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1. Introduction

In this course, we discuss the following four topics:

(1) Basics of Galois deformation theory (and representation theory of pro-finite
groups);

(2) Relation of deformation rings for a given starting representation restricted
to open subgroups;

(3) Introduction to Galois cohomology;
(4) “R = T” theorem (in [W95]), applications and open questions (if time

allows).

The purpose is to introduce the audience to base-change theorems of deformation
rings relative to Galois extension F/Q and to show how such theorems have been
useful in establishing base change in the automorphic side. Alongside, we describe
p-adic representation theory of p-profinite groups. At the end, we describe some
open problems on deformation rings and its relation to L-values.

We fix a prime p > 2, an algebraic closure Q of Q and Qp of Qp and field

embeddings ip : Q ↪→ Qp and i∞ : Q ↪→ C. Let F be a number field, and S

be a finite set of primes of F and F S/F be the maximal field extension inside Q

unramified outside p and ∞. Put GF = Gal(F S/F ). Usually S is made of primes
above p (but not always. In this note, W is a discrete valuation ring over the p-adic
integer ring Zp with residue field F. For a local ring A, its maimal ideal is denoted
by mA.

2. Galois deformation rings

We prove existence of the universal Galois deformation rings.

2.1. The Iwasawa algebra as a deformation ring. We can interpret the Iwa-
sawa algebra Λ as a universal Galois deformation ring. Fix a continuous character
ψ : GQ → F×. We write CLW for the category of p-profinite local W -algebras A
with A/mA = F. A character ρ : GQ → A× for A ∈ CLW is called a W -deformation

(or just simply a deformation) of ψ if (ρ mod mA) = ψ. A couple (R,ρ) made of
an object R of CLW and a character ρ : GF →R× is called a universal couple for
ψ if for any deformation ρ : GF → A of ψ, we have a unique morphism φρ : R → A
in CLW (so it is a local W -algebra homomorphism) such that φρ ◦ ρ = ρ. By the
universality, if exists, the couple (R,ρ) is determined uniquely up to isomorphisms.
The ring R is called the universal deformation ring and ρ is called the universal
deformation of ψ.

Consider the group of p-power roots of unity µp∞ =
⋃

n µpn ⊂ Q
×

. Then writing

ζn = exp
(

2πi
pn

)
, we can identify the group µpn with Z/pnZ by ζm

n ↔ (m mod pn).

The Galois action of σ ∈ GQ sends ζn to ζ
νn(σ)
n for νn(σ) ∈ Z/pnZ. Then GQ acts on

Zp(1) = lim
←−n

µpn by a character ν := lim
←−n

νn : GQ → Z×
p , which is called the p-adic

cyclotomic character. The logarithm power series log(1 + x) =
∑∞

n=1−
(−x)n

n and

exponential power series exp(x) =
∑∞

n=0
xn

n! converges absolutely p-adically on pZp.

Note that Z×
p = µp−1×Γ for Γ = 1+pZp by Z×

p 7→ (ω(z) = limn→∞ zpn

, ω(z)−1z) ∈
µp−1 × Γ. We define logp : Z×

p → Γ by logp(ζ, s) = log(s) ∈ pZp for ζµp−1 and
s ∈ 1 + pZp = Γ.
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Exercise 2.1. Compute the radius of convergence of exp(x) and log(x) in Cp under
the standard p-adic norm | · |p with |p|p = p−1.

Let ΛW = W [[X]] (a one variable power series ring with coefficients in W ) and

Λ = Zp[[X]]. Since s 7→
(

s
n

)
= (s−n+1)(s−n+2)···s

n! has integer valued on the set
Z+ of positive integers and p-adically continuous, it extends to a polynomial map
Zp 3 s 7→

(
s
n

)
∈ Zp. Then (1 + X)s =

∑∞
n=0

(
s
n

)
Xn ∈ Zp, getting an additive

character Zp 3 s 7→ (1 + X)s ∈ Λ×. Let γ = 1 + p; so, Γ = γZp . Consider the

character κ : GQ→ Λ× given by κ(σ) = (1 +X)logp(νp(σ))/ logp(γ).

Exercise 2.2. Prove 1 + pZp = γZp .

Since Q[µp∞ ] is the maximal abelian extension of Q unramified outside p and
∞ by class field theory (or else, by the theorem of Kronecker-Weber), we have

GQ/[GQ,GQ] = Gal(Q[µp∞ ]/Q). On the other hand, we identified Gal(Q[µp∞ ]/Q)
with Z×

p by νp. We write [z] ∈ Gal(Q[µp∞ ]/Q) for automorphism of Q[µp∞ ] with

νp([z]) = z. Then we have κ([γs]) = (1 +X)s. Since ψ has values in F×
p
∼= µp−1,

we may identify the character ψ with a character ψ : GQ → µp−1 ⊂ Z×
p . Define

ψ : GQ → Λ× by ψ(σ) := κ(σ)ψ(σ); then ψ ≡ ψ mod mΛ, where mΛ is the

maximal ideal of Λ; so, mΛ = (p,X). Thus (Λ,ψ) is a deformation of (F, ψ) with
ψ([γ]) = (1 +X).

Proposition 2.3. The couple (ΛW = W [[X]],ψ) (for a variable X) is the universal

couple for ψ.

Proof. Since Q[µp∞ ] is the maximal abelian extension of Q unramified outside p
and ∞, each deformation ρ : GQ → A× factors through Gal(Q[µp∞ ]/Q) = Γ ×
Gal(Q[µp]/Q). Then the character ρ is determined by ρ(γ), because ρ|Q[µp] is given

by ψ and Γ = γZp . Then we have φρ : ΛW = W [[X]]→ A by sending X to ρ(γ)−1,
and we have φρ ◦ψ = ρ. �

For a given n-dimensional representation ρ : GF → GLn(F), a deformation
ρ : GF → GLn(R) is a continuous representation with ρ mod mR

∼= ρ. Two
deformations ρ, ρ′ : GF → GLn(R) for R ∈ CLW is equivalent, if there exists
an invertible matrix x ∈ GLn(R) such that xρ(σ)x−1 = ρ′(σ) for all σ ∈ GF .
We write ρ ∼ ρ′ if ρ and ρ′ are equivalent. A couple (Rρ,ρ) for a deformation
ρ : GF → GLn(Rρ) is called a universal couple over W , if for any given deformation
ρ : GF → GLn(R) there exists a unique W -algebra homomorphism ιρ : Rρ → R
such that ιρ ◦ ρ ∼ ρ.

2.2. Pseudo representations. In order to show the existence of the universal
deformation ring, pseudo representations are very useful. We recall the definition
of pseudo representations (due to Wiles) when n = 2. See [MFG] §2.2.2 for a higher
dimensional generalization due to R. Taylor.

In this subsection, the coefficient ring A is always an object in CLW with max-
imal ideal mA. We write F = A/mA. Note that 2 is invertible in A as p > 2. We
would like to characterize the trace of a representation of a group G.

We describe in detail traces of degree 2 representations ρ : G→ GL2(A) when G
contains c such that c2 = 1 and det ρ(c) = −1. Let V (ρ) = A2 on which G acts by
ρ. Since 2 is invertible in A, we know that V = V (ρ) = V+⊕V− for V± = 1±c

2 V . For

ρ = ρ mod mA, we write V = V (ρ). Then similarly as above, V = V + ⊕ V − and
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V ± = V±/mAV±. Since dimF V = 2 and det ρ(c) = −1, dimF V ± = 1. This shows
that V ± = Fv± for v± ∈ V ±. Take v± ∈ V± such that v± mod mAV± = v±,
and define φ± : A → V± by φ(a) = av±. Then φ± mod mAV is surjective by
Nakayama’s lemma. Note that φ± : A ∼= V± as A-modules. In other words,

{v−, v+} is an A–base of V . We write ρ(r) =
(

a(r) b(r)
c(r) d(r)

)
with respect to this base.

Thus ρ(c) =
(
−1 0
0 1

)
. Define another function x : G×G→ A by x(r, s) = b(r)c(s).

Then we have

(W1) a(rs) = a(r)a(s) + x(r, s), d(rs) = d(r)d(s) + x(s, r) and

x(rs, tu) = a(r)a(u)x(s, t) + a(u)d(s)x(r, t) + a(r)d(t)x(s, u) + d(s)d(t)x(r, u);

(W2) a(1) = d(1) = d(c) = 1, a(c) = −1 and x(r, s) = x(s, t) = 0 if s = 1, c;
(W3) x(r, s)x(t, u) = x(r, u)x(t, s).

These are easy to check: We have
(

a(r) b(r)
c(r) d(r)

) (
a(s) b(s)
c(s) d(s)

)
=

(
a(rs) b(rs)
c(rs) d(rs)

)
.

Then by computation, a(rs) = a(r)a(s) + b(r)c(s) = a(r)a(s) + x(r, s). Similarly,
we have b(rs) = a(r)b(s) + b(r)d(s) and c(rs) = c(r)a(s) + d(r)c(s). Thus

x(rs, tu) = b(rs)c(tu) = (a(r)b(s) + b(r)d(s))(c(t)a(u) + d(t)c(u))

= a(r)a(u)x(s, t) + a(r)d(t)x(s, u) + a(u)d(s)x(r, t) + d(s)d(t)x(r, u).

A triple {a, d, x} satisfying the three conditions (W1-3) is called a pseudo represen-
tation of Wiles of (G, c). For each pseudo-representation τ = {a, d, x}, we define

Tr(τ )(r) = a(r) + d(r) and det(τ )(r) = a(r)d(r)− x(r, r).

By a direct computation using (W1-3), we see

a(r) =
1

2
(Tr(τ )(r)− Tr(τ )(rc)), d(r) =

1

2
(Tr(τ )(r) + Tr(τ )(rc))

and

x(r, s) = a(rs)− a(r)a(s), det(τ )(rs) = det(τ )(r) det(τ )(s).

Thus the pseudo-representation τ is determined by the trace of τ as long as 2 is
invertible in A.

Proposition 2.4 (A. Wiles, 1988). Let G be a group and R = A[G]. Let τ =
{a, d, x} be a pseudo-representation (of Wiles) of (G, c). Suppose either that there
exists at least one pair (r, s) ∈ G×G such that x(r, s) ∈ A× or that x(r, s) = 0 for all
r, s ∈ G. Then there exists a representation ρ : R →M2(A) such that Tr(ρ) = Tr(τ )
and det(ρ) = det(τ ) on G. If A is a topological ring, G is a topological group and
all maps in τ are continuous on G, then ρ is a continuous representation of G into
GL2(A) under the topology on GL2(A) induced by the product topology on M2(A).

