indg &

forall 7 =1,...,b— 1 appears in addition to real characters £ and 1. Since complex conjugation
acts non-trivially on F,, = C, this shows the desired formula from the exact sequence R* ®z C —
C[X(¢)] — C.
We now assume that a = 2b+ 1 is odd. Then we have

2b
(6.2) ClE@) =1’

j=1
as Gal(F(¢)/F)-modules, and ¢ € Gal(F/Q) interchanges ¢’ and ¢/, which implies

b
(6.3) C[2(¢)] = 1@ P Ind} ¢
j=1

as Gal(F(¢)/Q)-modules. Thus we conclude the desired formula. O

Recall the fixed embedding i, : Q — Q, and p := {z € O : |ip(z)| < 1}. Then (p) = pp°® with
p #p°. Let ¢ : Gal(Q/F) — Q" be a character of order prime to p with prime-to-p conductor ¢ as
in the introduction. Let ¢ = ¢~; so, R is the integer ring of the splitting field F'(¢~) of . Write
Clp(y-y for the class group of F(¢~) which is a Gal(F(¢~)/Q)-module. Recall X[z~ ] = X[p™] =
{z € X|rx =% (7)x for all 7 € Gal(F(p~)/F)} for a F[Gal(F (¢~ )/F)]-module X; in particular,

(Clpp—y @z F)[@ | ={r € Clp-|2" =7 (1) for all 7 € Gal(F (¢~ )/F)}.

Consider ¢ := Ker(Np(,-y/p : R* — O*) to study Sely (7~ @) == Homyy (a7 (V™ (¢~ w),F). We
write a for the exponent of € modulo the radical /p¢ of p¢ in R (i.e., a is the minimal positive
integer so that ¢* =1 mod /p€ for all € € €). Since —1 € € (and p > 2), a is even, and plainly a
is prime to p. Let €_ := {e%|e € €}. Put €4 = €_ N (1 + /p°R,e)? for the y/pc-adic completion
Rpe of R. Thus €4 > €7

Proposition 6.2. Let the notation be as above, and assume that p > 5. Then we have
Sely (7 @) = Homw sy (V™ (¢ w), F) = (€4 /€ @5, F)[(7) "]
if (Clpp—) @z F)[@"] = 0. So, we have dimp Selé(lnd% P w) <1if(Clp-y@zF)[g"]=0.
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Note here the action of v € Gal(F(¢~w)/F) on f € Homyy(xy (V™ (¢~ w),F) is given by vf(x) =

f(ytz) = (e~ ©) " (7)f(z). We also note that ¢~ (cyc™) = (¢7)~1(); so, by applying ¢, we have
an equivalence (Clp(tpf) ®z F) [@7] =0& (Clp(tpf) ®z F)[(@i)il] = 0.

Proof. We first give a constructive proof when @~ has values F,, = Z/pZ, and after that, we give
a shorter cohomological proof in the general case. Take ¢ € €&,. Suppose that € represents a
non-trivial element in (¢, /€ ). Consider a Kummer extension F'(¢~)(up)[¥/2]/F (¢~ ) (1p). We let
the Galois group acts on field elements from the left (to have left Galois modules which is more
common than right modules). Pick a p-th root € := ¢/z. Since (“€)P = ¢ = ¢, we have 7" le € p,,.
For o,7 € Gal(F(¢™)(up)[¥/E]/F(p7)), we have u(or) = 77" te = 77717~ 1e¢ = y(r)u(o). Then
u=ue:0— ""le="7/e €p,is a cocycle with values in y,(Q) of Gal(F(¢~)(up)[¥/E]/F (7))
representing the cohomology class of e € F (o™ )* /(F(p™)*)P 2 HY(F(p7), up)-

Fix a p-th primitive root ¢, of unity, and identify u;, with F, by ¢;* +— m € F,. In this way,
we regard u. as a cocycle U = U, with values in F,(1) so that u.(o) = Cg ) Then U, satisfies
U(or) = w(o)U(7) + U(o). Thus the Galois action on the subgroup V 2 F> generated by e and
Cp inside F (o7 ) (up) /€] /(F (07 ) (1p) [¥/E] )P is given by n = ne : 0 — (% Ye), which is a Galois
representation Gal(F (¢~ )(up)[¢/2]/F(p7)) — GLa(F,). Note that u.-1(0) = 7% = u (o)™}
and that for any p-th root ¢ of unity, uce = 771(Ce) = 771¢7te = “7Cu(0); so, Uee(o) =
(1 —w(0))b+ Uc(o) with ¢ = ¢,°. Thus we conclude

nce = a(b)nea(b) ™

for a(b) = (§%). Since uea = u?, we have Uea = aU, for a € Z prime to p. Since U only depends
on a mod p, we write Uea := alU, for a € F

The set of conjugates of € over F' is given by {CeT}TeGal(F(@,)/FMe#p(@. If 7(e) = ge” (M7
mod €? (i.e., e € €/€P[(p7)71]), L := F(v7)(1p)[e] is a Galois extension over Q and Gal(L/F(¢™))<
Gal(L/F). Suppose ¢ € €/€P[(p~)~!]. Then for any lift v € Gal(L/F) of the generator 7y of
Gal(F(p™)/F), we can think of n/(c) := n(yoy~!) which is a representation of Gal(L/F) into
GL2(F,) with values in the mirabolic subgroup

P:={(g%) € GLa(Fp)|a,b e Fp,}.

Indeed, n induces an isomorphism Gal(L/F(¢~)) = P. Therefore the composite of the following
isomorphisms

P Gal(L/F(p) o P

induces an automorphism in Autg,(P). Since any automorphism of P inducing the identity modulo
unipotent matrices is inner, we have 7’ o n=!(z) = grg~! for ¢ € P. Taking x to be n(c), we

find 7/(0) = gn(o)g™*; so, ' and n is equivalent as representations. Write g := (%), we find
n = (‘(‘)’ aUﬂLbl(l*‘“)). Replace € by Cgbea (this modification does not change L). Then we may

assume that ' = 7, and under this choice of ¢, we find that v commutes with the elements in
Gal(L/F(p7)) C Gal(L/F). Since Gal(L/F) = ||j_, Gal(L/F(¢~))y’, v must be in the center Z
of Gal(L/F). Since P = Gal(L/F (¢ 7)) has trivial center, the intersection ZNGal(L/F(¢~)) = {1}
is trivial. Thus Z = Gal(F (¢~ )/F) and Gal(L/F) = Gal(L/F(p~)) x Z.

Thus we may lift the generator vy of Gal(F (¢~ )/F) uniquely to a central element v € Gal(L/F).
Write [¢~(7)] € Z representing the mod p class of o (1) € (Z/pZ)*; so, [¢~(7)]7! is the inverse
of the mod p class [¢~(7)] in Z/pZ. Then we define, for x € L*, 2% (7 := gl (D] mod 2% and

29 (M7 = 2l M7 mod 2PZ. This makes sense only modulo p-power of 2. Then we have

Te = Ce“"f('ﬂ’)fl mod £”

(as e’Z = ) for some ¢ € p,(L) since Ve = g9 ()" mod €. So we conclude 7¢ (0 e = ¢
mod Z. The element v — ¢~ (79) ! is in the center of the group algebra Z,[Gal(L/F)], we have

(o7l = (D=2 () e = (r=¢ 7 (0) NN = (=07 (0) Dy (5)  mod 2.
Taking o such that u.(c) = (, and w(o) =1 (i.e., n(o) = (1)), we have

- -1
M= (o)™,
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Thus w(y) = ¢~ (70)"' mod pZ,. Therefore

(6.4) F(o7)(np)? := HY(Z, F(¢7)(11p)) = Fp~w).

