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1. Algebraic groups

In the first two weeks, we describe the theory of linear algebraic groups.

1.1. Linear algebraic groups. If a scheme G/B as a functor induces a covariant functor
from ALG/B into the category GP of groups, G is called a group scheme. If it has values
in abelian groups AB, we call it a commutative group scheme. We present here a
functorial view point of group schemes. A main reference is [RAG].

1.2. Affine algebraic groups. We start with examples. Let G be an affine scheme
over a ring B. Thus G is a covariant functor from B–algebras ALG/B to SETS. If the
functor R 7→ G(R) for all B–algebras R factors through the subcategory GP of groups in
SETS, (i.e., G(R) is a group and φ∗ : G(R) → G(R′) for any B–algebra homomorphism
φ : R → R′ is a group homomorphism), G is called an affine group scheme or an affine
algebraic group defined over B. The group functor µN sending each B-algebra R to its
N -th root of unity µN (R) is given by SA for A = B[X]/((1 + X)N − 1) − 1) and is an
example of finite flat (equivalently, locally free of finite rank) affine group schemes.

Exercise 1.1. Prove that µN (R) = HomALG/B
(B[X]/((1 + X)N − 1) − 1), R) is in

bijection to {ζ ∈ R×|ζN = 1} by sending φ : B[X]/((1 + X)N − 1) − 1) → R to
φ(X) = ζ.

Similarly if an affine schemeR/B is a covariant functor from the category of B-algebras
into the category of rings, R is called an affine ring scheme. For two affine algebraic
group G, G′ defined over B, we define

(1.1) HomB-alg gp(G, G′) = HomGSCH/B
(G, G′)

:=
{
φ ∈ HomSCH/B

(G, G′)
∣∣φR is a group homomorphism for all R

}
.

For simplicity, we write SA for Spec(A)/B.

Example 1.1.

(1) Let A = B[X1, . . . , Xn]. Then Gn
a(R) := SA(R) = Rn, which is an additive

group. Since
φ∗(r1, . . . , rn) = (φ(r1), . . . , φ(rn))

for each algebra homomorphism φ : R → R′, φ∗ is a homomorphism of additive
groups/rings. Thus Gn

a is an additive group/ring scheme.
(2) More generally, we can think of C = B[Xij] for n2 variables. Then SC(R) =

Mn(R), and SC is not just a group scheme but is a ring scheme. This ring scheme
is written often as Mn. As additive group schemes (ignoring ring structure), Mn

is isomorphic to Gn2

a .
(3) Consider A = B[t, t−1]. Then SA(R) = HomALG/B

(A, R) = R× by sending

φ ∈ SA(R) to φ(t) ∈ R. Thus this is a group scheme, denoted by Gm and
called the multiplicative group. Note that if φ : Gm → Gm is a scheme mor-
phism, then φ∗(t) = b · tn for b ∈ B× as B[t, t−1]× = B×× tZ. If further φ
induces a group homomorphism Gm → Gm, the constant b has to be 1. Thus
HomGSCH/B

(Gm, Gm) = Z by φ 7→ n if φ∗(t) = tn. Consider the group algebra
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B[Z] of the additive group Z. Then B[t, t−1] ∼= B[Z] by tn ↔ [n] ∈ B[Z], so
Gm = Spec(B[EndGSCH/B

(Gm)]).
(4) Let L be a free Z-module of rank n with basis e1, . . . , en. Consider the functor

R 7→ R× ⊗Z L, where R× is considered to be an abelian group and R× ⊗Z L is
a usual tensor product of two abelian groups. Write this functor as Gm ⊗Z L.
Then R× ⊗Z L ∼= (R×)n by sending

∑
i ai ⊗ ei to (a1, . . . , an). Thus we have

Gm ⊗Z L ∼= Gn
m. Since EndGSCH/B

(Gm) = Z, we have L∗ = HomZ(L, Z) ∼=
HomGSCH/B

(Gm⊗Z L, Gm) =: X∗(L) (the character group of Gm⊗L) by sending

t ⊗ ` to t`∗(`) for `∗ ∈ L∗. In other words, we have Gm ⊗Z L = Spec(Z[L∗])
for the group algebra Z[L∗] of the additive group L∗. Put X∗(Gm ⊗Z L) =
HomGSCH/B

(Gm, Gm ⊗Z L). We call it the cocharacter group of Gm ⊗Z L. We
have a pairing (·, ·) : X∗(Gm ⊗Z L) ×X∗(Gm ⊗Z L) → EndGSCH/B

(Gm) = Z by

(φ, χ) = χ ◦ φ. Plainly this pairing is perfect. The group of the form Gm⊗Z L is
often called a B-split torus.

(5) Consider the ring D = B[Xij,
1

det(X)
] for n2 variables Xij and the variable matrix

X = (Xij). Then SD(R) = GLn(R) and SD is a group scheme under matrix
multiplication, which is a subscheme of SC because GLn(R) ⊂ Mn(R) for all R.
This group scheme SD is written as GL(n). In particular, SB[t,t−1] = GL(1) is
equal to Gm.

(6) For a given B–module X free of rank n, we define XR = X⊗B R (which is R–free
of the same rank n) and

GLX(R) =
{
α ∈ EndR(XR)

∣∣there exists α−1 ∈ EndR(XR)
}

.

Then GLX is isomorphic to GL(n)/B by choosing a basis of X; so, GLX is an
affine group scheme defined over a ring B. We can generalize this to a locally
free B–module X, but if X is not free, it is slightly more demanding to prove
that GLX is an affine scheme.

(7) We can then think of E = B[Xij]/(det(X) − 1). Then

SE(R) = {x ∈ GLn(R)| det(x) = 1}.
This closed subscheme of Mn (and also of GL(n)) is written as SL(n) and is a
group scheme (under matrix multiplication) defined over B.

(8) Let X is a free B–module of finite rank. We fix a nondegenerate bilinear form
S : X ×X → B. Then we consider

G(R) = {α ∈ GLX (R)|SR(xα, yα) = SR(x, y) for all x, y ∈ XR} ,

where SR(r ⊗ x, s⊗ y) = rsS(x, y) for r, s ∈ R and x, y ∈ X.
To see that this G is an affine algebraic group defined over B, we fix a base

x1, . . . , xn of X over B and define a matrix S by S = (S(xi, xj)) ∈Mn(B). Then
every (ij) entry sij(X) of the matrix XS · tX−S (X = (Xij)) is a quadratic poly-
nomial with coefficients in B. Then we consider L = B[Xij, det(X)−1]/(sij(X)).
By definition,

SL(R) =
{
α ∈ GLX(R)

∣∣αStα = S
} ∼= G(R).
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We find αStα = S ⇒ S = α−1S · tα−1; so, the inverse exists, and G is an
affine algebraic group. If X = Bn and S(x, y) = xSty for a non-degenerate
symmetric matrix S, G as above is written as OS/B and is called the orthogonal
group of S. If X = Y × Y and S is non-degenerate skew symmetric of the form
S((y, y′), (z, z′)) = T (y, z′)−T (z, y′) for a symmetric bilinear form T : Y × Y →
B, we write G = SpT/B. In particular, if S(x, y) = x