Proof. When x(r, s) = 0 for all r, s ∈ G, we see from (W1) that a, d : G → A
satisfies a(rs) = a(r)a(s) and d(rs) = d(r)d(s). Thus a, d are characters of G,

and we define ρ : G → GL2(A) by ρ(g) =
(

a(g) 0
0 d(g)

)
, which satisfies the required

property.
We now suppose x(r, s) ∈ A× for r, s ∈ G. Then we define b(g) = x(g, s)/x(r, s)

and c(g) = x(r, g) for g ∈ G. Then by (W3), b(g)c(h) = x(r, h)x(g, s)/x(r, s) =
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x(g, h). Put ρ(g) =
(

a(g) b(g)
c(g) d(g)

)
. By (W2), we see that ρ(1) is the identity matrix

and ρ(c) =
(
−1 0
0 1

)
. By computation,

ρ(g)ρ(h) =
(

a(g) b(g)
c(g) d(g)

)(
a(h) b(h)
c(h) d(h)

)
=

(
a(g)a(h)+b(g)c(h) a(g)b(h)+b(g)d(h)
c(g)a(h)+d(g)c(h) d(g)d(h)+c(g)b(h)

)
.

By (W1), a(gh) = a(g)a(h)+x(g, h) = a(g)a(h)+ b(g)c(h) and d(gh) = d(g)d(h)+
x(h, g) = d(g)d(h) + b(h)c(g). Now let us look at the lower left corner:

c(g)a(h) + d(g)c(h) = x(r, g)a(h) + d(g)x(r, h).

Now apply (W1) to (1, r, g, h) in place of (r, s, t, u), and we get

c(gh) = x(r, gh) = a(h)x(r, g) + d(g)x(r, h),

because x(1, g) = x(1, h) = 0. As for the upper right corner, we apply (W1) to
(g, h, 1, s) in place of (r, s, t, u). Then we get

b(gh)x(r, s) = x(gh, s) = a(g)x(h, s) + d(h)x(g, s) = (a(g)b(h) + d(h)b(g))x(r, s),

which shows that ρ(gh) = ρ(g)ρ(h). We now extends ρ linearly to R = A[G]. This
shows the first assertion. The continuity of ρ follows from the continuity of each
entries, which follows from the continuity of τ . �

Start from an absolutely irreducible representation ρ : G → GLn(F). Here a
representation of a group into GLn(K) for a field K is called absolutely irreducible
if it is irreducible as a representation into GLn(K) for an algebraic closure K of K.

Exercise 2.5. (1) Give an example of irreducible representations of a group G
into GL2(Q) which is not absolutely irreducible.

(2) Show that if a representation ρ : G→ GLn(K) is absolutely irreducible, the
K-subalgebra generated by ρ(g) for all g ∈ G coincides with Mn(K).

(3) If A is a local ring with residue field F with a representation ρ : G →
GLn(A) such that ρ = (ρ mod mA) is absolutely irreducible, show that the
subalgebra generated over A by ρ(g) for all g ∈ G is equal to Mn(A).

We fix an absolutely irreducible representation ρ : G→ GL2(F) with det(ρ)(c) =
−1. If we have a representation ρ : G → GL2(A) with ρ mod mA ∼ ρ, then
det(ρ(c)) ≡ det(ρ(c)) ≡ −1 mod mA. Since c2 = 1, if 2 is invertible in A (⇔
the characteristic of F is different from 2), det(ρ(c)) = −1. This is a requirement
to have a pseudo-representation τρ of Wiles associated to ρ. Since ρ is absolutely
irreducible, we find r, s ∈ G such that b(r) 6≡ 0 mod mA and c(s) 6≡ 0 mod mA.
Thus τρ satisfies the condition of Proposition 2.4. Conversely if we have a pseudo
representation τ : G → A such that τ ≡ τ mod mA for τ = τρ, again we find
r, s ∈ G such that x(r, s) ∈ A×. The correspondence ρ 7→ τρ induces a bijection:

(2.1) {ρ : G→ GL2(A) : representation|ρ mod mA ∼ ρ} / ∼↔

{τ : G→ A : pseudo-representation|τ mod mA = τ} ,

where τ = τρ and “∼” is the conjugation under GL2(A). The map is surjective by
Proposition 2.4 combined with Proposition 2.6 and one to one by Proposition 2.6
we admit, because a pseudo-representation is determined by its trace.

Proposition 2.6 (Carayol, Serre, 1994). Let A be an pro-artinian local ring with
finite residue field F. Let R = A[G] for a profinite group G. Let ρ : R → Mn(A)
and ρ′ : R → Mn′(A) be two continuous representations. If ρ = ρ mod mA is
absolutely irreducible and Tr(ρ(σ)) = Tr(ρ′(σ)) for all σ ∈ G, then ρ ∼ ρ′.
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See [MFG] Proposition 2.13 for a proof of this result.

2.3. Two dimensional non-abelian universal deformations. We fix an abso-
lutely irreducible representation ρ : G→ GL2(F) for a profinite group G. Assume
that we have c ∈ G with c2 = 1 and det(ρ(c)) = −1. First we consider a universal

pseudo-representation. Let τ = (a, d, x) be the pseudo representation associated
to ρ. A couple consisting of an object Rτ ∈ CLW and a pseudo-representation
T = (A,D,X) : G → Rτ is called a universal couple if the following universality
condition is satisfied:

(univ) For each pseudo-representation τ : G → A (A ∈ CLW ) with τ ∼= τ
mod mA, there exists a unique W–algebra homomorphism ιτ : Rτ → A
such that

τ = ιτ ◦ T.

We now show the existence of (Rτ , T ) for a profinite group G. First suppose G is
a finite group. Let ω : W× → µq−1(W ) be the Teichmüller character, that is,

ω(x) = lim
n→∞

xqn

(q = |F| = |W/mW |).

We also consider the following isomorphism: µq−1(W ) 3 ζ 7→ ζ mod mW ∈ F×.
We write ϕ : F× → µq−1(W ) ⊂ W× for the inverse of the above map. We look at
the power series ring: Λ = ΛG = W [[Ag, Dh, X(g,h); g, h ∈ G]]. We put

A(g) = Ag + ϕ(a(g)), D(g) = Dg + ϕ(d(g)) and X(g, h) = Xg,h + ϕ(x(g, h)).

We construct the ideal I so that

T = (g 7→ A(g) mod I, g 7→ D(g) mod I, (g, h) 7→ X(g, h) mod I)

becomes the universal pseudo representation. Thus we consider the ideal I of Λ

generated by the elements of the following type:

(w1) A(rs) − (A(r)A(s) +X(r, s)), D(rs) − (D(r)D(s) +X(s, r)) and

X(rs, tu)−(A(r)A(u)X(s, t)+A(u)D(s)X(r, t)+A(r)D(t)X(s, u)+D(s)D(t)X(r, u));

(w2) A(1) − 1 = A1, D(1) − 1 = D1, D(c) − 1 = Dc, A(c) + 1 = Ac and
X(r, s) −X(s, t) if s = 1, c;

(w3) X(r, s)X(t, u) −X(r, u)X(t, s).

Then we put Rτ = Λ/I and define T = (A(g), D(h), X(g, h)) mod I. By the
above definition, T is a pseudo-representation with T mod mRτ

= τ . For a pseudo
representation τ = (a, d, x) : G → A with τ ≡ τ mod mA, we define ιτ : Λ → A
with ιτ (f) ∈ A for a power series f(Ag , Dh, X(g,h)) ∈ Λ by

f(Ag , Dh, X(g,h)) 7→ f(τ (g) − ϕ(τ (g)))

= f(a(g) − ϕ(a(g)), d(h)− ϕ(d(h)), x(g, h)− ϕ(x(g, h))).

Since f is a power series of Ag , Dh, Xg,h and τ (g) − ϕ(τ (g)) ∈ mA, the value
f(τ (g) − ϕ(τ (g))) is well defined. Let us see this. If A is artinian, a sufficiently
high power mN

A vanishes. Thus if the monomial of the variables Ag , Dh, X(g,h) is of
degree higher than N , it is sent to 0 via ιτ , and f(τ (g) − ϕ(τ (g))) is a finite sum
of terms of degree ≤ N . If A is pro-artinian, the morphism ιτ is just the projective
limit of the corresponding ones well defined for artinian quotients. By the axioms
of pseudo-representation (W1-3), ιτ(I) = 0, and hence ιτ factors through Rτ . The
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uniqueness of ιτ follows from the fact that {Ag , Dh, X(g,h)|g, h ∈ G} topologically
generates Rτ .

Now assume that G = lim
←−N

G/N for open normal subgroups N (so, G/N is

finite). Since Ker(ρ) is an open subgroup of G, we may assume that N runs
over subgroups of Ker(ρ). Since ρ factors through G/Ker(ρ), Tr(τ ) = Tr(ρ)
factors through G/N . Therefore we can think of the universal couple (RN

τ , TN)
for (G/N, τ). If N ⊂ N ′, the algebra homomorphism ΛG/N → ΛG/N′ taking
(AgN , DhN , X(gN,hN)) to (AgN′ , DhN′ , X(gN′,hN′)) induces a surjective W–algebra

homomorphism πN,N′ : RN
τ → RN′

τ with πN,N′ ◦ TN = TN′ . We then define
T = lim

←−N
TN and Rτ = lim

←−N
RN

τ . If τ : G → A is a pseudo representation,

by Proposition 2.4, we have the associated representation ρ : G → GL2(A) such
that Tr(τ ) = Tr(ρ). If A is artinian, then GL2(A) is a finite group, and hence
ρ and Tr(τ ) = Tr(ρ) factors through G/N for a sufficiently small open normal

subgroup N . Thus we have ιτ : Rτ
πN−−→ RN

τ

ιN
τ−−→ A such that ιτ ◦ T = τ . Since

(A(g), D(h), X(g, h)) generates topologically Rτ , ιτ is uniquely determined.
Writing ρ for the representation ρ : G → GLn(Rτ) associated to the universal

pseudo representation T and rewriting Rρ = Rτ , for n = 2, we have proven by
(2.1) the following theorem, which was first proven by Mazur [M89] in in 1989 (see
[MFG] Theorem 2.26 for a proof valid for any n).

Theorem 2.7 (Mazur). Suppose that ρ : G → GLn(F) is absolutely irreducible.
Then there exists the universal deformation ring Rρ in CLW and a universal defor-
mation ρ : G→ GLn(Rρ). If we write τ for the pseudo representation associated to
ρ, then for the universal pseudo-representation T : G→ Rτ deforming τ , we have
a canonical isomorphism of W–algebras ι : Rρ

∼= Rτ such that ι ◦ Tr(ρ) = Tr(T ).

Let (Rρ,ρ) be the universal couple for an absolutely irreducible representation
ρ : GQ → GLn(F). We can also think of (Rdet(ρ), ν), which is the universal couple

for the character det(ρ) : GQ → GL1(F) = F×. As we have studied already,
Rdet(ρ)

∼= W [[Γ]] = ΛW . Note that det(ρ) : GQ → GL1(Rρ) satisfies det(ρ)
mod mRρ

= det(ρ). Thus det(ρ) is a deformation of det(ρ), and hence by the
universality of (ΛW

∼= Rdet(ρ), ν), there is a unique W–algebra homomorphism
ι : ΛW → Rρ such that ι ◦ ν = det(ρ). In this way, Rρ becomes naturally a
ΛW–algebra via ι.