Hence we have a cyclic p-extension F./F (¢~ w) which is the fixed subfield of L by 7. Since € is a unit,
only possible ramification of L over F(¢~)(up) at finite places is at a prime over p. The extension
L/F(¢~w) is unramified outside p and totally split at p¢ if and only if € is locally a p-power at all
place Plp°® of F(p~) (& € € €_). Since p is prime to |Z| = [F(¢~) : F] and only p ramifies in
F(o)ppl/F(¢7), Fe/F(p~w) is a p-cyclic extension unramified outside p in which p° splits totally.
Since units in € are p-power locally at p¢, we get injective homomorphism

(6.5) (€4+/€)[(@ )] = Hom(Clp(p-u)(p™). Fp) [7 @]
sending € 10 Ue| gai@/r(p-w)) * Clr(e-)p) (P™°) — Fp which factors through Clp(,-y)(p>). Here
note that C(p~w)(p™) is the Galois group of the maximal abelian extension of F'(¢~w) unramified
outside p. Since units in €, are locally p-power at p¢, U, is trivial at each places over p°. Then by
(3.4), the image of (¢/€P)[(7~)~'] lands in the image of Selj (7~ @) in Hom(Clp(y-w)(p™), Fp)[@~ @]
We now prove the equality: (€/€P)[(7)~'] = Sely (7 @). Let L/F(¢ )(1p) be a p-abelian
extension unramified outside p. Then we can choose £ € F(p™)(pp)* so that L = F (™) (up)[ V€]
by Kummer’s theory; i.e.,

F(o7)lpp) /(F (™) pp] )" 2= HY(F (97 ) 1p), ).
Suppose that L/F is a Galois extension such that the conjugation action of Gal(F (¢~ )[up]/Q) on
Gal(L/F (¢~ )[pp)) = Fp is given by ¥~ w. By Kummer’s theory, we have
F(o7) o)™/ (F () p) P[] = HY(F(07) ], 1) [)-
The action of 7 € Gal(F(¢7)[up]/F(¢7)) on a cocycle u : Gal(Q/F(¢7)) — pp is "u : o +—

7(u(77to7)) for a lift 7 € Gal(L/F(¢™)) of 7 € Gal(F(¢™)[up]/F(p7)). For the Kummer cocycle
ug(T) =771 /€ giving rise to an w-eigen class in H' (F (™) [up), 11p)[@], we have

Flo7—1/ p o ~ e — w(7)(o— P -
7( HR/9) = Tue(Fo7) = @(r)ug(o) = FDTV(R/E) mod (F(p™)[ip) )P
On the other hand, we may choose 7 so that 7({/€) = ¢/7€. Under this choice, we have

(7 T(R/E) = T(/7E).
Thus we get 7((7~1 (/7€) = D=1 (/TE). This shows €7 = ¢ mod (F(p~)[pp)¥)?, and 7
T=1¢ is a cocycle with values in (F(¢7)[up]*)P. The exact sequence

P

1— HY(F () [up) /F (™), F(o ) [1p)™ /1) HO(F (7)) /F(97), F(@7 ) [p) )
Fp™)[ppl™ )
]

— H(F(o7)[1pl /F (7)), GCRIPRI H' (F(e7)lpl /F(97), F(o7) o]/ 119)

combined with the fact that H'(F(¢7)[up]/F(p7), F(o7) [pp) /1) is killed by [F (™) [pp] : F97)]
prime to p, we find that

HO(F (7)) /F(97), Fle ) mp)* /(F(97) [1p]*)P) = F(07)* /[ (F (7))
Thus we can choose € € F(¢™)*.
By the inflation-restriction sequence combined with Kummer’s theory produces an isomorphism

(6.6) H'(F.7 ) =H(F(p")/F,H'(F(¢7),))
= HO(F(¢7)/F, F(¢7)" @2 F,) = (F(e7)* @z F,)[(77) 7],

as HY(F(p™)/F,H(F(¢~),M)) = 0 with 5 > 0 for any F[Gal(Q/F (¢~ ))]-module M because
of pt [F(¢™) : F]. Thus we may assume that the class [¢] of ¢ is in the () !-eigenspace
(F(e™)* @z Fp)[(~)~']. Here the action of Gal(F(¢~)/F) on cohomology is the contravariant
action; so, we get ()~ !-eigen vector.

Since L/F (¢~ )[pp) is unramified outside p, (£) := {9‘{[%] is a p-power as a fractional %[%]—ideal in
F(¢7)[pp]. Since F (¢~ )[pp] only ramifies at p with ramification index prime to p, (§) is a p-power
as a fractional %[%]—ideal of F(p™). Write (&) = [, P for prime ideals [ of 9‘{[%] Ifh=hpe
is prime to p, we may replace £ by & without changing F (¢~ )[p,][¥/€], and then the hth power of
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X

11, (P¢() becomes a p-power of a principal ideal (£'); i.e., &" = e£’? for € € R[1]*. Thus we may

1
replace ¢ by ¢ and then by ¢ € iﬁ[%]x. ’

We now show that we can replace € by € € 9‘{[%] * under the assumption: (Clp,-)®zF,)[@ ] =0
milder than p { hp,-y. Since Gal(F(¢7)[up]/F') acts on Gal(L/F(¢~)[up]) by @ @, we have
1,70 = (¢/78) = (¢)le” D71 =[], 1le” M 1e) modulo p-power of fractional R[] ]-ideals. Thus
we conclude e(l) = [¢~(v) 7 ]e(I”) mod p for the generator v # 1 of Gal(F(¢~)/F). In particular,
[ is completely split in F(¢~)/F if e(l) # 0, since §~ (y) # 1. Write Cl/y for the ideal class group
of OX[%] for a number field X with integer ring Ox. Note that Cl},(@,) is the surjective image of
Clp(p-)- If the class group

CZF(@*) @z Fple7] =0 (= Cl}?(ga*) ®zFple7] = Cl}?(gr) ®z Fp[(wi)il] =0),

for a = [, 1*V, we get (Clpp-y ®2 Zp)[7~]) = 0 by Nakayama’s lemma, and [}_, Y ale” (M) s
principal generated by &'. Replacing £ by the (¢~)~'-projection []j_, ¥ el ()] which does not
affect the corresponding Kummer extension, we may assume that & = e£’*. Then ¢ € iﬁ[%]x.

