Overview

We give an introduction to the theory of automorphic forms on the multiplicative
group of a quaternion algebra over Q and over totally real fields F' (including Hilbert
modular forms). We know traditionally from the time of Gauss and Eisenstein that
modular forms on a congruence subgroup I' of SLs(Z) contain a striking amount of
arithmetic information. Here are some examples of applications. This is just to exhibit
usefulness of automorphihc forms and only a part of them will be discussed in the class.

An easiest way of constructing a modular form is to make an averaging sum of its
factors of automorphy: an Eisenstein series. There is another explicit way of constructing
modular forms. As an application of Poisson’s summation formula, an infinite series
attached to each quadratic form Q(x) on a Q-vector space (of dimension m) has been

used to construct elliptic modular forms explicitly: a theta series. Since the theta series
of @ is defined by

0(z) = Z exp(2miQ(x)z)
xeZm

if () is positive definite, one is able to count the number of integer solutions of Q(z) = n
for a given positive integer n by studying the theta series, which is a modular form of
weight % (see [HMI, Theorem 2.65]). For small m, one can prove an exact formula of
the number of solutions as an explicitly given function of n. This is the case for the sum
of squares Q(z) = > 7", 23 for 2 <'m < 8, because one can explicitely write 6 down as
a constant multiple of Eisenstein series and Fourier coefficients of an Eisenstein series
can be computed explicitly. The idea of relating theta series and Eisenstein series to
find such a formula is classical going back to the days of Gauss and Jacobi and has been
developed much by Siegel, Weil and Shimura more recently.

Writing theta series as a linear combination of Eisenstein series, we get examples of
the formula for rthe number of expressions of each positive integers as a sum of squares
(2 < m < 8). Write S,,(n) for the number of representations of an integer n > 0 as
sums of m squares. Assuming for simplicity n to be odd square-free (see [Sh] 3.9 for the

general cases), we have, for the quadratic residue symbol <§) (primitive with respect to

q),
o = ( (=) 2 0<djn (=) (Lagrange, Gauss, Jacobi);
( ) = ‘1\/_L( (<)) (Gauss, Dirichlet, Shimura);
Sa(n) =8 gy d (Jacobi);
o S5(n) =27(2m)2(v/n)3bs(n)L(2, (%)) (Eisenstein, Smith, Minkowski, Shimura).
Here bs(n) = 5 if n = 3 mod 4, and bs(n) = 273 -3-5,273 .5 -7 according as

n=1,5 mod §;
° Se(n) = ((5) 2* )Zo<d|n (5) d? (Jacobi);
° S7(n) = 2°(2m)73(v/n)®bz(n) L(3, (=2)) (Shimura);
Here b7(n) = 7if n =1 mod 4, and b;(n ) 2 5.32.5.7,275.7.37 according

asn = 3,7 mod 8.
. Ss(n) =163y, d* (Jacobi, Siegel).
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When m > 8, there is a small but nontrivial contribution of cusp forms; so, we cannot
have a precise formula but an asymptotic formula.

The case of m = 4 is related quaternionic automorphic forms, and because of this,
contribution of cusp forms is quite subtle when m = 4, which we study to good extent
in this course for norm forms (of four variables) of quaternion algebras. If we start with
the quaternion algebra

H=Q+ Qi+ Qj+Qk with H=H®gR

such that i? = j2 = k? = -1, ij = —ji = k, jk = —kj = i and ki = —ik = j, the
norm form is exactly the sum of four squares: N(z) = Tz = a2 + 23 + 23 + 23 for
T =21+ 290 + 23] + 14k € H and T = x1 — 91 — x3] — x4k.

To get the formula of Sy(n), a key point is that the ring of Gaussian integers Z[/—1]
is an Euclidean domain (so, a PID) and has four units {+1, ++/—1}. For an odd prime
¢, as Fermat observed,

(= 1%+ 23 with 21,79 € Z <
(= aa for a € Z[v-1| <

(F)=1(¢=1 mod4).

Thus S2(¢) = 4,0 according as £ =1 mod 4 or not.