Corollary 2.8. Let the notation and the assumption be as above and as in the above
theorem. Then the universal ring Rρ is canonically an algebra over the Iwasawa
algebra ΛW = W [[Γ]].

When G = GQ (or more generally, GF ), it is known that Rρ is noetherian (cf.
[MFG] Proposition 2.30). We will come back to this point after relating certain
Selmer groups with the universal deformation ring.

2.4. Ordinary universal deformation rings. Let ρ : GQ → GL2(F) be a Galois
representation with coefficients in a finite field F of characteristic p. We consider
the following condition for a subfield F of Q(p):

(aiF ) ρ restricted to GF is absolutely irreducible;
(rgp) Suppose ρ|Dp

∼=
(

ε ∗
0 δ

)
for each decomposition subgroup Dp at p in GQ and

that ε is ramified with unramified δ (so, ε 6= δ on Ip).
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Let CLW be the category of p–profinite local W–algebras A with A/mA = F.
Hereafter we always assume that W–algebra is an object of CLW . Let ρ : GQ →
GL2(A) be a deformation of ρ and φ : GQ → W×. We consider the following
conditions

(det) det ρ = φ regarding φ as a character having values in A× by composing φ
with the W -algebra structure morphism W → A;

(ord) Suppose ρ|Dp
∼= ( ε ∗

0 δ ) for each decomposition subgroup Dp at p in GQ with

unramified δ (so, ε 6= δ on Ip).

A couple (Rord,φ ∈ CLW ,ρord,φ : GQ → GL2(R
ord,φ)) is called a p–ordinary

universal couple (over GQ) with determinant φ if ρord,φ satisfies (ord) and (det)
and for any deformation ρ : GQ → GL2(A) of ρ (A ∈ CLW ) satisfying (ord) and
(det), there exists a unique W–algebra homomorphism ϕ = ϕρ : Rord,φ → A such

that ϕ ◦ ρord,φ ∼ ρ in GL2(A). If the uniqueness of ϕ does not hold, we just call
(Rord,φ,ρord,φ) a versal p–ordinary couple with determinant φ.

Similarly a couple (Rord ∈ CLW ,ρord : GQ → GL2(R
ord)) (resp. (Rφ,ρφ))

is called a p–ordinary universal couple (over GQ) (resp. a universal couple with
determinant φ) if ρord satisfies (ord) (resp. det(ρφ) = φ) and for any deformation
ρ : GQ → GL2(A) of ρ (A ∈ CLW ) satisfying (ord) (resp. det(ρ) = φ), there exists
a unique W–algebra homomorphism ϕ = ϕρ : Rord → A (resp. ϕ = ϕρ : Rφ → A)

such that ϕ ◦ ρord ∼ ρ (resp. ϕ ◦ ρφ ∼ ρ) in GL2(A).

By the universality, if a universal couple exists, it is unique up to isomorphisms
in CLW .

Theorem 2.9 (Mazur). Under (aiQ) , universal couples (R,ρ) and (Rφ,ρφ) ex-
ist. Under (rgp) and (aiQ) , universal couples (Rord,ρord : GQ → GL2(R)) and
(Rord,φ,ρord,φ) exist (as long as ρ satisfies (ord) and (det)). All these universal
rings are noetherian if they exist.

This fact is proven in Mazur’s paper in [M89]. The existence of the universal
couple (R,ρ : GQ → GL2(R)) is proven in previous subsection (see Theorem 2.7) by
a different method (and its noetherian property is just mentioned). Here we prove
the existence of the universal couples (Rφ,ρφ), (Rord,ρord) and (Rord,φ,ρord,φ)
assuming the existence of a universal couple (R,ρ).

Proof. An ideal a ⊂ R is called ordinary if ρ mod a satisfies (ord). Let aord be the
intersection of all ordinary ideals, and put Rord = R/aord and ρord = ρ mod aord.
If ρ : GQ → GL2(A) satisfies (ord), we have a unique morphism ϕρ : R → A
such that (ρ mod Ker(ϕρ)) ∼ ϕρ ◦ ρ ∼ ρ. Thus Ker(ϕρ) is ordinary, and hence
Ker(ϕρ) ⊃ aord. Thus ϕρ factors through Rord. The only thing we need to show is
the ordinarity of ρ mod aord. Since aord is an intersection of ordinary ideals, we
need to show that if a and b are ordinary, then a ∩ b is ordinary.

To show this, we prepare some notation. Let V be an A–module with an action
of GQ. Let I = IP be an inertia group at p, and put VI = V/

∑
σ∈I(σ− 1)V . Then

by (rgp), ρ is ordinary if and only if V (ρ)I is A–free of rank 1. The point here
is that, writing π : V (ρ) � V (ρ)I for the natural projection, then Ker(π) is an
A–direct summand of V (ρ) and hence V (ρ) ∼= Ker(π) ⊕ V (ρ)I as A–modules (but
not necessarily as GQ–modules). Since V (ρ) ∼= A2, the Krull-Schmidt theorem tells
us that Ker(π) is free of rank 1. Then taking an A–basis (x, y) of V (ρ) so that
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x ∈ Ker(π), we write the matrix representation ρ with respect to this basis, we

have desired upper triangular form with V (ρ)I/mAV (ρ)I = V (δ).
Now suppose that ρ = ρ mod a and ρ′ = ρ mod b are both ordinary. Let

ρ′′ = ρ mod a∩b, and write V = V (ρ), V ′ = V (ρ′) and V ′′ = V (ρ′′). By definition,
V ′′/aV ′′ = V and V ′′/bV ′′ = V ′. This shows by definition: V ′′

I /aV
′′
I = VI and

V ′′
I /bV

′′
I = V ′

I . Then by Nakayama’s lemma, V ′′
I is generated by one element, thus

a surjective image of A = R/a ∩ b. Since in A, a ∩ b = 0, we can embed A into
A/a ⊕ A/b by the Chinese remainder theorem. Since VI

∼= A/a and V ′
I
∼= A/b,

the kernel of the diagonal map V ′′
I → VI ⊕ V ′

I
∼= A/a⊕ A/b has to be zero. Thus

V ′′
I
∼= A, which was desired.

As for Rφ and Rord,φ, we see easily that

Rφ = R/
∑

σ∈GQ

R(det ρ(σ) − φ(σ))

Rord,φ = Rord/
∑

σ∈GQ

Rord(det ρord(σ) − φ(σ)),

which finishes the proof. �

2.5. Tangent spaces of local rings. To study when Rρ is noetherian, here is a
useful lemma for an object A in CLW :

Lemma 2.10. If t∗A/W = mA/(m
2
A +mW ) is a finite dimensional vector space over

F, then A ∈ CLW is noetherian. The space t∗A/W is called the co-tangent space of

A at mA ∈ Spec(A) over Spec(W ).

Proof. Define t∗A by mA/m
2
A, which is called the (absolute) co-tangent space of A

at mA. Since we have an exact sequence:

F ∼= mW /m2
W −→ t∗A −→ t∗A/W −→ 0,

we conclude that t∗A is of finite dimension over F. First suppose that pA = 0 and
mN

A = 0 for sufficiently large N . Let x1, . . . , xm be an F–basis of t∗A. We choose
xj ∈ A so that xj mod m2

A = xj. Then we consider the ideal a generated by xj. We
have the inclusion map: a =

∑
j Axj ↪→ mA. After tensoring A/mA, we have the

surjectivity of the induced linear map: a/mAa ∼= a⊗AA/mA → m⊗AA/mA
∼= m/m2

A

because {x1, . . . , xm} is an F–basis of t∗A. This shows that mA = a =
∑

j Axj .

Therefore mk
A/m

k+1
A is generated by the monomials in xj of degree k as an F–

vector space. In particular, mN−1
A is generated by the monomials in xj of degree

N − 1. Then we define π : B = F[[X1, . . . , Xm]] → A by π(f(X1 , . . . , Xm)) =
f(x1, . . . , xm). Since any monomial of degree > N vanishes after applying π, π is
a well defined W–algebra homomorphism. Let m = mB = (X1, · · · , Xm) be the

maximal ideal of B. By the above argument, π(mN−1) = mN−1
A . Suppose now

that π(mN−j) = m
N−j
A , and try to prove the surjectivity of π(mN−j−1) = m

N−j−1
A .

Since m
N−j−1
A /mN−j

A is generated by monomials of degree N − j− 1 in xj, for each

x ∈ m
N−j−1
A , we find a homogeneous polynomial P ∈ mN−j−1 of x1, . . . , xm of

degree N − j−1 such that x−π(P ) ∈ m
N−j
A = π(mN−j). This shows the assertion:

π(mN−j−1) = m
N−j−1
A . Thus by induction on j, we get the surjectivity of π.

Now suppose only that mN
A = 0. Then in particular, pNA = 0. Thus A is an

W/pNW–module. We can still define π : B = W/pNW [[X1, . . . , Xm]] → A by
sending Xj to xj. Then by the previous argument applied to B/pB and A/pA,
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we find that π mod p : B ⊗W W/pW ∼= B/pB → A/pA ∼= A ⊗W W/pW is
surjective. In particular, for the maximal ideal m′ of W/pNW , π mod m′ : B ⊗W

F ∼= B/m′B → A/m′A ∼= A ⊗W F is surjective. Then by Nakayama’s lemma (cf.
[CRT] §2 or [MFG] §2.1.3) applied to the nilpotent ideal m′, π is surjective.

In general, write A = lim
←−i

Ai for artinian rings Ai. Then the projection maps

induce surjections t∗Ai+1
→ t∗Ai

. Since t∗A is of finite dimensional, for sufficiently large

i, t∗Ai+1

∼= t∗Ai
. Thus choosing xj as above in A, we have its image x

(i)
j in Ai. Use

x
(i)
j to construct πi : W [[X1, . . . , Xm]] → Ai in place of xj . Then πi is surjective

as already shown, and π = lim
←−i

πi : W [[X1, . . . , Xm]] → A remains surjective,

because projective limit of surjections, if all sets involved are finite sets, remain
surjective (Exercise 1). Since W [[X1, . . . , Xm]] is noetherian ([CRT] Theorem 3.3),
its surjective image A is noetherian. �

2.6. Recall of group cohomology. To prove noetherian property of Galois defor-
mation ring R, we need to show the tangent space of Spec(R) has finite dimension.
In order to give a Galois theoretic computation of the tangent space of the deforma-
tion ring, we introduce here briefly Galois cohomology groups. Consider a profinite
group G and a continuous G-module X. Assume that X has either discrete or
profinite topology.

Let Tp = Qp/Zp. For any abelian p-profinite compact or p-torsion discrete
module X, we define the Pontryagin dual module X∗ by X∗ = Homcont(X,Tp)
and give X∗ the topology of uniform convergence on every compact subgroup of
X. The G-action on f ∈ X∗ is given by σf(x) = f(σ−1x). Then by Pontryagin
duality theory (cf. [FAN]), we have (X∗)∗ ∼= X canonically.

Exercise 2.11. Show that if X is finite, X∗ ∼= X noncanonically.