(
0 −1n
1n 0

)
ty, the group G is

written as Spn/B and is called the symplectic group of genus n.
(9) We consider a quadratic polynomial f(T ) = T 2 + aT + b ∈ Z[T ]. Then define

Sf (R) = Ga(R)[T ]/(f(T )). As a scheme Sf
∼= G2

a but its value is a ring all the
time. If φ : R→ R′ is an algebra homomorphism, φ∗(r + sT ) = φ(r)+φ(s)T ; so,
it is a ring homomorphism of Sf (R) = R[T ]/(f(T )) into Sf (R

′) = R′[T ]/(f(T )).
Thus Sf is a ring scheme, and writing O for the order of the quadratic field

Q[
√

a2 − 4b] generated by the root of f(T ), we have Sf(R) ∼= R ⊗Z O.
(10) Since any given number field F is generated by one element, we know F =

Q[T ]/(f(T )) for an irreducible monic polynomial f(T ). For any Q–algebra R,
define Sf(R) = R[T ]/(f(T )). Then in the same way as above, Sf is a ring scheme
defined over Q such that Sf (R) = F ⊗Q R.

(11) Let G be an affine algebraic group defined over a number field F . Then we define
a new functor G′ defined over Q–algebras R by G′(R) = G(Sf (R)) = G(F ⊗Q R).
We can prove that G′ is an affine group scheme defined over Q, which we write
G′ = ResF/QG (see Exercise 1.2 (3)).

(12) Assume that f is a quadratic polynomial in Q[T ]. Then Sf (Q) = F is a quadratic
extension with Gal(F/Q) = {1, σ}. Let X be a finite dimensional vector space
over Q and let Gal(F/Q) act on XF = F ⊗Q X through F . We suppose to have
a hermitian form H : XF × XF → F such that H(x, y) = σ(H(y, x)). Then for
Q–algebra R

UH(R) =
{
α ∈ GLX(Sf (R))

∣∣HSf (R)(xα, yα) = HSf (R)(x, y)
}

is an affine algebraic group, which is called the unitary group of H. Note that
UH is defined over Q (not over F ).

Exercise 1.2.

(1) Prove that if φ ∈ HomGSCH/B
(Gm, Gm) =: End(Gm), the corresponding algebra

homomorphism φ∗ : B[t, t−1]→ B[t, t−1] satisfies φ(t) = tn for an integer n (so,
End(Gm) ∼= Z).

(2) Let F be a number field with the integer ring O. Is there any affine ring scheme
S defined over Z such that S(R) = O ⊗Z R?

(3) Let S : X × X → B is a bilinear form for a B–free module X of finite rank
n, and suppose that X ∼= HomB(X, B) by S. Prove that the matrix of S is in
GLn(B) for any choice of basis of X over B.

(4) For an affine algebraic group G over a number field F (that is, a finite extension
of Q), prove that ResF/QG is an affine algebraic group defined over Q.

(5) Show that the unitary group UH over Q as above is an affine algebraic group.

More generally than the above Exercise 1.2 (4), we start with an affine group scheme H
over a ring R′. For a subalgebra R of R′, if the covariant functor C 7→ H(C⊗RR′) defined
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on the category of R-algebras is isomorphic to a scheme H ′
/R, we write H ′

/R = ResR′/RH

and call it the Weil restriction of H with respect to R′/R (this is not changing the base
ring of H/R′ to the subalgebra R).

Theorem 1.3. Let the notation and the assumption be as above. If R′/R is locally
R-free of finite rank, the group functor ResR′/RH is an affine group scheme over R.

For a proof, see [NMD] 7.6, Theorem 4.

1.3. Basic diagrams. The group structure of a group scheme gives rise to morphisms
of schemes by Yoneda’s lemma, for example, the group multiplication induces the mul-
tiplication morphism m : G × G → G and the existence of identity can be formulated
to be the existence of a closed immersion Spec(B) → G, which satisfies the group law.
For example, associativity is equivalent to the commutativity of the following diagram

G×SB
G×SB

G
(x,y,z) 7→(xy,z)−−−−−−−−→ G×SB

G

(x,y,z) 7→(x,yz)

y
ym

G×SB
G −−−→

m
G.

If G = SA is affine, the dual of this commutative diagram is

A⊗B A⊗B A
m⊗id←−−− A⊗B A

id⊗m

x 	

xm

A⊗B A ←−−−
m

A.

The B-algebra homomorphism m is called co-multiplication. Similarly, the identity eR

of the group G(R) induces functor morphism

eR : SB(R) = {the structure morphism ιR : B → R} 3 ιR 7→ eR ∈ G(R).

If G = SA is affine, the dual B-algebra homomorphism e : A → B is called the co-
identity. The group inverse map i : G(R) → G(R) induces an involution i of OG (or A
if G = SA) called co-inverse. These maps makes the following diagram commutative:

A
e−−−→ B

m

y
yιA

A⊗B A −−−→
idA ⊗i

A,

and

A
e−−−→ B

m

y
yιA

A⊗B A −−−→
e⊗idA

B ⊗B A = A,

A B-algebra A with co-multiplication, co-inverse and co-identity (satisfying the above
commutative diagrams) is called a B-bialgebra (or Hopf B-algebra). Once we take a dual
A∗ = HomB(A, B), A∗ is also a bialgebra under the dual maps, as long as A is locally free
of finite rank over B. The bialgebra A∗ is called the dual B-bialgebra of a B-bialgebra A.
We write BIALG/B for the category of B-bialgebras whose morphisms are B-algebra
homomorphisms compatible with co-multiplication, co-inverse and co-identity. The cate-
gory of group schemes GSCH/B is a subcategory of SCH/B ⊂ CB made up of B-schemes
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having values in the category of groups, whose morphisms are B-scheme morphisms pre-
serving the group structure. The association A 7→ SA induces a contravariant functor of
BIALG/B into GSCH/B which gives rise to an (anti-)equivalence of categories between
BIALG/B and the full subcategory of affine group schemes in GSCH/B.

Exercise 1.4. Consider Gm = Spec(B[t, t−1]). Let

m ∈ HomALG/B
(B[t, t−1], B[t, t−1]⊗B B[t, t−1])

with m(t) = t⊗ t. Show that the corresponding morphism m : Gm ×Gm→ Gm is given
by m(a, b) = ab for a, b ∈ Gm(R) = R×.

2. Representation of Lie algebras

Here is a summary of the results we used on representation of Lie algebra. If we
replace representations of a Lie algebra g by representations of a group G on a finite
dimensional vector space, the exposition is close to the one given in [MFG] Section 2.1.
In other words, the results presented here are also valid for group representations once
we replace the statement for Lie algebras by the corresponding statements for groups.
As for books on Lie algebras, see [REP] for representations on a C vector space, [LAG]
III for Lie algebras over general fields and [BLI] for more general cases.

