1. Introduction

In this introduction, first, without going into technical details, we describe a prototypical example of a p-adic analytic families of modular forms. Starting with the third week (or slightly earlier), we start to justify our construction cohomologically. The examples we describe are from [LFE] Chapter 7.

1.1. p-Adic L-functions as a power series. We start with a general fact on the Kubota-Leopoldt p-adic L-functions. We consider the binomial formula:

\[(1 + T)^s = \sum_{n=0}^{\infty} \binom{s}{n} T^n.\]

Since $s \mapsto \binom{s}{n} = \frac{s(s-1)(s-2)\cdots(s-n+1)}{n!}$ is a polynomial in s and has integer value over natural numbers, it is a polynomial on \mathbb{Z}_p with values in \mathbb{Z}_p. Thus if $\gamma \equiv 1 \mod p$, we have the p-adic power $\gamma^s = \sum_{n=0}^{\infty} \binom{s}{n} (\gamma - 1)^n \in \mathbb{Z}_p$ (convergent p-adically) for all $s \in \mathbb{Z}_p$.

Let K be a finite extension of \mathbb{Q}_p with p-adic integer ring $W = \{w \in K \, | \, |w|_p \leq 1\}$. Let φ be a p-adic measure on \mathbb{Z}_p with values in W (so it is a bounded measure). Since the power series ring $W[[T]]$ is a Banach algebra under the norm $\|\sum_{n=1}^{\infty} a_n T^n\| = \sup_{n} |a_n|_p$, we can integrate any continuous function $\phi : \mathbb{Z}_p \to W[[T]]$ under $d\varphi$. In other words, we approximate ϕ by step functions $\phi_n : \mathbb{Z}_p \to W[[T]]$ factoring through $(\mathbb{Z}/p^n\mathbb{Z})$ so that $\lim_{n \to \infty} \phi_n = \phi$ under the norm $\| \cdot \|$ and define

$$\int_{\mathbb{Z}_p} \phi d\varphi = \lim_{n \to \infty} \int_{\mathbb{Z}_p} \phi_n d\varphi \in W[[T]].$$

Exercise 1.1. Prove that

$$\int_{\mathbb{Z}_p} (1 + T)^s d\varphi(s) = \sum_{n=0}^{\infty} \binom{s}{n} \phi(s) T^n = : \Phi_{\varphi}(T).$$

Let $\Gamma = 1 + p\mathbb{Z}_p$ and $z \mapsto \langle z \rangle = \omega(z)^{-1} z$ be the projection of \mathbb{Z}_p^\times onto Γ, where ω is the Teichmüller character defined in [LEC] Theorem 1.33. By the existence of a primitive root, for an odd prime p, the multiplicative group $(\mathbb{Z}/p^n\mathbb{Z})^\times$ is a cyclic group, and hence its subgroup $\{x \in (\mathbb{Z}/p^n\mathbb{Z})^\times \, | \, x \equiv 1 \mod p\}$ is cyclic generated by $\gamma = 1 + p$.

Exercise 1.2. Let $\Gamma_n = \{u^n \mid u \in \Gamma\} \subset \Gamma$ and p be an odd prime. Prove the following facts

1. $\Gamma_n = \Gamma$ if $p \nmid n$;
2. $\Gamma/\Gamma_n^{-1} \cong \{x \in (\mathbb{Z}/p^n\mathbb{Z})^\times \, | \, x \equiv 1 \mod p\}$ by sending $u\Gamma_n^{-1}$ to $u \mod p^n$. In particular, $[\Gamma : \Gamma_n^{-1}] = p^n$;
3. $\Gamma \cong \mathbb{Z}_p$ by $\gamma^s \mapsto s \in \mathbb{Z}_p$ for $\gamma = 1 + p$;
4. $1 + 4\mathbb{Z}_2 \cong \mathbb{Z}_2$ by $\gamma^s \mapsto s \in \mathbb{Z}_2$ for $\gamma = 5$.

We have a projection $\langle \cdot \rangle : \mathbb{Z}_p^\times \to \Gamma$. Thus we can define a bounded measure $\langle \varphi \rangle$ on Γ by $\int_{\Gamma} \phi d\langle \varphi \rangle = \int_{\mathbb{Z}_p^\times} \phi(\langle z \rangle) d\varphi$. Identifying Γ with \mathbb{Z}_p by $\gamma^s \mapsto s \in \mathbb{Z}_p$, consider $\Phi_{\langle \varphi \rangle}(T) \in W[[T]]$.

Lemma 1.3. We have \(\int_{\Gamma} u^s d\langle \varphi \rangle(u) = \Phi(\varphi)(\gamma^s - 1) \).

Proof. For the isomorphism \(\iota : \Gamma \cong \mathbb{Z}_p \) with \(\iota(\gamma^z) = z \), we can define a measure \(\varphi_+ \) on \(\mathbb{Z}_p \) by \(\int_{\mathbb{Z}_p} \phi d\varphi_+ = \int_{\Gamma} \phi \circ d\langle \varphi \rangle \). Then we have \(\Phi_\varphi = \Phi_{\varphi_+} \), and \(\Phi_{\varphi_+}(T) = \int_{\mathbb{Z}_p}(1 + T)^z d\varphi_+(z) \).

Replacing \(T \) by \(\gamma^s - 1 \) and writing \(u = \gamma^z \), we get

\[
\Phi_{\varphi_+}(\gamma^s - 1) = \int_{\mathbb{Z}_p} \gamma^z d\varphi_+(z) = \int_{\Gamma} u^s d\langle \varphi \rangle(u),
\]

which shows the assertion. \(\square \)

Exercise 1.4. Define a Dirac measure \(\delta_z \) for \(z \in \mathbb{Z}_p \) by \(\int_{\mathbb{Z}_p} \phi d\delta_z = \phi(z) \). Prove that \(\Phi_{\delta_z}(T) = (1 + T)^z \).