By construction, (/¢ generates L over F (o7 )[up]. In F(p™)*/(F(p™)*)P, e = # (7). Regard
€ as an element in %[%]X/(ER[%]X)?. For a Z[Gal(F (¢~ )/F)]-module M, we write M ® ¢~ a new
twisted module with underlying Z,[¢~]-module M ®z Z, having Galois action given by M ®@ ¢~ >
z+— @ (T)7(z) € M ® ¢~ for the original action z — 7(z) for x € M ®z Z,. The exact sequence

_ 1 _\ x—zxP _ 1 _
1— H(F(p )/F,%[E]X ® ") ——— H(F(p )/F,%[E]X ®¢7)
_ 1 1 _ _ 1 _

— HY(F(¢7)/F, (W;]X/(%[E]X)p) ®¢7) — H'(F(p )/F,%[E]X ® ),
combined with the fact that H'(F(¢~)/F, iﬁ[%]x ® ¢~ ) is killed by [F'(¢™) : F] prime to p, we find
that HY(F(p™)/F, (%[%]X/(%[%]X)p) Q)= (iﬁ[%]X/(%[%]X)p)[(af)*l]. Therefore the class of €
in iﬁ[%]x ®z F is in the ()~ !-eigenspace.

Since p splits in F/Q, the divisor group of Spec(R) generated by primes over p is isomorphic to
Indg Z|Gal(F(¢~)/F)/D] for the decomposition group D of a prime PB|p in F(p~). We have an

exact sequence of Gal(F (¢~ )/F)-modules:

1— R — m[%]x X md2 Z[Gal(F(¢™)/F)/D] — C — 0

with finite C'. Since Im(w) C Ind%Z[Gal(F(wf)/F)/D] is Z-free, after tensoring with IF, we still
have an exact sequence:

1
0 >Rz F - R[-]* @z F - Im(r) @z F — 0.
p

Taking (¢~ ) !-eigenspace, we have one more exact sequence

0— R @z F)[E )] — (9‘{[%]X @z F)[(@7)™"] = (Im(m) @z F)[(Z7) 7).

Note that Q[Gal(F(¢~)/F)/D] = Im(r) ®z Q contain only characters trivial over D as a sub-
quotient. Since D = ¢~ (Gal(Q,/Qp)) is non-trivial by (h4), (Im(r) @z F)[(77)7'] = 0 as ¢~
induces an isomorphism of Gal(F(¢~)/F) = Im(¢~). Thus we may assume that ¢ € R*. By the
local triviality of the Kummer cocycle at p° (i.e., (3.4)), we have ¢ € &;. Thus SelQ(Indg P w)
¢, /€”[(")"]. By Proposition 6.1 (1), we have dimg R* @z F[(7~) '] = dimgR* @z Q[(¢7) 7] =
1, and hence dimy ¢, /¢ [(77)7!] < dimpR* @z F[(»~)~!] = 1, which conclude the proof when
F=F,.

NO\]ZI we deal with the general case cohomologically. We may assume that F is generated by
the values of ¢~ over F,. By the inflation-restriction sequence combined with Kummer’s theory
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produces an isomorphism

(6.7) H'(F.7 ) =H(F(p")/F,H(F(¢~),#®s, F))
= HO(F(¢7)/F, F(p7)* @z F) = (F(p7) @z F)[(®7) 7],

as HI(F(¢p™)/F,H*(F(p~),M)) = 0 with j > 0 for any F[Gal(Q/F(¢~))]-module M because of
p1[F(¢7): F]. The last identity follows from the fact that "u(g) = Tu(r~1g7) = @~ (7)u(r~tgr) for
cocycle u giving rise to a class H'(F,p~w) for 7 € Gal(F(¢~)/F). By Kummer’s theory, non-zero
elements in the right-hand-side of (6.7) correspond, up to scalar multiples, bijectively to p-abelian
extensions L' of F (¢~ w)[pp] with Gal(L'/F(¢™)[up]) = F such that Gal(F (¢~ w)[up]/F) acts on
Gal(L' /F (¢~ w)[pp]) by @ by conjugation.

Let EXT/p(p-w) (resp. EXTyp-y,)) be the set of p-abelian extensions L (inside Q) of
F(p~w) (resp. F(¢7)[pp]) with Gal(L/F(¢~w)) = F (resp. Gal(L'/F(¢~)[pp]) = F) such that
Gal(F (¢~ w)/F) (resp. Gal(F (¢~ )[pp]/F)) acts on the normal subgroup Gal(L/F (¢~ w)) by o~ w
via conjugation. Non-zero elements in the extension group H'(F,p w) & Extr (cai@/m)] (F, o)
correspond, up to scalar multiples, bijectively to extensions " w — X — F. As an F-vector space,
X is two dimensional, and choosing a basis x1,z2 of X over F so that on Fzy, Gal(Q/F) acts by

% w. For 7 € Gal(Q/F), (7(x1),7(x2)) = (w1, 22)p(T) With p = (a;wzf) for a 1-cocycle u rep-
resenting X. Since X is a non-trivial extension, the class [u] of u is non-trivial in H(F, 7~ ©).
Then the splitting field L of X gives rise to an element in EXT)p,-.). Since cohomologous re-
lation on cocycles u corresponds equivalence relations on p by conjugation of unipotent elements
inside the mirabolic subgroup P, we again conclude that non-zero elements in the left-hand-side of
(6.7) correspond, up to scalar multiples, one to one onto to elements in EXT)p(,-.). Therefore
EXT/F(Lp*w) S5 L+— L[,up] S EXT/F(@*w)[,up] is a bijection.

Since F(¢7)[pp)/F (™) only ramifies at p, L € EXT/p(,-) is unramified outside p if and only
if L{p,]/F (¢~ )[pp] is unramified outside p. If every prime factor of p® in F'(¢~)[u,] totally splits
in L{pp)/F (¢~ )[1p), it has to totally split in L/F (¢~ w), since in F (¢~ )[up]/F (¢~ w), there is no
residual extension possible for prime factors in p.

Thus writing EX T/p;'(sj,) for the subset of EXT),p(,-) made up of extensions unramified outside

p in which every prime factors of p¢ splits totally, we need to show that EX T/p;'(sj,) corresponds to

bijectively non-zero elements of (€1 /E” ®@r, F)[7~ ] up to scalar multiples. By definition, EX T/p;'(sj,)
embeds (up to scalars) into the subgroup of H'(F (™), w®r, F) spanned over F by the class of Kum-
mer cocycles unramified outside p. Consider the sum of Galois conjugates ® = B, ca(r /]Fp)(af)*f
Then @ is defined over F,, and is an F,-irreducible representation. Since €, /€” is an F, vector
space on which Gal(F(p~)/F) acts, we can consider ®-isotypical subspace (€, /& )[®] which is
isomorphic to (€, /E” @p F)[(7~) '] as F,-vector spaces by projecting down to ()~ *-eigenspace
in (¢ /€")[®] @p, F as

(€1 /)@ or, F = P&+ /€ r, F)[(7 ) 7).

Similarly, for X = (™) /(F(p™)*)? = F(p)* @2F,, Clpp) @2 F, and Clly - @3 F,, we have
X[@] = (X @, B)[(7) ).

