BASE CHANGE AND GALOIS DEFORMATION

HARUZO HIDA

Contents

1. Introduction	2
2. Galois deformation rings	2
2.1. The Iwasawa algebra as a deformation ring	2
2.2. Pseudo representations	3
2.3. Two dimensional non-abelian universal deformations	6
2.4. Ordinary universal deformation rings	7
2.5. Tangent spaces of local rings	9
2.6. Recall of group cohomology	10
2.7. Cohomological interpretation of tangent spaces	11
2.8. Applications to representation theory	13
3. Base change of deformation rings	16
3.1. Deformation functors of group representations	16
3.2. Nearly ordinary deformations	20
3.3. Ordinary deformations	22
3.4. Deformations with fixed determinant	23
3.5. Base Change	23
3.6. Various deformation rings	23
References	26

Date: October 30, 2017.

The author is partially supported by the NSF grant: DMS 0753991 and DMS 0854949.

1. INTRODUCTION

In this course, we discuss the following four topics:

- (1) Basics of Galois deformation theory (and representation theory of pro-finite groups);
- (2) Relation of deformation rings for a given starting representation restricted to open subgroups;
- (3) Introduction to Galois cohomology;
- (4) "R = T" theorem (in [W95]), applications and open questions (if time allows).

The purpose is to introduce the audience to base-change theorems of deformation rings relative to Galois extension F/\mathbb{Q} and to show how such theorems have been useful in establishing base change in the automorphic side. Alongside, we describe *p*-adic representation theory of *p*-profinite groups. At the end, we describe some open problems on deformation rings and its relation to *L*-values.

We fix a prime p > 2, an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p and field embeddings $i_p : \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$ and $i_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$. Let F be a number field, and Sbe a finite set of primes of F and F^S/F be the maximal field extension inside $\overline{\mathbb{Q}}$ unramified outside p and ∞ . Put $\mathfrak{G}_F = \operatorname{Gal}(F^S/F)$. Usually S is made of primes above p (but not always. In this note, W is a discrete valuation ring over the p-adic integer ring \mathbb{Z}_p with residue field \mathbb{F} . For a local ring A, its maimal ideal is denoted by \mathfrak{m}_A .

2. Galois deformation rings

We prove existence of the universal Galois deformation rings.

2.1. The Iwasawa algebra as a deformation ring. We can interpret the Iwasawa algebra Λ as a universal Galois deformation ring. Fix a continuous character $\overline{\psi} : \mathfrak{G}_{\mathbb{Q}} \to \mathbb{F}^{\times}$. We write CL_W for the category of p-profinite local W-algebras Awith $A/\mathfrak{m}_A = \mathbb{F}$. A character $\rho : \mathfrak{G}_{\mathbb{Q}} \to A^{\times}$ for $A \in CL_W$ is called a W-deformation (or just simply a deformation) of $\overline{\psi}$ if $(\rho \mod \mathfrak{m}_A) = \overline{\psi}$. A couple (\mathcal{R}, ρ) made of an object \mathcal{R} of CL_W and a character $\rho : \mathfrak{G}_F \to \mathcal{R}^{\times}$ is called a *universal couple* for ψ if for any deformation $\rho : \mathfrak{G}_F \to A$ of $\overline{\psi}$, we have a unique morphism $\phi_{\rho} : \mathcal{R} \to A$ in CL_W (so it is a local W-algebra homomorphism) such that $\phi_{\rho} \circ \rho = \rho$. By the universality, if exists, the couple (\mathcal{R}, ρ) is determined uniquely up to isomorphisms. The ring \mathcal{R} is called the universal deformation ring and ρ is called the universal deformation of $\overline{\psi}$.

Consider the group of *p*-power roots of unity $\mu_{p^{\infty}} = \bigcup_{n} \mu_{p^{n}} \subset \overline{\mathbb{Q}}^{\times}$. Then writing $\zeta_{n} = \exp\left(\frac{2\pi i}{p^{n}}\right)$, we can identify the group $\mu_{p^{n}}$ with $\mathbb{Z}/p^{n}\mathbb{Z}$ by $\zeta_{n}^{m} \leftrightarrow (m \mod p^{n})$. The Galois action of $\sigma \in \mathfrak{G}_{\mathbb{Q}}$ sends ζ_{n} to $\zeta_{n}^{\nu_{n}(\sigma)}$ for $\nu_{n}(\sigma) \in \mathbb{Z}/p^{n}\mathbb{Z}$. Then $\mathfrak{G}_{\mathbb{Q}}$ acts on $\mathbb{Z}_{p}(1) = \varprojlim_{n} \mu_{p^{n}}$ by a character $\nu := \varprojlim_{n} \nu_{n} : \mathfrak{G}_{\mathbb{Q}} \to \mathbb{Z}_{p}^{\times}$, which is called the *p*-adic cyclotomic character. The logarithm power series $\log(1 + x) = \sum_{n=1}^{\infty} -\frac{(-x)^{n}}{n}$ and exponential power series $\exp(x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges absolutely *p*-adically on $p\mathbb{Z}_{p}$. Note that $\mathbb{Z}_{p}^{\times} = \mu_{p-1} \times \Gamma$ for $\Gamma = 1 + p\mathbb{Z}_{p}$ by $\mathbb{Z}_{p}^{\times} \mapsto (\omega(z) = \lim_{n \to \infty} z^{p^{n}}, \omega(z)^{-1}z) \in \mu_{p-1} \times \Gamma$. We define $\log_{p} : \mathbb{Z}_{p}^{\times} \to \Gamma$ by $\log_{p}(\zeta, s) = \log(s) \in p\mathbb{Z}_{p}$ for $\zeta\mu_{p-1}$ and $s \in 1 + p\mathbb{Z}_{p} = \Gamma$. **Exercise 2.1.** Compute the radius of convergence of $\exp(x)$ and $\log(x)$ in \mathbb{C}_p under the standard p-adic norm $|\cdot|_p$ with $|p|_p = p^{-1}$.

Let $\Lambda_W = W[[X]]$ (a one variable power series ring with coefficients in W) and $\Lambda = \mathbb{Z}_p[[X]]$. Since $s \mapsto \binom{s}{n} = \frac{(s-n+1)(s-n+2)\cdots s}{n!}$ has integer valued on the set \mathbb{Z}_+ of positive integers and *p*-adically continuous, it extends to a polynomial map $\mathbb{Z}_p \ni s \mapsto \binom{s}{n} \in \mathbb{Z}_p$. Then $(1+X)^s = \sum_{n=0}^{\infty} \binom{s}{n} X^n \in \mathbb{Z}_p$, getting an additive character $\mathbb{Z}_p \ni s \mapsto (1+X)^s \in \Lambda^{\times}$. Let $\gamma = 1+p$; so, $\Gamma = \gamma^{\mathbb{Z}_p}$. Consider the character $\kappa : \mathfrak{G}_{\mathbb{Q}} \to \Lambda^{\times}$ given by $\kappa(\sigma) = (1+X)^{\log_p(\nu_p(\sigma))/\log_p(\gamma)}$.

Exercise 2.2. Prove $1 + p\mathbb{Z}_p = \gamma^{\mathbb{Z}_p}$.

Since $\mathbb{Q}[\mu_{p^{\infty}}]$ is the maximal abelian extension of \mathbb{Q} unramified outside p and ∞ by class field theory (or else, by the theorem of Kronecker-Weber), we have $\mathfrak{G}_{\mathbb{Q}}/[\mathfrak{G}_{\mathbb{Q}},\mathfrak{G}_{\mathbb{Q}}] = \operatorname{Gal}(\mathbb{Q}[\mu_{p^{\infty}}]/\mathbb{Q})$. On the other hand, we identified $\operatorname{Gal}(\mathbb{Q}[\mu_{p^{\infty}}]/\mathbb{Q})$ with \mathbb{Z}_{p}^{\times} by ν_{p} . We write $[z] \in \operatorname{Gal}(\mathbb{Q}[\mu_{p^{\infty}}]/\mathbb{Q})$ for automorphism of $\mathbb{Q}[\mu_{p^{\infty}}]$ with $\nu_{p}([z]) = z$. Then we have $\kappa([\gamma^{s}]) = (1 + X)^{s}$. Since $\overline{\psi}$ has values in $\mathbb{F}_{p}^{\times} \cong \mu_{p-1}$, we may identify the character $\overline{\psi}$ with a character $\psi : \mathfrak{G}_{\mathbb{Q}} \to \mu_{p-1} \subset \mathbb{Z}_{p}^{\times}$. Define $\psi : \mathfrak{G}_{\mathbb{Q}} \to \Lambda^{\times}$ by $\psi(\sigma) := \kappa(\sigma)\psi(\sigma)$; then $\psi \equiv \overline{\psi} \mod \mathfrak{m}_{\Lambda}$, where \mathfrak{m}_{Λ} is the maximal ideal of Λ ; so, $\mathfrak{m}_{\Lambda} = (p, X)$. Thus (Λ, ψ) is a deformation of $(\mathbb{F}, \overline{\psi})$ with $\psi([\gamma]) = (1 + X)$.

Proposition 2.3. The couple $(\Lambda_W = W[[X]], \psi)$ (for a variable X) is the universal couple for $\overline{\psi}$.

Proof. Since $\mathbb{Q}[\mu_{p^{\infty}}]$ is the maximal abelian extension of \mathbb{Q} unramified outside pand ∞ , each deformation $\rho : \mathfrak{G}_{\mathbb{Q}} \to A^{\times}$ factors through $\operatorname{Gal}(Q[\mu_{p^{\infty}}]/\mathbb{Q}) = \Gamma \times \operatorname{Gal}(\mathbb{Q}[\mu_p]/\mathbb{Q})$. Then the character ρ is determined by $\rho(\gamma)$, because $\rho|_{\mathbb{Q}[\mu_p]}$ is given by ψ and $\Gamma = \gamma^{\mathbb{Z}_p}$. Then we have $\phi_{\rho} : \Lambda_W = W[[X]] \to A$ by sending X to $\rho(\gamma) - 1$, and we have $\phi_{\rho} \circ \psi = \rho$.

For a given *n*-dimensional representation $\overline{\rho} : \mathfrak{G}_F \to GL_n(\mathbb{F})$, a deformation $\rho : \mathfrak{G}_F \to GL_n(R)$ is a continuous representation with $\rho \mod \mathfrak{m}_R \cong \overline{\rho}$. Two deformations $\rho, \rho' : \mathfrak{G}_F \to GL_n(R)$ for $R \in CL_W$ is equivalent, if there exists an invertible matrix $x \in GL_n(R)$ such that $x\rho(\sigma)x^{-1} = \rho'(\sigma)$ for all $\sigma \in \mathfrak{G}_F$. We write $\rho \sim \rho'$ if ρ and ρ' are equivalent. A couple $(R_{\overline{\rho}}, \rho)$ for a deformation $\rho : \mathfrak{G}_F \to GL_n(R_{\overline{\rho}})$ is called a universal couple over W, if for any given deformation $\rho : \mathfrak{G}_F \to GL_n(R)$ there exists a unique W-algebra homomorphism $\iota_\rho : R_{\overline{\rho}} \to R$ such that $\iota_\rho \circ \rho \sim \rho$.

2.2. **Pseudo representations.** In order to show the existence of the universal deformation ring, pseudo representations are very useful. We recall the definition of pseudo representations (due to Wiles) when n = 2. See [MFG] §2.2.2 for a higher dimensional generalization due to R. Taylor.

In this subsection, the coefficient ring A is always an object in CL_W with maximal ideal \mathfrak{m}_A . We write $\mathbb{F} = A/\mathfrak{m}_A$. Note that 2 is invertible in A as p > 2. We would like to characterize the trace of a representation of a group G.

We describe in detail traces of degree 2 representations $\rho: G \to GL_2(A)$ when G contains c such that $c^2 = 1$ and det $\rho(c) = -1$. Let $V(\rho) = A^2$ on which G acts by ρ . Since 2 is invertible in A, we know that $V = V(\rho) = V_+ \oplus V_-$ for $V_{\pm} = \frac{1 \pm c}{2}V$. For $\overline{\rho} = \rho \mod \mathfrak{m}_A$, we write $\overline{V} = V(\overline{\rho})$. Then similarly as above, $\overline{V} = \overline{V}_+ \oplus \overline{V}_-$ and

 $\overline{V}_{\pm} = V_{\pm}/\mathfrak{m}_{A}V_{\pm}.$ Since $\dim_{\mathbb{F}}\overline{V} = 2$ and $\det\overline{\rho}(c) = -1$, $\dim_{\mathbb{F}}\overline{V}_{\pm} = 1$. This shows that $\overline{V}_{\pm} = \mathbb{F}\overline{v}_{\pm}$ for $\overline{v}_{\pm} \in \overline{V}_{\pm}$. Take $v_{\pm} \in V_{\pm}$ such that $v_{\pm} \mod \mathfrak{m}_{A}V_{\pm} = \overline{v}_{\pm}$, and define $\phi_{\pm} : A \to V_{\pm}$ by $\phi(a) = av_{\pm}$. Then $\phi_{\pm} \mod \mathfrak{m}_{A}V$ is surjective by Nakayama's lemma. Note that $\phi_{\pm} : A \cong V_{\pm}$ as A-modules. In other words, $\{v_{-}, v_{+}\}$ is an A-base of V. We write $\rho(r) = \begin{pmatrix} a(r) \ b(r) \\ c(r) \ d(r) \end{pmatrix}$ with respect to this base. Thus $\rho(c) = \begin{pmatrix} -1 \ 0 \\ 0 \ 1 \end{pmatrix}$. Define another function $x : G \times G \to A$ by x(r, s) = b(r)c(s). Then we have

$$\begin{array}{ll} (\text{W1}) \ a(rs) = a(r)a(s) + x(r,s), \ d(rs) = d(r)d(s) + x(s,r) \ \text{and} \\ x(rs,tu) = a(r)a(u)x(s,t) + a(u)d(s)x(r,t) + a(r)d(t)x(s,u) + d(s)d(t)x(r,u); \\ (\text{W2}) \ a(1) = d(1) = d(c) = 1, \ a(c) = -1 \ \text{and} \ x(r,s) = x(s,t) = 0 \ \text{if} \ s = 1, c; \\ (\text{W3}) \ x(r,s)x(t,u) = x(r,u)x(t,s). \end{array}$$

These are easy to check: We have

$$\begin{pmatrix} a(r) \ b(r) \\ c(r) \ d(r) \end{pmatrix} \begin{pmatrix} a(s) \ b(s) \\ c(s) \ d(s) \end{pmatrix} = \begin{pmatrix} a(rs) \ b(rs) \\ c(rs) \ d(rs) \end{pmatrix}$$

Then by computation, a(rs) = a(r)a(s) + b(r)c(s) = a(r)a(s) + x(r, s). Similarly, we have b(rs) = a(r)b(s) + b(r)d(s) and c(rs) = c(r)a(s) + d(r)c(s). Thus

$$\begin{aligned} x(rs,tu) &= b(rs)c(tu) = (a(r)b(s) + b(r)d(s))(c(t)a(u) + d(t)c(u)) \\ &= a(r)a(u)x(s,t) + a(r)d(t)x(s,u) + a(u)d(s)x(r,t) + d(s)d(t)x(r,u). \end{aligned}$$

A triple $\{a, d, x\}$ satisfying the three conditions (W1-3) is called a *pseudo representation* of Wiles of (G, c). For each pseudo-representation $\tau = \{a, d, x\}$, we define

$$\operatorname{Tr}(\tau)(r) = a(r) + d(r) \quad \text{and} \quad \det(\tau)(r) = a(r)d(r) - x(r, r).$$

By a direct computation using (W1-3), we see

$$a(r) = \frac{1}{2}(\operatorname{Tr}(\tau)(r) - \operatorname{Tr}(\tau)(rc)), \quad d(r) = \frac{1}{2}(\operatorname{Tr}(\tau)(r) + \operatorname{Tr}(\tau)(rc))$$

and

X

$$e(r,s) = a(rs) - a(r)a(s), \quad \det(\tau)(rs) = \det(\tau)(r)\det(\tau)(s).$$

Thus the pseudo-representation τ is determined by the trace of τ as long as 2 is invertible in A.