Let \(N \) be a positive integer prime to \(p \). We defined in [LEC] Theorem 1.33 the \(p \)-adic Dirichlet \(L \)-function for each primitive odd character \(\chi \) modulo \(Np^s \) (with values in \(K \)). Reformulating the result there (by making a variable change \(\chi \mapsto \chi \omega^{-1} \); so now \(\chi \) is even), by the above lemma, we thus get

Theorem 1.5. Let \(N \) be a positive integer prime to \(p \) and \(\chi \) with \(\chi(-1) = 1 \) be a Dirichlet character modulo \(Np \). Suppose that \(\chi_N \) is primitive modulo \(N \). Then there exists a power series \(\Phi_{\chi}(T) \in \mathbb{W}[[T]] \) such that \(L_p(1 - s, \chi) = \Phi_{\chi}(\gamma^s - 1) \) if \(\chi_N \neq 1 \) and \(L_p(1 - s, 1) = \frac{\Phi_{\chi}(\gamma^s - 1)}{\gamma^s - 1} \).

Exercise 1.6. Give a detailed proof of the above theorem.

A \(p \)-adic analytic function on \(\mathbb{Z}_p \) of the form \(s \mapsto \Phi(\gamma^s - 1) \) for a power series \(\Phi(T) \in \mathbb{W}[[T]] \) is called an Iwasawa function. Iwasawa functions form a special subclass of \(p \)-adic analytic functions on \(\mathbb{Z}_p \).

1.2. Eisenstein series. Let \(\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \overline{\mathbb{Q}}^\times \) be a primitive Dirichlet character. We consider the Eisenstein series of weight \(0 < k \in \mathbb{Z} \)

\[
E'_k(z, s) = \sum_{(m, n) \in \mathbb{Z}^2 - \{(0, 0)\}} \chi^{-1}(n)(mNz + n)^{-k}|mNz + n|^{-2s},
\]

where \(z \in \mathfrak{H} \) and \(s \in \mathbb{C} \). When \(N = 1 \), \(\chi \) is the trivial character \(1 \). For the following exercise, see [MFM] Section 2.6 and Chapter 7.

Exercise 1.7. Prove

1. \(E'_k(z, s) \) converges absolutely and locally uniformly with respect to \((z, s) \in \mathfrak{H} \times \mathbb{C} \) if \(\Re(2s + k) > 2 \);
2. \(E'_k(z, s) = 0 \) if \(\chi(-1) \neq (-1)^k \) (assuming convergence);
3. \(E'_k(z) = E'_k(z, 0) \) is a holomorphic function of \(z \) if \(k < 2 \) (this fact is actually true if \(k = 2 \) and \(\chi \neq 1 \) for the limit \(E'_k(z) = \lim_{s \to 0} E'_k(z, s) \));
4. \(E'_k(\gamma(z)) = \chi(d)(cz + d)^kE'_k(z) \) for \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(N) \).

A holomorphic function \(f : \mathfrak{H} \to \mathbb{C} \) is called a modular form on \(\Gamma_0(N) \) of weight \(k \) with character \(\chi \) if \(f \) satisfies the following conditions:
Exercise 1.9. Prove that f is finite at all cusps of $X_0(N)$; in other words, for all $\alpha = (a \ b \ c \ d) \in SL_2(\mathbb{Z})$, $f|_{k,\alpha}(z) = f(\alpha(z))(cz + d)^{-k}$ has Fourier expansion of the form

$$\sum_{0 \leq n \in \mathbb{N}^{-1}} a(n, f|_{k,\alpha}) \exp(2\pi inz) \quad \text{with } a(n, f|_{k,\alpha}) \in \mathbb{C}.$$

The above condition means that the function f is finite at the cusp $\alpha(\infty)$ of $X_0(N)$ (whose value at the cusp is $a(0, f|_{k,\alpha})$). We write $M_{k,\alpha}(\Gamma_0(N))$ for the space of functions satisfying (M1–2). Replace (M2) by

$$(S) \ f \ is \ vanishing \ at \ all \ cusps \ of \ X_0(N) \ (that \ is, \ a(n, f|_{k,\alpha}) = 0 \ for \ all \ \alpha \in SL_2(\mathbb{Z}) \ and \ n \leq 0),$$

we define subspace $S_{k,\alpha}(\Gamma_0(N)) \subset M_{k,\alpha}(\Gamma_0(N))$ by imposing (S). Functions in the space $S_{k,\alpha}(\Gamma_0(N))$ are called holomorphic cusp forms on $\Gamma_0(N)$ of weight k with character χ.

Exercise 1.8. Prove that $M_{0,\chi}(\Gamma_0(N))$ is either \mathbb{C} (constants) or 0 according as $\chi = 1$ or not.

Exercise 1.9. Prove that $M_{k,\chi}(\Gamma_0(N)) = 0$ if $\chi(-1) \neq (-1)^k$.

Proposition 1.10. Let χ be a primitive Dirichlet character modulo N. The Eisenstein series $E'_{k,\chi}(z, s)$ for $0 < k \in \mathbb{Z}$ can be meromorphically continued as a function of s for a fixed z giving a real analytic function of z if $E'_{k,\chi}(z, s)$ is finite at $s \in \mathbb{C}$. If $\chi \neq 1$ or $k \neq 2$, $E'_{k,\chi}(z) = E'_{k,\chi}(z, 0)$ is an element in $M_{k,\chi}(\Gamma_0(N))$.

We only prove the last assertion for $k > 2$, since the proof of the other assertions require more preparation from real analysis. See [LFE] Chapter 9 (or [MFM] Chapter 7) for a proof of these assertions not proven here.