A Kummer cocycle [{] = {® 1 € F(p™)* ®z F, with £ € F(p™)* is unramified outside p if its
image in F'(¢ ™)) ®zF, vanishes at all finite places v { p of F(¢~). Thus the principal ideal {9‘{[%]
is a p-power a?. Suppose that [¢] € (F(¢™)* ®z Fp)[®]. Since (Cly, - @z Zp)[®] = 0 by our
assumption (Clp(,-) ®z F)[@~] = 0, the projected image [a]g in (Cly,-) ®z Zp)[®] = 0 of the class
[a] € Cli(,- is trivial. Thus replacing a and £ by its ®-projection (in the fractional ideal group of
9‘{[%]) which is principal, we find that £ = £’? for € € 9‘{[%] X. Then repeating the same argument in
the case of F = F,, we conclude € € €_ and Selp(Ind2 %) = (€, /€? )[®] as F,-vector space. Then
we have Selg(Ind25~) = (¢, /€ @r, F)[(7") '], and thus dimg Selg(Ind2 %) <1 as before. O
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Proof of Theorem A: We want to prove the following slightly stronger version of Theorem A
allowing the case when p|hp:

Theorem 6.3. Suppose (h0-4) and (Clp,-)®zF)[@ "] =0. Then Y~ (p~) and Y~ (¢~ w) are cyclic
over W[[H]].

Proof. By Proposition 6.2, we have

dimp Homyy iz (V™ (¢~ w), F) = Selg(Ind% (7o) < 1.
Thus dimp Y™ (¢~ w) @wyay F < 1, and by Nakayama’s lemma, Y~ (¢~ w) is cyclic over W[[H]].
Then by Theorem B (or Theorem 5.4), we obtain the desired assertion. O

Actually we also have
Lemma 6.4. If pt hy, we have Sely (X@) = 0; s0, 74 = 0.

Proof. By Proposition 3.6, Sel(j (xw) is isomorphic to the F-dual of the yw-eigenspace of the ray class
group modulo p™ of the splitting field of xw (which is the maximal totally real subfield of F'(y,)).
This eigenspace is trivial. Indeed the Iwasawa power series for yw is a unit since the corresponding
Kubota-Leopoldt p-adic L evaluated at s = 0 is a p-adic unit by p{ hr (see [LPL, §7]). O

7. CYCLICITY FOR A Z,-EXTENSION K/p

Let Ff C Flup=] be the cyclotomic Zy-extension of F. Then F., := FfF_ is the unique

Zg—extension of F. Take a Zp-extension K/F inside Fi; 80, Foo/K is also a Zy-extension. Let
L/FF () (vesp. LT /FLF(¢), L™ /FF(¢), L /KF(9))
be the maximal p-abelian extension unramified outside p. By adding subscript “sp” (resp. “tsp”),
we define maximal sub-extension of L, L* and L¥ over F,,F(¢), F£F(¢), KF (), respectively, in
which p totally splits (resp. all the prime factors of Np totally split). Define
Y =Gal(L/F F(¢)), Y = Gal(L*/FLF(¢)), Yk = Gal(L* /KF(¢)),

(7.1) Yop =Gal(Lsp/ Fos F(9)), Yoy = Gal(L3, /FXF(9)), Y = Gal(Lg,/KF(9)),

i4
Yisp =Gal(Lisp/Fus F(0)), Yiy, = Gal(Lf;,/FLF(9)), Y7 = Gal(L{S,/KF(¢)).

tsp tsp
Via canonical splitting
Gal(Foo F'(¢)/F) = Tp x Im(¢),
Gal(FEF(¢)/F) =T+ x Im(¢) and Gal(KF(¢)/F) =T x Im(¢)
for Iy = Gal(FL/F) and T'x = Gal(K/F), we define
Y(¢) =Y @z, imo).e Ws Y (@) =Y @z, mme)e Ws Yr(6) = Yk @z, 1m(s).6 Wi
Yop(8) = Yip @z, im(ay).0 W Yip (@) = Y5 @2, ma).0 Ws Yi'(8) = Y& @2, im(a)0 W,
Yiap(#) = Yeap @z, 1m0 W Yiep(®) = Vi, @z, mio.0 Wo YT() = Y& @z, o). W-
Similarly, we define Vg, (¢) and V;;,(¢) replacing F in the above definition by K| .
Proposition 7.1. Suppose (h0) and (h4), and write ¢ for any character of conductor a factor
of Npjg(c)p of order prime to p non-trivial over Gal(Q,/Fg). Then we have Y(¢) = Yy, (¢) =
Yisp(9), Yt;p(gfw) =Y (¢ w) and Y;X(¢) = Yk (¢). Similarly we have y;sp(gfw) = y;p(gfw) =
V7 (pw) and Y3, (¢7) =Y~ (¢7).
Since the proof is essentially the same for Y and ), we only give a detailed proof for Y touching
briefly V at the end.

Proof. Let [ be a prime factor of Np, and write (I) = [NZ. We first give a proof for the Zﬁ—extension
Fs. In Fo/F, we have a Z,-extension K unramified outside [. Since Gal(F,/F) contains 1+ pO,,
as an open subgroup, the decomposition group of [ in Gal(F.,/F) contains a subgroup generated
by 14 pO, and o for a generator o of ["#(P~1): g0, we can find a Zy-extension K/F unramified

at [ whose residual extension is a still Z,-extension over F;. Therefore the residual p-extension is
exhausted in Foo F'(¢)/F(9); s0, L(¢) = Lsp(¢) = Lisp(¢) and hence YP(¢) = Y ().
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We now give a proof for Yx for a general Z,-extension K,p. If K localized at [ contains the
unramified local Z,-extension, we are done by the same argument as above. In particular, F_
localized at [ contains the unramified local Zy-extension if [{ Dp.

For a prime factor I[N, (I) = [N Z splits into [[ in F. Then [P~D"F is generated by a € O.
Consider the subgroup aZr inside 1+p0O,, C Gal(F/F). Unless aZ» C Gal(Fx/K), K localized at
[ contain the unramified Z,-extension. If a’» C Gal(Fy/K), | splits totally in K/F.

Thus we may assume that [N totally splits in K/F', and we need to show that Y, (¢~ w) =
Y~ (p~w). Take K = F, and assume [|D as the case [[Np/g(c) is already taken care of. In this
case, [ totally splits in F_/F. Since ¢~ is anticyclotomic, we have ¢~ (I) = 1, and F_F(p~)/F, |
totally splits. Take a prime £q of F_F'(¢~) above . Then we have F_F (¢~ )¢, = Fi. Pick a prime
£ of L¥(p~w) above [. Then any sub p-abelian extension X of Fy in the extension L% (p~w)g/F}
is inside a Kummer extension Fi[u,)[¢/w] for a prime element @ of Fy by p{ (I —1). Then X,p,
totally ramifies at [; so, no residual extension. Thus we conclude L¥ (p~w) = Lf, (¢~ w), once we
prove L¥ (¢~ w) = LE (o~ w).

Thus from now on we study the behavior of p = p°. By definition, we can realize Y. (¢) (resp.
Yk (¢)) as the Galois group Gal(Lgo(qﬁ)/KF((b))) (resp. Gal(L¥(¢)/KF(¢))) for a sub-extension
Lﬁ;(qﬁ) (resp. LE(¢)) of Lﬁ; (resp. L¥). Localizing at p = p¢ and at a prime PB[p of Lﬁ;(qﬁ), the
Galois group Gal(F(¢)q/Fy) acts on Gal(L¥ ((b)qg/Lﬁ;((b)qg) by conjugation.