Proposition 2.4 (A. Wiles, 1988). Let G be a group and R = A[G]. Let $\tau = \{a, d, x\}$ be a pseudo-representation (of Wiles) of (G, c). Suppose either that there exists at least one pair $(r, s) \in G \times G$ such that $x(r, s) \in A^{\times}$ or that x(r, s) = 0 for all $r, s \in G$. Then there exists a representation $\rho : R \to M_2(A)$ such that $\operatorname{Tr}(\rho) = \operatorname{Tr}(\tau)$ and $\det(\rho) = \det(\tau)$ on G. If A is a topological ring, G is a topological group and all maps in τ are continuous on G, then ρ is a continuous representation of G into $GL_2(A)$ under the topology on $GL_2(A)$ induced by the product topology on $M_2(A)$.

Proof. When x(r,s) = 0 for all $r, s \in G$, we see from (W1) that $a, d : G \to A$ satisfies a(rs) = a(r)a(s) and d(rs) = d(r)d(s). Thus a, d are characters of G, and we define $\rho : G \to GL_2(A)$ by $\rho(g) = \begin{pmatrix} a(g) & 0 \\ 0 & d(g) \end{pmatrix}$, which satisfies the required property.

We now suppose $x(r,s) \in A^{\times}$ for $r, s \in G$. Then we define b(g) = x(g,s)/x(r,s)and c(g) = x(r,g) for $g \in G$. Then by (W3), b(g)c(h) = x(r,h)x(g,s)/x(r,s) = x(g,h). Put $\rho(g) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix}$. By (W2), we see that $\rho(1)$ is the identity matrix and $\rho(c) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. By computation,

$$\rho(g)\rho(h) = \begin{pmatrix} a(g) & b(g) \\ c(g) & d(g) \end{pmatrix} \begin{pmatrix} a(h) & b(h) \\ c(h) & d(h) \end{pmatrix} = \begin{pmatrix} a(g)a(h) + b(g)c(h) & a(g)b(h) + b(g)d(h) \\ c(g)a(h) + d(g)c(h) & d(g)d(h) + c(g)b(h) \end{pmatrix}$$

By (W1), a(gh) = a(g)a(h) + x(g, h) = a(g)a(h) + b(g)c(h) and d(gh) = d(g)d(h) + x(h, g) = d(g)d(h) + b(h)c(g). Now let us look at the lower left corner:

$$c(g)a(h) + d(g)c(h) = x(r,g)a(h) + d(g)x(r,h).$$

Now apply (W1) to (1, r, g, h) in place of (r, s, t, u), and we get

$$c(gh) = x(r,gh) = a(h)x(r,g) + d(g)x(r,h),$$

because x(1,g) = x(1,h) = 0. As for the upper right corner, we apply (W1) to (g,h,1,s) in place of (r,s,t,u). Then we get

$$b(gh)x(r,s) = x(gh,s) = a(g)x(h,s) + d(h)x(g,s) = (a(g)b(h) + d(h)b(g))x(r,s),$$

which shows that $\rho(gh) = \rho(g)\rho(h)$. We now extends ρ linearly to R = A[G]. This shows the first assertion. The continuity of ρ follows from the continuity of each entries, which follows from the continuity of τ .

Start from an absolutely irreducible representation $\overline{\rho} : G \to GL_n(\mathbb{F})$. Here a representation of a group into $GL_n(K)$ for a field K is called *absolutely irreducible* if it is irreducible as a representation into $GL_n(\overline{K})$ for an algebraic closure \overline{K} of K.

Exercise 2.5. (1) Give an example of irreducible representations of a group G into $GL_2(\mathbb{Q})$ which is not absolutely irreducible.

- (2) Show that if a representation $\rho: G \to GL_n(K)$ is absolutely irreducible, the K-subalgebra generated by $\rho(g)$ for all $g \in G$ coincides with $M_n(K)$.
- (3) If A is a local ring with residue field \mathbb{F} with a representation $\rho : G \to GL_n(A)$ such that $\overline{\rho} = (\rho \mod \mathfrak{m}_A)$ is absolutely irreducible, show that the subalgebra generated over A by $\rho(g)$ for all $g \in G$ is equal to $M_n(A)$.

We fix an absolutely irreducible representation $\overline{\rho}: G \to GL_2(\mathbb{F})$ with $\det(\overline{\rho})(c) = -1$. If we have a representation $\rho: G \to GL_2(A)$ with $\rho \mod \mathfrak{m}_A \sim \overline{\rho}$, then $\det(\rho(c)) \equiv \det(\overline{\rho}(c)) \equiv -1 \mod \mathfrak{m}_A$. Since $c^2 = 1$, if 2 is invertible in A (\Leftrightarrow the characteristic of \mathbb{F} is different from 2), $\det(\rho(c)) = -1$. This is a requirement to have a pseudo-representation τ_ρ of Wiles associated to ρ . Since $\overline{\rho}$ is absolutely irreducible, we find $r, s \in G$ such that $b(r) \neq 0 \mod \mathfrak{m}_A$ and $c(s) \neq 0 \mod \mathfrak{m}_A$. Thus τ_ρ satisfies the condition of Proposition 2.4. Conversely if we have a pseudo representation $\tau: G \to A$ such that $\tau \equiv \overline{\tau} \mod \mathfrak{m}_A$ for $\overline{\tau} = \tau_{\overline{\rho}}$, again we find $r, s \in G$ such that $x(r, s) \in A^{\times}$. The correspondence $\rho \mapsto \tau_\rho$ induces a bijection:

$$\begin{array}{ll} (2.1) \quad \left\{\rho: G \to GL_2(A): \text{representation} | \rho \mod \mathfrak{m}_A \sim \overline{\rho} \right\} / \sim \leftrightarrow \\ \left\{\tau: G \to A: \text{pseudo-representation} | \tau \mod \mathfrak{m}_A = \overline{\tau} \right\} \end{array}$$

where $\overline{\tau} = \tau_{\overline{\rho}}$ and "~" is the conjugation under $GL_2(A)$. The map is surjective by Proposition 2.4 combined with Proposition 2.6 and one to one by Proposition 2.6 we admit, because a pseudo-representation is determined by its trace.

Proposition 2.6 (Carayol, Serre, 1994). Let A be an pro-artinian local ring with finite residue field \mathbb{F} . Let R = A[G] for a profinite group G. Let $\rho : R \to M_n(A)$ and $\rho' : R \to M_{n'}(A)$ be two continuous representations. If $\overline{\rho} = \rho \mod \mathfrak{m}_A$ is absolutely irreducible and $\operatorname{Tr}(\rho(\sigma)) = \operatorname{Tr}(\rho'(\sigma))$ for all $\sigma \in G$, then $\rho \sim \rho'$. See [MFG] Proposition 2.13 for a proof of this result.

2.3. Two dimensional non-abelian universal deformations. We fix an absolutely irreducible representation $\overline{\rho}: G \to GL_2(\mathbb{F})$ for a profinite group G. Assume that we have $c \in G$ with $c^2 = 1$ and $\det(\overline{\rho}(c)) = -1$. First we consider a universal pseudo-representation. Let $\overline{\tau} = (\overline{a}, \overline{d}, \overline{x})$ be the pseudo representation associated to $\overline{\rho}$. A couple consisting of an object $R_{\overline{\tau}} \in CL_W$ and a pseudo-representation $T = (A, D, X) : G \to R_{\overline{\tau}}$ is called a universal couple if the following universality condition is satisfied:

(univ) For each pseudo-representation $\tau : G \to A$ $(A \in CL_W)$ with $\tau \cong \overline{\tau} \mod \mathfrak{m}_A$, there exists a unique W-algebra homomorphism $\iota_\tau : R_{\overline{\tau}} \to A$ such that

$$\tau = \iota_{\tau} \circ T.$$

We now show the existence of $(R_{\overline{\tau}}, T)$ for a profinite group G. First suppose G is a finite group. Let $\omega : W^{\times} \to \mu_{q-1}(W)$ be the Teichmüller character, that is,

$$\omega(x) = \lim_{n \to \infty} x^{q^n} \quad (q = |\mathbb{F}| = |W/\mathfrak{m}_W|).$$

We also consider the following isomorphism: $\mu_{q-1}(W) \ni \zeta \mapsto \zeta \mod \mathfrak{m}_W \in \mathbb{F}^{\times}$. We write $\varphi : \mathbb{F}^{\times} \to \mu_{q-1}(W) \subset W^{\times}$ for the inverse of the above map. We look at the power series ring: $\mathbf{\Lambda} = \mathbf{\Lambda}_G = W[[A_g, D_h, X_{(g,h)}; g, h \in G]]$. We put

$$A(g) = A_q + \varphi(\overline{a}(g)), \ D(g) = D_q + \varphi(\overline{d}(g)) \text{ and } X(g,h) = X_{q,h} + \varphi(\overline{x}(g,h)).$$

We construct the ideal I so that

$$T = (g \mapsto A(g) \mod I, g \mapsto D(g) \mod I, (g, h) \mapsto X(g, h) \mod I)$$

becomes the universal pseudo representation. Thus we consider the ideal I of Λ generated by the elements of the following type:

(w1) A(rs) - (A(r)A(s) + X(r, s)), D(rs) - (D(r)D(s) + X(s, r)) and

X(rs,tu) - (A(r)A(u)X(s,t) + A(u)D(s)X(r,t) + A(r)D(t)X(s,u) + D(s)D(t)X(r,u));

(w2) $A(1) - 1 = A_1, D(1) - 1 = D_1, D(c) - 1 = D_c, A(c) + 1 = A_c$ and X(r, s) - X(s, t) if s = 1, c; (w2) X(r, s) - X(s, t) = X(r, s) + X(r, s)

$$(w3) X(r,s)X(t,u) - X(r,u)X(t,s).$$

Then we put $R_{\overline{\tau}} = \mathbf{\Lambda}/I$ and define $T = (A(g), D(h), X(g, h)) \mod I$. By the above definition, T is a pseudo-representation with $T \mod \mathfrak{m}_{R_{\overline{\tau}}} = \overline{\tau}$. For a pseudo representation $\tau = (a, d, x) : G \to A$ with $\tau \equiv \overline{\tau} \mod \mathfrak{m}_A$, we define $\iota_{\tau} : \mathbf{\Lambda} \to A$ with $\iota_{\tau}(f) \in A$ for a power series $f(A_q, D_h, X_{(q,h)}) \in \mathbf{\Lambda}$ by

$$f(A_g, D_h, X_{(g,h)}) \mapsto f(\tau(g) - \varphi(\overline{\tau}(g)))$$

= $f(a(g) - \varphi(\overline{a}(g)), d(h) - \varphi(\overline{d}(h)), x(g,h) - \varphi(\overline{x}(g,h))).$

Since f is a power series of $A_g, D_h, X_{g,h}$ and $\tau(g) - \varphi(\overline{\tau}(g)) \in \mathfrak{m}_A$, the value $f(\tau(g) - \varphi(\overline{\tau}(g)))$ is well defined. Let us see this. If A is artinian, a sufficiently high power \mathfrak{m}_A^N vanishes. Thus if the monomial of the variables $A_g, D_h, X_{(g,h)}$ is of degree higher than N, it is sent to 0 via ι_{τ} , and $f(\tau(g) - \varphi(\overline{\tau}(g)))$ is a finite sum of terms of degree $\leq N$. If A is pro-artinian, the morphism ι_{τ} is just the projective limit of the corresponding ones well defined for artinian quotients. By the axioms of pseudo-representation (W1-3), $\iota_{\tau}(I) = 0$, and hence ι_{τ} factors through $R_{\overline{\tau}}$. The

uniqueness of ι_{τ} follows from the fact that $\{A_g, D_h, X_{(g,h)} | g, h \in G\}$ topologically generates $R_{\overline{\tau}}$.

Now assume that $G = \lim_{N \to \infty} G/N$ for open normal subgroups N (so, G/N is finite). Since $\operatorname{Ker}(\overline{\rho})$ is an open subgroup of G, we may assume that N runs over subgroups of $\operatorname{Ker}(\overline{\rho})$. Since $\overline{\rho}$ factors through $G/\operatorname{Ker}(\overline{\rho})$, $\operatorname{Tr}(\overline{\tau}) = \operatorname{Tr}(\overline{\rho})$ factors through G/N. Therefore we can think of the universal couple $(R_{\overline{\tau}}^N, T_N)$ for $(G/N, \overline{\tau})$. If $N \subset N'$, the algebra homomorphism $\Lambda_{G/N} \to \Lambda_{G/N'}$ taking $(A_{gN}, D_{hN}, X_{(gN,hN)})$ to $(A_{gN'}, D_{hN'}, X_{(gN',hN')})$ induces a surjective W-algebra homomorphism $\pi_{N,N'}: R_{\overline{\tau}}^N \to R_{\overline{\tau}}^{N'}$ with $\pi_{N,N'} \circ T_N = T_{N'}$. We then define $T = \lim_{N \to N} T_N$ and $R_{\overline{\tau}} = \lim_{N \to N} R_{\overline{\tau}}^N$. If $\tau : G \to A$ is a pseudo representation, by Proposition 2.4, we have the associated representation $\rho : G \to GL_2(A)$ such that $\operatorname{Tr}(\tau) = \operatorname{Tr}(\rho)$. If A is artinian, then $GL_2(A)$ is a finite group, and hence ρ and $\operatorname{Tr}(\tau) = \operatorname{Tr}(\rho)$ factors through G/N for a sufficiently small open normal subgroup N. Thus we have $\iota_{\tau} : R_{\overline{\tau}} \xrightarrow{\pi_N} R_{\overline{\tau}}^N \xrightarrow{\iota_{\tau}^N} A$ such that $\iota_{\tau} \circ T = \tau$. Since (A(g), D(h), X(g, h)) generates topologically $R_{\overline{\tau}}, \iota_{\tau}$ is uniquely determined.

Writing ρ for the representation $\rho: G \to GL_n(R_{\overline{\tau}})$ associated to the universal pseudo representation T and rewriting $R_{\overline{\rho}} = R_{\overline{\tau}}$, for n = 2, we have proven by (2.1) the following theorem, which was first proven by Mazur [M89] in in 1989 (see [MFG] Theorem 2.26 for a proof valid for any n).

Theorem 2.7 (Mazur). Suppose that $\overline{\rho} : G \to GL_n(\mathbb{F})$ is absolutely irreducible. Then there exists the universal deformation ring $R_{\overline{\rho}}$ in CL_W and a universal deformation $\rho : G \to GL_n(R_{\overline{\rho}})$. If we write $\overline{\tau}$ for the pseudo representation associated to $\overline{\rho}$, then for the universal pseudo-representation $T : G \to R_{\overline{\tau}}$ deforming $\overline{\tau}$, we have a canonical isomorphism of W-algebras $\iota : R_{\overline{\rho}} \cong R_{\overline{\tau}}$ such that $\iota \circ \operatorname{Tr}(\rho) = \operatorname{Tr}(T)$.

Let $(R_{\overline{\rho}}, \rho)$ be the universal couple for an absolutely irreducible representation $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to GL_n(\mathbb{F})$. We can also think of $(R_{\det(\overline{\rho})}, \nu)$, which is the universal couple for the character $\det(\overline{\rho}) : \mathfrak{G}_{\mathbb{Q}} \to GL_1(\mathbb{F}) = \mathbb{F}^{\times}$. As we have studied already, $R_{\det(\overline{\rho})} \cong W[[\Gamma]] = \Lambda_W$. Note that $\det(\rho) : \mathfrak{G}_{\mathbb{Q}} \to GL_1(R_{\overline{\rho}})$ satisfies $\det(\rho)$ mod $\mathfrak{m}_{R_{\overline{\rho}}} = \det(\overline{\rho})$. Thus $\det(\rho)$ is a deformation of $\det(\overline{\rho})$, and hence by the universality of $(\Lambda_W \cong R_{\det(\overline{\rho})}, \nu)$, there is a unique *W*-algebra homomorphism $\iota : \Lambda_W \to R_{\overline{\rho}}$ such that $\iota \circ \nu = \det(\rho)$. In this way, $R_{\overline{\rho}}$ becomes naturally a Λ_W -algebra via ι .