Proof. Suppose $k > 2$. Then $E'_{k,\chi}$ is absolutely and locally uniformly convergent by the exercise above, and hence $E'_{k,\chi}$ is a holomorphic functions in $z \in \mathbb{H}$. Thus we need to compute its Fourier expansion. Since the computation is basically the same for all cusps, we only do the computation at the cusp ∞. We use the following partial fraction expansion of cotangent function (can be found any advanced Calculus text or [LFE] (2.1.5-6) in page 28):

$$\pi \cot(\pi z) = \pi i \frac{\exp(2\pi iz) + 1}{\exp(2\pi iz) - 1} = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z + n} + \frac{1}{z - n} \right)$$

$$\pi \cot(\pi z) = \pi i \frac{\exp(2\pi iz) + 1}{\exp(2\pi iz) - 1} = \pi i \left(-1 - 2 \sum_{n=1}^{\infty} q^n \right), \quad q = \exp(2\pi iz).$$

The two series converge locally uniformly on \mathbb{H} and periodic on \mathbb{C} by definition. Applying the differential operator $(2\pi i)^{-1} \frac{\partial}{\partial z}$ to the formulas in (1.2) term by term, we get

$$S_k(z) = \sum_{n \in \mathbb{Z}} \frac{1}{(z + n)^k} = \frac{(-2\pi i)^k}{(k - 1)!} \sum_{n=1}^{\infty} n^{k-1} q^n.$$
Form this, assuming $\chi(-1) = (-1)^k$, we have

$$E'_{k,\chi}(z) = 2 \sum_{n=1}^{\infty} \chi(n)^{-1} n^{-k} + 2 \sum_{r=1}^{N} \chi^{-1}(r) \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} N^{-k}(mz + \frac{r}{N} + n)^{-k}$$

(1.4)

$$= 2L(k, \chi^{-1}) + 2 \sum_{r=1}^{N} \chi^{-1}(r) \sum_{m=1}^{\infty} S_k(mz + \frac{r}{N})$$

$$= \sum_{r=1}^{N} \chi^{-1}(r) \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} N^{-k}(mz + \frac{r}{N})$$

(1.3)

By the functional equation (see [LFE] Theorem 2.3.2), we have, if $\chi(-1) = (-1)^k$,

$$L(k, \chi^{-1}) = G(\chi^{-1}) \frac{(-2\pi i)^k}{N^k(k-1)!} L(1-k, \chi),$$

(1.5)

where $G(\psi)$ for a primitive character ψ modulo C is the Gauss sum $\sum_{r=1}^{C} \psi(r) \exp(2\pi i \frac{nr}{N})$.

We have $\sum_{r=1}^{N} \chi^{-1}(r) \exp(2\pi i \frac{nr}{N}) = \begin{cases} \chi(n) G(\chi^{-1}) & \text{if } n \text{ is prime to } N, \\ 0 & \text{otherwise,} \end{cases}$ and we get the formula

$$E'_{k,\chi}(z) = G(\chi^{-1}) \frac{2(-2\pi i)^k}{N^k(k-1)!} E_{k,\chi}(z)$$

(1.6)

for

$$E_{k,\chi}(z) = 2^{-1} L(1-k, \chi) + \sum_{n=1}^{\infty} \sigma_{k-1,\chi}(n) q^n$$

for $\sigma_{k-1,\chi}(n) = \sum_{0<d|n} \chi(d) d^{k-1}$. Here we used the convention that $E_{k,\chi}(z) = 0$ if $\chi(-1) \neq (-1)^k$.

Exercise 1.11. Give a proof of

$$\sum_{r=1}^{N} \chi^{-1}(r) \exp(2\pi i \frac{nr}{N}) = \begin{cases} \chi(n) G(\chi^{-1}) & \text{if } n \text{ is prime to } N, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 1.12. Let p be a prime, and write 1_p for the imprimitive identity character of $(\mathbb{Z}/p\mathbb{Z})^\times$. Prove that

$$E_{k,1}(z) - p^{k-1} E_{k,1}(pz) = 2^{-1}(1 - p^{k-1}) \zeta(1-k) + \sum_{n=1}^{\infty} \sigma_{k-1,1}^{(p)}(n) q^n$$

for $\sigma_{k-1,1}^{(p)}(n) = \sum_{0<d|n,p\not|d} d^{k-1}$. More generally, if N is prime to p, prove that

$$E_{k,\chi}(z) - \chi(p) p^{k-1} E_{k,\chi}(pz) = 2^{-1}(1 - \chi(p) p^{k-1}) L(1-k, \chi) + \sum_{n=1}^{\infty} \sigma_{k-1,\chi}^{(p)}(n) q^n$$

for $\sigma_{k-1,\chi}^{(p)}(n) = \sum_{0<d|n,p\not|d} \chi(d) d^{k-1}$.
1.3. Eisenstein family. We continue to fix a positive integer \(N \) prime to \(p \) and a Dirichlet character \(\chi \) modulo \(Np \) with \(\chi(-1) = (-1)^k \). We know by a work of Shimura (recalled in [LEC] Proposition 2.18 when \(k = 2 \) and \(\chi = 1 \)) that \(M_{k,\chi}(\Gamma_0(Np^r); \mathcal{A}) \otimes_{\mathbb{A}} \mathbb{C} = M_{k,\chi}(\Gamma_0(Np)) \) for any algebra \(\mathcal{A} \subset \mathbb{C} \) containing the values of \(\chi \), where

\[
M_{k,\chi}(\Gamma_0(Np^r); \mathcal{A}) = \left\{ f \in M_{k,\chi}(\Gamma_0(Np^r)) \mid a(n, f) \in \mathcal{A} \quad \text{for all } n \geq 0 \right\}.
\]

Here we write the \(q \)-expansion of \(f \) as \(f = \sum_{n=0}^{\infty} a(n, f) q^n \). Then we take \(\mathcal{A} = W \cap \mathbb{Q} \) and define \(M_{k,\chi}(\Gamma_0(Np^r); W) = M_{k,\chi}(\Gamma_0(Np^r); \mathcal{A}) \otimes_{\mathcal{A}} W \) and

\[
M_{k,\chi}(\Gamma_0(Np^r); W) = M_{k,\chi}(\Gamma_0(Np^r); \mathcal{A}) \otimes_{\mathcal{A}} W.
\]

By definition, \(M_{k,\chi}(\Gamma_0(Np^r); \mathcal{A}) \hookrightarrow \mathcal{A}[[q]] \) via \(q \)-expansion.