Exercise 2.12. Prove that X∗ is a discrete module if X is p-profinite and X∗ is
compact if X is discrete.

By this fact, if X∗ is the dual of a profinite module X = lim←−n
Xn for finite

modules Xn with surjections Xm � Xn for m > n, X∗ =
⋃

n X
∗
n is a discrete

module which is a union of finite modules X∗
n.

We denote by Hq(G,X) the continuous group cohomology with coefficients in
X. If X is finite, Hq(G,X) is as defined in [MFG] 4.3.3. Thus we have

H0(G,X) = XG = {x ∈ X|gx = x for all g ∈ G},

and if X is finite,

H1(G,X) =
{G

c
−→ X : continuous|c(στ ) = σc(τ ) + c(σ) for all σ, τ ∈ G}

{G
b
−→ X|b(σ) = (σ − 1)x for x ∈ X independent of σ}

,

and H2(G,X) is given by

{G
c
−→ X : continuous|c(σ, τ ) + c(στ, ρ) = σc(τ, ρ) + c(σ, τρ) for all σ, τ, ρ ∈ G}

{G
b
−→ X|b(σ, τ ) = c(σ) + σc(τ ) − c(στ ) for a continuous map c : G→ X}

.

If X = lim
←−n

Xn (resp. X = lim
−→x

Xn) for finite G-modules Xn, we define

Hj(G,X) = lim←−
n

Hj(G,Xn) (resp. Hj(G,X) = lim−→
n

Hj(G,Xn)).
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For each Galois character ψ : Gal(Q/F )→W× and a W -module X with contin-
uous action of Gal(Q/F ), we write X(ψ) for the Galois module whose underlying
W -module is X and Galois action is given by ψ. We simply write X(i) for X(νi)

for the p-adic cyclotomic character. In particular Zp(1) ∼= lim←−n
µpn(Q) as Galois

modules.
Let G be the (profinite) Galois group G = GF or Gal(Qp/K) for a finite extension

K/Qp. By a result of Tate, Galois cohomology “essentially” has cohomological

dimension 2; so, H0, H1 and H2 are important. If G = Gal(Qp/K) for a finite
extension K/Qp, by Tate duality (see [MFG] 4.42),

H2−i(G,X) ∼= Hom(Hi(G,X∗(1)),Q/Z)

for finite X.
For a general K-vector space V with a continuous action of G and a G-stable

W -lattice L of V , we define Hq(G, V ) = Hq(G,L)⊗W K.

Write GM = Gal(F (p)/M) for any intermediate fieldM of F (p)/F , where F (p)/F
is the maximal extension unramified outside p and ∞. By the inflation-restriction
sequence (e.g., [MFG] 4.3.4),

0→ H1(Gal(M/F ), H0(GM , X))→ H1(GF , X)→ H1(GM , X)

is exact. More generally, we can equip a natural action of Gal(M/F ) onH1(GM , X)
and the sequence is extended to

0→ H1(Gal(M/F ), H0(GM , X))

→ H1(GF , X)→ H0(Gal(M/F ), H1(GM , X))

→ H2(Gal(M/F ), H0(GM , X))

which is still exact.

2.7. Cohomological interpretation of tangent spaces. Let R = Rρ. We let
GQ acts on Mn(F) by gv = ρ(g)vρ(g)−1. This GQ–module will be written as ad(ρ).

Lemma 2.13. Let R = Rρ for an absolutely irreducible representation ρ : GQ →
GLn(F). Then

tR/W = HomF(t
∗
R/W ,F) ∼= H1(GQ, ad(ρ)),

where H1(GQ, ad(ρ)) is the continuous first cohomology group of GQ with coeffi-
cients in the discrete GQ–module V (ad(ρ)).

The space tR/W is called the tangent space of Spec(R)/W at m.

Proof. Let A = F[X]/(X2). We write ε for the class of X in A. Then ε2 = 0. We
consider φ ∈ HomW−alg(R,A). Write φ(r) = φ0(r) + φε(r)ε. Then we have from
φ(ab) = φ(a)φ(b) that φ0(ab) = φ0(a)φ0(b) and

φε(ab) = φ0(a)φε(b) + φ0(b)φε(a).

Thus Ker(φ0) = mR because R is local. Since φ is W–linear, φ0(a) = a = a
mod mR, and thus φ kills m2

R and takes mR W–linearly into mA = Fε. Moreover
for r ∈ W , r = rφ(1) = φ(r) = r+φε(r)ε, and hence φε kills W . Since R shares its
residue field F with W , any element a ∈ R can be written as a = r+ x with r ∈W
and x ∈ mR. Thus φ is completely determined by the restriction of φε to mR, which
factors through t∗R/W . We write `φ for φε regarded as an F–linear map from t∗R/W



BASE CHANGE AND GALOIS DEFORMATION 12

into F. Then we can write φ(r + x) = r + `φ(x)ε. Thus φ 7→ `φ induces a linear
map ` : HomW−alg(R,A)→ HomF(t∗R/W ,F). Note that R/(m2

R +mW ) = F⊕ t∗R/W .

For any ` ∈ HomF(t∗R/W ,F), we extends ` to R/m2
R declaring its value on F is

zero. Then define φ : R → A by φ(r) = r + `(r)ε. Since ε2 = 0, φ is an W–
algebra homomorphism. In particular, `(φ) = `, and hence ` is surjective. Since
algebra homomorphisms killing m2

R + mW are determined by its values on t∗R/W , `

is injective.
By the universality, we have

HomW−alg(R,A) ∼= {ρ : GQ→ GLn(A)|ρ mod mA = ρ}/ ∼ .

Then we can write ρ(g) = ρ(g) + u′ρ(g)ε. From the mutiplicativity, we have

ρ(gh) + u′ρ(gh)ε = ρ(gh) = ρ(g)ρ(h) = ρ(g)ρ(h) + (ρ(g)u′ρ(h) + u′ρ(g)ρ(h))ε,

Thus as a function u′ : GQ →Mn(F), we have

(2.2) u′ρ(gh) = ρ(g)u′ρ(h) + u′ρ(g)ρ(h).

Define a map uρ : GQ → ad(ρ) by uρ(g) = u′ρ(g)ρ(g)
−1. Then by a simple com-

putation, we have guρ(h) = ρ(g)uρ(h)ρ(g)
−1 from the definition of ad(ρ). Then

from the above formula (2.2), we conclude that uρ(gh) = guρ(h) + uρ(g). Thus
uρ : GQ → ad(ρ) is a 1–cocycle. Starting from a 1–cocycle u, we can reconstruct
representation reversing the the above process. Then again by computation,

ρ ∼ ρ′ ⇐⇒ ρ(g) + u′ρ(g) = (1 + xε)(ρ(g) + u′ρ′(g))(1 − xε) (x ∈ ad(ρ))

⇐⇒ u′ρ(g) = xρ(g) − ρ(g)x+ u′ρ′(g) ⇐⇒ uρ(g) = (1− g)x + uρ′ (g).

Thus the cohomology classes of uρ and uρ′ are equal if and only if ρ ∼ ρ′. This
shows:

HomF(t∗R/W ,F) ∼= HomW−alg(R,A) ∼=

{ρ : GQ → GLn(A)|ρ mod mA = ρ}/ ∼ ∼= H1(GQ, ad(ρ)).

In this way, we get a bijection between HomF(t∗R/W ,F) and H1(GQ, ad(ρ)). By

tracking down (in the reverse way) our construction, one can check that the map
is an F–linear isomorphism. �

For each open subgroup H of a profinite group G, we write Hp for the maximal
p–profinite quotient. We consider the following condition:

(Φ) For any open subgroup H of G, the p-Frattini quotient Φ(Hp) is a finite
group,

where Φ(Hp) = Hp/(Hp)p(Hp, Hp) for the the commutator subgroup (Hp, Hp) of
Hp.

Proposition 2.14 (Mazur). By class field theory, GQ satisfies (Φ) , and Rρ is a
noetherian ring.

Proof. Let H = Ker(ρ). Then the action of H on ad(ρ) is trivial. By the inflation-
restriction sequence for G = GQ, we have the following exact sequence:

0→ H1(G/H,H0(H, ad(ρ)))→ H1(G, ad(ρ))→ Hom(Φ(Hp),Mn(F)).

From this, it is clear that dimFH
1(G, ad(ρ)) < ∞ if GQ satisfies the p-Frattini

condition (Φ). The fact that GQ satisfies (Φ) follows from class field theory. Indeed,
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if F is the fixed field of H , then Φ(Hp) fixes the maximal p-abelian extension M/F
of type (p, p, . . . , p) unramified outside p. Here a p-abelian extension M/F is of
type (p, p, . . . , p) if Gal(M/F ) is abelian killed by p. By class field theory, [M : F ]
is finite. �

2.8. Applications to representation theory. Group cohomology can be used
to measure obstruction of extending a representation of a subgroup to the entire
group. The theory is a version of Schur’s theory of projective representations [MRT]
Section 11E.

Let G be a profinite group with a normal open subgroup H of finite index. We
put ∆ = G/H . Fix a complete noetherian local Zp–algebra W with residue field
F. Any algebra A in this section will be assumed to be an object of CLW . For
each continuous representation ρ : H → GLn(A) and σ ∈ G, we define ρσ(g) =
ρ(σgσ−1).

We take a representation π : H → GLn(A) for an artinian local W–algebra A
with residue field F. We assume the following condition:

(AIH) ρ = π mod mA is absolutely irreducible.

For the moment, we assume another condition:

(C) π = c(σ)−1πσc(σ) with some c(σ) ∈ GLn(A) for each σ ∈ G.

If we find another c′(σ) ∈ GLn(A) satisfying π = c′(σ)−1πσc′(σ), we have

π = c′(σ)−1c(σ)πc(σ)−1c′(σ),

and hence by Exercise 2.5 (3), c(σ)−1c′(σ) is a scalar. In particular, for σ, τ ∈ G,

c(στ )−1πστ c(στ ) = π = c(τ )−1πτ c(τ ) = c(τ )−1c(σ)−1πστ c(σ)c(τ ),

and hence, b(σ, τ ) = c(σ)c(τ )c(στ )−1 ∈ A×. Thus c(σ)c(τ ) = b(σ, τ )c(στ ). This
shows by the associativity of the matrix multiplication that

(c(σ)c(τ ))c(ρ) = b(σ, τ )c(στ )c(ρ) = b(σ, τ )b(στ, ρ)c(στρ) and

c(σ)(c(τ )c(ρ)) = c(σ)b(τ, ρ)c(τρ) = b(τ, ρ)b(σ, τρ)c(στρ),

and hence b(σ, τ ) is a 2–cocycle of G. If h ∈ H , then

π(g) = c(hτ )−1π(hτgτ−1h−1)c(hτ ) =

c(hτ )−1π(h)c(τ )π(g)c(τ )−1π(h)−1c(hτ ).

Thus c(hτ )−1π(h)c(τ ) ∈ A×.