Suppose that ¢ is unramified at p and Gal(LX ((b)qg/Lﬁ;((b)qg) # 1. Since Frob, generates
Gal(F(¢)g/Fgp), conjugation action of Gal(F(¢)y/Fy) on Gal(LK(qﬁ)qg/Lgo((b)qg) factors through
the abelian group Frob? and hence is trivial, a contradiction (as ¢(Frob,) # 1). Thus Lﬁ;(qﬁ)m =
L%(¢)gp for any P|p and hence LE (¢) = L*(¢) which implies YP(¢) = Yi (¢).

Suppose now that F(¢)F # F and Lﬁ;(qﬁ)m # LE(¢)p). Let Bsp (resp. Px, Pgs) be the primes
below P of Lﬁ; (resp. KF(¢), F(¢)). Write Fx for the residue field of X for the prime ideal
X =B, Bsp, P, Py Consider the residual extension Fy /Fyp, /Fop,. /Fp,. Then Gal(Fyp, /Fp) acts
trivially on Gal(Fy/Fy,,) by conjugation. Since the action factors through the restriction of ¢ to
the Galois group of maximal PB-unramified sub-extension of F(¢)/F (which is non-trivial). Thus we
have Fyy = Fyp,,, which implies L* (¢) = L% (¢) and hence Yz (¢) = Yk ().

Finally we assume that F'(¢)/F fully ramify at p. If K/F is unramified at p (so, Gal(K/F)
contains 1 + pO, as an open subgroup), the decomposition group of p in Gal(K/F) contains aZ» €

1+pO, for a generator « of ﬁhF (P 71); so, it is open in Gal(K/F’). Therefore the residual p-extension
is exhausted in KF(¢)/F(¢); so, L*(¢) = LE (¢) and hence YP(¢) = Yk (¢). Thus we may
assume that the p-inertia subgroup I of Gal(K F(¢)/F') is an open subgroup. Then over the I-fixed
field (KF(¢)p)!, Ky and the maximal unramified extension Ly inside Lg are linearly disjoint,

and Lg = Ly Kg; so, Gal(Lg/(KF(qﬁ)m)I) =~ I x Gal(Lg'/Qp). This shows the Galois group
Gal(F(¢)/F) — I acts again trivially on Gal(L¥ /LE) and hence YF(¢) = Yk (¢).

We can take K|, in place of K as above, and the same argument proves Vi (¢~ w) = V™ (¢~ w)
and Vg, (¢7) = V7 (7). O

Write H/F for the Hilbert class field over F', and put H(¢) = HF(¢) (the composite of H and
F(9)). Let Lo/ FsH(¢) (resp. LY /FIH(¢), L3 /FH(¢), LK /KH(4)) be the maximal p-abelian
extension unramified outside p. Put

H = Gal(Loo/FxoH(¢)), HT = Gal(LE /FEH(¢)), Hix = Gal(LL /KH(s)).
Lemma 7.2. Assume p { hp and (h0-4). Let ¢ = ¢~ or ¢ w. Lifting the character ¢ to
Gal(H(¢)/F) for the composite H(¢) = HF (¢), we have
Y7(9) 2 H™ @y Gaius)/F)e W Y(9) = H @z, (ca@s)/mle W
and Y () = H @z, Gaiu(s)/F)).e Wi Yie(0) = Hi ©z,Gargs) /7))o W-

Proof. This follows from that fact that H(¢) is linearly disjoint from Lo, over F'(¢), since [H(¢) : H]
is prime to p by (h0) and p{ hp. Indeed, as [H(¢) : F(¢)] is prime to p, we have Gal(Lo/F(¢)) =
Gal(H(¢)/F(¢)) x Gal(Lso/H(¢)), and hence Lo, = LA™/ F@) " which implies the identity

Y(¢) = H ®z,(Gaim(e)/ )¢ W-



ANTICYCLOTOMIC CYCLICITY CONJECTURE 41

Replacing (Lo, Loo) by (LEX | LK), respectively, we get
Y (9) = Hi @z, (Gaiue)/r)le W

by the same argument. This implies the other two identities (as the first and the third is special
cases of the identity for K taking K := FI). O

Let ax = Ker(W([[Tr]] - W[[I's]]) and ax = Ker(W|[T'r]] - W|[['k]]). Then we have a natural
WL r|]-linear maps

7 Y/ay Y =Y qg:Y/agY =Yg and 7_:Y/a_Y - Y.
If either Fio/K is unramified outside p (< p¢ fully ramifies in K/F) or ¢ # 1, by Rubin [Ru91,

Theorem 5.3 (i)-(ii)], we have Ker(mx) = Ker(m+) = 0 and Coker(74) = Z,, = Coker(ng). Thus we
get,

Theorem 7.3 (K. Rubin). Suppose p 1 hp and (h0-4), and let ¢ = ¢~ or ¢~ w. Let K/F be a
Zy-extension. Then mx and wx are all surjective. If either Foo /K is unramified outside p or ¢ is
non-trivial on Gal(Q,/Qy), we have

Y(9)/a-Y(¢) =Y (¢) and Y(¢)/axY () =Yk ()
as W[[T'r]]-modules.

Proof. Under the assumption of the theorem, the character ¢ is non-trivial. Indeed, if ¢ = ¢,
the non-triviality follows from (h3). If ¢ = ¢~ w is trivial, ¢~ = w™! which is anti-cyclotomic and
cyclotomic; so, has order < 2 against (h3). Thus ¢ is non-trivial in this case also. Then by Rubin
[Ru91, Theorem 5.3 (i)-(ii)], the corresponding assertions hold between

H(¢) :=H @z, (cai(e)my).e W and Hi(d) :=Hk @z, (cai(o)/m).e W-
This is equivalent to the assertion of the theorem by Lemma 7.2. O

Corollary 7.4. Assume p{hr and (h0-4). Let ¢ = ¢~ or ¢~ w and K, be a Zy-extension.

(1) If either Fs /K is unramified outside p or ¢ is non-trivial on Gal(Q,/Fy), then cyclicity for
Yi(¢) over W|[Tk]], cyclicity of Y~ (¢) over W[[['_]] and cyclicity of Y(¢) over W[[T'r]]
are all equivalent.

(2) Cyclicity of Y(¢) over W[[L'p]] implies cyclicity Yi (¢) of W[[T'k]].

(3) If further (Clp,—y®zF)[@ "] =0, Y (¢) over W[[['k]], Y~ (¢) over W[[T'_]] and Y (¢) over
WITF]] are cyclic.

Proof. By Nakayama’s lemma applied to W[[T'r]], as long as Y (¢ )/axgY (p~) = Yi (¢ ™), cyclicity
of Y(¢~) over W[[T'r]] is equivalent to that of Yx (¢ ~). This holds in particular for K = F_ as
F/F is unramified everywhere. Then the first assertion follows from the above theorem.

If Y(p~) is cyclic over W[[I'p]], cyclicity Yi(¢~) over W[[I'k]|] = W][[TF]]/ax follows from the
surjectivity the projection: Y (¢~ )/axY (¢~) — Yx(p~). Thus again the second assertion follows
from the above theorem.