Definition 1.13. A \(p \)-adic analytic family of modular forms of character \(\chi \) (modulo \(Np \)) with coefficients in \(\Lambda = W[[T]] \) is a formal \(q \)-expansion \(F(T) = \sum_{n=0}^{\infty} a(n, F(T)) q^n \in \Lambda[[q]] \) such that for all sufficiently large integers \(k \gg 0 \), \(F(\gamma^k - 1) \) is the \(q \)-expansion of an element in \(M_{k,\chi \cdot \omega^{-k}}(\Gamma_0(Np); W) \) for the Teichmüller character \(\omega(z) = \lim_{n \to \infty} z^{p^n} \) for \(z \in \mathbb{Z}_p \) (which factors through \(\mathbb{Z}/p\mathbb{Z} \)).

Exercise 1.14. Prove that the limit \(\omega(z) = \lim_{n \to \infty} z^{p^n} \) exists in \(\mathbb{Z}_p \) and that it gives rise to a Dirichlet character modulo \(p \).

Exercise 1.15. Prove that \(\log_p(z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(z-1)^n}{n} \) converges \(p \)-adically for \(z \in \Gamma \) to an element in \(p \mathbb{Z}_p \) and satisfies \(\log_p(zw) = \log_p(z) + \log_p(w) \) and \(\gamma^{\log_p((n))/\log_p(\gamma)} = \langle n \rangle \) for all integer \(n \) prime to \(p \) (cf. [LFE] Section 1.3). Similarly, prove that \(\exp_p(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \) converges to an element in \(\Gamma \) \(p \)-adically over \(p \mathbb{Z}_p \) and show that \(\exp_p \circ \log_p \) and \(\exp_p \circ \log_p \) are the identity maps.

Define \(\Phi_{\chi}(T) \in W[[T]] \) by

\[
\Phi_{\chi}(\gamma^s - 1) = \begin{cases} 2^{-1}L_p(1 - s, \chi) & \text{if } \chi \neq 1 \\ 2^{-1}(\gamma^s - 1)L_p(1 - s, \chi) & \text{otherwise} \end{cases}
\]

for \(s \in \mathbb{Z}_p \) and

\[
a(n, \mathcal{E}_\chi)(T) = \begin{cases} \sum_{0 < d | n, p \not| d} \chi(d)(1 + T)^{\log_p((d))/\log_p(\gamma)} & \text{if } \chi \neq 1, \\ T \sum_{0 < d | n, p \not| d} (1 + T)^{\log_p((d))/\log_p(\gamma)} & \text{if } \chi = 1. \end{cases}
\]

Exercise 1.16. Using Theorem 1.5, prove the existence and uniqueness of \(\Phi_{\chi}(T) \in W[[T]] \) if \(\chi_N \) is primitive modulo \(N \).

Theorem 1.17. Let \(\chi \) be an even Dirichlet character modulo \(Np \) with primitive \(\chi_N \). Then the \(q \)-expansion \(\mathcal{E}_\chi = \Phi_{\chi}(T) + \sum_{n=1}^{\infty} a(n, \mathcal{E}_\chi) q^n \) gives a \(p \)-adic analytic family of modular form with character \(\chi \). Moreover \(E_\chi(\gamma^k - 1) \in M_{k,\chi \cdot \omega^{-k}}(\Gamma_0(Np); W) \) for \(k \geq 2 \) except for the case where \(\chi = 1 \). When \(N = 1 \) and \(\chi = 1 \), \(E_1(\gamma^k - 1) \in M_{k,\omega^{-k}}(\Gamma_0(Np); W) \) if \(k = 0 \) or \(k > 3 \).
Proof. We prove the result assuming \(\chi \neq 1 \), since the case of \(\chi = 1 \) and \(N = 1 \) is similar. By computation, we have
\[
 a(n, \mathcal{E}_\chi)(\gamma^k - 1) = \sum_{0 < d | n, p \not| n} \chi(d) \gamma^{k \log_p(d) / \log_p(\gamma)}
\]
\[
 = \sum_{0 < d | n, p \not| n} \chi(d) \exp_p(\log_p(\gamma))^{k \log_p(d) / \log_p(\gamma)} = \sum_{0 < d | n, p \not| n} \chi(d) \langle n \rangle^k
\]
\[
 = \sum_{0 < d | n, p \not| n} \chi \omega^{-k}(d) d^k = \sigma_{k, \chi}^{(p)}(n).
\]
Similarly by definition, \(\Phi_\chi(\gamma^k - 1) = 2^{-1} L_p(1-k, \chi \omega^{-k}) \). Thus we have from Exercise 1.12
\[
 \mathcal{E}_\chi(\gamma^k - 1) = \begin{cases}
 E_{k, \chi \omega^{-k}}(\gamma) & \text{if } \chi \omega^{-k} \text{ is primitive modulo } Np, \\
 E_{k, \chi}(\gamma) - \chi(N) p^k E_{k, \chi}(p \gamma) & \text{otherwise}.
 \end{cases}
\]
This finishes the proof. \(\square \)

Exercise 1.18. Give a detailed proof of the above theorem when \(\chi = 1 \) and \(N = 1 \).