As for S4(¢), we need to look into the order R = Z+Zi+7Zj+7Zk C H and study right
ideals of R. This order is not maximal; that is, there is a maximal subring Oy containing
R which is a lattice of the Q-vector space H and maximal among such subrings. The
ring Oy is called the Hurwitz order. We have the index [Og : R| = 2 with W € On
(see [Hz]). Since Oy is a noncommutative Euclidean domain, all right ideals of Oy are
principal, and hence a right R-ideal a is principal if N(a) = [R : a] is odd: a = aR
for a € R. Since the quaternion conjugation x +— T turns right ideals into left ideals,
we find @a = RaaR, which is a two-sided ideal generated by N(a) = @a € Z. Thus
S4(€)/8 = 1 4 ¢ is the number of such factorizations ¢ = @«, because R has 8 units:
(1, +i, £, £k}

We can think of another quaternion algebra D = M5(Q). Then a maximal order is
given by My(Z). The unit group of Ms(Z) is infinite and given by GLy(Z) = SLs(Z) U
SLy(Z)e for e = (§ % ). Again all right ideals of My (Z) is principal. We define the norm
form of M5(Q) to be N(z) = det(x). We also have an M,(Q)—conjugation given by
vi(a8) = (4 0). Then N(x) = z*z. We sce easily that up to right multiplication by

—C a

units of My(Z), we have 1 + ¢ elements « in My(Z) with N(«) = ¢:
(0.1) {(49) and (§y%) foru=1,...,0}.

Thus we conclude that Sy (¢)/8 gives the number of solutions det(«) = £ in M5(Z) up to
units. This is the simplest example of intricate relations between different quaternion
algebras, which we study in details in this chapter (as an introduction to the theory of
quaternionic automorphic forms). Elliptic modular forms and Hilbert modular forms

are particular cases of such quaternionic automorphic forms coming from M;(Q) and
M (F) for a totally real field F.
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To motivate our study of quaternionic automorphic forms, let us continue to give
examples of classical theorems whose proof relies essentially on elliptic modular forms
and quaternion algebras. If one wants to solve a degree five non-soluble rational equation,
what we need is a few elliptic functions in addition to classical operation of taking radicals
(a result of F. Klein), and the solution is given in terms of the coordinate of a 5-torsion
point on a rational elliptic curve (without complex multiplication; see [D]).

If one wants to find explicit generators (behaving nicely under Galois action) of an
abelian extension of the rational number field Q, we only need the exponential func-
tion z +— e(z) = exp(2miz), which uniformizes the multiplicative group G,, (e : C —
G, (C) = C* is the universal covering). The generators are roots of unity {e(=)}oznez
(a theorem of Kronecker-Weber and Hilbert; see [ICF] Chapter 14).

If one wants to generalize this to abelian extensions of an imaginary quadratic field K,
one need to consider (all) torsion points of an elliptic curve F with complex multiplication
by K. Thus the desired generator is given again by an elliptic function. This is the
famous “Kronecker’s dream of his youth” (Kronecker’s Jugendtraum) and the origin of
Hilbert’s twelfth problem (see [HI]).

Since modular functions f : $§ — C (that is, modular forms of weight 0) on a con-
gruence subgroup I' of SLy(Z) can be considered as classifying functions of “all” elliptic
curves with some extra structures (for example, a point on the curve of a given order
N), because over C, any elliptic curve F can be uniformized as F(C) = C/Zz + Z for
apoint z € § = {z € C|i(Z— z) > 0}. Thus all information we get as above can be
formulated more naturally using elliptic modular forms and functions. Among elliptic
modular forms, those forms f which are eigenforms of all Hecke operators 1T'(n) are par-
ticularly important. As was shown by Hecke and Shimura, the eigenvalues a,, of T'(n):
fIT(n) = a,f generate a number field Q(f) (that is a finite extension of Q called a
Hecke field). When Q(f) = Q, we call f a rational Hecke eigenform.

One of the spectacular achievements in the recent history of Number theory is the
proof of the Shimura-Taniyama conjecture by Wiles and Taylor et al (see [BCDT] and
[HMI, 1.3.4]). This could be (rather in an over-simplified way) formulated as follows.
Starting from a rational Hecke eigenform f of weight 2 on the congruence subgroup
Lo(N) of SLy(Z), Eichler (for N = 11) and Shimura (in general) in the 1950s created a
rational elliptic curve Ey,q whose L-function L(s, Ey) is identical to L(s, f) (so L(s, Ey)
has analytic continuation to whole s—plane, proving the conjecture of Hasse-Weil for this
particular E;; see [GME] Section 4.2). If we use the classical definition of L-functions
of elliptic curve, this could be formulated as 1+ ¢ — a, = |E(F,)| as long as

(U1) the equation of the curve modulo ¢ gives an elliptic curve over the finite field [,
(that is, E has good reduction modulo /).