The assertion (3) then follows from (1) and (2) combined with Proposition 7.1. Indeed we have
Homyy 17y (Y ~ (), F) = Homyy g (Y (¢), F) by Proposition 7.1, as ¢ is non-trivial over Gal(Q,/Q,)
by (h4). Thus Y (¢) is cyclic over W[[ ]] if and only if Y~ (¢) is cyclic over W[[H]]. O

8. DEGREE OF CM COMPONENTS OVER THE IWASAWA ALGEBRA

We continue to assume that F' is imaginary. Let Spec(T) be the connected component containing
a CM component coming from F'. As seen in [H15, Section 5] (and Corollary 2.5), under (h0-4), any
CM component of Spec(T) is contained in Spec(W{[[H]]) (and T = W[[H]] < L, € W[[H]]*). Since
t:Z = H by (1.6), H canonically contains +(I") for I' = 1 + pZ, embedded into O,°. We identify I
and ¢(T') € H. Thus decomposing H = T'_ x A for the torsion-free subgroup I'_ D I" and a finite
group A, each irreducible CM component is isomorphic to Spec(W{[[I']]). Since I'_ = Z,, we find
that dimg Frac(W{[['_]]) = [['- : T'] = p™ for some m > 0. Recall C' := Gal(F.,/F) for the maximal
p-abelian extension F¢,/F of conductor dividing ¢p. Since the image I'_/T' — C and C — Clp
(under (h0)) for the class group Clp of F, if hp = p"n (h,n € Z) with p { 1 for the class number
hr = |Clp|, we have 0 < m < h. If we find an O-ideal a prime to p such that a?” = (a) with a € O
(for 0 < n < h) with aP~! #1 mod p?, we find that m > n. Thus we get
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Proposition 8.1. Let the notation be as above. Assume (h0-4). For a CM component I of h, we
have dimg Frac(l) = p™ with 0 < m < h. If we find an O-ideal a prime to p such that a?” = ()
with a € O (for 0 <n < h) with a?~1 #1 mod p?, we find that m > n.

By the last assertion of the above proposition, we can easily create many examples of CM components
with Frac(I) # K. An interesting point is that the dimension dimg Frac(l) is a p-power, while non
CM component we studied earlier often satisfies dimg Frac(I) = 2. As shown in [KhR15], there are
also examples of non CM component with arbitrary large degree over A.

Take an irreducible component Spec(I) of Spec(T), and write its complementary (reduced) compo-
nent as Spec(I+). Thus we have Spec(T) = Spec(It)USpec(Il), and Spec(I®7It) = Spec(I)NSpec(I+)
has codimension > 1 in Spec(T). Suppose that I is Gorenstein. This is true for CM components
as it is isomorphic to the regular ring W[[I'_]]. If T"™ is non-trivial and integral, I = T"™
is Gorenstein (as we proved that T"™ is Gorenstein in Theorem 5.4 (1)); so, again this prop-
erty is satisfied for many non CM components. Then as indicated in [EAI Section 3.1, page 88],
Ior I+ =1/(L,(Ad(pr))) for a p-adic L-function L,(Ad(pr)) € I interpolating L(1, Ad(pp)) divided
the canonical period for P running through arithmetic points of Spec(I)(Q,).

Suppose that T is a CM component. Since Qs is a p-torsion module, we expect to have
p|Ly(Ad(pr)) if H # T'_ (see [MFG, §5.3.4]). The decomposition Ad(Ind% ¢) = x @ Ind2 ¢~ for
o~ (1) = ¢(1)¢(cTc™!) for a complex conjugation, we have L, (Ad(pr1)) = hp - Ly,(I) for the prOJecmon
L,(I) of the Katz p-adic L-function L, under W[[H]] — I (see [H15, Section 5]). Thus we get
hr|Lp(Ad(pr)) in I. This gives a plenty of examples of positivity of the p-invariant of L,(Ad(pr)).
One can then ask if the p-invariant of L,(Ad(pr)) vanishes for non CM components I. One can
produce some non CM component with L,(Ad(pr)) having positive p if p = 2. Thus for this
question to be affirmative, we need to assume p > 2.

9. DIVISIBILITY OF THE ADJOINT p-ADIC L-FUNCTION

We continue to assume that F' is imaginary. Recall our assumption p > 5. Picking an irreducible
component Spec(I) of Spec(T) and writing T for the normalization of I (i.e., I is the integral closure

of I in Frac(I)), we put T = T ®x L. Write 7 : T — I for the prOJecmon inducing the inclusion
Spec(Il) < Spec(T). Since Homy (T, A) =2 T, we have

(9.1) T = Homy (T, A) @4 1 2 Homy (T @4 L I).

This follows from the fact that I is A-free of finite rank (as any reflexive module of finite type over
a regular local domain of dimension 2 is free; see [H88a, Lemma 3.1] and [H88b, (5.5b)]). We fix
the identification (9.1). Decompose Frac(T) = Frac(l) ® S as a K-algebra direct sum, and define
I+ for the image of T in S, where A : T — Frac(I) is induced by the projection T=T ®a T given
by t ® i = m(t)i € I. Regarding A : T — I, we take adjoint \* : [ = HomH(H 1) — HomH(']T I)=T.
Then define L,(Adpr) := Ao X* € Homi(]l,}l) = L. As shown in [H86¢, Lemma 1.6] (or [MFG,
§5.3.3]), we have Co(\, 1) := I @= [ = 1/(L,(Ad(p1))) as I-modules. This L,(Ad(pr)) interpolates
the adjoint L-values L(1, Ad(pp))/Q2p for arithmetic points P for the canonical period Qp written
as Us(fp)Up(fp) in [H88b, Theorem 0.1] and coincides with the one introduced in the previous
section if I is Gorenstein (i.e., L,(Ad(pr)) is contained in I if I is Gorenstein).

n [H88b, Theorem 0.1], some restrictive assumptions [H88b, (0.8a,b,c)] are made. However,
these assumptions are not necessary as long as h is reduced (for example, N is cube-free; see [H13,
Section 1]). To see this, we consider the jacobian variety J1(Xp") of the modular curve X;(Np")
over Q. Then by the Albanese functoriality applied to the tower of modular curves:

= X1 (Np™h) — X1 (Np") — -+ - — X1(Np),

we have the projective system of the ordinary parts of the p-adic Tate modules {T},J; (Np")°*},.

Put L :=lim T,Ji(N p")°*d. Then as shown in [H86b] (see also [H14, Sections 4-5]), L is naturally
an h-module and is also A-free of finite rank. As explained in [H13, Section 4] from the work of
Ohta (and an earlier work by the author [H86b]), we have the following canonical exact sequence of
h-modules:

(9.2) 0—h—L—h"—0.
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When [H88b] was written, this sequence is only known under the one of the three conditions [H88b,
(0.8a,b,c)]. This is the only point we used to prove [H88b, Theorem 0.1]; so, the result is valid
without assuming these conditions (i.e., [H88b, Conjecture 0.2] is now known to be true; see [H16,
§6.5.5] for more details of this).

We want to prove

Theorem 9.1. Suppose p > 5, let Spec(I) be an irreducible non CM component of Spec(T) satisfying
(h0-4), and write I be the normalization of 1 in Frac(I). Then, under the equivalent conditions of
Theorem 5.4, we have
(1) If Spec(I) is a CM component of Spec(T) and @ ramifies at p, then the ideal (L,(Ad(pr)))
of J is generated by the ¢~ -branch of the anticyclotomic Katz p-adic L-function times the
p-part hp of the class number of F. N N
(2) Suppose p 1 hp and Conjecture 5.6. Then we have Lp(gf) € I, rankp I > 2, the p-adic
L-function L,(Ad(pr)) is a non-unit in 1, and \/L ) divides (L,(Ad(pr))) in L. If further
ranky T™™ =2, then I =1 = A[ L,(o7)] and ( p(Ad(pH))) = ( Lp(gf)).