2.1. Algebras. Let R be an algebra (which can be non-commutative). The algebra R
is called simple if there are no two-sided ideals of R except for {0} and R. An R–module
M is called irreducible or simple if M 6= 0 and any R–submodule N ( M is trivial. Thus
M is irreducible⇔ M ∼= R/m for a maximal left ideal m of R.

Let M be an R–module of finite type. Then for any given proper R–submodule M0 of
M , we consider the set S of all proper R–submodules of M containing M0. Here the word
“proper” means that M0 6= M . If X is an ordered subset of S, then MX =

⋃
N∈X N

is an R–submodule of M . Here the “ordered” mean that if N, N ′ ∈ X, we can find
N ′′ ∈ X such that (N ∪N ′) ⊂ N ′′. If MX = M , we find an element N of X such that
M = N because M is finitely generated over R. This contradicts to our assumption
that S is made of proper submodules. Thus we have MX 6= M and MX ∈ S. Namely
any ordered sequence in S has a upper bound in S. Then by Zorn’s lemma, S has a
maximal element. This shows the existence of maximal proper R–submodule containing
a given M0.

Let J(M) (radical of M) be the intersection of all proper maximal R–submodules of
M . Then if M is of finite type over R, J(M) = M implies that M = 0. Let J = J(R)
be the intersection of all maximal left ideals of R, which is called the radical of R. Then
R 6= J . If M is irreducible, then the annihilator Ann(M) = {r ∈ R|rM = 0} of M is
a maximal left ideal of R, because R/Ann(M) ∼= M via r 7→ rm for any 0 6= m ∈ M .
Thus J ⊂ ⋂

M :irreducible Ann(M). Pick r in the intersection. Then r(R/m) = 0 for any
maximal left ideal m, since M = R/m for a maximal left ideal m is irreducible. Thus
r ∈ rR ⊂ m, and hence we have

(2.1) J =
⋂

M :irreducible

Ann(M).
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Since rM = 0 implies rxM = 0 for all x ∈ R, Jx ⊂ ∩M :irreducible Ann(M) = J . Thus J
is a two-sided ideal. We claim

(2.2) For every r ∈ J , 1− r ∈ R×.

Proof. Since xr ∈ J for x ∈ R and r ∈ J , we prove 1− xr ∈ R× in place of 1− r ∈ R×.
Suppose on the contrary that 1−xr does not even have left inverse. Then R(1−xr) 6= R,
and hence, there exists a maximal left ideal m ⊃ R(1 − xr). Thus 1 − xr ∈ m and
xr ∈ J ⊂ m, which shows 1 = 1− xr + xr ∈ m, a contradiction. Thus 1− xr has a left
inverse. In particular, we find s ∈ R such that s(1−r) = 1. Then s = 1+sr = 1−(−s)r.
Applying the above argument for x = −s, we find t ∈ R such that ts = t(1−(−s)r) = 1.
Then t = t(s(1 − r)) = (ts)(1 − r) = 1 − r. This shows that (1 − r)s = ts = 1 and
1− r ∈ R×. �

Suppose that a ⊂ R is a two-sided ideal with the property that r ∈ a⇒ 1− r ∈ R×.
If a 6⊂ J , then there exists a maximal left ideal m such that a 6⊂ m. Then a+m = R, and
a + m = 1 for a ∈ a and m ∈ m. Then m ⊃ Rm = R(1− a) = R because 1− a ∈ R×.
This is a contradiction. Thus a ⊂ J . We thus have

(2.3) If a ∈ a⇒ 1− a ∈ R× for a left (resp. right, two-sided) ideal a, then a ⊂ J .

By (2.3), we conclude

(2.4) J =
⋂

m:maximal right ideals

m =
⋂

m:maximal two-sided ideals

m.

Lemma 2.1 (Krull–Azumaya, Nakayama).

(1) Let M be an R-module of finite type. If M = JM , then M = 0.
(2) Let A be a commutative local ring and M be an A–module. If either the A–

module M is of finite type or mN
A M = 0 for a sufficiently large integer N , then

M = mAM implies M = 0.

This follows from the two facts: (i) J(M) = M ⇒M = 0 and (ii) JM ⊂ J(M) under
the assumption of the lemma (cf. [CRT] Theorem 2.2).

Corollary 2.2. Let A be a local ring. Let M and N be A–modules and f : M → N be
an A–linear map. Suppose either that mA is nilpotent or that N is an A–module of finite
type. Then if f induces a surjection f : M/mAM → N/mAN , then f itself is surjective.

Proof. Consider X = N/f(M). By assumption, X/mAX = Coker(f) = 0. Thus X =
mAX and hence by Lemma 2.1, X = 0. �

2.2. Modules over Lie algebras. Let E be a field of characteristic 0. A Lie algebra g

over E is a vector space over E with E-linear Lie bracket map [·, ·] : g×g→ g satisfying
[x, y] = −[y, x] and [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ g.

Let g be a finite dimensional Lie algebra over E with E-linear Lie bracket [·, ·] :
g × g → g. For an E-vector space V of finite dimension n, a representation ρ : g →
EndE(V ) is an E-linear map with ρ([x, y]) = ρ(x)ρ(y) − ρ(y)ρ(x) for all x, y ∈ g. A
representation ρ : g→ EndE(V ) is called reducible if V = V (ρ) has a proper non-trivial
subspace stable under g. A representation is called irreducible if it is not reducible. An



IMAGE OF MODULAR GALOIS REPRESENTATIONS 8

irreducible representation with coefficients in E can be reducible as a representation into
EndL(V ⊗E L) for a field extension L/E. A representation ρ : g → EndE(V ) is called
absolutely irreducible if ρE on V (ρ)⊗E E is irreducible for an algebraic closure E/E.

Let R = R(ρ) be the E–subalgebra of the E–linear endomorphism algebra of V = V (ρ)
generated over E by ρ(σ) for all σ ∈ g. Then R ⊂ EndE(V ) ∼= Mn(E), and hence R
is a finite dimensional algebra over E; so, it is artinian and noetherian. Let J = J(R).
Then the sequence {Jn}n stabilizes for a sufficiently large n = N . From Nakayama’s
lemma (Lemma 2.1), we conclude JN = {0}. Thus

⋂
m:max. two-sided mN ⊂ JN = 0. For a

maximal two-sided ideal m and an ideal a 6⊂ m, we see m+a = R, and hence mj +aj = R
for all j > 0. Applying the Chinese remainder theorem ([CRT] Theorem 1.4), we have
R =

∏
m

R/mN for sufficiently large N , where m runs over all maximal two-sided ideals
of R. We write Rm for R/mN . If V is irreducible, then J = m for a single maximal
two-sided ideal. Then V 6= mV again by Lemma 2.1. Therefore mV = 0. Since R acts
faithfully on V , we conclude m = 0. Thus R is a simple algebra over E. We have shown
that

V is irreducible⇒ R is simple.