Corollary 2.8. Let the notation and the assumption be as above and as in the above theorem. Then the universal ring $R_{\overline{\rho}}$ is canonically an algebra over the Iwasawa algebra $\Lambda_W = W[[\Gamma]]$.

When $G = \mathfrak{G}_{\mathbb{Q}}$ (or more generally, \mathfrak{G}_F), it is known that $R_{\overline{\rho}}$ is noetherian (cf. [MFG] Proposition 2.30). We will come back to this point after relating certain Selmer groups with the universal deformation ring.

2.4. Ordinary universal deformation rings. Let $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to GL_2(\mathbb{F})$ be a Galois representation with coefficients in a finite field \mathbb{F} of characteristic p. We consider the following condition for a subfield F of $\mathbb{Q}^{(p)}$:

- (ai_{*F*}) $\overline{\rho}$ restricted to \mathfrak{G}_F is absolutely irreducible;
- (rg_p) Suppose $\overline{\rho}|_{D_p} \cong \left(\frac{\overline{\epsilon}}{0}\frac{*}{\delta}\right)$ for each decomposition subgroup D_p at p in $\mathfrak{G}_{\mathbb{Q}}$ and that $\overline{\epsilon}$ is ramified with unramified $\overline{\delta}$ (so, $\overline{\epsilon} \neq \overline{\delta}$ on I_p).

Let CL_W be the category of p-profinite local W-algebras A with $A/\mathfrak{m}_A = \mathbb{F}$. Hereafter we always assume that W-algebra is an object of CL_W . Let $\rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(A)$ be a deformation of $\overline{\rho}$ and $\phi : \mathfrak{G}_{\mathbb{Q}} \to W^{\times}$. We consider the following conditions

- (det) det $\rho = \phi$ regarding ϕ as a character having values in A^{\times} by composing ϕ with the W-algebra structure morphism $W \to A$;
- (ord) Suppose $\rho|_{D_p} \cong \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix}$ for each decomposition subgroup D_p at p in $\mathfrak{G}_{\mathbb{Q}}$ with unramified $\overline{\delta}$ (so, $\overline{\epsilon} \neq \overline{\delta}$ on I_p).

A couple $(R^{ord,\phi} \in CL_W, \rho^{ord,\phi} : \mathfrak{G}_{\mathbb{Q}} \to GL_2(R^{ord,\phi}))$ is called a *p*-ordinary universal couple (over $\mathfrak{G}_{\mathbb{Q}}$) with determinant ϕ if $\rho^{ord,\phi}$ satisfies (ord) and (det) and for any deformation $\rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(A)$ of $\overline{\rho}$ $(A \in CL_W)$ satisfying (ord) and (det), there exists a <u>unique</u> *W*-algebra homomorphism $\varphi = \varphi_{\rho} : R^{ord,\phi} \to A$ such that $\varphi \circ \rho^{ord,\phi} \sim \rho$ in $GL_2(A)$. If the uniqueness of φ does not hold, we just call $(R^{ord,\phi}, \rho^{ord,\phi})$ a versal *p*-ordinary couple with determinant ϕ .

Similarly a couple $(R^{ord} \in CL_W, \rho^{ord} : \mathfrak{G}_{\mathbb{Q}} \to GL_2(R^{ord}))$ (resp. (R^{ϕ}, ρ^{ϕ})) is called a *p*-ordinary universal couple (over $\mathfrak{G}_{\mathbb{Q}}$) (resp. a universal couple with determinant ϕ) if ρ^{ord} satisfies (ord) (resp. $\det(\rho^{\phi}) = \phi$) and for any deformation $\rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(A)$ of $\overline{\rho}$ $(A \in CL_W)$ satisfying (ord) (resp. $\det(\rho) = \phi$), there exists a <u>unique</u> *W*-algebra homomorphism $\varphi = \varphi_{\rho} : R^{ord} \to A$ (resp. $\varphi = \varphi_{\rho} : R^{\phi} \to A$) such that $\varphi \circ \rho^{ord} \sim \rho$ (resp. $\varphi \circ \rho^{\phi} \sim \rho$) in $GL_2(A)$.

By the universality, if a universal couple exists, it is unique up to isomorphisms in \mathcal{CL}_W .

Theorem 2.9 (Mazur). Under $(ai_{\mathbb{Q}})$, universal couples (R, ρ) and (R^{ϕ}, ρ^{ϕ}) exist. Under (rg_p) and $(ai_{\mathbb{Q}})$, universal couples $(R^{ord}, \rho^{ord} : \mathfrak{G}_{\mathbb{Q}} \to GL_2(R))$ and $(R^{ord,\phi}, \rho^{ord,\phi})$ exist (as long as $\overline{\rho}$ satisfies (ord) and (det)). All these universal rings are noetherian if they exist.

This fact is proven in Mazur's paper in [M89]. The existence of the universal couple $(R, \rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(R))$ is proven in previous subsection (see Theorem 2.7) by a different method (and its noetherian property is just mentioned). Here we prove the existence of the universal couples (R^{ϕ}, ρ^{ϕ}) , (R^{ord}, ρ^{ord}) and $(R^{ord,\phi}, \rho^{ord,\phi})$ assuming the existence of a universal couple (R, ρ) .

Proof. An ideal $\mathfrak{a} \subset R$ is called ordinary if $\rho \mod \mathfrak{a}$ satisfies (ord). Let \mathfrak{a}^{ord} be the intersection of all ordinary ideals, and put $R^{ord} = R/\mathfrak{a}^{ord}$ and $\rho^{ord} = \rho \mod \mathfrak{a}^{ord}$. If $\rho : \mathfrak{G}_{\mathbb{Q}} \to GL_2(A)$ satisfies (ord), we have a unique morphism $\varphi_{\rho} : R \to A$ such that $(\rho \mod \operatorname{Ker}(\varphi_{\rho})) \sim \varphi_{\rho} \circ \rho \sim \rho$. Thus $\operatorname{Ker}(\varphi_{\rho})$ is ordinary, and hence $\operatorname{Ker}(\varphi_{\rho}) \supset \mathfrak{a}^{ord}$. Thus φ_{ρ} factors through R^{ord} . The only thing we need to show is the ordinarity of $\rho \mod \mathfrak{a}^{ord}$. Since \mathfrak{a}^{ord} is an intersection of ordinary ideals, we need to show that if \mathfrak{a} and \mathfrak{b} are ordinary, then $\mathfrak{a} \cap \mathfrak{b}$ is ordinary.

To show this, we prepare some notation. Let V be an A-module with an action of $\mathfrak{G}_{\mathbb{Q}}$. Let $I = I_{\mathfrak{P}}$ be an inertia group at p, and put $V_I = V/\sum_{\sigma \in I} (\sigma - 1)V$. Then by (rg_p) , ρ is ordinary if and only if $V(\rho)_I$ is A-free of rank 1. The point here is that, writing $\pi : V(\rho) \twoheadrightarrow V(\rho)_I$ for the natural projection, then $\operatorname{Ker}(\pi)$ is an A-direct summand of $V(\rho)$ and hence $V(\rho) \cong \operatorname{Ker}(\pi) \oplus V(\rho)_I$ as A-modules (but not necessarily as $\mathfrak{G}_{\mathbb{Q}}$ -modules). Since $V(\rho) \cong A^2$, the Krull-Schmidt theorem tells us that $\operatorname{Ker}(\pi)$ is free of rank 1. Then taking an A-basis (x, y) of $V(\rho)$ so that $x \in \text{Ker}(\pi)$, we write the matrix representation ρ with respect to this basis, we have desired upper triangular form with $V(\rho)_I / \mathfrak{m}_A V(\rho)_I = V(\overline{\delta})$.

Now suppose that $\rho = \rho \mod \mathfrak{a}$ and $\rho' = \rho \mod \mathfrak{b}$ are both ordinary. Let $\rho'' = \rho \mod \mathfrak{a} \cap \mathfrak{b}$, and write $V = V(\rho)$, $V' = V(\rho')$ and $V'' = V(\rho'')$. By definition, $V''/\mathfrak{a}V'' = V$ and $V''/\mathfrak{b}V'' = V'$. This shows by definition: $V''_I/\mathfrak{a}V''_I = V_I$ and $V''_I/\mathfrak{b}V''_I = V'_I$. Then by Nakayama's lemma, V''_I is generated by one element, thus a surjective image of $A = R/\mathfrak{a} \cap \mathfrak{b}$. Since in A, $\mathfrak{a} \cap \mathfrak{b} = 0$, we can embed A into $A/\mathfrak{a} \oplus A/\mathfrak{b}$ by the Chinese remainder theorem. Since $V_I \cong A/\mathfrak{a}$ and $V'_I \cong A/\mathfrak{b}$, the kernel of the diagonal map $V''_I \to V_I \oplus V'_I \cong A/\mathfrak{a} \oplus A/\mathfrak{b}$ has to be zero. Thus $V''_I \cong A$, which was desired.

As for R^{ϕ} and $R^{ord,\phi}$, we see easily that

$$\begin{split} R^{\phi} &= R / \sum_{\sigma \in \mathfrak{G}_{\mathbb{Q}}} R(\det \boldsymbol{\rho}(\sigma) - \phi(\sigma)) \\ R^{ord,\phi} &= R^{ord} / \sum_{\sigma \in \mathfrak{G}_{\mathbb{Q}}} R^{ord} (\det \boldsymbol{\rho}^{ord}(\sigma) - \phi(\sigma)), \end{split}$$

which finishes the proof.

2.5. Tangent spaces of local rings. To study when $R_{\overline{\rho}}$ is noetherian, here is a useful lemma for an object A in CL_W :

Lemma 2.10. If $t_{A/W}^* = \mathfrak{m}_A/(\mathfrak{m}_A^2 + \mathfrak{m}_W)$ is a finite dimensional vector space over \mathbb{F} , then $A \in CL_W$ is noetherian. The space $t_{A/W}^*$ is called the co-tangent space of A at $\mathfrak{m}_A \in \operatorname{Spec}(A)$ over $\operatorname{Spec}(W)$.

Proof. Define t_A^* by $\mathfrak{m}_A/\mathfrak{m}_A^2$, which is called the (absolute) co-tangent space of A at \mathfrak{m}_A . Since we have an exact sequence:

$$\mathbb{F} \cong \mathfrak{m}_W/\mathfrak{m}_W^2 \longrightarrow t_A^* \longrightarrow t_{A/W}^* \longrightarrow 0,$$

we conclude that t_A^* is of finite dimension over \mathbb{F} . First suppose that pA = 0 and $\mathfrak{m}_A^N = 0$ for sufficiently large N. Let $\overline{x}_1, \ldots, \overline{x}_m$ be an \mathbb{F} -basis of t_A^* . We choose $x_j \in A$ so that $x_j \mod \mathfrak{m}_A^2 = \overline{x}_j$. Then we consider the ideal \mathfrak{a} generated by x_j . We have the inclusion map: $\mathfrak{a} = \sum_j A x_j \hookrightarrow \mathfrak{m}_A$. After tensoring A/\mathfrak{m}_A , we have the surjectivity of the induced linear map: $\mathfrak{a}/\mathfrak{m}_A \mathfrak{a} \cong \mathfrak{a} \otimes_A A/\mathfrak{m}_A \to \mathfrak{m} \otimes_A A/\mathfrak{m}_A \cong \mathfrak{m}/\mathfrak{m}_A^2$ because $\{\overline{x}_1, \ldots, \overline{x}_m\}$ is an \mathbb{F} -basis of t_A^* . This shows that $\mathfrak{m}_A = \mathfrak{a} = \sum_j A x_j$. Therefore $\mathfrak{m}_A^k/\mathfrak{m}_A^{k+1}$ is generated by the monomials in x_j of degree k as an \mathbb{F} -vector space. In particular, \mathfrak{m}_A^{N-1} is generated by the monomials in x_j of degree N-1. Then we define $\pi : B = \mathbb{F}[[X_1, \ldots, X_m]] \to A$ by $\pi(f(X_1, \ldots, X_m)) = f(x_1, \ldots, x_m)$. Since any monomial of degree > N vanishes after applying π, π is a well defined W-algebra homomorphism. Let $\mathfrak{m} = \mathfrak{m}_B = (X_1, \cdots, X_m)$ be the maximal ideal of B. By the above argument, $\pi(\mathfrak{m}^{N-1}) = \mathfrak{m}_A^{N-j-1}$. Suppose now that $\pi(\mathfrak{m}^{N-j}) = \mathfrak{m}_A^{N-j}$, and try to prove the surjectivity of $\pi(\mathfrak{m}^{N-j-1}) = \mathfrak{m}_A^{N-j-1}$. Since \mathfrak{m}_A^{N-j-1} , we find a homogeneous polynomial $P \in \mathfrak{m}^{N-j-1}$ of x_1, \ldots, x_m of degree N - j - 1 such that $x - \pi(P) \in \mathfrak{m}_A^{N-j} = \pi(\mathfrak{m}^{N-j})$. This shows the assertion: $\pi(\mathfrak{m}^{N-j-1}) = \mathfrak{m}_A^{N-j-1}$. Thus by induction on j, we get the surjectivity of π .

Now suppose only that $\mathfrak{m}_A^N = 0$. Then in particular, $p^N A = 0$. Thus A is an $W/p^N W$ -module. We can still define $\pi : B = W/p^N W[[X_1, \ldots, X_m]] \to A$ by sending X_j to x_j . Then by the previous argument applied to B/pB and A/pA,

we find that $\pi \mod p : B \otimes_W W/pW \cong B/pB \to A/pA \cong A \otimes_W W/pW$ is surjective. In particular, for the maximal ideal \mathfrak{m}' of W/p^NW , $\pi \mod \mathfrak{m}' : B \otimes_W \mathbb{F} \cong B/\mathfrak{m}'B \to A/\mathfrak{m}'A \cong A \otimes_W \mathbb{F}$ is surjective. Then by Nakayama's lemma (cf. [CRT] §2 or [MFG] §2.1.3) applied to the nilpotent ideal \mathfrak{m}', π is surjective.

In general, write $A = \lim_{i \to i} A_i$ for artinian rings A_i . Then the projection maps induce surjections $t_{A_{i+1}}^* \to t_{A_i}^*$. Since t_A^* is of finite dimensional, for sufficiently large $i, t_{A_{i+1}}^* \cong t_{A_i}^*$. Thus choosing x_j as above in A, we have its image $x_j^{(i)}$ in A_i . Use $x_j^{(i)}$ to construct $\pi_i : W[[X_1, \ldots, X_m]] \to A_i$ in place of x_j . Then π_i is surjective as already shown, and $\pi = \lim_{i \to i} \pi_i : W[[X_1, \ldots, X_m]] \to A$ remains surjective, because projective limit of surjections, if all sets involved are finite sets, remain surjective (Exercise 1). Since $W[[X_1, \ldots, X_m]]$ is noetherian ([CRT] Theorem 3.3), its surjective image A is noetherian. \Box

2.6. Recall of group cohomology. To prove noetherian property of Galois deformation ring R, we need to show the tangent space of Spec(R) has finite dimension. In order to give a Galois theoretic computation of the tangent space of the deformation ring, we introduce here briefly Galois cohomology groups. Consider a profinite group G and a continuous G-module X. Assume that X has either discrete or profinite topology.

Let $\mathbb{T}_p = \mathbb{Q}_p/\mathbb{Z}_p$. For any abelian *p*-profinite compact or *p*-torsion discrete module *X*, we define the Pontryagin dual module X^* by $X^* = \operatorname{Hom}_{cont}(X, \mathbb{T}_p)$ and give X^* the topology of uniform convergence on every compact subgroup of *X*. The *G*-action on $f \in X^*$ is given by $\sigma f(x) = f(\sigma^{-1}x)$. Then by Pontryagin duality theory (cf. [FAN]), we have $(X^*)^* \cong X$ canonically.

Exercise 2.11. Show that if X is finite, $X^* \cong X$ noncanonically.