Write G =
⊔

τ∈R Hτ (disjoint). We redefine c by c(hτ ) = π(h)c(τ ) for τ ∈ R
and h ∈ H . Then c satisfies c(hτ ) = π(h)c(τ ) for all h ∈ H and τ ∈ R. Since
c(hh′τ ) = π(hh′)c(τ ) = π(h)c(h′τ ), actually c satisfies that

(π) c(hτ ) = π(h)c(τ ) for all h ∈ H and all τ ∈ G.

Since c(1) commutes with Im(π), c(1) is scalar. Thus we may also assume

(id) c(1) = 1.
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Note that for h, h′ ∈ H ,

b(hσ, h′τ ) = c(hσ)c(h′τ )c(hσh′τ )−1

= π(h)c(σ)π(h′)c(τ )c(στ )−1π(hσh′σ−1)−1

= π(h)πσ(h′)b(σ, τ )π(hσh′σ−1)−1 = b(σ, τ ).

Thus b is a 2–cocycle factoring through ∆.

If we change c by c′, then by (C), c′(σ) = c(σ)ζ(σ) for ζ(σ) ∈ A×. Thus we see
from c(σ)c(τ ) = b(σ, τ )c(στ ) that c′(σ)c′(τ ) = b(σ, τ )ζ(σ)ζ(τ )c′(στ )ζ(στ )−1. Thus
the 2–cocycle b′ made out of c′ is cohomologous to b, and the cohomology class
[b] = [π] ∈ H2(∆, A×) is uniquely determined by π.

If b(σ, τ ) = ζ(σ)ζ(τ )ζ(στ )−1 is further a coboundary of ζ : ∆→ A×, we modify
c by ζ−1c. Since ζ factors through ∆, this modification does not destroy the
property (π). Then c(στ ) = c(σ)c(τ ) and c(hτ ) = π(h)c(τ ) for h ∈ H . Thus c is
a representation of G and extends π to G. Let d be another extension of π. Then
χ(σ) = c(σ)d(σ)−1 ∈ A× is a character of G, because χ commutes with π. Thus
c = d⊗ χ.

We consider another condition

(inv) Tr(π) = Tr(πσ) for all σ ∈ G.

Under (AIH), it has been proven by Carayol and Serre (Proposition 2.6) that
(inv) is actually equivalent to (C). Thus we have

Theorem 2.15. Let π : H → GLn(A) be a continuous representation for a p–adic
artinian local ring A. Suppose (AIH) and (inv) .

(1) We can choose c satisfying (π);
(2) Choosing c as above, b(σ, τ ) = c(σ)c(τ )c(στ )−1 is a 2–cocycle of ∆ with

values in A×;
(3) The cohomology class [b] = [π] (called the obstruction class of π) of the

above b only depends on π but not on the choice of c, etc. There exists a
continuous representation πE of G into GLn(A) extending π if and only if
[π] = 0 in H2(∆, A×);

(4) All other extensions of π to G are of the form πE ⊗ χ for a character χ of
∆ with values in A×.

(5) If H2(∆, A×) = 0, then any representation π satisfying (AIH) and (inv)
can be extended to G.

Corollary 2.16. If ∆ is a p–group, then any representation π with values in
GLn(F) for a finite field F of characteristic p satisfying (AIH) and (inv) can be
extended to G.

Proof. This follows from the fact that |F×| is prime to p. Hence H2(∆,F×)
= 0. �

When ∆ is cyclic, then H2(∆, A×) ∼= A×/(A×)d for d = |∆|. If for a generator
σ of G, ξ = c(σd)π(σd)−1 ∈ (A×)d, then b is a coboundary of ζ(σj) = ξj/d. By
extending scalar to B = A[X]/(Xd − ξ), in H2(G,B×), the class of b vanishes.
Thus we have
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Corollary 2.17. Suppose (AIH) and (inv) . If ∆ is a cyclic group of order d, then
π can be extended to a representation of G into GLn(B) for a local A–algebra B
which is A–free of rank at most d = |∆|.

Let ρ = π mod mA. We suppose that ρ can be extended to G. Then we may
assume that the cohomology class of b(σ, τ ) mod mA vanishes in H2(G,F×). Thus
we can find ζ : G→ A× such that

a(σ, τ ) = b(σ, τ )ζ(σ)ζ(τ )ζ(στ )−1 mod mA ≡ 1.

Then a has values in Ĝm(A) = 1 +mA. In particular, if the Sylow p–subgroup S of

∆ is cyclic, we have H2(S, Ĝm(A)) ∼= Ĝm(A)/Ĝm(A)|S|. Write ξ for the element in

Ĝm(A) corresponding to a. Then for B = A[X]/(X|S| − ξ), the cohomology class

of a vanishes in H2(S, Ĝm(B)). This implies that in H2(S,B×), the cohomology
class of b vanishes. Since Tr ◦ Res : Hq(∆,M) → Hq(S,M) is a multiplication by

(∆ : S) prime to p, if M is p-profinite, Res is injective; so, Hq(∆, Ĝm(B)) = 0.

Corollary 2.18. Suppose (AIH) and (inv) . Suppose ∆ has a cyclic Sylow p–
subgroup of order q. If ρ can be extended to G, then π can be extended to a rep-
resentation of G into GLn(B) for a local A–algebra B which is A–free of rank at
most q.

We now prove the following fact:

(AI) When ∆ is cyclic of odd order and n = 2, the condition (AIH) is equivalent
to (AIG).

Proof. Let ρ be an absolutely irreducible representation of G into GL2(K) for a
field K. We assume that ∆ is cyclic of odd order. We prove that ρ cannot contain
a character of H as a representation of H , which shows the equivalence, since ρ is
2–dimensional. Suppose by absurdity that ρ restricted to H contains a character
χ. Let H ′ = {g ∈ G|χ(ghg−1) = χ}. Then χ can be extended to a character of
H ′ (Corollary 2.17). We pick one extension χ̃ : H ′ → B× for a finite flat extension
B/A in CL. Let ρ′ = ρ|H′ . By Frobenius reciprocity, we have

(2.3) HomZ[H′ ](ρ
′, IndH′

H χ) ∼= HomZ[H](ρ
′|H , χ),

where, by definition, IndH
G M = HomZ[G](Z[H ],M) and we let g ∈ H ′ act on

φ ∈ HomZ(M,N) by (gφ)(x) = g(φ(g−1x)) for two H ′–modules M and N . If

ρ′ = ρ|H′ remains irreducible, this shows that ρ′ ⊂ IndH′

H χ. It is easy to check from
definition that

IndH′

H χ ∼= ⊕ξχ̃ξ,

ξ running all characters of the cyclic group H ′/H . Thus ρ′ cannot be irreducible,
and we may assume that H = H ′. Then conjugates of χ under ∆ are all distinct.
Since, by Shapiro’s lemma again, ρ ⊂ IndG

H χ and ρ ∼= ρσ ⊂ IndG
H′ χ′σ. Therefore

ρ|H′ contains all conjugates of χ′ with the equal multiplicity. Thus (G : H ′)|2,
which is absurd because (G : H) is odd. �
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3. Base change of deformation rings

In this section, we describe a general theory (given in [MFG, §5.4]) of controlling
the deformation rings of representations of a normal subgroup under the action of
the quotient finite group.

Throughout the section, we fix a profinite group G and a open normal subgroup
H . We write the quotient ∆ = G/H . Our deformation functor can be defined
over the category CLW , but if the following finite p–Frattini condition is satisfied
by G, all the functors introduced here, if representable in CLW , they are actually
representable over the smaller full subcategory CNLW of noetherian pro-artinian
rings:

(Φ) All open subgroup of G has finite p–Frattini quotient.

The p–Frattini quotient of a profinite group G is G/Gp(G : G) for the commutater
subgroup (G : G). By class field theory, this condition is satisfied by Gal(F S/F )
for a number field F (e.g., [MFG, Proposition 2.30]), where F S/F is the maximal
extension unramified outside a finite set S of places of F . Thus, assuming (Φ) does
not cause any harm to our later application; so, we will assume (Φ) throughout this
section for simplicity.

3.1. Deformation functors of group representations. We fix a representation
ρ : G→ GLn(F) and consider the following condition

(AIH) ρH = ρ|H is absolutely irreducible.

In this subsection, we study various deformation problems of ρ and relation among
the universal rings.

We consider a deformation functor FH : CNLW → SETS given by

FH(A) = {ρ : H → GLn(A) | ρ ≡ ρ mod mA}/ ∼

where “∼” is the conjugation equivalence in GLn(A). The functor FH is repre-
sentable under (AIH) by Theorem 2.7. We write (RH , ρH) for the universal couple.
Since ρG restricted to H is an element in FH(RH), we have an W–algebra homo-
morphism (called the base-change map) α : RH → RG such that αρH = ρG|H .

We would like to determine Ker(α) and Im(α) in terms of ∆. We briefly recall
the theory of extending representation described in 2.8. By choosing a lift c0(σ) ∈
GLn(W ) for σ ∈ G such that c0(σ) ≡ ρ(σ) mod mW , we can define for any ρ ∈
FG(A), ρσ(g) = ρ(σgσ−1) and ρ[σ](g) = c0(σ)−1ρσ(g)c0(σ) in FH(A). In this way,
∆ acts via σ 7→ [σ] on FH and RH . Then as seen in 2.8, we can attach a 2–cocycle

b of ∆ with values in Ĝm(A) to any representation ρ ∈ FH(A) with ρ[σ] ∼ ρ in
the following way. Let us recall the construction of b briefly: First choose a lift
c(σ) of ρ(σ) in GLn(A) for each σ ∈ G such that c(1) = 1, ρ = c(σ)−1ρσc(σ) and
c(hτ ) = ρ(h)c(τ ) for h ∈ H and τ ∈ G. Then we have that c(σ)c(τ ) = b(σ, τ )c(στ )

for a 2–cocycle b of ∆ with values in Ĝm(A). The cohomology class [ρ] is uniquely
determined by ρ independently of the choice of c and is called the obstruction class
to extending ρ to G. If [ρ] = 0, then b(σ, τ ) = ζ(σ)−1ζ(τ )−1ζ(στ ) for a 1–cochain
ζ. We then modify c by cζ. Then c extends the representation ρ to a representation
π = c of G (Theorem 2.15).
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Lemma 3.1. Let ρ ∈ FH(A). Suppose (AIH) and that n is prime to p and ρ[σ] ∼
ρ for all σ ∈ ∆. If det(ρ) can be extended to a deformation of det ρ (over G)
having values in an A–algebra B containing A, then ρ can be extended uniquely
to a deformation π : G → GLn(B) of ρ whose determinant coincides with the
extension to G of det(ρ).