The collection of all \(p \)-adic analytic families of modular forms with character \(\chi \) form a \(\Lambda \)-module \(M_\chi(N; \Lambda) \). If \(F \in M_\chi(N; \Lambda) \) specializes to a cusp form \(F(\gamma^k - 1) \in S_{k, \chi \omega^{-k}}(\Gamma_0(N); W) \) for all sufficiently large \(k \gg 0 \), \(F \) is called a \(p \)-adic analytic cuspidal family. The correction of all cuspidal families is written as \(S_\chi(N; \Lambda) \). For a given modular form \(f \in M_{\ell, \psi}(\Gamma_0(pN); W) \), we can define a convoluted product \(f \ast \mathcal{E}_\chi \) by
\[
 f \ast \mathcal{E}_\chi(T) = f \mathcal{E}_\chi(\gamma^{-\ell}(1 + T) - 1)).
\]
Then \(f \ast \mathcal{E}_k \in \Lambda[[q]] \) and by computation, we have \(f \ast \mathcal{E}_\chi(\gamma^k - 1) = f \cdot \mathcal{E}(\gamma^{k - \ell} - 1) \). Since \(\mathcal{E}(\gamma^{k - \ell} - 1) \in M_{k - \ell, \psi \omega^{-k}}(\Gamma_0(N); W) \), we find \(f \ast \mathcal{E}(\gamma^{k - \ell} - 1) \in M_{k, \psi \omega^{-k}}(\Gamma_0(N); W) \) if \(k \geq \ell + 2 \). This shows

Corollary 1.19. We have \(f \ast \mathcal{E}_\chi \in M_{\psi \omega^c}(\Gamma_0(N); \Lambda) \) if \(f \in M_{\ell, \psi}(\Gamma_0(pN); W) \). If \(f \in S_{\ell, \psi}(\Gamma_0(pN); W) \), we have \(f \ast \mathcal{E}_\chi \in S_{\psi \omega^c}(\Gamma_0(N); \Lambda) \).

In this way, we can produce a lot of \(p \)-adic analytic families.

Exercise 1.20. Prove that \(f \ast \mathcal{E}_\chi \in S_{\psi \omega^c}(\Gamma_0(N); \Lambda) \) if \(f \in S_{\ell, \psi}(\Gamma_0(pN); W) \).

1.4. Hecke operators. Recall
\[
 \Delta_0(pN) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in M_2(\mathbb{Z}) \mid c \equiv 0 \mod pN, aZ + NpZ = Z, ad - bc > 0 \right\}.
\]
We define a character \(\chi_\Delta \) of \(\Delta_0(pN) \) by \(\chi_\Delta(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)) = \chi^{-1}(a) \).

Exercise 1.21. Prove that \(\chi_\Delta(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)) = \chi(d) \) if \(\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(pN) \).

Define for \(\alpha = (\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Delta_0(pN) \) and a function \(f : \mathfrak{H} \to \mathbb{C} \), a new function \(f|_{k, \chi} \alpha(z) \) by \(f|_{k, \chi} \alpha(z) = \det(\alpha)^{-k} f(\alpha(z)) \chi^{-1}_\Delta(\alpha)(cz + d)^{-k} \). Splitting \(T_n = \{ \alpha \in \Delta_0(pN) | \det(\alpha) = n \} \) into a disjoint union \(T_n = \bigsqcup_{\alpha} \Gamma_0(pN) \alpha \), we define \(f|T(n) = \sum_\alpha f|_{k, \chi} \alpha \). Then the same proof of Lemma 2.14 in [LEC] gives
Lemma 1.22. (1) Write $T(n)$ for the operator corresponding to T_n. Then $T(n)$ gives a linear endomorphism of $M_{k,\chi}(\Gamma_0(pN))$.

(2) We get the following identity of Hecke operators for $f \in M_{k,\chi}(\Gamma_0(pN))$:

$$a(m, f|T(n)) = \sum_{0<d|(m,n)\cdot(d,pN)=1} \chi(d)d^{k-1} \cdot a\left(\frac{mn}{d^2}, f\right).$$

(3) $T(m)T(n) = T(n)T(m)$ for all integers m and n.

When $m|pN$, we often write $U(m)$ for $T(m)$.

Exercise 1.23. Give a detailed proof of the above Lemma.

Corollary 1.24. If $k \geq 1$ and A contains the values of χ, the Hecke operators $T(n)$ preserves $M_{k,\chi}(\Gamma_0(pN), \chi)$.

Definition 1.25. We consider the operator $T_\Lambda(n)$ on $F = \sum_{n=0}^{\infty} a(n, F)(T)q^n\Lambda[[q]]$ defined by $a(m, F|T_\Lambda(n)) = \sum_{0<d|(m,n)\cdot(d,\Lambda)=1} \chi(d)d^{-1}(1+T)^{\log_p(d)/\log_p(\gamma)} \cdot a\left(\frac{mn}{d^2}, F\right)$.

Since $(1+T)^{\log_p(d)/\log_p(\gamma)}|_{T=\gamma^k-1} = \langle d \rangle^k = \omega^{-k}(d)d^k$, after specializing $T = \gamma^k-1$, we find $(F|T_\Lambda(n))(\gamma^k-1) = (F(\gamma^k-1)|T(n))$. Thus $T_\Lambda(n)$ preserves $M_{\chi}(N; \Lambda)$ and $S_{\chi}(N; \Lambda)$.

Proposition 1.26. We have a linear operator $T_\Lambda(n)$ defined by Definition 1.25 acting on $M_{\chi}(N; \Lambda)$ which preserves $S_{\chi}(N; \Lambda)$. In particular, $(F|T_\Lambda(n))(\gamma^k-1) = (F(\gamma^k-1)|T(n))$ for all $F \in M_k(N; \Lambda)$ and all $k \gg 0$ and $T_\Lambda(m)T_\Lambda(n) = T_\Lambda(n)T_\Lambda(m)$ and $T_\Lambda(m)T_\Lambda(n) = T_\Lambda(mn)$ if $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$.

There are a lot of questions we can ask for p-adic analytic families; for example,

(Q1) Is the Λ-module $M_{\chi}(N; \Lambda)$ finitely generated?