Thus the study of irreducible g-modules is reduced to the study of R-modules for a
simple E-algebra R.

2.3. Semi-simple algebras. To study modules over simple algebras, we start slightly
more generally. Here we only assume R to be an artinian algebra. An R–module V is
called completely reducible if it is a direct sum of irreducible modules. The algebra R is
called semi-simple if its radical J = J(R) vanishes. Since maximal left ideals of R/J(R)
corresponds bijectively to maximal left ideals of R by the homomorphism theorem, we
see that J(R/J(R)) = 0. This shows that the quotient R/J(R) is semi-simple. Now the
following three statements are equivalent:

(SS1) R is semi-simple;
(SS2) The left R–module R is completely reducible;
(SS3) Every R–module V of finite length is completely reducible.

Proof. We first prove the implication: (SS1)⇒ (SS2): Let Ω be the set of all maximal
left ideals of R. Then m + n = R for two distinct elements m, n ∈ Ω. Then by the
Chinese remainder theorem,

⋂
m∈Ω m = J(R) = 0 implies that R ∼=

⊕
m∈Ω R/m. Since

R is artinian, Ω is a finite set. By the homomorphism theorem, R–submodules of R/m
correspond bijectively to left ideals between m and R. This shows R/m is irreducible,
since m is a maximal left ideal.

(SS2)⇒(SS3): Since R ∼=
⊕

m∈Ω R/m, we have minimal left ideals Im indexed by m ∈ Ω
such that R =

⊕
m∈Ω Im with Im

∼= R/m as left R–modules. Then 1 = ⊕m∈Ωem for
em ∈ Im. Multiplying the left-hand-side and the right-hand-side by a ∈ Im, we get
Im 3 a = a1 = ⊕m∈Ωaem, and therefore aen = δm,na, where δm,n = 1 or 0 according as
m = n or not. Thus Im = Rem. Replacing a by em, we get e2

m
= em and emen = 0 if

m 6= n. Consider an R–linear map ϕ : Im → Imv given by ϕ(i) = iv for v ∈ V . Since
Ker(ϕ) is R–submodule of Im, the irreducibility of Im tells us that either Ker(ϕ) = 0
or Ker(ϕ) = Im. Thus either Imv ∼= Im or Imv = 0. In particular, if Imv 6= 0, then∑

m∈Ω emv = v ∈ ∑
m∈Ω Imv. From this, we conclude V =

∑
v∈V −{0}

∑
m∈Ω Imv. Then
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we can find mj and vj such that Imj vj 6= 0 and V =
⊕

j Imjvj
∼=

⊕
j Imj as R–modules,

since V is of finite length.

(SS3)⇒(SS1): By (SS3), R is the direct sum of irreducible R–submodules Im. By
Lemma 2.1, Im 6= J(R)Im. Since Im is irreducible, J(R)Im = 0. Then J(R) = J(R)R =⊕

m
J(R)Im = 0. �

We now decompose Ω = Ω1

⊔ · · ·⊔ Ωλ so that m, n ∈ Ωj ⇐⇒ Im
∼= In as left R–

modules. Then we write Rj =
⊕

m∈Ωj
Im. If m ∈ Ωj, Ima for a ∈ R is either isomorphic

to Im or 0, and therefore it has to be inside Rj. Thus RjR ⊂ Rj and hence Rj is a
two-sided ideal, and R =

⊕
j Rj is an algebra direct sum. Returning to the original

setting and applying the above argument to R/J(R), we have

(S) An artinian algebra R has only one maximal two-sided ideal if and only if there is
a unique isomorphism class of irreducible R-modules,

since the set of maximal two-sided ideals of R naturally corresponds to that of R/J(R)
bijectively. We now claim that the following three assertions are equivalent (a theorem
of Wedderburn):

(S1) R is a simple algebra;
(S2) R is a direct sum of mutually isomorphic minimal left ideals;
(S3) R ∼= Mn(D) for a division algebra D,

where a division algebra D is an algebra such that D− {0} = D×.

Proof. (S1) ⇒ (S2) follows from (S) because minimal left ideals are all irreducible.
(S2) ⇒ (S3): Let V be the minimal left ideal of R. Then R ∼= V n as a left R–module.

Then EndR(R) ∼= Mn(EndR(V )). Pick φ : V → V ∈ EndR(V ). Then Ker(φ) = 0 or V
and Im(φ) = V or 0 because of irreducibility of V . This shows φ is either bijective or
the zero map; hence D = EndR(V ) is a division algebra. On the other hand, it is easy
to see that φ 7→ φ(1) induces EndR(R) ∼= R, because φa(x) = xa gives an element in
EndR(R) with φa(1) = a.

(S3)⇒ (S1): Let a be a two-sided ideal of R. If a has non-zero element a, multiplying a
by elementary matrices from left and right, we may assume that a = dEij for 0 6= d ∈ D
with the elementary matrix Eij having nontrivial (i, j)–entry. Thus Eij = d−1a ∈ a.
Then again multiplying Eij by elementary matrices, we find Eij ∈ a for all (i, j). Thus
a = R. �

Let R be a simple artinian algebra. Let E be the center of R. Then by (S3), E is
a field, which is the center of D. Suppose that E is algebraically closed. Then for any
x ∈ D, E[x] ⊂ D is a finite field extension of E. Thus E = E[x] and x ∈ E. This shows
that E = D and

(S4) If R is a finite dimensional simple algebra over an algebraically closed field E, then
R ∼= Mn(E).

Recall that g is a Lie algebra. Let ρ : g → Mn(E) be an absolutely irreducible
representation for a field E. Let R be the E–subalgebra of Mn(E) generated by ρ(g) for
all g ∈ g. By absolute irreducibility, R ⊗E E remains simple for an algebraic closure E
of E. Since there is no simple algebra except for matrix algebras over an algebraically
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closed field, R⊗E E ∼= Mn′(E) for some n′ ≤ n if ρ is absolutely irreducible. Pick x 6= 0
in V . We consider a map f : R ⊗E E → V ⊗E E induced by r 7→ rx. Then Ker(f) is

a maximal left ideal of Mn′(E), and hence V ⊗E E ∼= E
n′

. This shows that n = n′, and
R ∼= Mn(E). We record here what we have proven:

Proposition 2.3. Suppose that ρ : g → Mn(E) for a field E is absolutely irreducible.
Let R be a E–subalgebra of Mn(E) generated by ρ(g) for all g ∈ g. Then

(1) (Burnside) R ∼= Mn(E) for n = dimE V ;
(2) (Schur) If a linear map f : V → V commutes with ρ, then f is induced by a

scalar multiplication.

The second assertion follows from the first as a linear endomorphism of En commuting
with all matrices in Mn(E) is a scalar. This proposition also applies to an absolutely
irreducible group representation ρ : G→Mn(E) for a group G.