Exercise 2.12. Prove that X^* is a discrete module if X is p-profinite and X^* is compact if X is discrete.

By this fact, if X^* is the dual of a profinite module $X = \underset{n}{\lim} X_n$ for finite modules X_n with surjections $X_m \twoheadrightarrow X_n$ for m > n, $X^* = \bigcup_n X_n^*$ is a discrete module which is a union of finite modules X_n^* .

We denote by $H^q(G, X)$ the continuous group cohomology with coefficients in X. If X is finite, $H^q(G, X)$ is as defined in [MFG] 4.3.3. Thus we have

$$H^0(G, X) = X^G = \{x \in X | gx = x \text{ for all } g \in G\},\$$

and if X is finite,

$$H^{1}(G, X) = \frac{\{G \xrightarrow{c} X : \text{continuous} | c(\sigma\tau) = \sigma c(\tau) + c(\sigma) \text{ for all } \sigma, \tau \in G\}}{\{G \xrightarrow{b} X | b(\sigma) = (\sigma - 1)x \text{ for } x \in X \text{ independent of } \sigma\}}$$

and $H^2(G, X)$ is given by

$$\frac{\{G \xrightarrow{c} X : \text{continuous} | c(\sigma, \tau) + c(\sigma\tau, \rho) = \sigma c(\tau, \rho) + c(\sigma, \tau\rho) \text{ for all } \sigma, \tau, \rho \in G\}}{\{G \xrightarrow{b} X | b(\sigma, \tau) = c(\sigma) + \sigma c(\tau) - c(\sigma\tau) \text{ for a continuous map } c : G \to X\}}$$

If $X = \lim_{n \to \infty} X_n$ (resp. $X = \lim_{n \to \infty} X_n$) for finite G-modules X_n , we define

$$H^{j}(G, X) = \varprojlim_{n} H^{j}(G, X_{n}) \text{ (resp. } H^{j}(G, X) = \varinjlim_{n} H^{j}(G, X_{n}))$$

For each Galois character ψ : $\operatorname{Gal}(\overline{\mathbb{Q}}/F) \to W^{\times}$ and a *W*-module *X* with continuous action of $\operatorname{Gal}(\overline{\mathbb{Q}}/F)$, we write $X(\psi)$ for the Galois module whose underlying *W*-module is *X* and Galois action is given by ψ . We simply write X(i) for $X(\nu^i)$ for the *p*-adic cyclotomic character. In particular $\mathbb{Z}_p(1) \cong \varprojlim_n \mu_{p^n}(\overline{\mathbb{Q}})$ as Galois modules.

Let G be the (profinite) Galois group $G = \mathfrak{G}_F$ or $\operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$ for a finite extension K/\mathbb{Q}_p . By a result of Tate, Galois cohomology "essentially" has cohomological dimension 2; so, H^0, H^1 and H^2 are important. If $G = \operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$ for a finite extension K/\mathbb{Q}_p , by Tate duality (see [MFG] 4.42),

$$H^{2-i}(G,X) \cong \operatorname{Hom}(H^i(G,X^*(1)),\mathbb{Q}/\mathbb{Z})$$

for finite X.

For a general K-vector space V with a continuous action of G and a G-stable W-lattice L of V, we define $H^q(G, V) = H^q(G, L) \otimes_W K$.

Write $\mathfrak{G}_M = \operatorname{Gal}(F^{(p)}/M)$ for any intermediate field M of $F^{(p)}/F$, where $F^{(p)}/F$ is the maximal extension unramified outside p and ∞ . By the inflation-restriction sequence (e.g., [MFG] 4.3.4),

$$0 \to H^1(\operatorname{Gal}(M/F), H^0(\mathfrak{G}_M, X)) \to H^1(\mathfrak{G}_F, X) \to H^1(\mathfrak{G}_M, X)$$

is exact. More generally, we can equip a natural action of Gal(M/F) on $H^1(\mathfrak{G}_M, X)$ and the sequence is extended to

$$0 \to H^{1}(\operatorname{Gal}(M/F), H^{0}(\mathfrak{G}_{M}, X))$$

$$\to H^{1}(\mathfrak{G}_{F}, X) \to H^{0}(\operatorname{Gal}(M/F), H^{1}(\mathfrak{G}_{M}, X))$$

$$\to H^{2}(\operatorname{Gal}(M/F), H^{0}(\mathfrak{G}_{M}, X))$$

which is still exact.

2.7. Cohomological interpretation of tangent spaces. Let $R = R_{\overline{\rho}}$. We let $\mathfrak{G}_{\mathbb{Q}}$ acts on $M_n(\mathbb{F})$ by $gv = \overline{\rho}(g)v\overline{\rho}(g)^{-1}$. This $\mathfrak{G}_{\mathbb{Q}}$ -module will be written as $ad(\overline{\rho})$.

Lemma 2.13. Let $R = R_{\overline{\rho}}$ for an absolutely irreducible representation $\overline{\rho} : \mathfrak{G}_{\mathbb{Q}} \to GL_n(\mathbb{F})$. Then

$$t_{R/W} = \operatorname{Hom}_{\mathbb{F}}(t_{R/W}^*, \mathbb{F}) \cong H^1(\mathfrak{G}_{\mathbb{O}}, ad(\overline{\rho})),$$

where $H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$ is the continuous first cohomology group of $\mathfrak{G}_{\mathbb{Q}}$ with coefficients in the discrete $\mathfrak{G}_{\mathbb{Q}}$ -module $V(ad(\overline{\rho}))$.

The space $t_{R/W}$ is called the tangent space of $\operatorname{Spec}(R)_{/W}$ at \mathfrak{m} .

Proof. Let $A = \mathbb{F}[X]/(X^2)$. We write ε for the class of X in A. Then $\varepsilon^2 = 0$. We consider $\phi \in \operatorname{Hom}_{W-alg}(R, A)$. Write $\phi(r) = \phi_0(r) + \phi_{\varepsilon}(r)\varepsilon$. Then we have from $\phi(ab) = \phi(a)\phi(b)$ that $\phi_0(ab) = \phi_0(a)\phi_0(b)$ and

$$\phi_{\varepsilon}(ab) = \phi_0(a)\phi_{\varepsilon}(b) + \phi_0(b)\phi_{\varepsilon}(a).$$

Thus $\operatorname{Ker}(\phi_0) = \mathfrak{m}_R$ because R is local. Since ϕ is W-linear, $\phi_0(a) = \overline{a} = a \mod \mathfrak{m}_R$, and thus ϕ kills \mathfrak{m}_R^2 and takes $\mathfrak{m}_R W$ -linearly into $\mathfrak{m}_A = \mathbb{F}\varepsilon$. Moreover for $r \in W$, $\overline{r} = r\phi(1) = \phi(r) = \overline{r} + \phi_{\varepsilon}(r)\varepsilon$, and hence ϕ_{ε} kills W. Since R shares its residue field \mathbb{F} with W, any element $a \in R$ can be written as a = r + x with $r \in W$ and $x \in \mathfrak{m}_R$. Thus ϕ is completely determined by the restriction of ϕ_{ε} to \mathfrak{m}_R , which factors through $t^*_{R/W}$. We write ℓ_{ϕ} for ϕ_{ε} regarded as an \mathbb{F} -linear map from $t^*_{R/W}$.

into \mathbb{F} . Then we can write $\phi(r+x) = \overline{r} + \ell_{\phi}(x)\varepsilon$. Thus $\phi \mapsto \ell_{\phi}$ induces a linear map ℓ : Hom_{W-alg} $(R, A) \to \operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$. Note that $R/(\mathfrak{m}^2_R + \mathfrak{m}_W) = \mathbb{F} \oplus t^*_{R/W}$. For any $\ell \in \operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$, we extends ℓ to R/\mathfrak{m}^2_R declaring its value on \mathbb{F} is zero. Then define $\phi : R \to A$ by $\phi(r) = \overline{r} + \ell(r)\varepsilon$. Since $\varepsilon^2 = 0$, ϕ is an W-algebra homomorphism. In particular, $\ell(\phi) = \ell$, and hence ℓ is surjective. Since algebra homomorphisms killing $\mathfrak{m}^2_R + \mathfrak{m}_W$ are determined by its values on $t^*_{R/W}$, ℓ is injective.

By the universality, we have

$$\operatorname{Hom}_{W-alg}(R,A) \cong \{\rho: \mathfrak{G}_{\mathbb{Q}} \to GL_n(A) | \rho \mod \mathfrak{m}_A = \overline{\rho}\} / \sim .$$

Then we can write $\rho(g) = \overline{\rho}(g) + u'_{\rho}(g)\varepsilon$. From the mutiplicativity, we have

 $\overline{\rho}(gh) + u_{\rho}'(gh)\varepsilon = \rho(gh) = \rho(g)\rho(h) = \overline{\rho}(g)\overline{\rho}(h) + (\overline{\rho}(g)u_{\rho}'(h) + u_{\rho}'(g)\overline{\rho}(h))\varepsilon,$

Thus as a function $u' : \mathfrak{G}_{\mathbb{Q}} \to M_n(\mathbb{F})$, we have

(2.2)
$$u'_{\rho}(gh) = \overline{\rho}(g)u'_{\rho}(h) + u'_{\rho}(g)\overline{\rho}(h)$$

Define a map $u_{\rho} : \mathfrak{G}_{\mathbb{Q}} \to ad(\overline{\rho})$ by $u_{\rho}(g) = u'_{\rho}(g)\overline{\rho}(g)^{-1}$. Then by a simple computation, we have $gu_{\rho}(h) = \overline{\rho}(g)u_{\rho}(h)\overline{\rho}(g)^{-1}$ from the definition of $ad(\overline{\rho})$. Then from the above formula (2.2), we conclude that $u_{\rho}(gh) = gu_{\rho}(h) + u_{\rho}(g)$. Thus $u_{\rho} : \mathfrak{G}_{\mathbb{Q}} \to ad(\overline{\rho})$ is a 1-cocycle. Starting from a 1-cocycle u, we can reconstruct representation reversing the the above process. Then again by computation,

$$\begin{split} \rho \sim \rho' & \Longleftrightarrow \ \overline{\rho}(g) + u'_{\rho}(g) = (1 + x\varepsilon)(\overline{\rho}(g) + u'_{\rho'}(g))(1 - x\varepsilon) \quad (x \in ad(\overline{\rho})) \\ & \longleftrightarrow \ u'_{\rho}(g) = x\overline{\rho}(g) - \overline{\rho}(g)x + u'_{\rho'}(g) \iff u_{\rho}(g) = (1 - g)x + u_{\rho'}(g). \end{split}$$

Thus the cohomology classes of u_{ρ} and $u_{\rho'}$ are equal if and only if $\rho \sim \rho'$. This shows:

 $\operatorname{Hom}_{\mathbb{F}}(t^*_{R/W},\mathbb{F})\cong\operatorname{Hom}_{W-alg}(R,A)\cong$

 $\{\rho: \mathfrak{G}_{\mathbb{Q}} \to GL_n(A) | \rho \mod \mathfrak{m}_A = \overline{\rho}\} / \sim \cong H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho})).$

In this way, we get a bijection between $\operatorname{Hom}_{\mathbb{F}}(t^*_{R/W}, \mathbb{F})$ and $H^1(\mathfrak{G}_{\mathbb{Q}}, ad(\overline{\rho}))$. By tracking down (in the reverse way) our construction, one can check that the map is an \mathbb{F} -linear isomorphism.

For each open subgroup H of a profinite group G, we write H_p for the maximal p-profinite quotient. We consider the following condition:

(Φ) For any open subgroup H of G, the p-Frattini quotient $\Phi(H_p)$ is a finite group,

where $\Phi(H_p) = H_p/\overline{(H_p)^p(H_p, H_p)}$ for the the commutator subgroup (H_p, H_p) of H_p .

Proposition 2.14 (Mazur). By class field theory, $\mathfrak{G}_{\mathbb{Q}}$ satisfies (Φ) , and $R_{\overline{\rho}}$ is a noetherian ring.

Proof. Let $H = \text{Ker}(\overline{\rho})$. Then the action of H on $ad(\overline{\rho})$ is trivial. By the inflation-restriction sequence for $G = \mathfrak{G}_{\mathbb{Q}}$, we have the following exact sequence:

 $0 \to H^1(G/H, H^0(H, ad(\overline{\rho}))) \to H^1(G, ad(\overline{\rho})) \to \operatorname{Hom}(\Phi(H_p), M_n(\mathbb{F})).$

From this, it is clear that $\dim_{\mathbb{F}} H^1(G, ad(\overline{p})) < \infty$ if $\mathfrak{G}_{\mathbb{Q}}$ satisfies the *p*-Frattini condition (Φ). The fact that $\mathfrak{G}_{\mathbb{Q}}$ satisfies (Φ) follows from class field theory. Indeed,

if F is the fixed field of H, then $\Phi(H_p)$ fixes the maximal p-abelian extension M/F of type (p, p, \ldots, p) unramified outside p. Here a p-abelian extension M/F is of type (p, p, \ldots, p) if $\operatorname{Gal}(M/F)$ is abelian killed by p. By class field theory, [M:F] is finite.

2.8. Applications to representation theory. Group cohomology can be used to measure obstruction of extending a representation of a subgroup to the entire group. The theory is a version of Schur's theory of projective representations [MRT] Section 11E.

Let G be a profinite group with a normal open subgroup H of finite index. We put $\Delta = G/H$. Fix a complete noetherian local \mathbb{Z}_p -algebra W with residue field \mathbb{F} . Any algebra A in this section will be assumed to be an object of CL_W . For each continuous representation $\rho : H \to GL_n(A)$ and $\sigma \in G$, we define $\rho^{\sigma}(g) = \rho(\sigma g \sigma^{-1})$.

We take a representation $\pi : H \to GL_n(A)$ for an artinian local W-algebra A with residue field \mathbb{F} . We assume the following condition:

(AI_H)
$$\overline{\rho} = \pi \mod \mathfrak{m}_A$$
 is absolutely irreducible.

For the moment, we assume another condition:

(C)
$$\pi = c(\sigma)^{-1} \pi^{\sigma} c(\sigma)$$
 with some $c(\sigma) \in GL_n(A)$ for each $\sigma \in G$.

If we find another $c'(\sigma) \in GL_n(A)$ satisfying $\pi = c'(\sigma)^{-1} \pi^{\sigma} c'(\sigma)$, we have

$$\pi = c'(\sigma)^{-1}c(\sigma)\pi c(\sigma)^{-1}c'(\sigma)$$

and hence by Exercise 2.5 (3), $c(\sigma)^{-1}c'(\sigma)$ is a scalar. In particular, for $\sigma, \tau \in G$,

$$c(\sigma\tau)^{-1}\pi^{\sigma\tau}c(\sigma\tau) = \pi = c(\tau)^{-1}\pi^{\tau}c(\tau) = c(\tau)^{-1}c(\sigma)^{-1}\pi^{\sigma\tau}c(\sigma)c(\tau),$$

and hence, $b(\sigma,\tau) = c(\sigma)c(\tau)c(\sigma\tau)^{-1} \in A^{\times}$. Thus $c(\sigma)c(\tau) = b(\sigma,\tau)c(\sigma\tau)$. This shows by the associativity of the matrix multiplication that

$$(c(\sigma)c(\tau))c(\rho) = b(\sigma,\tau)c(\sigma\tau)c(\rho) = b(\sigma,\tau)b(\sigma\tau,\rho)c(\sigma\tau\rho) \text{ and } c(\sigma)(c(\tau)c(\rho)) = c(\sigma)b(\tau,\rho)c(\tau\rho) = b(\tau,\rho)b(\sigma,\tau\rho)c(\sigma\tau\rho),$$

and hence $b(\sigma, \tau)$ is a 2-cocycle of G. If $h \in H$, then

$$\pi(g) = c(h\tau)^{-1}\pi(h\tau g\tau^{-1}h^{-1})c(h\tau) = c(h\tau)^{-1}\pi(h)c(\tau)\pi(g)c(\tau)^{-1}\pi(h)^{-1}c(h\tau).$$

Thus $c(h\tau)^{-1}\pi(h)c(\tau) \in A^{\times}$.