The example given in [H85, (10a,b)] shows the case (2) in the above theorem actually occurs, and
indeed, in this case, T = A[/L,] and (L,) has a unique zero of multiplicity one in the unit disk pZ,,.

Proof. The assertion (1) is a restatement of [H15, Proposition 7.10]. So we prove the other two
assertions. We deal with (2). Write the composite map T = T®, [ — I ®4 I = T as \, where the
right most arrow is the multiplication (a @ b — ab). Since T = T ®, I surjects down to I @4 I, we
have Spec(I) C Spec(I @4 I) C Spec(T). Consider the congruence modules (sce [MFG, §5.3.3] for
congruence modules)

Co(\T) := T+ ®7, i and Co(m;I) =T ®ﬁmi

for I given by Spec(I') = Spec(I+) N Spec(I ®a 1) (i.e. , Spec(I) is the complementary component
of Spec(I) in Spec(I ®A I)). Note that CO()\ H) =Tt orl = 1/(L (Ad(pﬂ)) by definition. Thus
we have a surjective T-linear map Co(A\, 1) = T/(L,(Ad(pr)) — Co(m,T) as Spec(I-) N Spec(l) >
Spec(I) N Spec(I).

Note that the projection: T — I factors through T"“". Write X for the composite T™™ @, T 2 T
and define an I-ideal a by Co(XN,I) = I/a. By Theorem 5.4 (2), T™ = Ti™ & T with
¢ € TEm, and by (5.2), 1/a = WIH]/(L;) with (Ly(Ad(m)) = (hrLy (97)) = (L (7)) as
p 1 hp. By projecting § down to d € T, we find (d*) N A = (L, (¢7)); so, \/ Ly (p~) € T (no need
to extend W as W O W(F,)). Since divisibility just follows from localization, we may localize
at height one primes P|(L, (»7)) of A. Thus Ip is a semi-local normal ring finite flat over the
valuation ring Ap. Therefore, it is a regular ring (in particular, it is complete intersection); so,
writing Co(m,Ip) = Ip/op, then 0p is the different of Ip/Ap (cf. [MFG, Lemma 5.21]). Since
Ip D Ap[y/Ly ()], its different (1/L; (¢~)) is a factor of the different dp of Ip/Ap, which is in
turn a factor of (L, (¢7) (as Co(N,T) surjects down to Co(m,I)).

If further T"™ = T and ranks T"™ = 2, then I = A[y/L,(¢7)], and by the semi-simplicity
conjecture, I is integrally closed; so, I = I. Then, from WIH]/(Lp(p™)) = 1/(\/Lp(ep™)), we find
that

T = {(z,y) e W[[H]]©T|(x mod (Lp(¢™))WIH]]) = (y mod y/Ly(¢~)D)},
where on the right-hand-side, we regard L, (»~) € A C [. From this, we can easily compute

Co(\I) =1/(\/Lp(v~)) =1/(Ly(Ad(pr)), which finishes the proof. O

10. DUALIZING MODULES

We describe purely ring theoretic results we have used in the paper. The theory of dualizing
modules is initiated by Grothendieck [SGA 2.IV-V] and is developped by Hartshorne [RDD] and
Kleiman [KI80]. Let S be a base local ring. For any S-module M, we define MT := Homg(M, S).
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Lemma 10.1. Let S be a p-profinite Gorenstein local ring and A be a local S-algebra. Suppose
that A is a local Cohen—Macaulay ring with dim A = dim S. If A is an S-module of finite type, the
following conditions are equivalent:

(1) The local ring A is Gorenstein;
(2) AT = A as A-modules.

Proof. Since S is Gorenstein, it has canonical module wg = S (as S-modules; see [CMA, §21.3]).
Then by [CMA, Theorem 21.15], A itself has its dualizing module w4 given by Homg(A, wg). By
[CMA, §21.3], a local ring R is Gorenstein if and only if wgp = R as R-modules for the dualizing

~ ~

module wgr of R. Since wg = S, we find wy = Af, and hence A is Gorenstein if and only if
Al = A, O

Let A be a Gorenstein local S-algebra for a Gorenstein local ring S. Suppose that A is reduced
and free of finite rank over S and S is W-free of finite rank. Let ¢ € Aut(A) be an S-algebra
involution. We allow the case where o acts non-trivially on S. Put Ay := {x € Alo(z) = £z}.
Then by Lemma 10.1, we get AT = A as A-modules. Since o acts by duality on Af, we have
Al = (AY)y := {z € Al|o(z) = £2}. Note that A}, = Homg(A4,S). Thus o acts on Hom 4 (A, A)
and Isom 4 (AT, A) just by ¢ — ¢° := g 0o ¢ 0 0. Indeed, by a computation: ¢°(az) = o(¢(o(ax))) =
o(o(a)p(o(x)) = ao(Pp(o(x)) = ag?(x) for a € A, we conclude ¢ is A-linear. We then consider the
+-eigenspace Homy (AT, A)* for a € A and Isom 4 (AT, A)* := Hom4 (AT, A)* NIsoma (AT, A). Here
Isom4 C Homy is made up of A-linear isomorphisms. The set Isom (AT, A)* could be empty.

If o fixes S point by point, we have (A")+ = (A+)!, which we just write A

Lemma 10.2. Let A be a noetherian Gorenstein local S-algebra for a p-profinite Gorenstein local
ring S (for a primep > 2). Suppose that A is reduced and free of finite rank over S. Let o € Autg(A)
be an algebra involution fixing S point by point.

(1) At least for one sign ¢ = +, the set Isom 4 (AT, A)® is non-empty.

(2) If either rankg Ay > rankg A_ or Isom4 (AT, A)T # 0, we have Ay = (A})T (i.e., Ay is

Gorenstein). Moreover we have Isom (AT, A)~ =) if ranks A, > rankg A_.
(3) Ifrankg A, = rankg A_ and Isoma (AT, A)® # 0, we have A, = Al[e].
(4) Suppose that S is a domain. Then we have rankg A > rankg A_.

Proof. Since A is Gorenstein, we have AT = A as A-modules by Lemma 10.1. Thus we conclude
Isom 4 (AT, A) # 0. Pick ¢ € Isom4 (AT, A). Let ¢= = ¢ + ¢°. Then for a € A, we have

¢* (az) = p(az) £ o(¢(0(ax))) = ag(z) £ a(0(a)p(o(x))) = ad(z) £ ao(¢(o(2))) = ad™ ().
Then ¢+ + ¢~ = 2¢. If one ¢ of ¢T is not onto, we conclude Im(¢¢) C A is a proper A-submodule
of A; so, Im(¢°) C ma. This shows ¢~ = 2¢ — ¢° = 2¢ mod m4, which implies ¢~¢ is onto (as
p > 2). Identifying AT with A, we can iterate ® := ¢—¢, and Ker(®") is an ascending sequence of
A-ideals. Since A is noetherian, for some n > 0, we have Ker(®") = Ker(®"!). Thus we conclude

d: A=Im(d") = A/ Ker(®") =5 A/ Ker(d" ™) = Im(d" ™) = A

and hence ¢~¢ is an isomorphism.