This result shows that V (ρ) ⊗E X (or ρ : g → Mn(X)) remains irreducible for an
arbitrary field extension X/E if ρ is absolutely irreducible.

Let H be a closed subgroup of a profinite group G. Let ρ : G → GLn(A) be a
representation. Consider the following condition

(AIH) ρ|H is absolutely irreducible.

Of course (AIH) implies (AIG). We have the following generalization of Schur’s lemma
by Mazur.

Lemma 2.4 (B. Mazur). Suppose (AIG), and let R be an A–subalgebra of Mn(A) gen-
erated by Im(ρ). Then R = Mn(A), and in particular, if Tρ(σ) = ρ(σ)T for all σ ∈ G
and T ∈Mn(A), T is a scalar matrix.

Proof. We consider the A–subalgebra R generated by ρ(G) over A inside Mn(A). We
only need to show that R = Mn(A), because then its center is scalar. We have the
inclusion map ι : R ↪→ Mn(A), which induces a surjection ι : R/mAR → Mn(E) by
Proposition 2.3. Then by Corollary 2.2, ι is surjective. This shows R = Mn(A). �

2.4. Induced representations. Let G be a group. Fix a subgroup H of finite index,
and pick an A–free module V of rank n. Suppose that H acts on V A–linearly (such a
module, we call an (A, H)–module). If one fixes a base of V , the action of H is given by a
homomorphism ρH : H → GLn(A). Such a homomorphism is called a representation of
H of degree n with coefficients in A. Two such representations ϕ and ϕ′ are equivalent if
the two underlying H–modules are isomorphic, that is, we have an A–linear isomorphism
T : V → V ′ such that hT (x) = T (hx) for all h ∈ H. In particular, two choices of basis
on V give rise to a unique isomorphism class of ρH .

Formal linear combinations
∑

g agg form a free A–module A[G], which is an A–algebra
by

∑
g agg ·

∑
h bhh =

∑
g,h agbhgh. This algebra is called the group algebra of G. If V is

an (A, H)–module, it automatically becomes A[H]–module by
(∑

g agg
)
·v =

∑
g ag(gv).

Thus the representation ρH extends uniquely to an algebra representation of A[H] into
the matrix ring Mn(A).

We consider a space of formal linear combinations
∑

g∈G/H vgg for the coset space

G/H. Thus V [G/H] is an A–free module of rank n[G : H], and V [G/H] = A[G/H]⊗AV
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by
∑

g vgg 7→
∑

g(g ⊗ vg). We have another identification: W = WG/H = A[G]⊗A[H ] V .
Here the tensor product is taken by using the right A[H]–module structure on A[G]

given by
(∑

g agg
)
· h =

∑
g ag(gh). Then again

(∑
g agg

)
⊗ v 7→∑

g agvg for g = gH

gives an isomorphism: WG/H
∼= V [G/H]. This expression of V [G/H] has a natural left

action of G given by that on A[G]: g ·
(∑

g′ ag′g
′ ⊗ v

)
=

∑
g′ ag′gg′ ⊗ v. The module

V [G/H] contains naturally V by v 7→ v1G, which corresponds to 1G ⊗ V in WG/H and
h(1⊗ v) = h⊗ v = 1⊗ hv for h ∈ H by the property of the tensor product over A[H]:
xh⊗y = x⊗hy for h ∈ A[H]. Thus H acts on V ⊂ V [G/H] through the original action;
so, V ↪→ V [G/H] is an inclusion of H–modules. In this sense, V [G/H] is an extension
of ρH . We choose a base of V [G/H] over A and get an isomorphism class IndG

H ρH of
a representation of G. This is called the induced representation of ρH which has degree
n[G : H].

For our later use, we record the following characterization of induced representations:

Lemma 2.5. Let ρ : G → GLn(B) be a continuous representation for a local ring B.
Suppose that ρ = ρ mod mB : G→ GLn(F) is absolutely irreducible. Let χ : G→ B× be
a continuous character of order r prime to p. Then ρ ∼= ρ ⊗ χ if and only if there exist
a B-free local algebra B ′ with rankB B ′ ≤ r and a representation ϕ : H → GLm(B ′) for
H = Ker(χ) such that (G : H)m = n and ρ ∼= IndG

H ϕ in GLn(B ′).

Proof. Suppose that ρ = IndG
H ϕ for a representation ϕ : H → GLm(B ′). Note that the

representation space of ρ is given by

V (ϕ)⊗B′ B ′[∆].

Then from the isomorphism B ′[∆] ∼= B ′[∆] ⊗ χ induced by the group character: σ 7→
χ(σ)σ of ∆ = G/H into B[∆]×, it is obvious that the induced representation ρ satisfies
ρ ∼= ρ ⊗ χ. Conversely we assume ρ ∼= ρ ⊗ χ. We also write V = V (ρ) for the
representation space of ρ. Then by definition, we can find C ∈ GLn(B) such that
C(χ(σ)ρ(σ))C−1 = ρ(σ) for all σ ∈ G. Then Crρ(σ)C−r = ρ(σ) for all σ. This combined
with the absolute irreducibility of ρ shows that Cr is a scalar in B× (Lemma 2.4).
We take a local factor B ′ of B[X]/(Xr − Cr), extend the scalar to B ′ and consider
V ′ = V ⊗B B ′. Then C acts semi-simply on V ′. Fixing an eigenvalue c of C on
V ′, all other eigenvalues of C are given by ζc for an r-th root of unity ζ. Note that
B contains all r-th roots of unity because χ has values in B. Let V [cζ] be the cζ-
eigenspace of C , which is a direct summand of V since r is prime to p. If v ∈ V ′[cζ],
then we see from ρ ∼= ρ ⊗ χ that Cρ(σ)v = χ(σ)−1cζρ(σ)v. Thus G permutes V ′[cζ]
and then V ′ = ⊕σ∈∆ρ(σ)V ′[c]. From this, it is easy to construct an B[G]–isomorphism
V ′ ∼= HomZ[H ](Z[G], V ′[c]) ∼= B ′[G]⊗B′[H ] V

′[c] sending σV ′[c] to σ⊗ V ′[c], which proves
the desired assertion. �

2.5. Differential of group representations. Let G/E = Spec(OG) be a connected
affine algebraic group and g/E be the Lie algebra of G. Consider E-derivations ∂, δ :
OG → OG. By computation, we verify that ∆ := [∂, δ] = ∂ ◦ δ − δ ◦ ∂ satisfies the
derivation relation ∆(ab) = a∆(b) + b∆(a). Thus DerE(OG) = DerE(OG,OG) is a
Lie algebra. The multiplication x 7→ gx induces by pull-back a ring automorphism
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g∗ : OG → OG. If ∂ ◦ g∗ = g∗ ◦ ∂, we call ∂ a left invariant derivation. Since [∂, δ] is
left invariant if ∂ and δ are left invariant, we define the Lie algebra g of G to be the Lie
algebra of left invariant derivations. By evaluation at the identity 1 ∈ G, we may (and
do) identify g with the tangent space at 1 of g.