(Q2) Is the module $M_{\chi}(N; \Lambda)$ spanned by Hecke eigenforms (at least topologically if it is infinite rank)?

(Q3) What is $F(\zeta-1)$ for a general $\zeta \in \overline{\mathbb{Q}_p}$ with $|\zeta-1|_p < 1$?

(Q4) If $F \in M_{\chi}(N; \Lambda)$ is a common Hecke eigenform with $a(1, F) = 1$ with Λ-unit eigenvalue for $U(p)$, writing $d\varphi_k$ for the p-adic measure constructed for $F(\gamma^k-1)$ in [LFE] in Section 6.5 and in [LEC] Theorem 2.36, what is the relation among $d\varphi_k$ for $k \gg 0$?

We try to answer some of these questions.

1.5. Modular forms of level N. We generalize a bit the notion of modular forms. Let

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) | a \equiv d \equiv 1 \mod N \right\}. $$

A modular form $f \in M_k(\Gamma_1(N))$ is a holomorphic function on \mathfrak{H} satisfying the conditions (M1–2) in 1.2 for $\Gamma_1(N)$ in place of $\Gamma_0(N)$. Since $d \equiv 1 \mod N$ and χ is a character modulo N in (M1), this space is independent of the choice of χ, and hence the subscript χ is dropped from the notation. Similarly we define the subspace of cusp forms $S_k(\Gamma_1(N))$ inside $M_k(\Gamma_1(N))$ by imposing (S) in addition to (M1–2). Then we define first for a ring $A \subset \mathbb{C}$

$$M_k(\Gamma_1(N); A) = \left\{ f \in M_k(\Gamma_1(N)) | a(n, f) \in A \text{ for all } n \geq 0 \right\}$$
We have Lemma 1.27.

\[
M_k(\Gamma_1(N); \mathbb{Z}) \otimes_\mathbb{Z} A = M_k(\Gamma_1(N); A) \quad \text{and} \quad M_k(\Gamma_1(N); A) \otimes_A \mathbb{C} = M_k(\Gamma_1(N))
\]

Thus, for an algebra \(X \) with \(W \subset X \subset \overline{\mathbb{Q}}_p \), taking \(A = X \cap \overline{\mathbb{Q}} \), we may define \(M_k(\Gamma_1(N); X) = M_k(\Gamma_1(N); A) \otimes_A X \) and \(S_k(\Gamma_1(N); X) = M_k(\Gamma_1(N); A) \otimes_A X \). These spaces can be embedded into \(X[[q]] \) by \(q \)-expansion.

Since \(\Gamma_0(N)/\Gamma_1(N) \cong (\mathbb{Z}/N\mathbb{Z})^\times \) by \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (d \mod N) \), the finite group \((\mathbb{Z}/N\mathbb{Z})^\times \) acts on \(M_k(\Gamma_1(N)) \). Then by definition, the \(\chi \)-eigenspace of \(M_k(\Gamma_1(N)) \) is the space \(M_{k,\chi}(\Gamma_0(N)) \):

\[
M_{k,\chi}(\Gamma_0(N)) = \left\{ f \in M_k(\Gamma_1(N)) \mid f|\langle d \rangle = \chi(d)f \text{ for all } d \in (\mathbb{Z}/N\mathbb{Z})^\times \right\},
\]

where \(f|\langle a \rangle = f|k \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) for \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) \). Thus we get

Lemma 1.27. We have

\[
M_k(\Gamma_1(N)) = \bigoplus_{\chi} M_{k,\chi}(\Gamma_0(N))
\]

\[
S_k(\Gamma_1(N)) = \bigoplus_{\chi} S_{k,\chi}(\Gamma_0(N)),
\]

where \(\chi \) runs over all Dirichlet characters modulo \(N \).

The Hecke operator \(T(n) \) on each \(M_{k,\chi}(\Gamma_0(N)) \) gives rise to a Hecke operator on the sum \(M_k(\Gamma_1(N)) \) over \(\chi \). In other words, writing \(f \in M_k(\Gamma_1(N)) \) as \(f = \bigoplus \chi f_\chi \) with \(f_\chi \in M_{k,\chi}(\Gamma_0(N)) \), we have \(f|T(n) = \bigoplus \chi (f_\chi|T(n)) \).

Exercise 1.28. Prove that for \(f \in M_k(\Gamma_1(N)) \)

\[
a(m, f|T(n)) = \sum_{0<d|(m,n), l|d,N=1} d^{k-1}a\left(\frac{mn}{d^2}, f|\langle d \rangle\right)
\]

and \(T(\ell)^2 - T(\ell^2) = \ell^{k-1}|\ell \) if \(\ell \) is a prime outside \(N \).

Let

\[
\Delta_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \mid c \equiv 0 \mod N, \ a \equiv 1 \mod N, \ ad - bc > 0 \right\}.
\]

Exercise 1.29. Splitting \(T_n = \{ \alpha \in \Delta_1(N) \mid \det(\alpha) = n \} \) into a disjoint union \(T_n = \bigsqcup_\alpha \Gamma_0(pN)\alpha \), prove that \(f|T(n) = \sum_\alpha f|k,\alpha \).

The modular curve \(X_1(N)(\mathbb{C}) = \Gamma_1(N)\backslash(\mathfrak{H} \cup \mathbb{P}^1(\mathbb{Q})) \) has a regular model \(X_1(N) \) over \(\mathbb{Z} \). We admit the following nontrivial facts which could be proven using algebraic geometry on the regular scheme \(X_1(N)/\mathbb{Z} \):

Theorem 1.30. The space \(M_k(\Gamma_1(N); A) \) and \(S_k(\Gamma_1(N); A) \) are stable under the action of \((\mathbb{Z}/N\mathbb{Z})^\times\) and hence under \(T(n) \) for all \(n \) for any algebra \(A \).
1.6. **Slope of modular forms.** A modular form \(f \in M_k(\Gamma_1(pN); K) \) \((r > 0)\) has slope \(\alpha \) if \(f((U(p) - a)^M = 0 \) (for a sufficiently large integer \(M \gg 0 \)) and \(|a|_p = p^{-\alpha} \). If \(f|U(p)^M = 0 \) (for \(M \gg 0 \)), we call \(f \) to have infinity slope.