Write $G = \bigsqcup_{\tau \in R} H\tau$ (disjoint). We redefine c by $c(h\tau) = \pi(h)c(\tau)$ for $\tau \in R$ and $h \in H$. Then c satisfies $c(h\tau) = \pi(h)c(\tau)$ for all $h \in H$ and $\tau \in R$. Since $c(hh'\tau) = \pi(hh')c(\tau) = \pi(h)c(h'\tau)$, actually c satisfies that

(
$$\pi$$
) $c(h\tau) = \pi(h)c(\tau)$ for all $h \in H$ and all $\tau \in G$.

Since c(1) commutes with $\text{Im}(\pi)$, c(1) is scalar. Thus we may also assume

(id)
$$c(1) = 1$$

Note that for $h, h' \in H$,

$$b(h\sigma, h'\tau) = c(h\sigma)c(h'\tau)c(h\sigma h'\tau)^{-1}$$

= $\pi(h)c(\sigma)\pi(h')c(\tau)c(\sigma\tau)^{-1}\pi(h\sigma h'\sigma^{-1})^{-1}$
= $\pi(h)\pi^{\sigma}(h')b(\sigma, \tau)\pi(h\sigma h'\sigma^{-1})^{-1} = b(\sigma, \tau).$

Thus b is a 2-cocycle factoring through Δ .

If we change c by c', then by (C), $c'(\sigma) = c(\sigma)\zeta(\sigma)$ for $\zeta(\sigma) \in A^{\times}$. Thus we see from $c(\sigma)c(\tau) = b(\sigma,\tau)c(\sigma\tau)$ that $c'(\sigma)c'(\tau) = b(\sigma,\tau)\zeta(\sigma)\zeta(\tau)c'(\sigma\tau)\zeta(\sigma\tau)^{-1}$. Thus the 2-cocycle b' made out of c' is cohomologous to b, and the cohomology class $[b] = [\pi] \in H^2(\Delta, A^{\times})$ is uniquely determined by π .

If $b(\sigma,\tau) = \zeta(\sigma)\zeta(\tau)\zeta(\sigma\tau)^{-1}$ is further a coboundary of $\zeta : \Delta \to A^{\times}$, we modify c by $\zeta^{-1}c$. Since ζ factors through Δ , this modification does not destroy the property (π) . Then $c(\sigma\tau) = c(\sigma)c(\tau)$ and $c(h\tau) = \pi(h)c(\tau)$ for $h \in H$. Thus c is a representation of G and extends π to G. Let d be another extension of π . Then $\chi(\sigma) = c(\sigma)d(\sigma)^{-1} \in A^{\times}$ is a character of G, because χ commutes with π . Thus $c = d \otimes \chi$.

We consider another condition

(inv)
$$\operatorname{Tr}(\pi) = \operatorname{Tr}(\pi^{\sigma})$$
 for all $\sigma \in G$.

Under (AI_H) , it has been proven by Carayol and Serre (Proposition 2.6) that (inv) is actually equivalent to (C). Thus we have

Theorem 2.15. Let $\pi : H \to GL_n(A)$ be a continuous representation for a *p*-adic artinian local ring A. Suppose (AI_H) and (inv).

- (1) We can choose c satisfying (π) ;
- (2) Choosing c as above, $b(\sigma, \tau) = c(\sigma)c(\tau)c(\sigma\tau)^{-1}$ is a 2-cocycle of Δ with values in A^{\times} ;
- (3) The cohomology class $[b] = [\pi]$ (called the obstruction class of π) of the above b only depends on π but not on the choice of c, etc. There exists a continuous representation π_E of G into $GL_n(A)$ extending π if and only if $[\pi] = 0$ in $H^2(\Delta, A^{\times})$:
- (4) All other extensions of π to G are of the form π_E ⊗ χ for a character χ of Δ with values in A[×].
- (5) If $H^2(\Delta, A^{\times}) = 0$, then any representation π satisfying (AI_H) and (inv) can be extended to G.

Corollary 2.16. If Δ is a *p*-group, then any representation π with values in $GL_n(\mathbb{F})$ for a finite field \mathbb{F} of characteristic *p* satisfying (AI_H) and (inv) can be extended to *G*.

Proof. This follows from the fact that $|\mathbb{F}^{\times}|$ is prime to p. Hence $H^2(\Delta, \mathbb{F}^{\times}) = 0$.

When Δ is cyclic, then $H^2(\Delta, A^{\times}) \cong A^{\times}/(A^{\times})^d$ for $d = |\Delta|$. If for a generator σ of G, $\xi = c(\sigma^d)\pi(\sigma^d)^{-1} \in (A^{\times})^d$, then b is a coboundary of $\zeta(\sigma^j) = \xi^{j/d}$. By extending scalar to $B = A[X]/(X^d - \xi)$, in $H^2(G, B^{\times})$, the class of b vanishes. Thus we have

Corollary 2.17. Suppose (AI_H) and (inv). If Δ is a cyclic group of order d, then π can be extended to a representation of G into $GL_n(B)$ for a local A-algebra B which is A-free of rank at most $d = |\Delta|$.

Let $\overline{\rho} = \pi \mod \mathfrak{m}_A$. We suppose that $\overline{\rho}$ can be extended to G. Then we may assume that the cohomology class of $b(\sigma, \tau) \mod \mathfrak{m}_A$ vanishes in $H^2(G, \mathbb{F}^{\times})$. Thus we can find $\zeta : G \to A^{\times}$ such that

$$a(\sigma, \tau) = b(\sigma, \tau)\zeta(\sigma)\zeta(\tau)\zeta(\sigma\tau)^{-1} \mod \mathfrak{m}_A \equiv 1.$$

Then a has values in $\widehat{\mathbb{G}}_m(A) = 1 + \mathfrak{m}_A$. In particular, if the Sylow *p*-subgroup *S* of Δ is cyclic, we have $H^2(S, \widehat{\mathbb{G}}_m(A)) \cong \widehat{\mathbb{G}}_m(A)/\widehat{\mathbb{G}}_m(A)^{|S|}$. Write ξ for the element in $\widehat{\mathbb{G}}_m(A)$ corresponding to *a*. Then for $B = A[X]/(X^{|S|} - \xi)$, the cohomology class of *a* vanishes in $H^2(S, \widehat{\mathbb{G}}_m(B))$. This implies that in $H^2(S, B^{\times})$, the cohomology class of *b* vanishes. Since $\operatorname{Tr} \circ \operatorname{Res} : H^q(\Delta, M) \to H^q(S, M)$ is a multiplication by $(\Delta: S)$ prime to *p*, if *M* is *p*-profinite, Res is injective; so, $H^q(\Delta, \widehat{\mathbb{G}}_m(B)) = 0$.

Corollary 2.18. Suppose (AI_H) and (inv). Suppose Δ has a cyclic Sylow *p*-subgroup of order *q*. If $\overline{\rho}$ can be extended to *G*, then π can be extended to a representation of *G* into $GL_n(B)$ for a local *A*-algebra *B* which is *A*-free of rank at most *q*.

We now prove the following fact:

(AI) When Δ is cyclic of odd order and n = 2, the condition (AI_H) is equivalent to (AI_G).

Proof. Let ρ be an absolutely irreducible representation of G into $GL_2(K)$ for a field K. We assume that Δ is cyclic of odd order. We prove that ρ cannot contain a character of H as a representation of H, which shows the equivalence, since ρ is 2–dimensional. Suppose by absurdity that ρ restricted to H contains a character χ . Let $H' = \{g \in G | \chi(ghg^{-1}) = \chi\}$. Then χ can be extended to a character of H' (Corollary 2.17). We pick one extension $\tilde{\chi} : H' \to B^{\times}$ for a finite flat extension B/A in CL. Let $\rho' = \rho|_{H'}$. By Frobenius reciprocity, we have

(2.3)
$$\operatorname{Hom}_{\mathbb{Z}[H']}(\rho', \operatorname{Ind}_{H}^{H} \chi) \cong \operatorname{Hom}_{\mathbb{Z}[H]}(\rho'|_{H}, \chi),$$

where, by definition, $\operatorname{Ind}_{G}^{H} M = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[H], M)$ and we let $g \in H'$ act on $\phi \in \operatorname{Hom}_{\mathbb{Z}}(M, N)$ by $(g\phi)(x) = g(\phi(g^{-1}x))$ for two H'-modules M and N. If $\rho' = \rho|_{H'}$ remains irreducible, this shows that $\rho' \subset \operatorname{Ind}_{H'}^{H'} \chi$. It is easy to check from definition that

$$\operatorname{Ind}_{H}^{H'} \chi \cong \oplus_{\xi} \widetilde{\chi} \xi,$$

 ξ running all characters of the cyclic group H'/H. Thus ρ' cannot be irreducible, and we may assume that H = H'. Then conjugates of χ under Δ are all distinct. Since, by Shapiro's lemma again, $\rho \subset \operatorname{Ind}_{H}^{G} \chi$ and $\rho \cong \rho^{\sigma} \subset \operatorname{Ind}_{H'}^{G} \chi'^{\sigma}$. Therefore $\rho|_{H'}$ contains all conjugates of χ' with the equal multiplicity. Thus $(G : H')|_2$, which is absurd because (G : H) is odd. \Box

3. Base change of deformation rings

In this section, we describe a general theory (given in [MFG, §5.4]) of controlling the deformation rings of representations of a normal subgroup under the action of the quotient finite group.

Throughout the section, we fix a profinite group G and a open normal subgroup H. We write the quotient $\Delta = G/H$. Our deformation functor can be defined over the category CL_W , but if the following finite p-Frattini condition is satisfied by G, all the functors introduced here, if representable in CL_W , they are actually representable over the smaller full subcategory CNL_W of noetherian pro-artinian rings:

(Φ) All open subgroup of G has finite p-Frattini quotient.

The *p*-Frattini quotient of a profinite group G is $G/\overline{G^p(G:G)}$ for the commutater subgroup (G:G). By class field theory, this condition is satisfied by $\operatorname{Gal}(F^S/F)$ for a number field F (e.g., [MFG, Proposition 2.30]), where F^S/F is the maximal extension unramified outside a finite set S of places of F. Thus, assuming (Φ) does not cause any harm to our later application; so, we will assume (Φ) throughout this section for simplicity.

3.1. Deformation functors of group representations. We fix a representation $\overline{\rho}: G \to GL_n(\mathbb{F})$ and consider the following condition

(AI_H)
$$\overline{\rho}_H = \overline{\rho}|_H$$
 is absolutely irreducible.

In this subsection, we study various deformation problems of $\overline{\rho}$ and relation among the universal rings.

We consider a deformation functor $\mathcal{F}_H : CNL_W \to SETS$ given by

$$\mathcal{F}_H(A) = \{ \rho : H \to GL_n(A) \mid \rho \equiv \overline{\rho} \mod \mathfrak{m}_A \} / \sim$$

where "~" is the conjugation equivalence in $GL_n(A)$. The functor \mathcal{F}_H is representable under (AI_H) by Theorem 2.7. We write (R_H, ρ_H) for the universal couple. Since ρ_G restricted to H is an element in $\mathcal{F}_H(R_H)$, we have an W-algebra homomorphism (called the base-change map) $\alpha : R_H \to R_G$ such that $\alpha \rho_H = \rho_G|_H$.

We would like to determine $\operatorname{Ker}(\alpha)$ and $\operatorname{Im}(\alpha)$ in terms of Δ . We briefly recall the theory of extending representation described in 2.8. By choosing a lift $c_0(\sigma) \in GL_n(W)$ for $\sigma \in G$ such that $c_0(\sigma) \equiv \overline{\rho}(\sigma) \mod \mathfrak{m}_W$, we can define for any $\rho \in \mathcal{F}_G(A)$, $\rho^{\sigma}(g) = \rho(\sigma g \sigma^{-1})$ and $\rho^{[\sigma]}(g) = c_0(\sigma)^{-1}\rho^{\sigma}(g)c_0(\sigma)$ in $\mathcal{F}_H(A)$. In this way, Δ acts via $\sigma \mapsto [\sigma]$ on \mathcal{F}_H and R_H . Then as seen in 2.8, we can attach a 2-cocycle b of Δ with values in $\widehat{\mathbb{G}}_m(A)$ to any representation $\rho \in \mathcal{F}_H(A)$ with $\rho^{[\sigma]} \sim \rho$ in the following way. Let us recall the construction of b briefly: First choose a lift $c(\sigma)$ of $\overline{\rho}(\sigma)$ in $GL_n(A)$ for each $\sigma \in G$ such that c(1) = 1, $\rho = c(\sigma)^{-1}\rho^{\sigma}c(\sigma)$ and $c(h\tau) = \rho(h)c(\tau)$ for $h \in H$ and $\tau \in G$. Then we have that $c(\sigma)c(\tau) = b(\sigma,\tau)c(\sigma\tau)$ for a 2-cocycle b of Δ with values in $\widehat{\mathbb{G}}_m(A)$. The cohomology class $[\rho]$ is uniquely determined by ρ independently of the choice of c and is called the *obstruction* class to extending ρ to G. If $[\rho] = 0$, then $b(\sigma, \tau) = \zeta(\sigma)^{-1}\zeta(\tau)^{-1}\zeta(\sigma\tau)$ for a 1-cochain ζ . We then modify c by $c\zeta$. Then c extends the representation ρ to a representation $\pi = c$ of G (Theorem 2.15). **Lemma 3.1.** Let $\rho \in \mathcal{F}_H(A)$. Suppose (AI_H) and that n is prime to p and $\rho^{[\sigma]} \sim \rho$ for all $\sigma \in \Delta$. If det (ρ) can be extended to a deformation of det $\overline{\rho}$ (over G) having values in an A-algebra B containing A, then ρ can be extended uniquely to a deformation $\pi : G \to GL_n(B)$ of $\overline{\rho}$ whose determinant coincides with the extension to G of det (ρ) .

Proof. By applying "det" to c and b, we know that $[\det(\rho)] = [\det(b)] = n[\rho]$. If n is prime to p, the vanishing of $n[\rho]$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ is equivalent to the vanishing of the obstruction class $[\rho]$. Thus if $\det(\rho)$ extends to G (that is $n[\rho] = 0$), then ρ extends to a representation π of G which has determinant equal to the extension of $\det(\rho)$ prearranged. Since $[\overline{\rho}_H] = 0$, we may assume that π is a deformation of $\overline{\rho}$. We now show the uniqueness of π . We get, out of π , other extensions $\pi \otimes \chi \in \mathcal{F}_G(B)$ for $\chi \in H^1(\Delta, \widehat{\mathbb{G}}_m(B)) = \operatorname{Hom}(\Delta, \widehat{\mathbb{G}}_m(B))$. Conversely, if π and π' are two extensions of ρ in $\mathcal{F}_G(B)$, then for $h \in H, \pi'(\sigma)\rho(h)\pi'(\sigma)^{-1} = \pi(\sigma)\rho(h)\pi(\sigma)^{-1}$ and hence $\pi(\sigma)^{-1}\pi'(\sigma)$ commutes with ρ . Then by Exercise 2.5 (3), $\chi(\sigma) = \pi(\sigma)^{-1}\pi'(\sigma)$ is a scalar in $\widehat{\mathbb{G}}_m(B)$.

$$\chi(\sigma\tau) = \pi(\sigma\tau)^{-1}\pi'(\sigma\tau) = \pi(\tau)^{-1}\pi(\sigma)^{-1}\pi'(\sigma)\pi'(\tau)$$
$$= \pi(\tau)^{-1}\chi(\sigma)\pi'(\tau) = \chi(\sigma)\chi(\tau).$$

Thus χ is an element in $H^1(\Delta, \widehat{\mathbb{G}}_m(B))$ and $\pi' = \pi \otimes \chi$, which shows that $\det(\pi')$ is equal to $\det(\pi)\chi^n$. If $\det(\pi') = \det(\pi)$, then $\chi^n = 1$. Since χ is of *p*-power order, if *n* is prime to *p*, $\chi = 1$.