Proof. By applying “det” to c and b, we know that [det(ρ)] = [det(b)] = n[ρ]. If n

is prime to p, the vanishing of n[ρ] in H2(∆, Ĝm(B)) is equivalent to the vanishing
of the obstruction class [ρ]. Thus if det(ρ) extends to G (that is n[ρ] = 0), then ρ
extends to a representation π of G which has determinant equal to the extension of
det(ρ) prearranged. Since [ρH ] = 0, we may assume that π is a deformation of ρ. We
now show the uniqueness of π. We get, out of π, other extensions π⊗χ ∈ FG(B) for

χ ∈ H1(∆, Ĝm(B)) = Hom(∆, Ĝm(B)). Conversely, if π and π′ are two extensions
of ρ in FG(B), then for h ∈ H , π′(σ)ρ(h)π′(σ)−1 = π(σ)ρ(h)π(σ)−1 and hence
π(σ)−1π′(σ) commutes with ρ. Then by Exercise 2.5 (3), χ(σ) = π(σ)−1π′(σ) is a

scalar in Ĝm(B).

χ(στ ) = π(στ )−1π′(στ ) = π(τ )−1π(σ)−1π′(σ)π′(τ )

= π(τ )−1χ(σ)π′(τ ) = χ(σ)χ(τ ).

Thus χ is an element in H1(∆, Ĝm(B)) and π′ = π ⊗ χ, which shows that det(π′)
is equal to det(π)χn. If det(π′) = det(π), then χn = 1. Since χ is of p–power order,
if n is prime to p, χ = 1. �

Here is a consequence of the proof of the lemma:

Corollary 3.2. Let π0 ∈ FG(B) be an extension of ρ ∈ FH(A) for an A–algebra
B containing A. Then we have

{π0 ⊗ χ | χ ∈ Hom(∆, Ĝm(B))} = {π ∈ FG(B) | π|H = ρ}.

It is easy to see that if H2(∆,F) = 0, then H2(∆, Ĝm(A)) = 0 for all A in CNL
(Exercise 1). Therefore we see, if H2(∆,F) = 0,

(∗) F∆
H (A)=H0(∆,FH(A))∼=FG(A)/∆̂(A) for ∆̂(A)=Hom(∆, Ĝm(A)).

Here we let χ ∈ ∆̂(A) act on FG(A) via π 7→ π⊗χ. Suppose that F∆
H is represented

by a universal couple (RH,∆, ρH,∆) and [ρH,∆] = 0 in H2(∆, Ĝm(RH,∆)). Then for
each ρ ∈ F∆

H (A), we have ϕ : RH,∆ → A such that ϕρH,∆ ∼ ρ. Then ϕ∗[ρH,∆] = [ρ]

and therefore, [ρ] = 0 in H2(∆, Ĝm(A)). This shows again (∗).

Under (AIH), by Proposition 2.6, F∆
H (A) 3 ρ 7→ Tr(ρ) sends representations ρ

to ∆–invariant pseudo representations which are deformations of Tr(ρ), bijectively.
In the same way as in the proof of Theorem 2.7, it is easy to check that this
deformation functor of pseudo-representations is representable (Exercise 2). Then
the subfunctor F∆

H is represented by a residue ring RH/a for an ideal a. Again
by the unicity lemma, F∆

H is represented by RH,∆ = RH/Σσ∈∆RH([σ] − 1)RH

(Exercise 3).

Proposition 3.3. Suppose (AIH) . Then F∆
H is represented by (RH,∆, ρH,∆) for

RH,∆ = RH/a with a = Σσ∈∆RH([σ] − 1)RH and ρH,∆ = ρH mod a. If either

[ρH,∆] = 0 in H2(∆, Ĝm(RH,∆)) or H2(∆,F) = 0, then we have FG/∆̂ ∼= F∆
H via

π 7→ π|H.
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We now consider the following subfunctor FG,H of FH given by

FG,H(A) =
{
ρ|H ∈ FH(A)

∣∣ρ ∈ FG(B) for a flat A–algebra B in CNLW

}
.

Here the algebra B may not be unique and depends on A. Let us check that FG,H

is really a functor. If ϕ : A→ A′ is a morphism in CNL and ρ|H ∈ FG,H(A) with

ρ ∈ FG(B), B being flat over A, then A′⊗̂AB is a flat A′–algebra in CNL. Then
(ϕ ⊗ id)ρ ∈ FG(A′⊗̂AB) such that ϕ(ρ|H) = ((ϕ ⊗ id)ρ)|H . Thus FH(ϕ) takes
FG,H(A) into FG,H(A′), which shows that FG,H is a well defined functor. For each
ρ ∈ FG,H(A), we have an extension ρ ∈ FG(B). By the universality of (RG, ρG),
we have ϕ : RG → B such that ϕρG = ρ. Then ρ|H = (ϕρG)|H = ϕ(ρG|H) =
ϕαρH . This shows that ϕα is uniquely determined by ρ|H ∈ FG,H(A). Therefore ϕ
restricted to Im(α) has values in A and is uniquely determined by ρ|H ∈ FG,H(A).

Conversely, supposing that [αρH ] = 0 in H2(∆, Ĝm(B)) for a flat extension B of
Im(α) in CNL, for a given ϕ : Im(α)→ A which is a morphism in CNL, we shall
show that ρ = ϕαρH is an element of FG,H(A). Anyway αρH can be extended to
G as an element in FG(B), and hence αρH ∈ FG,H(Im(α)). We note that ρ can

be extended to G because [ϕαρH ] = ϕ∗[αρH ] which vanishes in H2(∆, Ĝm(B′)) for
B′ = B⊗̂Im(α),ϕA. Thus ρ ∈ FG,H(A), and FG,H is represented by (Im(α), αρH)

as long as [αρH ] = 0 in H2(∆, Ĝm(B)) for a flat extension B of Im(α) in CNL.

We have the following inclusions of functors: FG/∆̂ ↪→ FG,H ⊂ F∆
H ⊂ FH ,

the first map being given by ρ 7→ ρ|H , which is injective by Corollary 3.2. The
functor F∆

H is represented by RH/a for a = Σσ∈∆RH([σ] − 1)RH . Because of the

above inclusion, if [αρH ] = 0 in H2(∆, Ĝm(B)) for a flat extension B of Im(α) in
CNL, the ring Im(α) is a surjective image of RH/a = RH,∆. If [ρH,∆] = 0 (for

ρH,∆ = ρH mod a) in H2(∆, Ĝm(B′)) for a flat extension B′ of RH,∆ in CNL,
then ρH,∆ ∈ FG,H(RH,∆) and thus F∆

H = FG,H .

Proposition 3.4. Assume (AIH) and that [αρH ] = 0 in H2(∆, Ĝm(B)) for a flat
extension B of Im(α) in CNL. Then FG,H is represented by (Im(α), αρH). If

further [ρH,∆] = 0 in H2(∆, Ĝm(B′)) for a flat extension B′ of RH,∆, then we have
FG,H = F∆

H .

The character det(ρH) induces an W–algebra homomorphism: W [[Hab]]→ RH

for the maximal continuous abelian quotient Hab of H . We write its image as ΛH

and write simply Λ for ΛG. Since the map W [[Hab]] → RH factors through the
local ring W [[Hab

p ]] in CNLW for the maximal p–profinite quotient Hab
p of Hab, ΛH

is an object in CNLW . Thus we have a character det(ρH) : H → Λ×
H . We consider

the category CNLΛH
of complete noetherian local ΛH–algebras with residue field

F. We consider the functor FΛH ,H : CNLΛH
→ SETS given by

FΛH ,H(A)={ρ : H→GLn(A) | ρ ≡ ρ mod mA and det(ρ) = det(ρH)}/∼ .

Pick ρ : H → GLn(A) ∈ FΛH ,H(A). Then regarding A as an W–algebra naturally,
we know that ρ ∈ FH(A). Thus there is a unique morphism ϕ : RH → A such
that ϕρH ∼ ρ. Then ϕ(det(ρH)) = det(ρ), and ϕ is a morphism in CNLΛH

.
Therefore (RH , ρH) represents FΛH

. Similarly to FG,H , we consider another functor
on CNLΛ:

FΛ,G,H(A) =
{
ρ|H ∈ FH(A)

∣∣ρ ∈ FΛ,G(B) for a flat A–algebra B in CNLΛ

}
.
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Take ρ ∈ FΛ,G,H(A) such that ρ = ρ′|H for ρ′ ∈ FΛ,G(B). Then there exists
a unique ϕ : RG → B with det(ρ′) = ϕ(det(ρG)). Since the Λ–algebra struc-
ture of B is given by det(ρ′), ϕ induces a Λ–algebra homomorphism of Im(α)Λ
into B for the algebra Im(α)Λ generated by Im(α) and Λ. From ρ = (ϕρG)|H =
ϕ(ρG|H) = ϕαρH , we see that the Λ–algebra homomorphism ϕ restricted Im(α)Λ

is uniquely determined by ρ. Supposing that [αρH ] vanishes in H2(∆, Ĝm(B)) for a
flat extension B of Im(α), we knows that [αρH ] vanishes in the cohomology group

H2(∆, Ĝm(Im(α)Λ ⊗Im(α) B)). For any morphism ϕ : Im(α)Λ → A in CNLΛ,

[ϕαρH ] = ϕ∗[αρH ] vanishes in H2(∆, Ĝm(B′)) for B′ = A ⊗Im(α) B which is flat
over A. Thus we have an extension π of ρ to G having values in B′. Suppose further
that n is prime to p. In this case, as already remarked, we can always extend ρ
without extending A and without assuming the vanishing of [αρH ], because det(ρ)
can be extended to G by ϕ ◦ det(ρG). Thus we know:

FΛ,G,H(A) =
{
ρ|H ∈ FH(A)

∣∣ρ ∈ FΛ,G(A)
}
.

Since det(ρ) can be extended to G without changing A, there is a unique ex-
tension of π with values in GLn(A) such that det(π) = ι ◦ (det(ρG)), which
implies that π ∈ FΛ,G(A) and hence π|H ∈ FΛ,G,H(A). Thus FΛ,G,H is rep-
resented by (Im(α)Λ, αρH) if n is prime to p. We consider the morphism of
functors: FΛ,G → FΛ,G,H sending π to π|H . As we have already remarked, the
extension of ρ ∈ FΛ,G,H(A) to π ∈ FΛ(A) is unique if n is prime to p. Thus
in this case, the morphism of functors is an isomorphism of functors. Therefore
(RG, ρG) ∼= (Im(α)Λ, αρH). Thus we get

Theorem 3.5. Suppose (AIH) and that either n is prime to p or [αρH ] vanishes

in H2(∆, Ĝm(B)) for a flat extension B of Im(α). Then FΛ,G,H is representable by
(Im(α)ΛG, αρH). Moreover if n is prime to p, we have the equality RG = Im(α)ΛG.