There is another way of defining g as the kernel of the homomorphism G(E[ε]) →
G(E)) induced by the projection E[ε] � E, where E[ε] = E[x]/(x2) (for the polynomial
ring E[x]) with ε = x mod (x2). Indeed, writing 1 : OG → E for the co-identity, for any
P ∈ HomALG/E

(OG, E[ε]) = G(E[ε]) projecting down to 1 ∈ G(E), P (a) for a ∈ OG has
the form 1(a) + ∂(a)ε. We verify ∂(ab) = 1(a)∂(b) + 1(b)∂(a) from P (ab) = P (a)P (b),
and hence ∂ is in the tangent space at 1. Similarly, if P projects down to x ∈ G(E),
writing P (a) = x(a) + ∂x(a)ε, ∂x is a tangent vector at x. From this, it is clear that the
tangent space at 1 extends isomorphically to the Lie algebra of left invariant derivations.

Exercise 2.6. Write down explicitly the Lie bracket [x, y] for two given tangent vectors
x, y at 1 ∈ G without extending x, y to vector fields over G (cf. [LAG] §10.5).

Let G′ be another connected linear algebraic group defined over E with a morphism
ρ : G → G′ of group schemes over E. Write g′ for the Lie algebra of G′. Then its
differential dρ = ρ∗ : g→ g′ is a homomorphism of Lie algebras.

Exercise 2.7. Check that dρ is a homomorphism of Lie algebras.

An E-rational representation ρ : G/E → GL(n)/E is a homomorphism of E-group
schemes. Write gln(E) for the Lie algebra of GL(n)/E . Then gln(E) can be identified
with the Lie algebra of n×n matrices Mn(E) with entries in E whose Lie bracket is given
by [x, y] = xy− yx for the matrix product xy with x, y ∈Mn(E). Then dρ : g→ gln(E)
is an E-linear representation of Lie algebras. Since ρ is complex analytic after extending
scalars to C/E (after embedding E into C), ρ is absolutely irreducible if and only if dρ is
absolutely irreducible. Over C, the exponential map expG : g/C = g⊗E C→ G(C) given

by usual formula expG(X) =
∑∞

n=0
Xn

n!
converges absolutely, giving an analytic surjection

of g/C onto G(C) whose inverse is given by logG(g) =
∑∞

n=1(−1)n+1 (g−1)n

n
. Then we

see easily that expGL(n)(dρ(X)) = ρ(expG(X)) and logGL(n)(ρ(g)) = dρ(logG(g)) for all
X ∈ g/C and g ∈ G(C) (see [GME] §4.3.3 for a p-adic version of this). From this, the
above equivalence on absolute irreducibility of ρ and dρ is clear.

3. Lie Algebras over p-Adic Ring

We describe Lie theory over adic rings.

3.1. Logarithm and exponential. Let gln(A) be Mn(A) for a commutative ring A
regarded as a Lie algebra over A under the standard Lie bracket [X, Y ] = XY − Y X.
We call a ring A a p-adic ring if A = lim←−n

A/pnA for a prime p. In particular, a p-profinite
ring A is a p-adic ring, since we have

A = lim←−
n

An = lim←−
n

lim←−
m

An/p
mAn = lim←−

m

lim←−
n

An/p
mAn = lim←−

m

A/pmA,

where An is a finite ring with p-power order. Let A be a p-adic local ring flat over Zp.
Write p = 4 if p = 2 and otherwise p = p. Consider the exponential and logarithm
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power series

log(1 + X) =
∞∑

n=1

(−1)n+1 Xn

n
and exp(X) =

∞∑

n=0

Xn

n!
.

As is well known, the power series log(X) (resp. exp(X)) converge p-adically over
1 + p ·Mn(A) (resp. p · gln(A)) giving rise to a p-adic analytic function (see [LFE] §1.3):

logp : 1 + p ·Mn(A)→ gln(A) and expp : p · gln(A)→ 1 + p ·Mn(A).

We have an adjoint action Ad of GLn(A) on gln(A) given by Ad(x)(X) = xXx−1 which
commutes with logp and expp.

In the rest of this subsection, we suppose

(a) A is a p-profinite noetherian local ring flat over Zp with the total quotient ring
Q(A);

(g) G ⊂ SLn(A) is a profinite subgroup.

Put ΓA(a) = {g ∈ SLn(A)|g − 1 ∈ aMn(A)} for an ideal a of A. Let

sln(A) = {X ∈ gln(A)|Tr(X) = 0}
which is a Lie A-subalgebra of gln(A) and the Lie algebra of SLn(A).

Lemma 3.1. Assume (a). Then logp and expp give rise to p-adic analytic maps

(3.1) logp : ΓA(p)→ p · sln(A) and expp : p · sln(A)→ ΓA(p)

with logp ◦ expp = idp·sln(A) and expp ◦ logp = idΓ(p), where ΓA(a) = SLn(A) ∩ (1 +
aMn(A)) for an ideal a of A. Similarly expP and logP are P -adic analytic maps

logP : 1 + P · sln(ÂP )→ P · sln(ÂP ), expP : P · sln(ÂP )→ 1 + P · sln(ÂP )

for a prime P ∈ Spec(A) with characteristic 0 residue field.

We write simply Γ(a) for ΓA(a) if confusion is unlikely.

Proof. Analyticity of the maps is plain by definition; so, we only need to prove that
log has values in sln and exp has values in SLn. Since the proof is the same for p
and P , we give a proof for expp and logp. For an upper triangular n × n matrix
∆ with diagonal entry δ1, . . . , δn, if logp(∆) (resp. expp(∆)) is well defined, it is up-
per triangular with diagonal entries logp(δ1), . . . , logp(δn) (resp. expp(δ1), . . . , expp(δn)).
Thus we conclude det(expp(∆)) =

∏
j expp(δj) = expp(Tr(∆)) and Tr(logp(∆)) =∑

j logp(δj) = logp(det(∆)). If A is a domain, over a finite flat extension of A (which
is still p-profinite), we can bring any matrix to an upper-triangular form, we have
det(expp(X)) = expp(Tr(X)) and Tr(logp(X)) = logp(det(X)). Thus if A is a domain,
we get the desired assertion; i.e., logp(Γ(p)) ⊂ p · sln(A) and expp(p · sln(A)) ⊂ Γ(p).
The corresponding power series identity proves

logp ◦ expp = idp·sln(A) and expp ◦ logp = idΓ(p) .