Lemma 1.31. Let \(X \) be a \(W \)-module of finite type and \(T : X \to X \) be a \(W \)-linear operator. Then the \(p \)-adic limit \(e = \lim_{n \to \infty} T^n \) exists in \(\text{End}_W(X) \) and gives an idempotent of \(\text{End}_W(X) \).

Proof. Since \(\text{End}_W(X) \) is a \(W \)-module of finite type, the \(W \)-subalgebra \(A \) generated by \(T \) is a \(W \)-algebra which is of finite type as \(W \)-modules. Thus we need to prove the existence of \(\lim_{n \to \infty} T^n \) in a \(W \)-algebra \(X \) which is a \(W \)-module of finite type. In particular, we have a finitely many generators \(a_1, \ldots, a_r \) of \(A \) over \(W \) and a \(W \)-linear surjection: \(W^r \to A \) sending \((x_j)_{j=1,\ldots,r}\) to \(\sum_j x_ja_j \). In particular \(A/pA \) is finite; so, writing \(\Omega \) the set of all maximal ideals of \(A \), \(\Omega \) is a finite set. Also \(A \) is \(p \)-adically complete; so, \(A = \lim_{n \to \infty} A/p^nA \). We have \(\bigcap_n \bigcap_{m \in \Omega} m^n = 0 \); so, \(A = \lim_{n \to \infty} A/\bigcap_{m \in \Omega} m^n \). By Chinese remainder theorem applied to \(A/\bigcap_{m \in \Omega} m^n \), we find \(A/\bigcap_{m \in \Omega} m^n = \bigoplus_m A/m^nA \). Thus we find that \(A = \bigoplus_{m \in \Omega} A_m \) for \(A_m = \lim_{n \to \infty} A/m^nA \). Then \(A \) is a direct product of local rings \(A_m \). Thus we may assume that \(A \) is local. Then \(\lim_{n \to \infty} T^n = 0 \) if \(T \in m \).

Since \(A/mA \) is a finite field of characteristic \(p \), its order is \(p^j \). Then \(a_m = |(A/m^nA)^x| = p^{m(a)}(p^j - 1) \) for an increasing sequence \(m_n \). In particular, \(T^{m_n} \equiv 1 \mod m^n \), and hence \(1 = \lim_{n \to \infty} T^{m_n} = \lim_{n \to \infty} T^n \). \(\square \)

Exercise 1.32. Under the notation of the above proof, give a detailed proof of the following facts:

1. \(p \in \bigcap_{m \in \Omega} m \);
2. \(pA \supset \left(\bigcap_{m \in \Omega} m \right)^n \) for sufficiently large \(n > 0 \);
3. \(\bigcap_{n=1}^\infty \bigcap_{m \in \Omega} m^n = \bigcap_{n=1}^\infty p^nA = 0 \);
4. \(\lim_{n \to \infty} T^{a_n} = \lim_{n \to \infty} T^n \).

Let \(e = \lim_{n \to \infty} U(p)^n \) in \(\text{End}_W(M_k(\Gamma_1(Np^r); A)) \) for \(A = W \) or \(K \), and define

\[
M^\text{ord}_k(\Gamma_1(Np^r); A) = e(M_k(\Gamma_1(Np^r); A)).
\]

The following lemma is easy:

Lemma 1.33. \(f \in M_k(\Gamma_1(Np^r); W) \) is of slope zero if and only if \(f \in M^\text{ord}_k(\Gamma_1(Np^r); W) \) and \(f \) is an eigenform for \(U(p) \).

Exercise 1.34. Prove the above lemma.

Definition 1.35. Define a Hecke algebra \(\mathbb{H}_k(Np^r; A) \) (resp. \(\mathfrak{h}_k(Np^r; A) \)) by the \(\mathcal{A} \)-subalgebra of \(\text{End}_A(M_k(\Gamma_1(Np^r); A)) \) (resp. \(\text{End}_A(S_k(\Gamma_1(Np^r); A)) \)) generated by Hecke operators \(T(n) \) for all \(n \).

We can define the corresponding spaces \(M^\text{ord}_\chi(N; A) \) of \(p \)-ordinary analytic families as follows:
Definition 1.36.

\[M^\text{ord}_X(N; \Lambda) = \left\{ F \in M_X(N; \Lambda) \mid F(\gamma^k - 1) \in M^\text{ord}_{k,\chi^\omega - k}(\Gamma_0(Np)) \text{ for all } k \gg 0 \} \]

and \(S^\text{ord}_X(N; \Lambda) = S_X(N; \Lambda) \cap M^\text{ord}_X(N; \Lambda) \).

The following theorem is proven in 1986 in my papers [H86a], [H86b] and [LFE] Chapter 7 (except for the case for \(M^{2,1}_2(\Gamma_0(p); W) \)):

Theorem 1.37. \(M^\text{ord}_X(N; \Lambda) \) and \(S^\text{ord}_X(N; \Lambda) \) are free of finite rank over \(\Lambda \), and the specialization map induces isomorphisms

\[
M^\text{ord}_X(N; \Lambda) \otimes_\Lambda \Lambda/(T - (\gamma^k - 1)) \cong M^\text{ord}_{k,\chi^\omega - k}(\Gamma_0(pN); W),
\]

\[
S^\text{ord}_X(N; \Lambda) \otimes_\Lambda \Lambda/(T - (\gamma^k - 1)) \cong S^\text{ord}_{k,\chi^\omega - k}(\Gamma_0(pN); W)
\]

for all \(k \geq 2 \).