Since α restricted to ΛH coincides with the algebra homomorphism induced by
the inclusion H ⊂ G, α(ΛH) ⊂ Λ. We put R′ = Im(α) ⊗ΛH

Λ. By definition, the
character 1⊗ det(ρG) of G coincides on H with (α ◦ det(ρH))⊗ 1 in R′. Thus αρH

can be extended uniquely to ρ′G : G → GLn(R′) such that det(ρ′G) = 1 ⊗ det(ρG)
if n is prime to p. Thus we have a natural map ι : RG → R′ such that ιρG = ρ′G.
Since RG is an algebra over Λ and Im(α), it is an algebra over R′. Thus we have the
structural morphism ι′ : R′ → RG. By Theorem 3.5, ι′ is surjective. By definition,
ιαρH = ιρH |H = ιρ′G|H = αρH ⊗ 1 and ι det(ρG) = det(ρ′G) = 1 ⊗ det(ρG). Thus
ι′ιαρH = ι′(αρH ⊗ 1) = αρH and ι′ι det(ρG) = ι′(1⊗ det(ρG)) = det(ρG). Thus ι′ι
is identity on Λ and Im(α), and hence ι′ι = id. Similarly, ιι′ρ′g = ιρG = ρ′G. This
shows that

ιι′(αρH ⊗ 1) = ι(αρH) = (αρH ⊗ 1) and

ιι′(1⊗ det(ρG)) = ι(det(ρG)) = 1⊗ det(ρG).

Thus ιι′ is again identity on Im(α) ⊗ 1 and 1 ⊗ Λ, and ιι′ = id. Let Xp (resp.

X(p)) indicate the maximal p–profinite (resp. prime–to–p profinite) quotient of a
profinite group X. Write ω for the restriction of det(ρG) to (Gab)(p). Define κ :
Gab →W [[Gab

p ]]× by κ(g) = ω(g)[gp] for the projection gp of g into Gab
p , where [x]

denotes the group element of x ∈ Gab
p in the group algebra. Assuming that F is big

enough to contain all g–th roots of unity for the order g of Im(ω), we can perform the
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same argument replacing (ΛH ,ΛG, det(ρG)) by (W [[Hab
p ]],W [[Gab

p ]], 1⊗ κ). Thus
we get

Corollary 3.6. Suppose (AIH) and that n is prime to p. Then we have

(RG, ρG) ∼= (Im(α)⊗ΛH
ΛG, αρH ⊗ det(ρG))

∼= (Im(α)⊗W [[Hab
p ]] W [[Gab

p ]], αρH ⊗ κ).

In particular, RG is flat over Im(α).

Exercise 3.7. (1) Show that if H2(∆,F) = 0, H2(∆, Ĝm(A)) = 0 for all A in

CNLW . Hint: Ĝm(A) has a ∆–invariant filtration whose subquotients are
isomorphic to F;

(2) Show that F∆
H is representable in CNLW ;

(3) Show that F∆
H is represented by RH,∆.

3.2. Nearly ordinary deformations. Hereafter we assume that n = 2. We would
like to describe nearly p–ordinary Galois deformations. Let us first introduce some
notation: let S = SG be a finite set of closed subgroups of G. For each D ∈ S, let
S(D) be a complete representative set for H–conjugacy classes of {gDg−1∩H | g ∈
G}. In application, G = GF for a number field F and D is given by decomposition
subgroups of primes in S for a finite set of primes S. For simplicity, we assume
that D ∩H ∈ S(D) always. Then the disjoint union SH =

⊔
D∈S S(D) is a finite

set, because |S(D)| = |H\G/D|.

Let V = W 2 be rank 2–free W–modules made of column vectors. We identify
GL2(W ) with the group of W–linear automorphisms AutW (V ). Then the algebraic
group GL(2) defined over W can be regarded as a covariant functor from CLW into
the category of groups given by GL2(A) = AutA(V ⊗W A). An algebraic subgroup
B ⊂ GL(2) is called the Borel subgroup defined over W if there exists an W–
submodule W ⊂ V with V/W ∼= W such that

B(A) =
{
x ∈ GL2(A)

∣∣x(W (A)) ⊂W (A)
}
,

where W (A) = W⊗W A ⊂ V ⊗W A = V (A). Thus any two Borel subgroups defined
over W are conjugate each other by an element in GL2(W ).

Let {BD}D∈S be a set of Borel subgroup of GL(2)/W defined over W indexed

by D ∈ S. For each D′ ∈ S(D) such that D′ = H ∩ gDg−1, we define BD′ =
c(g)PDc(g)

−1 for a lift c(g) ∈ GLn(W ) of ρ(g). Now we impose the following
additional condition to our deformation problem: We assume

(NO) ρ(D) ⊂ PD(F) for each D ∈ SG.

Then we consider the following condition:

(noH) there exists gD ∈ ĜL2(A) for each D ∈ SH such that

gDρ(D)g−1
D ⊂ BD(A),

where ĜLn(A) = 1 + mAMn(A).

We define a subfunctor Fn.ord
X of the functor FX by

Fn.ord
X (A) = {ρ ∈ FX(A) | ρ satisfies (noX)},

where X denotes either G or H depending on the group concerned. Then by (NO),
(noX) and our choice of BD, Fn.ord

X (F) = {ρ|X} 6= ∅.
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For each D ∈ SH , we have BD ⊂ GL(2) fixing rank 1 W–free module WD ⊂
V . Suppose (noH) for ρ ∈ Fn.ord

X (A). Then ρ(D) leaves g−1
D WD(A) stable.

Thus ρ(d) for d ∈ D induces a scalar multiplication on g−1
D W (A) ∼= W (A) and

g−1
D V (A)/g−1

D W (A) ∼= V (A)/W (A). In other words, ρ(d)w = εD,ρ(d)w for w ∈
g−1

D W (A) and ρ(d)v = δD,ρ(d)v for v ∈ g−1
D V (A)/g−1

D W (A). The map ερ, ρρ : D →
A× are continuous characters and are, respectively, deformations of εD = εD,ρ and

δD = δD,ρ. We consider the regularity condition:

(RgD) εD 6= δD on D ∈ SH .

We can prove in exactly the same manner as in the proof of Proposition 2.9 the
following fact:

Proposition 3.8. Suppose (AIH), (NO) and (RgH) for ρ. Then the functor Fn.ord
X

is representable by a universal couple (Rn.ord
X , %n.ord

X ) in CNLW .

In the same manner as in the previous subsection, we can check that ∆ acts on
Fn.ord

H via ρ 7→ ρ[σ] . Take D ∈ S and put D′ = D ∩H ∈ S(D). Since ρ is invariant
under ∆ and ρ ∈ Fn.ord

G (F),

(Inv) ε
[σ]
D′ = εD′ and δ

[σ]

D′ = δD′ for all σ ∈ D.

Now suppose ρ ∈ F∆,n.ord
H (A) and [ρ] = 0 in H2(∆, Ĝm(B)) for a flat A–algebra

B. Then we find an extension π : G→ GLn(B) of ρ. Let σ ∈ D and D′ = H ∩D.
Thus π(σ)ρ(d′)π(σ)−1 = ρ(σd′σ−1) ∈ g−1

D′BD(A)gD′ for all d′ ∈ D′ and hence

εD′,ρ(d
′) = εD′,ρ(σd

′σ−1) and δD′,ρ(d′) = δD′,ρ(σd
′σ−1).

By taking d′ ∈ D′ with εD′ (d′) 6= δD′ (d′), the above equalities implies π(σ) has
to be upper triangular (if we take a base of V (ρ) ⊗A B so that g−1

D′BD(B)gD′ is

upper triangular). Thus π(D) ⊂ g−1
D′BD(B)gD′ , and, taking gD = gD′ , we confirm

that π ∈ Fn.ord
G (A). Since Fn.ord

G is stable under the action of ∆̂, all the arguments
given for FX in the previous paragraph are valid for Fn.ord

X for X = G and H .
Writing (Rn.ord

X , ρn.ord
X ) for the universal couple representing Fn.ord

X , we conclude

Theorem 3.9. Suppose (AIH), (RgD) for all D ∈ SH and that n is prime to p.
Then we have the equality Rn.ord

G = Im(αn.ord)Λn.ord
G , where αn.ord : Rn.ord

H →
Rn.ord

G is the base-change map given by αn.ordρn.ord
H ∼ ρn.ord

G |H and Λn.ord
G is the

image of W [[Gab
p ]] in Rn.ord

G . Moreover we have

(Rn.ord
G , ρn.ord

G ) ∼= (Im(αn.ord)⊗W [[Hab
p ]] W [[Gab

p ]], αn.ordρn.ord
H ⊗ κ).

One can generalize the notion of nearly ordinary representation to GL(n)–
representations, requiring to have ρ(D) ⊂ g−1

D PD(A)gD for a proper parabolic
subgroup PD ⊂ GL(n) defined over W .

Exercise 3.10. (1) Show that Fn.ord
H is representable under (AIH) and (RgD);

(2) Show that π(σ) ∈ g−1
D′PD(B)gD′ under (RgD′).
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3.3. Ordinary deformations. In this subsection, we continue to assume that
n = 2 and all BD are conjugate to the subgroup made of upper triangular matrices.
Fix a normal closed subgroup I = ID of each D ∈ S. For D′ = gDg−1 ∩H ∈ S(D),
we put ID′ = gIDg

−1∩H . We call ρ ∈ Fn.ord
X (A) ordinary if ρ satisfies the following

conditions:

(OrdX) I ⊂ Ker(δD,ρ) for every D ∈ SX .

We then consider the following subfunctor Ford
X of Fn.ord

X :

Ford
X (A) = {ρ ∈ Fn.ord

X (A) | ρ is ordinary}.

It is easy to see that the functor Ford
X is representable by (Rord

X , ρord
X ) under (RgD)

for every D ∈ SX (see Proposition 2.9).

Let ρ ∈ Ford
H (A). Suppose [ρ] = 0 inH2(∆, Ĝm(B)) for a flatA–algebraB. Then

we have at least one extension π of ρ in Fn.ord
G (B). We consider δD,π : D → A×

for D ∈ S. We suppose one of the following two conditions for each D ∈ S:

(TrD) |ID/ID ∩H | is prime to p ;
(ExD) Every p–power order character of ID/ID∩H can be extended to a character

of ∆ having values in a flat extension B′ of B so that it is trivial on ID′ for
all D′ ∈ S different from D.

Under (TrD), as a homomorphism of groups, δD,π restricted to ID factors through

δD,ρ which is trivial on I. Thus δD,π is trivial on ID. We note that δD,π is of p–

power order on ID/H∩ID because δD,ρ is trivial on ID and δD,ρ is trivial on ID∩H .
Thus we may extend δD,π to a character η of ∆ congruent 1 modulo mB′ . Then
we twists π by η−1, getting an extension π′ = π ⊗ η−1 such that δ′D,π is trivial

on ID . Repeating this process for the D’s satisfying (ExD), we find an extension
π ∈ Ford

G (B) for a flat extension B of A. We now consider

Ford
G,H(A) = {ρ|H ∈ F

ord
H (A)

∣∣ρ ∈ Ford
G (B) for a flat extension B of A}.

In the same manner as in 3.1, if either p > 2 = n or [αordρord
H ] = 0 inH2(∆, Ĝm(B))

for a flat extension B of Im(αord) in CNLW , we know that Ford
G,H is represented by

(Im(αord), αordρord
H ), where αord : Rord

H → Rord
G is an W–algebra homomorphism

given by αordρord
H ∼ ρord

G |H .