Under (a), by [CRT] Theorem 29.4, we have a surjective ring homomorphism R →
A for a regular complete noetherian local p-profinite domain R of characteristic 0,
which induces the surjective ring homomorphism π : Mn(R) → Mn(A). By defini-
tion, logp(π(X)) = π(logp(X)) and expp(π(X)) = π(expp(X)) as long as these maps are
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well defined for X ∈ Mn(R). Since R is a domain, we have on Mn(R), det(expp(X)) =
expp(Tr(X)) and Tr(logp(X)) = logp(det(X)). Thus we conclude the same identity for
any A satisfying (a). This finishes the proof. �

3.2. Lie Algebras of p-Profinite Subgroups of SL(2). If A is a p-profinite ring of
characteristic p, obviously the power series log(1 + X) and exp(X) do not make much
sense; so, the relation between closed subgroups in SLn(A) and Lie subalgebras of sln(A)
is not very direct. Indeed, for almost all p-profinite subgroups G of ΓΛ(p), logp(G) may
not be a Lie algebra (over Zp). There are good criteria in [GAN] for logp(G) to be a Lie
Zp-subalgebra of sln(A), but it would be fair to say that they are effective only when
A is finite flat over Zp. Thus we need a different way to cover characteristic 0 and p
profinite rings uniformly.

The principal congruence subgroup

ΓA(a) = {x ∈ SL2(A)|x ≡ 1 mod a}
for an A-ideal a plays an important role in this chapter, which can be written as SL2(A)∩
(1 + a · gl2(A)). Note that a · gl2(A) is a Lie algebra.

To study a general p-profinite subgroup G of SL2(A), we somehow want to have an
explicit relation between p-profinite subgroups G of the form SL2(A)∩(1+X) and Lie Zp-
subalgebras X ⊂ gl2(A). Under the condition that p > 2, Pink found a functorial explicit
relation between closed p-profinite subgroups in SL2(A) and Lie subalgebras X of gl2(A)
(valid even for A of characteristic p). We call subgroups of the form SL2(A) ∩ (1 + X)
basic subgroups following Pink’s terminology.

We prepare some notation to quote here the result in [P]. A ring is called semi-local
if it has only finitely many maximal ideals. Let A be a semi-local p-profinite ring (not
necessarily of characteristic p and not necessarily noetherian). Since Pink’s result allows
semi-local p-profinite algebras, we do not assume A to be local in the exposition of his
result. (but we assume it to be local in any of the proof).

Exercise 3.2. Let q be a p-power. Then prove |SL2(Fq)| = (q+1)(q−1)q. In particular,
the p-Sylow subgroup of SL2(Fq) is U(Fq) = {( 1 u

0 1 ) |u ∈ Fq}.
Let G ⊂ SL2(A) be a p-profinite subgroup. Then its image in SL2(A/mA) = SL2(Fq)

is in p-Sylow subgroup. By Exercise 3.2, any x ∈ G has trace modulo mA equal to the
trace of unipotentn element; so, Tr(x) ≡ 2 mod mA for all x ∈ G. Hereafter, we assume
p > 2. Define Θ : SL2(A) → sl2(A) and C : SL2(A) → Z(A) for the center Z(A) of
M2(A) by

Θ(x) = x− 1

2
Tr(x)12 and ζ(x) =

1

2
(Tr(x)− 2)12

for 12 = ( 1 0
0 1 ). Since x mod mA is unipotent for x ∈ G, replacing G by its conjugate

in SL2(A), we may assume that (G mod mA) ⊂ U(A/mA); so, Θ(x) mod mA is upper
nilpotent; so, Θ(x)Θ(y) ≡ 0 mod mA for x, y ∈ G. Define L by the closed additive
subgroup of sl2(A) (topologically) generated by Θ(x) for all x ∈ G. Since Θ(x)Θ(y) ≡ 0
mod mA for x ∈ G, we have L · L ⊂ mAM2(A). Then we put C = Tr(L · L) ⊂ mA.
Here L · L is the closed additive subgroup of M2(A) generated by {xy|x, y ∈ L} for
the matrix product xy; similarly, Ln is the closed additive subgroup generated by n
times iterated products of elements in L. We then define L1 = L and inductively
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Ln+1 = [L, Ln] ⊂ mn
Asl2(A); so, L2 = [L, L], where [L, Ln] is the closed additive subgroup

generated by Lie bracket [x, y] = xy−yx for x ∈ L and y ∈ Ln. By an easy computation
we will do later, we get

[x, y] = [Θ(x), y] = [x, Θ(y)] = [Θ(x), Θ(y)] and [x, y] = Θ(xy)−Θ(yx).

From this we get [Θ(x), Θ(y)] = Θ(xy)−Θ(yx) and hence [L, L] ⊂ L. We will verify

(3.2) [L, L] ⊂ L, C · L ⊂ L, L = L1 ⊃ · · · ⊃ Ln ⊃ Ln+1 ⊃ · · ·
and

⋂

n≥1

Ln =
⋂

n≥1

Ln = 0.

In particular, L is a Lie Zp-subalgebra of sl2(A). Put

Mn(G) = C · 12 ⊕ Ln ⊂M2(A) = gl2(A),

which is a closed Lie Zp-subalgebra by (3.2). In particular, we writeM(G) for M2(G).
Define

Hn = {x ∈ SL2(A)|Θ(x) ∈ Ln, Tr(x)− 2 ∈ C} for n ≥ 1.

If x ∈ Hn, then x = Θ(x) + ζ(x) + 12, thus H1 ⊂ SL2(A) ∩ (1 +Mn(G)). If we pick
x ∈ SL2(A) ∩ (1 +Mn(G)), then x = 1 + c · 1 + y with y ∈ Ln and c ∈ C . Thus
Tr(x)− 2 = 2c ∈ C and Θ(x) = 12 + c · 12 + y − 1

2
(2 + 2c) · 12 = y. This shows

Hn = SL2(A) ∩ (1 +Mn(G)) in particular, H2 = SL2(A) ∩ (1 +M(G)).

By (3.2), H1 is a group containing G. For x, y ∈ G, write x = a+Θ(x) and y = b+Θ(y);
so, a, b ∈ A (in the center of M2(A)). Then xy = ab + aΘ(y) + bΘ(x) + Θ(x)Θ(y); so,
Θ(xy) = aΘ(y) + bΘ(x) + Θ(x)Θ(y) and 1 + ζ(xy) = ab. Thus shows L2 ⊂ L. We can
prove that Hn are p-profinite subgroups of SL2(A). We will see this after stating the
main result of Pink (Theorem 3.3 combined with Theorem 2.7 in [P]):

Theorem 3.3 (Pink). Let the notation be as above. Suppose p > 2, and A be a semi-local
p-profinite algebra. Let G ⊂ SL2(A) be a p-profinite subgroup. Then we have

(1) G is a normal closed subgroup of H1,
(2) Hn+1 (n ≥ 1) is a subgroup of SL2(A) given by Hn+1 = (H1,Hn) (which is the

closed subgroup topologically generated by commutators (x, y) with x ∈ H1 and
y ∈ Hn),

(3) {Hn}n≥2 coincides with the descending central series of {Gn}n≥2, where Gn+1 =
(G,Gn) starting with G1 = G.