Here is a consequence of the proof of the lemma:

Corollary 3.2. Let $\pi_0 \in \mathcal{F}_G(B)$ be an extension of $\rho \in \mathcal{F}_H(A)$ for an A-algebra *B* containing *A*. Then we have

$$\{\pi_0 \otimes \chi \mid \chi \in \operatorname{Hom}(\Delta, \mathbb{G}_m(B))\} = \{\pi \in \mathcal{F}_G(B) \mid \pi_{|H} = \rho\}.$$

It is easy to see that if $H^2(\Delta, \mathbb{F}) = 0$, then $H^2(\Delta, \widehat{\mathbb{G}}_m(A)) = 0$ for all A in CNL(Exercise 1). Therefore we see, if $H^2(\Delta, \mathbb{F}) = 0$,

(*)
$$\mathcal{F}_{H}^{\Delta}(A) = H^{0}(\Delta, \mathcal{F}_{H}(A)) \cong \mathcal{F}_{G}(A) / \widehat{\Delta}(A) \text{ for } \widehat{\Delta}(A) = \text{Hom}(\Delta, \widehat{\mathbb{G}}_{m}(A)).$$

Here we let $\chi \in \widehat{\Delta}(A)$ act on $\mathcal{F}_G(A)$ via $\pi \mapsto \pi \otimes \chi$. Suppose that \mathcal{F}_H^{Δ} is represented by a universal couple $(R_{H,\Delta}, \rho_{H,\Delta})$ and $[\rho_{H,\Delta}] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(R_{H,\Delta}))$. Then for each $\rho \in \mathcal{F}_H^{\Delta}(A)$, we have $\varphi : R_{H,\Delta} \to A$ such that $\varphi \rho_{H,\Delta} \sim \rho$. Then $\varphi_*[\rho_{H,\Delta}] = [\rho]$ and therefore, $[\rho] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(A))$. This shows again (*).

Under (AI_H), by Proposition 2.6, $\mathcal{F}_{H}^{\Delta}(A) \ni \rho \mapsto \operatorname{Tr}(\rho)$ sends representations ρ to Δ -invariant pseudo representations which are deformations of $\operatorname{Tr}(\overline{\rho})$, bijectively. In the same way as in the proof of Theorem 2.7, it is easy to check that this deformation functor of pseudo-representations is representable (Exercise 2). Then the subfunctor \mathcal{F}_{H}^{Δ} is represented by a residue ring R_{H}/\mathfrak{a} for an ideal \mathfrak{a} . Again by the unicity lemma, \mathcal{F}_{H}^{Δ} is represented by $R_{H,\Delta} = R_{H}/\Sigma_{\sigma\in\Delta}R_{H}([\sigma]-1)R_{H}$ (Exercise 3).

Proposition 3.3. Suppose (AI_H). Then \mathcal{F}_{A}^{Δ} is represented by $(R_{H,\Delta}, \rho_{H,\Delta})$ for $R_{H,\Delta} = R_H/\mathfrak{a}$ with $\mathfrak{a} = \sum_{\sigma \in \Delta} R_H([\sigma] - 1)R_H$ and $\rho_{H,\Delta} = \rho_H \mod \mathfrak{a}$. If either $[\rho_{H,\Delta}] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(R_{H,\Delta}))$ or $H^2(\Delta, \mathbb{F}) = 0$, then we have $\mathcal{F}_G/\widehat{\Delta} \cong \mathcal{F}_H^{\Delta}$ via $\pi \mapsto \pi|_H$.

We now consider the following subfunctor $\mathcal{F}_{G,H}$ of \mathcal{F}_{H} given by

 $\mathcal{F}_{G,H}(A) = \left\{ \rho |_H \in \mathcal{F}_H(A) \middle| \rho \in \mathcal{F}_G(B) \text{ for a flat } A \text{-algebra } B \text{ in } CNL_W \right\}.$

Here the algebra B may not be unique and depends on A. Let us check that $\mathcal{F}_{G,H}$ is really a functor. If $\varphi: A \to A'$ is a morphism in CNL and $\rho|_H \in \mathcal{F}_{G,H}(A)$ with $\rho \in \mathcal{F}_G(B)$, B being flat over A, then $A' \widehat{\otimes}_A B$ is a flat A'-algebra in CNL. Then $(\varphi \otimes id)\rho \in \mathcal{F}_G(A'\widehat{\otimes}_A B)$ such that $\varphi(\rho|_H) = ((\varphi \otimes id)\rho)|_H$. Thus $\mathcal{F}_H(\varphi)$ takes $\mathcal{F}_{G,H}(A)$ into $\mathcal{F}_{G,H}(A')$, which shows that $\mathcal{F}_{G,H}$ is a well defined functor. For each $\rho \in \mathcal{F}_{G,H}(A)$, we have an extension $\rho \in \mathcal{F}_G(B)$. By the universality of (R_G, ρ_G) , we have $\varphi : R_G \to B$ such that $\varphi \rho_G = \rho$. Then $\rho|_H = (\varphi \rho_G)|_H = \varphi(\rho_G|_H) =$ $\varphi \alpha \rho_H$. This shows that $\varphi \alpha$ is uniquely determined by $\rho|_H \in \mathcal{F}_{G,H}(A)$. Therefore φ restricted to $\operatorname{Im}(\alpha)$ has values in A and is uniquely determined by $\rho|_H \in \mathcal{F}_{G,H}(A)$. Conversely, supposing that $[\alpha \rho_H] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of $\operatorname{Im}(\alpha)$ in CNL, for a given $\varphi: \operatorname{Im}(\alpha) \to A$ which is a morphism in CNL, we shall show that $\rho = \varphi \alpha \rho_H$ is an element of $\mathcal{F}_{G,H}(A)$. Anyway $\alpha \rho_H$ can be extended to G as an element in $\mathcal{F}_G(B)$, and hence $\alpha \rho_H \in \mathcal{F}_{G,H}(\operatorname{Im}(\alpha))$. We note that ρ can be extended to G because $[\varphi \alpha \rho_H] = \varphi_*[\alpha \rho_H]$ which vanishes in $H^2(\Delta, \widehat{\mathbb{G}}_m(B'))$ for $B' = B \widehat{\otimes}_{\mathrm{Im}(\alpha),\varphi} A$. Thus $\rho \in \mathcal{F}_{G,H}(A)$, and $\mathcal{F}_{G,H}$ is represented by $(\mathrm{Im}(\alpha), \alpha \rho_H)$ as long as $[\alpha \rho_H] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of $\operatorname{Im}(\alpha)$ in CNL.

We have the following inclusions of functors: $\mathcal{F}_G/\widehat{\Delta} \hookrightarrow \mathcal{F}_{G,H} \subset \mathcal{F}_H^{\widehat{\Delta}} \subset \mathcal{F}_H$, the first map being given by $\rho \mapsto \rho|_H$, which is injective by Corollary 3.2. The functor $\mathcal{F}_H^{\widehat{\Delta}}$ is represented by R_H/\mathfrak{a} for $\mathfrak{a} = \sum_{\sigma \in \Delta} R_H([\sigma] - 1)R_H$. Because of the above inclusion, if $[\alpha \rho_H] = 0$ in $H^2(\widehat{\Delta}, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of $\mathrm{Im}(\alpha)$ in CNL, the ring $\mathrm{Im}(\alpha)$ is a surjective image of $R_H/\mathfrak{a} = R_{H,\Delta}$. If $[\rho_{H,\Delta}] = 0$ (for $\rho_{H,\Delta} = \rho_H \mod \mathfrak{a}$) in $H^2(\widehat{\Delta}, \widehat{\mathbb{G}}_m(B'))$ for a flat extension B' of $R_{H,\Delta}$ in CNL, then $\rho_{H,\Delta} \in \mathcal{F}_{G,H}(R_{H,\Delta})$ and thus $\mathcal{F}_H^{\widehat{\Delta}} = \mathcal{F}_{G,H}$.

Proposition 3.4. Assume (AI_H) and that $[\alpha \rho_H] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of Im(α) in CNL. Then $\mathcal{F}_{G,H}$ is represented by (Im(α), $\alpha \rho_H$). If further $[\rho_{H,\Delta}] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B'))$ for a flat extension B' of $R_{H,\Delta}$, then we have $\mathcal{F}_{G,H} = \mathcal{F}_{H}^{\Delta}$.

The character det(ρ_H) induces an W-algebra homomorphism: $W[[H^{ab}]] \to R_H$ for the maximal continuous abelian quotient H^{ab} of H. We write its image as Λ_H and write simply Λ for Λ_G . Since the map $W[[H^{ab}]] \to R_H$ factors through the local ring $W[[H_p^{ab}]]$ in CNL_W for the maximal p-profinite quotient H_p^{ab} of H^{ab} , Λ_H is an object in CNL_W . Thus we have a character det $(\rho_H) : H \to \Lambda_H^{\times}$. We consider the category CNL_{Λ_H} of complete noetherian local Λ_H -algebras with residue field \mathbb{F} . We consider the functor $\mathcal{F}_{\Lambda_H,H} : CNL_{\Lambda_H} \to SETS$ given by

 $\mathcal{F}_{\Lambda_H,H}(A) = \{\rho: H \to GL_n(A) \mid \rho \equiv \overline{\rho} \mod \mathfrak{m}_A \text{ and } \det(\rho) = \det(\rho_H)\} / \sim .$

Pick $\rho: H \to GL_n(A) \in \mathcal{F}_{\Lambda_H,H}(A)$. Then regarding A as an W-algebra naturally, we know that $\rho \in \mathcal{F}_H(A)$. Thus there is a unique morphism $\varphi: R_H \to A$ such that $\varphi \rho_H \sim \rho$. Then $\varphi(\det(\rho_H)) = \det(\rho)$, and φ is a morphism in CNL_{Λ_H} . Therefore (R_H, ρ_H) represents \mathcal{F}_{Λ_H} . Similarly to $\mathcal{F}_{G,H}$, we consider another functor on CNL_{Λ} :

$$\mathcal{F}_{\Lambda,G,H}(A) = \left\{ \rho|_H \in \mathcal{F}_H(A) \middle| \rho \in \mathcal{F}_{\Lambda,G}(B) \text{ for a flat } A\text{-algebra } B \text{ in } CNL_\Lambda \right\}.$$

Take $\rho \in \mathcal{F}_{\Lambda,G,H}(A)$ such that $\rho = \rho'|_H$ for $\rho' \in \mathcal{F}_{\Lambda,G}(B)$. Then there exists a unique $\varphi : R_G \to B$ with $\det(\rho') = \varphi(\det(\rho_G))$. Since the Λ -algebra structure of B is given by $\det(\rho')$, φ induces a Λ -algebra homomorphism of $\operatorname{Im}(\alpha)\Lambda$ into B for the algebra $\operatorname{Im}(\alpha)\Lambda$ generated by $\operatorname{Im}(\alpha)$ and Λ . From $\rho = (\varphi\rho_G)|_H = \varphi(\rho_G|_H) = \varphi\alpha\rho_H$, we see that the Λ -algebra homomorphism φ restricted $\operatorname{Im}(\alpha)\Lambda$ is uniquely determined by ρ . Supposing that $[\alpha\rho_H]$ vanishes in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of $\operatorname{Im}(\alpha)$, we knows that $[\alpha\rho_H]$ vanishes in the cohomology group $H^2(\Delta, \widehat{\mathbb{G}}_m(\operatorname{Im}(\alpha)\Lambda \otimes_{\operatorname{Im}(\alpha)} B))$. For any morphism $\varphi : \operatorname{Im}(\alpha)\Lambda \to A$ in CNL_Λ , $[\varphi\alpha\rho_H] = \varphi_*[\alpha\rho_H]$ vanishes in $H^2(\Delta, \widehat{\mathbb{G}}_m(B'))$ for $B' = A \otimes_{\operatorname{Im}(\alpha)} B$ which is flat over A. Thus we have an extension π of ρ to G having values in B'. Suppose further that n is prime to p. In this case, as already remarked, we can always extend ρ without extending A and without assuming the vanishing of $[\alpha\rho_H]$, because $\det(\rho)$ can be extended to G by $\varphi \circ \det(\rho_G)$. Thus we know:

$$\mathcal{F}_{\Lambda,G,H}(A) = \left\{ \rho |_{H} \in \mathcal{F}_{H}(A) \middle| \rho \in \mathcal{F}_{\Lambda,G}(A) \right\}.$$

Since det (ρ) can be extended to G without changing A, there is a unique extension of π with values in $GL_n(A)$ such that det $(\pi) = \iota \circ (\det(\rho_G))$, which implies that $\pi \in \mathcal{F}_{\Lambda,G}(A)$ and hence $\pi|_H \in \mathcal{F}_{\Lambda,G,H}(A)$. Thus $\mathcal{F}_{\Lambda,G,H}$ is represented by $(\operatorname{Im}(\alpha)\Lambda, \alpha\rho_H)$ if n is prime to p. We consider the morphism of functors: $\mathcal{F}_{\Lambda,G} \to \mathcal{F}_{\Lambda,G,H}$ sending π to $\pi|_H$. As we have already remarked, the extension of $\rho \in \mathcal{F}_{\Lambda,G,H}(A)$ to $\pi \in \mathcal{F}_{\Lambda}(A)$ is unique if n is prime to p. Thus in this case, the morphism of functors is an isomorphism of functors. Therefore $(R_G, \rho_G) \cong (\operatorname{Im}(\alpha)\Lambda, \alpha\rho_H)$. Thus we get

Theorem 3.5. Suppose (AI_H) and that either n is prime to p or $[\alpha \rho_H]$ vanishes in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of Im(α). Then $\mathcal{F}_{\Lambda,G,H}$ is representable by (Im(α) $\Lambda_G, \alpha \rho_H$). Moreover if n is prime to p, we have the equality $R_G = \text{Im}(\alpha)\Lambda_G$.

Since α restricted to Λ_H coincides with the algebra homomorphism induced by the inclusion $H \subset G$, $\alpha(\Lambda_H) \subset \Lambda$. We put $R' = \operatorname{Im}(\alpha) \otimes_{\Lambda_H} \Lambda$. By definition, the character $1 \otimes \det(\rho_G)$ of G coincides on H with $(\alpha \circ \det(\rho_H)) \otimes 1$ in R'. Thus $\alpha \rho_H$ can be extended uniquely to $\rho'_G : G \to GL_n(R')$ such that $\det(\rho'_G) = 1 \otimes \det(\rho_G)$ if n is prime to p. Thus we have a natural map $\iota : R_G \to R'$ such that $\iota \rho_G = \rho'_G$. Since R_G is an algebra over Λ and $\operatorname{Im}(\alpha)$, it is an algebra over R'. Thus we have the structural morphism $\iota' : R' \to R_G$. By Theorem 3.5, ι' is surjective. By definition, $\iota \alpha \rho_H = \iota \rho_H|_H = \iota \rho'_G|_H = \alpha \rho_H \otimes 1$ and $\iota \det(\rho_G) = \det(\rho'_G) = 1 \otimes \det(\rho_G)$. Thus $\iota' \iota \alpha \rho_H = \iota'(\alpha \rho_H \otimes 1) = \alpha \rho_H$ and $\iota' \iota \det(\rho_G) = \iota'(1 \otimes \det(\rho_G)) = \det(\rho_G)$. Thus $\iota' \iota$ is identity on Λ and $\operatorname{Im}(\alpha)$, and hence $\iota' \iota = id$. Similarly, $\iota \iota' \rho'_g = \iota \rho_G = \rho'_G$. This shows that

$$\iota\iota'(\alpha\rho_H\otimes 1) = \iota(\alpha\rho_H) = (\alpha\rho_H\otimes 1) \text{ and}$$
$$\iota\iota'(1\otimes \det(\rho_G)) = \iota(\det(\rho_G)) = 1\otimes \det(\rho_G).$$

Thus $\iota\iota'$ is again identity on $\operatorname{Im}(\alpha) \otimes 1$ and $1 \otimes \Lambda$, and $\iota\iota' = id$. Let X_p (resp. $X^{(p)}$) indicate the maximal *p*-profinite (resp. prime-to-*p* profinite) quotient of a profinite group X. Write ω for the restriction of $\det(\rho_G)$ to $(G^{ab})^{(p)}$. Define $\kappa : G^{ab} \to W[[G_p^{ab}]]^{\times}$ by $\kappa(g) = \omega(g)[g_p]$ for the projection g_p of g into G_p^{ab} , where [x] denotes the group element of $x \in G_p^{ab}$ in the group algebra. Assuming that \mathbb{F} is big enough to contain all g-th roots of unity for the order g of $\operatorname{Im}(\omega)$, we can perform the

same argument replacing $(\Lambda_H, \Lambda_G, \det(\rho_G))$ by $(W[[H_p^{ab}]], W[[G_p^{ab}]], 1 \otimes \kappa)$. Thus we get

Corollary 3.6. Suppose (AI_H) and that n is prime to p. Then we have

 $(R_G, \rho_G) \cong (\operatorname{Im}(\alpha) \otimes_{\Lambda_H} \Lambda_G, \alpha \rho_H \otimes \det(\rho_G))$

$$\cong (\mathrm{Im}(\alpha) \otimes_{W[[H_p^{ab}]]} W[[G_p^{ab}]], \alpha \rho_H \otimes \kappa).$$

In particular, R_G is flat over $\text{Im}(\alpha)$.