Let ρ ∈ Ford
G,H(A) and π be its extension in Ford

G (B) for a flat A–algebra B in

CNLW . The character det(π) is uniquely determined by ρ on the subgroup of Gab
p

generated by all ID,p, because another choice is π ⊗ χ for a character χ of ∆ and
(δ)D,π⊗χ = χ on ID,p. If Gab

p is generated by the ID,p’s and Hp, det(π) is uniquely
determined by ρ. Thus assuming that p > 2, π itself is uniquely determined by
ρ. Therefore the morphism of functors: Ford

G → Ford
G,H given by ρ 7→ ρ|H identifies

Ford
G with a subfunctor of Ford

G,H , inducing a surjective W–algebra homomorphism

β : Im(αord) → Rord
G such that ρord

G |H = βαρord
H . Since ρord

G |H = αρord
H , β is the

identity on Im(αord), and we conclude that Im(αord) = Rord
G . This implies

Theorem 3.11. Suppose that n = 2 and p > 2. Suppose (AIH), (RgD) for D ∈ SH

and either (TrD) or (ExD) for each D ∈ S. Suppose further that the ID,p’s for all
D ∈ S and Hp generate Gab

p . Then we have Im(αord) = Rord
G . In particular, for

any deformation ρ ∈ Ford
G,H(A), there is a unique extension π ∈ Ford

G (A) such that
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π|H = ρ. If further [ρ∆,ord
H ] = 0 in H2(∆, Ĝm(B)) for a flat extension B of Rord

H,∆,
then

Rord
H,∆
∼= Im(αord) = Rord

G ,

where Rord
H,∆ = Rord

H /Σσ∈∆R
ord
H ([σ]− 1)Rord

H .

3.4. Deformations with fixed determinant. We take a character χ : G→W×

such that χ ≡ det(ρ) mod mW . We then define

Fχ,?
X (A) =

{
ρ ∈ F?

X(A)
∣∣ det(ρ) = χ|X

}
.

Supposing the representability of F?
X , it is easy to check that Fχ,?

X is representable.
Since the determinant is already fixed and can be extended to G, by the argument
in the previous subsections shows that if n is prime to p,

Fχ,?,∆
H = Fχ,?

G,H = Fχ
G.

Write (Rχ,?
X , ρχ,?

X ) for the universal couple representing Fχ,?
X and define αχ,? :

Rχ,?
H → Rχ,?

G so that αχ,?ρχ,
H ∼ ρ

χ,?
G . Then we have

Proposition 3.12. Suppose (AIH), (RgD) for D ∈ SH and that n is prime to p.
Then we have

Rχ,?
H /Σσ∈∆R

χ,?
H ([σ]− 1)Rχ,?

H = Rχ,?
G,H
∼= Im(αχ,?) = Rχ,?

G ,

where Rχ,?
G is either Rχ

G or Rχ,n.ord
G .

3.5. Base Change. We now apply the results obtained in the previous section
to Galois deformations in the following setting: Fix an odd prime p. We take a
continuous Galois representation ρ of Gal(Q/Q) into GL2(F) for a finite field F of
characteristic p. Since ρ is continuous, it factors through the Galois group G = GF

of the maximal extension of Q unramified outside a finite set of primes S. In
this book, for simplicity, we take S = {p,∞}, although our ideas certainly work
well in a more general setting. Let H be a closed normal subgroup of G. Thus
∆ = G/H = Gal(F/Q). We fix a valuation ring W finite flat over Zp with residue
field F and consider the category CNL = CNLW of complete noetherian local
W–algebras with residue field F.

3.6. Various deformation rings. A deformation of ρ|H is a continuous represen-
tation ρ : H→ GL2(A) for an object A of CNL such that ρ mod mA = ρ. We call a
deformation ρ nearly p–ordinary, if for a decomposition subgroup Dp of H at each p–
adic place p, ρ restricted to Dp is isomorphic to an upper triangular representation.
Thus we have two characters εDp,ρ and δDp,ρ of Dp realized as diagonal entries. We
then consider the following two deformation functors F = FF : CNL → SETS
given by

FF (A) = {ρ : H→ GL2(A) is a deformation of ρ}/ ∼,

Fn.ord
F (A) = {ρ ∈ FF (A) is nearly p-ordinary}.

It has been shown in Theorem 2.7 that FF is representable in CLW under the
following condition:

(AIF ) ρ restricted to H is absolutely irreducible.
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If further [F : Q] is finite (that is, H is open in G), the group satisfies (Φ) and
hence, the functor is representable in CNLW (see Proposition 2.14). In addition
to the above condition, to assure the representability of Fn.ord

F , we need to assume

(RgF ) εDp
= εDp,ρ and δDp

= δDp ,ρ are distinct for each p.

When representable, write (RF , %F ) (resp. (Rn.ord
F , %n.ord

F )) for the universal couple
representing FF (resp. Fn.ord

F ). When we consider a deformation problem with
restriction “?”, (for example ? = n.ord), we write (R?

F , %
?
F ) for the universal couple

with the condition “?”. We list here two more restrictions we would like to study:
We call a nearly p–ordinary deformation ρ p–ordinary if δD,ρ is unramified for every
decomposition subgroup D of H over p. For a given character χ : G→W×, we say
that a deformation ρ has fixed determinant χ if det ρ = χ in A×. Then we define
the following subfunctors of FF :

Ford
F (A) = {ρ ∈ Fn.ord

F (A)|ρ is p-ordinary}

Fχ
F (A) = {ρ ∈ FF (A)| det(ρ) = χ}

Fχ,n.ord
F (A) = Fχ

F (A) ∩ Fn.ord
F (A), Fχ,ord

F (A) = Fχ
F (A) ∩ Ford

F (A).

It is easy to check that the above subfunctors of Fn.ord
F are representable under

(AIF ) and (RgF ), and Fχ
F is representable under (AIF ) (cf. Proposition 2.9).

For the moment, we assume that [F : Q] < ∞. Let Hab = H/(H,H) be the
maximal (continuous) abelian quotient. We write Hab

p for the maximal p–profinite

quotient of Hab. Thus Hab = Hab
p × H

(p)
ab , and by class field theory, Hab

p
∼= Zd

p × µ
for a finite p–group µ, where d is an integer with 1 ≤ d < [F : Q]. Then as
seen in Proposition 2.3, the functor FF,det(ρ) obtained by replacing ρ by det(ρ) is

represented by the continuous group algebra (W [[Hab
p ]], κ) for a suitable character

κ with κ(h) = h for h ∈ Hab
p . Since

det(%?
F ) ∈ FF,det(ρ)(R

?
F ) ∼= HomCNL(W [[Hab

p ]], R?
F ),

there is a unique W–algebra homomorphism ι? : W [[Hab
p ]] → R?

F such that ι?κ =

det(%?
F ). Thus RF is an W [[Hab

p ]]–algebra. Similarly, since %?
Q ∈ F

?
Q(R?

Q), we see

%?
Q|H ∈ F

?
F (R?

Q). Thus there exists a unique W–algebra homomorphism α? : R?
F →

R?
Q such that

α? ◦ %?
F = %?

Q|H.

We call α? the base change map (of Galois side). We now describe Im(α?) and
Ker(α?) using the result in the previous section. For that, we take a complete
representative set ∆′ in G for ∆ = G/H. Then we lift ρ(σ) (σ ∈ ∆′) to an
element c(σ) ∈ GLn(W ) so that c(σ) mod mW = ρ(σ). Then we let ∆ act on
FF by ρσ(g) = c(σ)−1ρ(σgσ−1)c(σ). This is a well defined functorial action on
F?

F . By universality, ∆ acts on R?
F via W–algebra automorphisms. We consider

the following condition:

(TR) p totally ramifies in F/Q.

Thus we have from the results in previous sections the following fact:

Theorem 3.13 (Base change theorem). Let F be a finite Galois extension of Q

(with ∆ = Gal(F/Q)) unramified outside {p,∞}. We suppose (AIF ) and (RgF )
for ρ.
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(i) If ? = ∅ or n.ord, suppose either that H2(∆,F) = 0 or that ∆ is cyclic.
Then we have

R?
Q
∼= Im(α?) ⊗W [[Hab

p ]] W [[Gab
p ]] and Ker(α?) =

∑

σ∈∆

R?
F (σ − 1)R?

F .

(ii) If ? = χ, suppose that p is odd. Then we have

Rχ
Q
∼= Rχ

F/
∑

σ∈∆

Rχ
F (σ − 1)Rχ

F .

(iii) If ? = ord, suppose (TR), p > 2 and either that H2(∆,F) = 0 or ∆ is
cyclic. Then we have

Rord
Q
∼= Rord

F /
∑

σ∈∆

Rord
F (σ − 1)Rord

F .

In all the above cases, Spec(Im(α?)) is isomorphic to the maximal closed subscheme
of Spec(R?

F ) fixed under ∆.

We study the relation among the various subfunctors of FF . Suppose that p is
odd and that χ mod mW = det(ρ). Then we have a natural transformation for

? = ∅ or n.ord: F?
F,ρ → F

χ,?
F × FF,det(ρ) given by ρ 7→ (ρχ, det(ρ)), where

ρχ = ρ⊗ (det(ρ)−1χ)1/2.

Note here that det(ρ)−1χ is of p–power order with p odd, and hence its square root
is uniquely determined. By this remark, we can recover ρ from (ρχ, det(ρ)). Thus

we have F?
F,ρ
∼= F

χ,?
F × FF,det(ρ) and hence

R?
F
∼= Rχ,?

F ⊗̂WW [[Hab
p ]] ∼= Rχ,?

F [[Hab
p ]].

When F = Q, the restriction of a character ξ of D to the inertia subgroup I has a
unique extension ξG to G, because the image of I in Dab is naturally isomorphic to
Gab. Then, assuming that ρ is p–ordinary, we see that ρ 7→ (ρ ⊗ (δ−1

D,ρ)G, (δD,ρ)
G)

induces a natural transformation: F n.ord
Q

∼= Ford
Q × FQ,(δD,ρ)G . Thus we get

Rn.ord
Q

∼= Rord
Q ⊗̂WW [[Γ]]∼= Rord

Q [[Γ]],

where we have written Γ for Gab
p (∼= 1 + pZp if p is odd) following the tradition in

the Iwasawa theory. We summarize the above argument into the following

Proposition 3.14. Suppose the assumption of Theorem 3.13 depending on the
restriction “?”. Suppose that χ mod mW = det(ρ). Then we have the following
canonical isomorphisms:

(i) For ? = ∅ or n.ord,

R?
F
∼= Rχ,?

F ⊗̂WW [[Hab
p ]] ∼= Rχ,?

F [[Hab
p ]].

(ii) Suppose that ρ is p–ordinary. Then

Rn.ord
Q

∼= Rord
Q ⊗̂WW [[Γ]]∼= Rord

Q [[Γ]].

In particular, we have a canonical isomorphism (if F = Q):

Rord
Q
∼= Rχ

Q

under the assumptions of (i) and (ii).
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