If rankg A4 > rankg A_, by Aj-indecomposability of A, as Ai-modules, the Krull-Schmidt
theorem tells us Ai =~ A, and hence AT 2 A_. Moreover the decomposition A = A, @ A_ is a
unique decomposition of the A;-module A into the sum of the indecomposable Ay of the largest S-
rank and an A -submodule A_ of less S-rank. Therefore, any ¢ € Isom4 (AT, A) is forced to preserve
Ay and A_; so, we have Isoma (AT, A)* # () and Isom4 (AT, A)~ = (). Thus we get Ai >~ A, as
Ay-modules (i.e., A1 is Gorenstein).

Now suppose rankg A, = rankg A_ and Isom4(Af, A)® # (). Thus Ay = Aii as Ay-modules,
and Isoma (A, A)T # 0 implies Ai >~ A, as Ai-modules (i.e., A is Gorenstein). Similarly
Tsom 4 (Af, A)* = () implies Tsom 4 (AT, A)~ # 0 by (1), and AT = A_ as A, -modules.

Since Frac(A) is a product of fields, for each simple component K of Frac(A), either o acts non-
trivially or o fixes K element by element. Since Ay is a direct summand of the S-free module A of
finite rank, Ay is S-free of finite rank as S is a local ring. Thus we get

ranks Ay = dimpyac(s) A4 ®s Frac(S) > dimpac(s) A- ®g Frac(S) = rankg A,
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proving (4). O

We now study relative dualizing modules and show that a Gorenstein local domain quadratic
over a Gorenstein subalgebra is generated by a single element over the subalgebra. Let B be a
commutative p-profinite local ring for a prime p > 2. Consider a local B-algebra A finite over
B with B — A. Write wy/p for the dualizing module for the finite (hence proper) morphism

X := Spec(4) ER Spec(B) =: Y if it exists (in the sense of [KI80, (6)]). For the dualizing functor
f' from quasi coherent Y-sheaves into quasi coherent X-sheaves defined in [KI80, (2)], we have
Homy (F, f'N) = Homp(f.F, N) for any quasi-coherent sheaves F over X and N over Y; so, if wa/B
exists (i.e., f'(N) = N®pwa, p), taking F = Aand N = B, we havew4,p = f'(Oy) = Homp (A4, B)

as A-modules. As shown in [KI80, (21)], Spec(A) ER Spec(B) has dualizing module if and only if f
is Cohen Macaulay (e.g., if B is regular and A is free of finite rank over B). Even if we do not have
dualizing module w4, g, we just define wy,p := Homp(A, B) generally.

Suppose that we have an involution o € Aut(A/B). Let A, = AY for the order 2 subgroup G of
Aut(A/B) generated by o. Under the following four conditions:

(1) B is a regular local ring,

(2) A is free of finite rank over B,

(3) A and Ay are Gorenstein ring,

(4) A/B is generically étale (i.e., Frac(A) is reduced separable over Frac(B)),

in [RDF, §3.5.a], the module of regular differentials wg, A for (O,A) = (A4, B), (A, Ay), (A4, B) is
defined as fractional ideals in Frac(OJ). By (1) and (2), A/B and Ay /B are Cohen Macaulay; so,
wa/p and wy /p as above are the dualizing modules.

We now identify the dualizing module with more classical “inverse different” (realized as a frac-
tional ideal). Let C' D B be reduced algebras. By abusing notation, write weo,p := Homp(C, B)
in general. Suppose that Frac(C)/Frac(B) is étale; so, we have a well defined trace map Tr :
Frac(C) — Frac(B), and Wryrac(c)/ Frac(B) = Frac(C)Tr by the trace pairing (z,y) — Tr(zy). We
define an C-fractional ideal by

aE‘}B = {z € C|Tr(zC) C B}.

In other words, we/p = Homp(C, B) — Homp,(g)(Frac(C), Frac(B)) = Frac(C)Tr has image
Da}BTr. Thus we have DE‘}B = weyp. If C = Bd] is free of rank 2 over B with an B-basis 1,0

with §2 € B, we have DE‘}B = 071C for 67! € Frac(C). Here is a version of Dedekind’s formula of
transitivity of inverse differents proven in [KDF, Proposition G.13] (see also [RDP, Theorem 8.6],

[K180, (26) (vii)] and [Hu89)]):

Proposition 10.3. Let B be a regular p-profinite local ring. Suppose that D/C/B is generically
étale finite extensions of reduced algebras such that D and C are B-flat, wc/p = B as B-modules
(i.e., B is Gorenstein) and that Frac(D) is Frac(C)-free. Then we have 05}005}3 = DB}B and
wp/c ®c we/B = Wp/B-

Let A be a reduced noetherian algebra with an involution 0. Put A* = Ay := {z € Alo(z) = +z}
and write G for the subgroup of Aut(A) of order 2 generated by o; so, AT = A9 = HO(G, A).

Lemma 10.4. Let S be a p-profinite Gorenstein integral domain for a prime p > 2 and A be a

reduced local S-algebra free of finite rank over S. Suppose

(1) A and A are Gorenstein,

(2) Frac(A)/Frac(Ay) is an étale extension,

(3) Frac(A) is free of rank 2 over Frac(Ay),

(4) 9474, Cmy or A is flat over Ay or A_ is generated by one element over Ay.

Then A is free of rank 2 over Ay and A=A, ® A0 for an element § € A with o(§) = —0.
For A -module M, we write M* for the A-dual Hom, (M, A ).

Proof. From Lemma 10.1, we conclude A* = w,4/4, = A. Thus we conclude

waa, Eq,, = AT
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with a non-zero divisor § € A. Similarly DX}S = AH;}S and 04, /5 = Hgi/SAjL. We may assume
that 604, ;5 = 04,5 by Proposition 10.3. Define [z,y] := Tra/a, (6~ 'zy), which induces the self
A -duality on A. If € Ay, we have Tra a, (0~ ay) = 67 Tra,a, (2y); so,

Ay = [A,A] = TI‘A/AJr (97114) = 971TI‘A/A+(A) = 971A+.

Thus 6 is a unit. The multiplication of @ gives rise to Isom4(A*, A) = Isomy4 (DX}A+,A).

Suppose D474, C m4. Then # cannot be a unit. We conclude 6 ¢ Ay ; so, Isoma(A*, A)T =
Thus by Lemma 10.2, Isoma(A*, A)~ # 0. In other words, writing f(z) for the minimal monic
quadratic polynomial of § in A [z], we have 04,4, = A0 with § = f'(0) = 6 — o(f) (i.e., the
multiplication of ¢ gives rise to an element in Isom 4(A*, A)~. Indeed, by the trace pairing [z,y] =
Tra/a, (zy), we have the identity 02}A+ > A* =A% ®A* and A* = A 5" under this isomorphism.
Taking the dual under the trace pairing, we get A_ = (A*)* = Ay dand A= A, PA_;s0, A=A, 0
and A= Ay @& ALJ, as desired.

Under flatness of A over Ay, plainly by (3), A_ is generated by a single element §. The assertion
is plain in the case where A_ = A, 6. O
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