Corollary 1.38. Any element in \(M^\text{ord}_{k,\chi}(\Gamma_0(pN); W) \) for \(k \geq 2 \) can be lifted to a \(p \)-adic analytic family. Moreover if \(k \geq 2 \), we have

\[
\text{rank}_W M^\text{ord}_{k,\chi^\omega - k}(\Gamma_0(pN); W) = \text{rank}_\Lambda M^\text{ord}_X(N; \Lambda),
\]

\[
\text{rank}_W S^\text{ord}_{k,\chi^\omega - k}(\Gamma_0(pN); W) = \text{rank}_\Lambda S^\text{ord}_X(N; \Lambda)
\]

which are independent of \(k \geq 2 \).

Definition 1.39. Let \(0 < k \in \mathbb{Z} \) be an integer with divisible by \(p - 1 \) (so, \(\omega^k = 1 \)). A weak \(p \)-adic analytic family of modular forms (centered at \(0 < k \in \mathbb{Z} \)) is a formal power series \(F = \sum_{n=0}^{\infty} a(n, F)(T)q^n \) with \(a(n, F)(T) \in K[[T]] \) convergent at \(\gamma^{k'} - 1 \) for all \(k' \) in a small \(p \)-adic neighborhood \(U \) in \(k \cdot \Gamma \subset \mathbb{Z}_p^* \) of \(k \) such that \(F(\gamma^{k'} - 1) \in M_{k',\chi}(\Gamma_0(pN); K) \) for all \(k' \gg 0 \) in \(U \).

This type of weak families was introduced in [GM] by Mazur and Gouvêa in 1992. For a given slope \(\alpha \in \mathbb{Q} \), we define \(M^{(\alpha)}_{k,\chi}(\Gamma_0(pN); K) \) be the space spanned by slope \(\alpha \) modular forms in \(M_{k,\chi}(\Gamma_0(pN); K) \) and put \(S^{(\alpha)}_{k,\chi}(\Gamma_0(pN); K) = M^{(\alpha)}_{k,\chi}(\Gamma_0(pN); K) \cap S_{k,\chi}(\Gamma_0(pN); K) \). By definition, we have

\[
M^{(0)}_{k,\chi}(\Gamma_0(pN); K) = M^\text{ord}_{k,\chi}(\Gamma_0(pN); K).
\]

Moreover, we have

\[
M_{k,\chi}(\Gamma_0(pN); K) = \bigoplus_{\alpha} M^{(\alpha)}_{k,\chi}(\Gamma_0(pN); K).
\]

Exercise 1.40. Prove the above decomposition.

Gouvêa and Mazur made the following conjecture

Conjecture 1.41 (Gouvêa and Mazur, 1992).

1. If \(k, k' \geq 2\alpha + 2 \) and \(k \equiv k' \pmod{p^n(p - 1)} \) for \(n \geq \alpha \), then

\[
\dim_K S^{(\alpha)}_{k,\chi}(\Gamma_0(pN); K) = \dim_K S^{(\alpha)}_{k',\chi}(\Gamma_0(pN); K),
\]
(2) If $k \geq 2\alpha + 2$, any $f \in S^{(\alpha)}_{k, \chi}(\Gamma_0(pN); K)$ can be lifted to a weak analytic family of slope α (centered at k).

Their conjecture is actually slightly stronger than what is stated here. In this conjecture, they predict the neighborhood $U = U_k$ of a given $k \geq 2\alpha + 2$ (appearing in the definition of the weak families) is specified as

$$U_k = \{ k' \in k \cdot \Gamma \mid |k' - k|_p \leq p^{-\lceil \alpha \rceil} \}.$$

Though K. Buzzard found a counter example against the lower bound $k \geq 2\alpha + 2$ of (1) when $p = 2$, the conjecture would be true for $p > 3$ (as Gouvêa and Mazur actually assumed). A slightly different version of the conjecture (2) valid for $k \geq \alpha + 1$ (for a neighborhood $U \subset U_k$) was proven by Coleman [C] in 1998 (a lower bound for k for the validity of (1) quadratic in α was proven by Wan [W] soon after [C]). This result implies that actually that Hecke eigenforms in $M_{k', \chi' \cdot \omega - \kappa'}(\Gamma_0(pN); \overline{\mathbb{Q}}_p)$ is parameterized by $k' \in U \subset U_k$ (as we will see later for p-ordinary forms). Then Coleman and Mazur further went on to globalize the (local) parameter space U_k of modular Hecke eigenforms to a rigid analytic curve (the so called eigencurve) in [CM].

Theorem 1.37 (proven earlier than the conjecture) gives a finer result than the conjecture for slope 0 forms and was a main supporting evidence for the conjecture. Indeed, in this case, the eigencurve is actually a formal scheme finite flat over $\text{Spec}(\Lambda)$ (not just a rigid analytic space) and is given by $\text{Spec}(\mathbb{H}_\chi)$ for the Hecke algebra $\mathbb{H}_\chi \subset M_\chi(N; \Lambda)$ generated by Hecke operators $T(n)$ over Λ. Note here the rigid analytic space $\text{Spec}(\mathbb{H}_\chi)(\mathbb{C}_p)$ is a p-adic open unit disk. We would prove Theorem 1.37 to some extent in this course by a cohomological means in [H86b] (two other methods are discussed in [H86a] and [LFE] Chapter 7, respectively).

Exercise 1.42. Prove that $\text{Spec}(\Lambda)(\overline{\mathbb{Q}}_p) = \text{Hom}_{W\text{-alg}}(\Lambda, \overline{\mathbb{Q}}_p)$ is isomorphic to the open unit disk D in $\overline{\mathbb{Q}}_p$ (centered at the origin 0) by sending a W-algebra homomorphism $\phi : \Lambda \to \overline{\mathbb{Q}}_p$ to $\phi(T)$.