- (1) Show that if $H^2(\Delta, \mathbb{F}) = 0$, $H^2(\Delta, \widehat{\mathbb{G}}_m(A)) = 0$ for all A in Exercise 3.7. CNL_W . Hint: $\mathbb{G}_m(A)$ has a Δ -invariant filtration whose subquotients are isomorphic to \mathbb{F} ;
 - (2) Show that \mathcal{F}_{H}^{Δ} is representable in CNL_W ; (3) Show that \mathcal{F}_{H}^{Δ} is represented by $R_{H,\Delta}$.

3.2. Nearly ordinary deformations. Hereafter we assume that n = 2. We would like to describe nearly p-ordinary Galois deformations. Let us first introduce some notation: let $S = S_G$ be a finite set of closed subgroups of G. For each $D \in S$, let S(D) be a complete representative set for H-conjugacy classes of $\{gDg^{-1} \cap H \mid g \in$ G. In application, $G = \mathfrak{G}_F$ for a number field F and D is given by decomposition subgroups of primes in S for a finite set of primes S. For simplicity, we assume that $D \cap H \in S(D)$ always. Then the disjoint union $S_H = \bigsqcup_{D \in S} S(D)$ is a finite set, because $|S(D)| = |H \setminus G/D|$.

Let $V = W^2$ be rank 2-free W-modules made of column vectors. We identify $GL_2(W)$ with the group of W-linear automorphisms $Aut_W(V)$. Then the algebraic group GL(2) defined over W can be regarded as a covariant functor from CL_W into the category of groups given by $GL_2(A) = Aut_A(V \otimes_W A)$. An algebraic subgroup $B \subset GL(2)$ is called the *Borel subgroup* defined over W if there exists an Wsubmodule $W \subset V$ with $V/W \cong W$ such that

$$B(A) = \left\{ x \in GL_2(A) \middle| x(W(A)) \subset W(A) \right\},\$$

where $W(A) = W \otimes_W A \subset V \otimes_W A = V(A)$. Thus any two Borel subgroups defined over W are conjugate each other by an element in $GL_2(W)$.

Let $\{B_D\}_{D \in S}$ be a set of Borel subgroup of $GL(2)_{/W}$ defined over W indexed by $D \in S$. For each $D' \in S(D)$ such that $D' = H \cap gDg^{-1}$, we define $B_{D'} =$ $c(g)P_Dc(g)^{-1}$ for a lift $c(g) \in GL_n(W)$ of $\overline{\rho}(g)$. Now we impose the following additional condition to our deformation problem: We assume

(NO)
$$\overline{\rho}(D) \subset P_D(\mathbb{F})$$
 for each $D \in S_G$.

Then we consider the following condition:

(no_H) there exists $g_D \in \widehat{GL}_2(A)$ for each $D \in S_H$ such that

$$g_D \rho(D) g_D^{-1} \subset B_D(A),$$

where $\widehat{GL}_n(A) = 1 + \mathfrak{m}_A M_n(A)$.

We define a subfunctor $\mathcal{F}_X^{n.ord}$ of the functor \mathcal{F}_X by

$$\mathcal{F}_X^{n.ord}(A) = \{ \rho \in \mathcal{F}_X(A) \mid \rho \text{ satisfies } (\mathrm{no}_X) \},\$$

where X denotes either G or H depending on the group concerned. Then by (NO), (no_X) and our choice of B_D , $\mathcal{F}_X^{n.ord}(\mathbb{F}) = \{\overline{\rho}|_X\} \neq \emptyset$.

For each $D \in S_H$, we have $B_D \subset GL(2)$ fixing rank 1 W-free module $W_D \subset V$. Suppose (no_H) for $\rho \in \mathcal{F}_X^{n.ord}(A)$. Then $\rho(D)$ leaves $g_D^{-1}W_D(A)$ stable. Thus $\rho(d)$ for $d \in D$ induces a scalar multiplication on $g_D^{-1}W(A) \cong W(A)$ and $g_D^{-1}V(A)/g_D^{-1}W(A) \cong V(A)/W(A)$. In other words, $\rho(d)w = \epsilon_{D,\rho}(d)w$ for $w \in g_D^{-1}W(A)$ and $\rho(d)v = \delta_{D,\rho}(d)v$ for $v \in g_D^{-1}V(A)/g_D^{-1}W(A)$. The map $\epsilon_{\rho}, \rho_{\rho} : D \to A^{\times}$ are continuous characters and are, respectively, deformations of $\overline{\epsilon}_D = \epsilon_{D,\overline{\rho}}$ and $\overline{\delta}_D = \delta_{D,\overline{\rho}}$. We consider the regularity condition:

(Rg_D)
$$\overline{\epsilon}_D \neq \overline{\delta}_D$$
 on $D \in S_H$.

We can prove in exactly the same manner as in the proof of Proposition 2.9 the following fact:

Proposition 3.8. Suppose (AI_H), (NO) and (Rg_H) for $\overline{\rho}$. Then the functor $\mathcal{F}_X^{n.ord}$ is representable by a universal couple $(R_X^{n.ord}, \varrho_X^{n.ord})$ in CNL_W .

In the same manner as in the previous subsection, we can check that Δ acts on $\mathcal{F}_{H}^{n.ord}$ via $\rho \mapsto \rho^{[\sigma]}$. Take $D \in S$ and put $D' = D \cap H \in S(D)$. Since $\overline{\rho}$ is invariant under Δ and $\overline{\rho} \in \mathcal{F}_{G}^{n.ord}(\mathbb{F})$,

(Inv)
$$\overline{\epsilon}_{D'}^{[\sigma]} = \overline{\epsilon}_{D'} \text{ and } \overline{\delta}_{D'}^{[\sigma]} = \overline{\delta}_{D'} \text{ for all } \sigma \in D.$$

Now suppose $\rho \in \mathcal{F}_{H}^{\Delta,n.ord}(A)$ and $[\rho] = 0$ in $H^{2}(\Delta, \widehat{\mathbb{G}}_{m}(B))$ for a flat A-algebra B. Then we find an extension $\pi : G \to GL_{n}(B)$ of ρ . Let $\sigma \in D$ and $D' = H \cap D$. Thus $\pi(\sigma)\rho(d')\pi(\sigma)^{-1} = \rho(\sigma d'\sigma^{-1}) \in g_{D'}^{-1}B_{D}(A)g_{D'}$ for all $d' \in D'$ and hence

$$\epsilon_{D',\rho}(d') = \epsilon_{D',\rho}(\sigma d'\sigma^{-1})$$
 and $\delta_{D',\rho}(d') = \delta_{D',\rho}(\sigma d'\sigma^{-1}).$

By taking $d' \in D'$ with $\overline{\epsilon}_{D'}(d') \neq \overline{\delta}_{D'}(d')$, the above equalities implies $\pi(\sigma)$ has to be upper triangular (if we take a base of $V(\rho) \otimes_A B$ so that $g_{D'}^{-1}B_D(B)g_{D'}$ is upper triangular). Thus $\pi(D) \subset g_{D'}^{-1}B_D(B)g_{D'}$, and, taking $g_D = g_{D'}$, we confirm that $\pi \in \mathcal{F}_G^{n,ord}(A)$. Since $\mathcal{F}_G^{n,ord}$ is stable under the action of $\widehat{\Delta}$, all the arguments given for \mathcal{F}_X in the previous paragraph are valid for $\mathcal{F}_X^{n,ord}$ for X = G and H. Writing $(R_X^{n,ord}, \rho_X^{n,ord})$ for the universal couple representing $\mathcal{F}_X^{n,ord}$, we conclude

Theorem 3.9. Suppose (AI_H), (Rg_D) for all $D \in S_H$ and that n is prime to p. Then we have the equality $R_G^{n.ord} = \operatorname{Im}(\alpha^{n.ord})\Lambda_G^{n.ord}$, where $\alpha^{n.ord} : R_H^{n.ord} \to R_G^{n.ord}$ is the base-change map given by $\alpha^{n.ord}\rho_H^{n.ord} \sim \rho_G^{n.ord}|_H$ and $\Lambda_G^{n.ord}$ is the image of $W[[G_p^{ab}]]$ in $R_G^{n.ord}$. Moreover we have

$$(R_G^{n.ord}, \rho_G^{n.ord}) \cong (\operatorname{Im}(\alpha^{n.ord}) \otimes_{W[[H_p^{ab}]]} W[[G_p^{ab}]], \alpha^{n.ord} \rho_H^{n.ord} \otimes \kappa).$$

One can generalize the notion of nearly ordinary representation to GL(n)representations, requiring to have $\rho(D) \subset g_D^{-1}P_D(A)g_D$ for a proper parabolic
subgroup $P_D \subset GL(n)$ defined over W.

Exercise 3.10. (1) Show that $\mathcal{F}_{H}^{n.ord}$ is representable under (AI_{H}) and (Rg_{D}) ; (2) Show that $\pi(\sigma) \in g_{D'}^{-1}P_{D}(B)g_{D'}$ under $(Rg_{D'})$. 3.3. Ordinary deformations. In this subsection, we continue to assume that n = 2 and all B_D are conjugate to the subgroup made of upper triangular matrices. Fix a normal closed subgroup $I = I_D$ of each $D \in S$. For $D' = gDg^{-1} \cap H \in S(D)$, we put $I_{D'} = gI_Dg^{-1} \cap H$. We call $\rho \in \mathcal{F}_X^{n.ord}(A)$ ordinary if ρ satisfies the following conditions:

(Ord_X)
$$I \subset \operatorname{Ker}(\delta_{D,\rho})$$
 for every $D \in S_X$.

We then consider the following subfunctor \mathcal{F}_X^{ord} of $\mathcal{F}_X^{n.ord}$:

$$\mathcal{F}_X^{ord}(A) = \{ \rho \in \mathcal{F}_X^{n.ord}(A) \mid \rho \text{ is ordinary} \}.$$

It is easy to see that the functor \mathcal{F}_X^{ord} is representable by $(R_X^{ord}, \rho_X^{ord})$ under (Rg_D) for every $D \in S_X$ (see Proposition 2.9).

Let $\rho \in \mathcal{F}_{H}^{ord}(A)$. Suppose $[\rho] = 0$ in $H^{2}(\Delta, \widehat{\mathbb{G}}_{m}(B))$ for a flat A-algebra B. Then we have at least one extension π of ρ in $\mathcal{F}_{G}^{n.ord}(B)$. We consider $\delta_{D,\pi} : D \to A^{\times}$ for $D \in S$. We suppose one of the following two conditions for each $D \in S$:

- $(\operatorname{Tr}_D) |I_D/I_D \cap H|$ is prime to p;
- (Ex_D) Every p-power order character of $I_D/I_D \cap H$ can be extended to a character of Δ having values in a flat extension B' of B so that it is trivial on $I_{D'}$ for all $D' \in S$ different from D.

Under (Tr_D) , as a homomorphism of groups, $\delta_{D,\pi}$ restricted to I_D factors through $\overline{\delta}_{D,\rho}$ which is trivial on I. Thus $\delta_{D,\pi}$ is trivial on I_D . We note that $\delta_{D,\pi}$ is of p-power order on $I_D/H \cap I_D$ because $\overline{\delta}_{D,\rho}$ is trivial on I_D and $\delta_{D,\rho}$ is trivial on $I_D \cap H$. Thus we may extend $\delta_{D,\pi}$ to a character η of Δ congruent 1 modulo $\mathfrak{m}_{B'}$. Then we twists π by η^{-1} , getting an extension $\pi' = \pi \otimes \eta^{-1}$ such that $\delta'_{D,\pi}$ is trivial on I_D . Repeating this process for the D's satisfying (Ex_D), we find an extension $\pi \in \mathcal{F}_G^{ord}(B)$ for a flat extension B of A. We now consider

$$\mathcal{F}_{G,H}^{ord}(A) = \{\rho|_H \in \mathcal{F}_H^{ord}(A) | \rho \in \mathcal{F}_G^{ord}(B) \text{ for a flat extension } B \text{ of } A\}.$$

In the same manner as in 3.1, if either p > 2 = n or $[\alpha^{ord} \rho_H^{ord}] = 0$ in $H^2(\Delta, \widehat{\mathbb{G}}_m(B))$ for a flat extension B of $\operatorname{Im}(\alpha^{ord})$ in CNL_W , we know that $\mathcal{F}_{G,H}^{ord}$ is represented by $(\operatorname{Im}(\alpha^{ord}), \alpha^{ord} \rho_H^{ord})$, where $\alpha^{ord} : R_H^{ord} \to R_G^{ord}$ is an W-algebra homomorphism given by $\alpha^{ord} \rho_H^{ord} \sim \rho_G^{ord}|_H$.

Let $\rho \in \mathcal{F}_{G,H}^{ord}(A)$ and π be its extension in $\mathcal{F}_{G}^{ord}(B)$ for a flat A-algebra B in CNL_W . The character $\det(\pi)$ is uniquely determined by ρ on the subgroup of G_p^{ab} generated by all $I_{D,p}$, because another choice is $\pi \otimes \chi$ for a character χ of Δ and $(\delta)_{D,\pi\otimes\chi} = \chi$ on $I_{D,p}$. If G_p^{ab} is generated by the $I_{D,p}$'s and H_p , $\det(\pi)$ is uniquely determined by ρ . Thus assuming that p > 2, π itself is uniquely determined by ρ . Therefore the morphism of functors: $\mathcal{F}_G^{ord} \to \mathcal{F}_{G,H}^{ord}$ given by $\rho \mapsto \rho|_H$ identifies \mathcal{F}_G^{ord} with a subfunctor of $\mathcal{F}_{G,H}^{ord}$, inducing a surjective W-algebra homomorphism $\beta : \operatorname{Im}(\alpha^{ord}) \to R_G^{ord}$ such that $\rho_G^{ord}|_H = \beta \alpha \rho_H^{ord}$. Since $\rho_G^{ord}|_H = \alpha \rho_H^{ord}$, β is the identity on $\operatorname{Im}(\alpha^{ord})$, and we conclude that $\operatorname{Im}(\alpha^{ord}) = R_G^{ord}$. This implies

Theorem 3.11. Suppose that n = 2 and p > 2. Suppose (AI_H), (Rg_D) for $D \in S_H$ and either (Tr_D) or (Ex_D) for each $D \in S$. Suppose further that the $I_{D,p}$'s for all $D \in S$ and H_p generate G_p^{ab} . Then we have Im(α^{ord}) = R_G^{ord} . In particular, for any deformation $\rho \in \mathcal{F}_{G,H}^{ord}(A)$, there is a unique extension $\pi \in \mathcal{F}_G^{ord}(A)$ such that $\pi|_{H} = \rho$. If further $[\rho_{H}^{\Delta, ord}] = 0$ in $H^{2}(\Delta, \widehat{\mathbb{G}}_{m}(B))$ for a flat extension B of $R_{H,\Delta}^{ord}$, then

$$R_{H,\Delta}^{ord} \cong \operatorname{Im}(\alpha^{ord}) = R_G^{ord}$$

where $R_{H,\Delta}^{ord} = R_H^{ord} / \Sigma_{\sigma \in \Delta} R_H^{ord} ([\sigma] - 1) R_H^{ord}$.