If we use a slightly more modern formulation, Gal(Q/Q) acts naturally and continuously
on the étale cohomology group H 1(Ef 50 Lp) = Z,” (for any prime p), and the Galois
action is characterized so that Tr(Froby) = a, for almost all primes p # ¢ (independently
of p different from ¢), where Froby is the (geometric) Frobenius element of ¢ in the Galois
group Gal(Q/Q). Thus the Galois action on H "(E, /5 Lp) gives a family of Galois
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representations {p,}, indexed by primes p with independent trace Tr(p¢(Frob,)) = a, €
7, as long as

(U2) the image of the inertia group at ¢ under p, is trivial (p, is called unramified at
¢ in this case).

The condition (U2) is actually a consequence of (Ul) (a result of Hasse-Deuring and
Shimura, e.g., [ACM] Chapter III) and (U2) implies (U1) (a later result of Serre-Tate,
[SeT)).

The conjecture then states that any rational elliptic curve F is isogenous over QQ
to Ey for a suitably chosen rational Hecke eigenform f. An isogeny is a morphism
of group schemes: E — E; which is surjective (so, having finite kernel because of
dim £ = dim Ey = 1). The L-function is an isogeny invariant.

In the spirit of Shimura and Langlands, we may generalize this modularity problem to
general compatible families {p,}, of Galois representations. Here p runs over all prime
ideals of a number field E, and p, : Gal(Q/Q) — GLa(E,) with Tr(p,(Frobe)) € E is
independent of p as long as p, is unramified at £. Such a family can be created for any
given Hecke eigenform f so that Tr(p(Frobs)) = a; (so E = Q(f)): This is a result of
Shimura when the weight £ is equal to 2, of Deligne if & > 2 (although Shimura also
obtained a slightly weaker form of Deligne’s result (of 1969) for more general automorphic
forms: see [68c] in [CPS]) and of Deligne-Serre for k = 1 (some of them will be described
in the lecture notes). Thus if det(p,)/N*~1 is of finite order for the p-adic cyclotomic
character N, one expects to have a Hecke eigenform f of weight %k giving rise to the
compatible family {p,},. This generalized form of the conjecture is also known in many
cases of weight k > 2 as was summarized in [HMI, §1.3.4], and also, some cases of k = 1
has been successfully attacked by Langlands and R. Taylor et al (see [BCG], [BDST]
and [T03]).

We can extend such a principle even to mod p representations. As Serre did in [Se],
one would then conjecture any mod p 2-dimensional odd Galois representation p is a
reduction modulo p of a modular Galois representation associated to an elliptic Hecke
eigenform of specific weight and level. Taylor found in [T02] a Hilbert modular Hecke
eigenform associated to 7 restricted to Gal(Q/F) for an unspecified totally real field F.
Finally Khare-Wintenberger settled the conjecture for 7 in [KW], which uses essentially
the results in [T02].

In a reverse direction, we can study deformation of a mod p Galois representation p,
creating a “big” Galois representation p into GLo(T) for a big p-profinite algebra T so
that, for specific prime ideals P densely populated in Spf(T), pp := p mod P gives rise
to the modular Galois representation as above whose reduction modulo the maximal
ideal containing P is isomorphic to p. Examples of the “big” Galois representations
were first constructed in [H86] for elliptic modular forms and were later generalized
to Hilbert modular forms in [W] and [H89] after the earlier works on modular Galois
representations described above. This construction essentially depends on the study of
quaternionic automorphic forms. The abstract frame work of Galois deformation theory
was given by Mazur in [M], and the principle proposed by Mazur is that the “big”
modular Galois representation is universal among all specific deformations.
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So it appears to be sufficient only to study elliptic modular forms and automorphic
forms on the split GL(2). This is not the case for a general base field F. We can
consider an arbitrary base field F' and a compatible family p = {p,}, of representations
of Gal(Q/F). We can formulate the conjecture that there should exist a Hecke eigenform
f: GLo(F)\GLy(Fy) — C giving rise to the family, because we can naturally associate
with each elliptic Hecke eigenform an adelic Hecke eigenform on G Lo (A) (as we will see
later). This direction of the conjecture has been also proven when F is totally real, by K.
Fujiwara [HMI, §3.2.4], Skinner-Wiles [SW00] and [SWO01] and Kisin [K] under different
sets of assumptions ([HMI, Chapter 3]). The “direction” is to find a modular form on
GLo(Fy) out of a given (arithmetic family of) Galois representation.