3.4. Deformations with fixed determinant. We take a character $\chi : G \to W^{\times}$ such that $\chi \equiv \det(\overline{\rho}) \mod \mathfrak{m}_W$. We then define

$$\mathcal{F}_X^{\chi,?}(A) = \left\{ \rho \in \mathcal{F}_X^?(A) \,\middle| \, \det(\rho) = \chi|_X \right\}.$$

Supposing the representability of $\mathcal{F}_X^?$, it is easy to check that $\mathcal{F}_X^{\chi,?}$ is representable. Since the determinant is already fixed and can be extended to G, by the argument in the previous subsections shows that if n is prime to p,

$$\mathcal{F}_{H}^{\chi,?,\Delta} = \mathcal{F}_{G,H}^{\chi,?} = \mathcal{F}_{G}^{\chi}.$$

Write $(R_X^{\chi,?}, \rho_X^{\chi,?})$ for the universal couple representing $\mathcal{F}_X^{\chi,?}$ and define $\alpha^{\chi,?}$: $R_H^{\chi,?} \to R_G^{\chi,?}$ so that $\alpha^{\chi,?} \rho_H^{\chi,} \sim \rho_G^{\chi,?}$. Then we have

Proposition 3.12. Suppose (AI_H) , (Rg_D) for $D \in S_H$ and that n is prime to p. Then we have

$$R_{H}^{\chi,?} / \Sigma_{\sigma \in \Delta} R_{H}^{\chi,?} ([\sigma] - 1) R_{H}^{\chi,?} = R_{G,H}^{\chi,?} \cong \operatorname{Im}(\alpha^{\chi,?}) = R_{G}^{\chi,?},$$

where $R_G^{\chi,?}$ is either R_G^{χ} or $R_G^{\chi,n.ord}$.

3.5. **Base Change.** We now apply the results obtained in the previous section to Galois deformations in the following setting: Fix an odd prime p. We take a continuous Galois representation $\overline{\rho}$ of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ into $GL_2(\mathbb{F})$ for a finite field \mathbb{F} of characteristic p. Since $\overline{\rho}$ is continuous, it factors through the Galois group $\mathfrak{G} = \mathfrak{G}_F$ of the maximal extension of \mathbb{Q} unramified outside a finite set of primes S. In this book, for simplicity, we take $S = \{p, \infty\}$, although our ideas certainly work well in a more general setting. Let \mathfrak{H} be a closed normal subgroup of \mathfrak{G} . Thus $\Delta = \mathfrak{G}/\mathfrak{H} = \operatorname{Gal}(F/\mathbb{Q})$. We fix a valuation ring W finite flat over \mathbb{Z}_p with residue field \mathbb{F} and consider the category $CNL = CNL_W$ of complete noetherian local W-algebras with residue field \mathbb{F} .

3.6. Various deformation rings. A deformation of $\overline{\rho}|_{\mathfrak{H}}$ is a continuous representation $\rho : \mathfrak{H} \to GL_2(A)$ for an object A of CNL such that $\rho \mod \mathfrak{m}_A = \overline{\rho}$. We call a deformation ρ nearly p-ordinary, if for a decomposition subgroup $D_{\mathfrak{p}}$ of \mathfrak{H} at each padic place \mathfrak{p} , ρ restricted to $D_{\mathfrak{p}}$ is isomorphic to an upper triangular representation. Thus we have two characters $\epsilon_{D_{\mathfrak{p}},\rho}$ and $\delta_{D_{\mathfrak{p}},\rho}$ of $D_{\mathfrak{p}}$ realized as diagonal entries. We then consider the following two deformation functors $\mathcal{F} = \mathcal{F}_F : CNL \to SETS$ given by

$$\mathcal{F}_F(A) = \{\rho : \mathfrak{H} \to GL_2(A) \text{ is a deformation of } \overline{\rho}\}/\sim,$$
$$\mathcal{F}_F^{n.ord}(A) = \{\rho \in \mathcal{F}_F(A) \text{ is nearly } p\text{-ordinary}\}.$$

It has been shown in Theorem 2.7 that \mathcal{F}_F is representable in CL_W under the following condition:

(AI_F)
$$\overline{\rho}$$
 restricted to \mathfrak{H} is absolutely irreducible.

If further $[F : \mathbb{Q}]$ is finite (that is, \mathfrak{H} is open in \mathfrak{G}), the group satisfies (Φ) and hence, the functor is representable in CNL_W (see Proposition 2.14). In addition to the above condition, to assure the representability of $\mathcal{F}_F^{n.ord}$, we need to assume

(Rg_F)
$$\overline{\epsilon}_{D_{\mathfrak{p}}} = \epsilon_{D_{\mathfrak{p}},\overline{\rho}} \text{ and } \overline{\delta}_{D_{\mathfrak{p}}} = \delta_{D_{\mathfrak{p}},\overline{\rho}} \text{ are distinct for each } \mathfrak{p}.$$

When representable, write (R_F, ϱ_F) (resp. $(R_F^{n.ord}, \varrho_F^{n.ord})$) for the universal couple representing \mathcal{F}_F (resp. $\mathcal{F}_F^{n.ord}$). When we consider a deformation problem with restriction "?", (for example ? = n.ord), we write $(R_F^?, \varrho_F^?)$ for the universal couple with the condition "?". We list here two more restrictions we would like to study: We call a nearly *p*-ordinary deformation ρ *p*-ordinary if $\delta_{D,\rho}$ is unramified for every decomposition subgroup *D* of \mathfrak{H} over *p*. For a given character $\chi : \mathfrak{G} \to W^{\times}$, we say that a deformation ρ has fixed determinant χ if det $\rho = \chi$ in A^{\times} . Then we define the following subfunctors of \mathcal{F}_F :

$$\mathcal{F}_{F}^{ord}(A) = \{ \rho \in \mathcal{F}_{F}^{n.ord}(A) | \rho \text{ is } p\text{-ordinary} \}$$
$$\mathcal{F}_{F}^{\chi}(A) = \{ \rho \in \mathcal{F}_{F}(A) | \det(\rho) = \chi \}$$
$$\mathcal{F}_{F}^{\chi,n.ord}(A) = \mathcal{F}_{F}^{\chi}(A) \cap \mathcal{F}_{F}^{n.ord}(A), \quad \mathcal{F}_{F}^{\chi,ord}(A) = \mathcal{F}_{F}^{\chi}(A) \cap \mathcal{F}_{F}^{ord}(A).$$

It is easy to check that the above subfunctors of $\mathcal{F}_F^{n.ord}$ are representable under (AI_F) and (Rg_F) , and \mathcal{F}_F^{χ} is representable under (AI_F) (cf. Proposition 2.9).

For the moment, we assume that $[F : \mathbb{Q}] < \infty$. Let $\mathfrak{H}^{ab} = \mathfrak{H}/(\mathfrak{H}, \mathfrak{H})$ be the maximal (continuous) abelian quotient. We write \mathfrak{H}^{ab}_p for the maximal p-profinite quotient of \mathfrak{H}^{ab} . Thus $\mathfrak{H}^{ab} = \mathfrak{H}^{ab}_p \times \mathfrak{H}^{(p)}_{ab}$, and by class field theory, $\mathfrak{H}^{ab}_p \cong \mathbb{Z}^d_p \times \mu$ for a finite p-group μ , where d is an integer with $1 \leq d < [F : \mathbb{Q}]$. Then as seen in Proposition 2.3, the functor $\mathcal{F}_{F,\det(\overline{\rho})}$ obtained by replacing $\overline{\rho}$ by $\det(\overline{\rho})$ is represented by the continuous group algebra $(W[[\mathfrak{H}^{ab}_p]], \kappa)$ for a suitable character κ with $\kappa(h) = h$ for $h \in \mathfrak{H}^{ab}_p$. Since

$$\det(\varrho_F^?) \in \mathcal{F}_{F,\det(\overline{\rho})}(R_F^?) \cong \operatorname{Hom}_{CNL}(W[[\mathfrak{H}_p^{ab}]], R_F^?),$$

there is a unique W-algebra homomorphism $\iota^? : W[[\mathfrak{H}_p^{ab}]] \to R_F^?$ such that $\iota^?\kappa = \det(\varrho_F^?)$. Thus R_F is an $W[[\mathfrak{H}_p^{ab}]]$ -algebra. Similarly, since $\varrho_{\mathbb{Q}}^? \in \mathcal{F}_{\mathbb{Q}}^?(R_{\mathbb{Q}}^?)$, we see $\varrho_{\mathbb{Q}}^?|_{\mathfrak{H}} \in \mathcal{F}_F^?(R_{\mathbb{Q}}^?)$. Thus there exists a unique W-algebra homomorphism $\alpha^? : R_F^? \to R_{\mathbb{Q}}^?$ such that

$$\alpha^? \circ \varrho_F^? = \varrho_{\mathbb{O}}^?|_{\mathfrak{H}}.$$

We call $\alpha^{?}$ the base change map (of Galois side). We now describe $\operatorname{Im}(\alpha^{?})$ and $\operatorname{Ker}(\alpha^{?})$ using the result in the previous section. For that, we take a complete representative set Δ' in \mathfrak{G} for $\Delta = \mathfrak{G}/\mathfrak{H}$. Then we lift $\overline{\rho}(\sigma)$ ($\sigma \in \Delta'$) to an element $c(\sigma) \in GL_n(W)$ so that $c(\sigma) \mod \mathfrak{m}_W = \overline{\rho}(\sigma)$. Then we let Δ act on \mathcal{F}_F by $\rho^{\sigma}(g) = c(\sigma)^{-1}\rho(\sigma g \sigma^{-1})c(\sigma)$. This is a well defined functorial action on $\mathcal{F}_F^{?}$. By universality, Δ acts on $R_F^{?}$ via W-algebra automorphisms. We consider the following condition:

(TR) p totally ramifies in F/\mathbb{Q} .

Thus we have from the results in previous sections the following fact:

Theorem 3.13 (Base change theorem). Let F be a finite Galois extension of \mathbb{Q} (with $\Delta = \operatorname{Gal}(F/\mathbb{Q})$) unramified outside $\{p, \infty\}$. We suppose (AI_F) and (Rg_F) for $\overline{\rho}$.

 (i) If ? = Ø or n.ord, suppose either that H²(Δ, F) = 0 or that Δ is cyclic. Then we have

$$R^?_{\mathbb{Q}} \cong \operatorname{Im}(\alpha^?) \otimes_{W[[\mathfrak{H}_p^{ab}]]} W[[\mathfrak{G}_p^{ab}]] \quad and \quad \operatorname{Ker}(\alpha^?) = \sum_{\sigma \in \Delta} R^?_F(\sigma-1)R^?_F.$$

(ii) If $? = \chi$, suppose that p is odd. Then we have

$$R_{\mathbb{Q}}^{\chi} \cong R_F^{\chi} / \sum_{\sigma \in \Delta} R_F^{\chi} (\sigma - 1) R_F^{\chi}$$

(iii) If ? = ord, suppose (TR), p > 2 and either that $H^2(\Delta, \mathbb{F}) = 0$ or Δ is cyclic. Then we have

$$R_{\mathbb{Q}}^{ord} \cong R_F^{ord} / \sum_{\sigma \in \Delta} R_F^{ord} (\sigma - 1) R_F^{ord}$$

In all the above cases, $Spec(Im(\alpha^?))$ is isomorphic to the maximal closed subscheme of $Spec(R_F^?)$ fixed under Δ .

We study the relation among the various subfunctors of \mathcal{F}_F . Suppose that p is odd and that $\chi \mod \mathfrak{m}_W = \det(\overline{\rho})$. Then we have a natural transformation for $? = \emptyset$ or *n.ord*: $\mathcal{F}_{F,\overline{\rho}}^? \to \mathcal{F}_F^{\chi,?} \times \mathcal{F}_{F,\det(\overline{\rho})}$ given by $\rho \mapsto (\rho^{\chi}, \det(\rho))$, where

$$\rho^{\chi} = \rho \otimes (\det(\rho)^{-1}\chi)^{1/2}.$$

Note here that $\det(\rho)^{-1}\chi$ is of p-power order with p odd, and hence its square root is uniquely determined. By this remark, we can recover ρ from $(\rho^{\chi}, \det(\rho))$. Thus we have $\mathcal{F}_{F,\overline{p}}^{?} \cong \mathcal{F}_{F}^{\chi,?} \times \mathcal{F}_{F,\det(\overline{\rho})}$ and hence

$$R_F^? \cong R_F^{\chi,?} \widehat{\otimes}_W W[[\mathfrak{H}_p^{ab}]] \cong R_F^{\chi,?}[[\mathfrak{H}_p^{ab}]].$$

When $F = \mathbb{Q}$, the restriction of a character ξ of D to the inertia subgroup I has a unique extension $\xi^{\mathfrak{G}}$ to \mathfrak{G} , because the image of I in D^{ab} is naturally isomorphic to \mathfrak{G}^{ab} . Then, assuming that $\overline{\rho}$ is p-ordinary, we see that $\rho \mapsto (\rho \otimes (\delta_{D,\rho}^{-1})^{\mathfrak{G}}, (\delta_{D,\rho})^{\mathfrak{G}})$ induces a natural transformation: $F_{\mathbb{Q}}^{n.ord} \cong \mathcal{F}_{\mathbb{Q}}^{ord} \times \mathcal{F}_{\mathbb{Q},(\delta_{D,\overline{\rho}})^{\mathfrak{G}}}$. Thus we get

$$R^{n.ord}_{\mathbb{Q}} \cong R^{ord}_{\mathbb{Q}} \widehat{\otimes}_W W[[\Gamma]] \cong R^{ord}_{\mathbb{Q}}[[\Gamma]],$$

where we have written Γ for \mathfrak{G}_p^{ab} ($\cong 1 + p\mathbb{Z}_p$ if p is odd) following the tradition in the Iwasawa theory. We summarize the above argument into the following

Proposition 3.14. Suppose the assumption of Theorem 3.13 depending on the restriction "?". Suppose that $\chi \mod \mathfrak{m}_W = \det(\overline{\rho})$. Then we have the following canonical isomorphisms:

(i) For $? = \emptyset$ or n.ord,

$$R_F^? \cong R_F^{\chi,?} \widehat{\otimes}_W W[[\mathfrak{H}_p^{ab}]] \cong R_F^{\chi,?}[[\mathfrak{H}_p^{ab}]].$$

(ii) Suppose that $\overline{\rho}$ is p-ordinary. Then

$$R^{n.ord}_{\mathbb{Q}} \cong R^{ord}_{\mathbb{Q}} \widehat{\otimes}_W W[[\Gamma]] \cong R^{ord}_{\mathbb{Q}}[[\Gamma]].$$

In particular, we have a canonical isomorphism (if $F = \mathbb{Q}$):

$$R^{ord}_{\mathbb{O}} \cong R^{\chi}_{\mathbb{O}}$$

under the assumptions of (i) and (ii).

References

Books

- [CRT] H. Matsumura, Commutative Ring Theory, Cambridge studies in advanced mathematics 8, Cambridge Univ. Press, 1986
- [FAN] D. Ramakrishnan and R. J. Valenza, Fourier Analysis on Number Fields, GTM 186, 1999, Springer
- [MFG] H. Hida, Modular Forms and Galois Cohomology, Cambridge Studies in Advanced Mathematics 69, 2000, Cambridge University Press
- [MRT] C.W. Curtis and I. Reiner, Methods of representation theory, John Wiley and Sons, New York, 1981.

Articles

- [Kh10] C. Khare, Serre's conjecture and its consequences. Jpn. J. Math. 5 (2010), 103–125.
- [KW09] C. Khare and J.-P. Wintenberger, Serre's modularity conjecture. I, II. I: Invent. Math. 178 (2009), 485–504; II. Invent. Math. 178 (2009), 505–586
- [M89] B. Mazur, Deforming Galois representations, MSRI Publications 16 (1989), 385–437
- [TW95] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553–572
- [W95] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443–551