However, there are cases where we have no known way to create Galois representation
directly out of a Hecke eigenform on the split GL(2), without relying on some tricks
moving to automorphic forms on some other algebraic groups (e.g., [T04]). If F' is not
totally real, the modular variety GLa(F)\GLa(Fy) is just a Riemannian manifold (not
an algebraic variety); so, there is no way to have subtle arithmetic on the manifold to
create Galois representations. As was noticed in the 1960s by Shimura, even if F is
totally real, the Hilbert modular variety does not yield desired two-dimensional Galois
representations (as can be checked in the real quadratic cases; see [BL] for general totally
real fields). Creating Galois representation (or even creating an elliptic curve from a
given Hilbert modular rational Hecke eigenform of weight 2) could be more difficult than
finding modular forms out of arithmetic Galois representations or elliptic curves.

A known systematic way of creating an arithmetic object (see, for example, [67b]
in [CPS] and [H81]) out of an automorphic form is to study Shimura curves and vari-
eties obtained from quaternion algebras over a totally real field F' whose automorphic
manifold is an algebraic variety defined canonically over F'. The cases where we get
algebraic curves in this way are proven to be most useful. There is another possibility
of using quaternion algebras over a totally real field producing Shimura surfaces (e.g.,
[B]), although the above question is still open in general. The utility of such quaternion
algebras was first noticed and studied by Shimura. They are not only useful in creat-
ing out of quaternionic Hecke eigenforms elliptic curves defined over F' (in the rational
weight 2 case: [H81]) and Galois representations (cf. [68¢c| in [CPS], [C86a], [C86b]) but
also in solving (cyclotomic and anticyclotomic) Hilbert’s twelfth problem for CM fields
([67b] in [CPS] I), using quaternionic automorphic functions.

If we start with a quaternionic Hecke eigen automorphic form fp on a quaternion
algebra D,p, we have the associated family p of Galois representations by the results
of Shimura [68c] in [CPS] and Carayol [C86b]. Then in the cases where the modularity
problem is solved, we find a Hilbert modular form f having the same eigenvalue as
fp. This suggests a natural question if the Hecke eigenvalues of each quaternionic
automorphic form would be realized by a Hilbert modular form. In other words, as
Langlands pointed out, the non-abelian reciprocity law in a rough form depends only
on the Q-points of the starting algebraic group defined over F' (not on its Fform; see
[IMFG] 1.2.1). A genesis of this question can be found in a problem Eichler studied in
the 1950s (Eichler’s basis problem, which came out in his thought, presumably, without
definite knowledge of the non-abelian reciprocity law).
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As Gauss and Jacobi knew, positive definite quadratic forms Q(zx) of four variable
with coefficients in @ give rise to modular forms of weight 2: 0(z) = >, _,1e(Q(n)z).
Eichler studied the norm form of an ideal a of a definite quaternion algebra D over
Q and asked which subspace of elliptic modular forms can be spanned by such theta
series f(a), and more generally, he asked himself to find a natural basis of the space.
His result in a special case is as follows: Suppose that D, = D ®¢ Q; = M2(Qy) for
all but one prime, say p. Take a maximal order Op of D with Op ®z Zy = My (Zy)
for ¢ # p. In this case, the automorphic variety D*\ Dy /6BD§O for Doo = D ®g R
and Dy = D ®q A is zero-dimensional; so, it is a set in bijection to the Op-right ideal
classes: {right Op—ideals a} modulo left multiplication by D*. For a right Op-ideal a,
the conjugate aOpa~! is another maximal order of D. DeAﬁne eq by the order of the unit
group (aOpa~')*. Take a Hecke eigenform f : D*\ Dy /O}; — C with eigenvalue a, for
T(¢), and form 0y(f) = >, e." f(a)f(ab™t). Then we can find a basis of S2(To(p)) in the
set {06(f)} 6o and Ou(f)|T(¢) = aebe(f), as expected. Here b runs over right Op-ideals
up to left equivalence. A Langlands’ version of the basis problem (Jacquet—Langlands
correspondence) will be studied in the lecture (see [HMI, §2.6] for an original version of
Eichler).