In short, we have

(P) The topological commutator subgroup G ′ of G is the subgroup given by SL2(A) ∩
(1 +M(G)) for the closed Lie subalgebra M(G) ⊂ gl2(A) defined as above.

We refer the proof of this technical theorem to [GME] §4.3.12.
Put M0

j (G) = Mj(G) ∩ sl2(A) and M0(G) = M2(G) ∩ sl2(A). By the expression
given before stating the theorem, the association G 7→ Mj(G) (resp. G 7→ M0

j (G)) is a
covariant functor from p-profinite subgroups of SL2(A) into closed Lie Zp-subalgebras
of gl2(A) (resp. sl2(A)). In particular,Mj(G) and M0

j (G) are stable under the adjoint

action x 7→ gxg−1 of G. For an A-ideal a, writing Ga = (G mod a) = (G ·ΓA(a))/ΓA(a),
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Mj(Ga) ⊂ gl2(A/a) (resp. M0
j(Ga) ⊂ sl2(A/a)) is the surjective image ofMj(G) (resp.

M0
j (G)) under the reduction map x 7→ (x mod a). Since H1 is almost equal to G with

H1/G abelian, we call H1 the basic closure of G. If G is normalized by an element of
GL2(A), by construction, the basic closure H1 is also normalized by the same element.
Thus the normalizer of G in GL2(A) is contained in the normalizer of H1 in GL2(A).
By the above theorem, any p-profinite subgroup of SL2(A) is basic up to abelian error.

To show that Hn are groups, we prepare

Lemma 3.4. We have the following relation between 2× 2 matrices x, y ∈ gl2(A) in the
Lie algebra gl2(A):

(1) [x, y] = [Θ(x), y] = [x, Θ(y)] = [Θ(x), Θ(y)],
(2) [x, y] = Θ(xy)−Θ(yx),
(3) 2 ·Θ(xy) = [Θ(x), Θ(y)] + Tr(x) ·Θ(y) + Tr(y) ·Θ(x),
(4) 2 · Tr(xy) = 2 · Tr(Θ(x)Θ(y)) + Tr(x) · Tr(y),
(5) (Tr(x))2 = 4 · det(x) + 2 · Tr(Θ(x)2),
(6) x, y ∈ sl2(A)⇒ Tr(xy)12 = xy + yx,
(7) x ∈ SL2(A)⇒ Θ(x−1) = −Θ(x),
(8) x ∈ SL2(A)⇒ Tr(x−1) = Tr(x),
(9) x ∈ SL2(A)⇒ Tr(x) ·Θ(y) = Θ(xy) + Θ(x−1y),

and for x, y, u, v ∈ sl2(A),

(a) 4 · Tr(xy) · [u, v] = [y, [x, [u, v]]] + [x, [y, [u, v]]]
+[[x, v], [y, u]] + [[y, v], [x, u]].

Proof. The first 9 formulas are easy. Recall Θ(x) = x − 1
2
Tr(x)12. Since 1

2
Tr(x)12

commutes with any matrix and Tr(xy) = Tr(yx), we have (1) and (2). Since det(x) =
ad− bc for x = ( a b

c d ) and

2Tr(Θ(x)2) =
1

2
Tr(

(
a−d 2b
2c d−a

)2
) = (a− d)2 + 4bc,

we get

4 · det(x) + 2 · Tr(Θ(x)2) = 4(ad− bc) + 2(a− d)2 + 4bc = (a + d)2 = Tr(x)2

proving (5). If x ∈ SL2, we have x−1 =
(

d −b
−c a

)
; so, Tr(x−1) = Tr(x) Θ(x−1) = −Θ(x),

getting (7) and (8). As for (9), for x ∈ SL2(A) and y ∈ M2(A), we note Tr(x) ·Θ(y) =
Θ(xy) + Θ(x−1y). To see this, writing y =

(
α β
γ δ

)
, we see

Tr(xy) + Tr(x−1y) = (aα + bγ + cβ + dδ) + (dα − bγ − cβ + aδ)

= αTr(x) + δTr(x) = Tr(x)Tr(y).

Then we haves

(Θ(xy)+Θ(x−1y)) = xy+x−1y−Tr(x)Tr(y)

2
12 = yTr(x)12−

Tr(x)Tr(y)

2
12 = Tr(x)Θ(y)

as desired. We leave the reader to verify the rest in (1–9).
To verify (a), we note that the two sides of (a) are skew-symmetric with respect to

(u, v) and symmetric with respect to (x, y). For any symmetric bilinear pairing S(x, y)
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on an A-module, we have

S(x, y) =
1

2
(S(x + y, x + y)− S(x, x)− S(y, y)).

Thus the symmetric pairing S(x, y) is determined by its quadratic form S(x, x) as long
as 2 ∈ A×. By (6), we have x2 is scalar 1

2
Tr(x2). Thus to show (a), we may assume that

x = y, which becomes

(∗) 4x2[u, v] = [x, [x, [u, v]]] + [[x, v], [x, u]].

We only need to check this formula. Since this is bilinear skew symmetric with respect
to the variable (u, v), we only need to check this for

(u, v) = (U, V ), (V, X) and (X, U)

for U = ( 0 1
0 0 ), V = ( 0 0

1 0 ) and X = [U, V ] = ( 1 0
0 −1 ). For example, if (u, v) = (U, V ),

writing x = ( a b
c −a ), we confirm that x2 =

(
a2+bc 0

0 a2+bc

)
commutes with X = [U, V ],

[x, [x, [U, V ]]] = 2x2[U, V ]− 2x[U, V ]x = 4
(

bc −ab
−ac −bc

)

and
[[x, V ], [x, U ]] =

[(
b 0

−2a −b

)
, (−c 2a

0 c )
]

= 4
(

a2 ab
ac −a2

)
.

Since x2 =
(

a2+bc 0
0 a2+bc

)
by (6), we get the desired identity

4x2[U, V ] = [x, [x, [U, V ]]] + [[x, V ], [x, U ]].

Verification of (∗) for (u, v) = (V, X) and (X, U) is left to the reader. �

Proof of (3.2): The inclusion [L, L] ⊂ L) follows from the formulas Proposition 3.4
(1) and (2):

[Θ(x), Θ(y)] = Θ(xy)−Θ(yx).

As for C · L ⊂ L, by Proposition 3.4 (4), we have

C = Tr(L · L) ⊂ Tr(G) + Tr(G)2.

Note that Proposition 3.4 (9) implies Tr(G) · L ⊂ L; hence, C · L ⊂ L, as desired. Since⋂
n L2n ⊂ ⋂

n mn
AM2(A) = {0} by Krull’s intersection theorem [CRT] Theorem 8.9. Thus⋂

n Ln =
⋂

n L2n = {0} and Ln ⊂ Ln shows
⋂

n Ln = {0}. �

Lemma 3.5. Let p > 2. Let A be an integral domain finite flat either over Fp[[T ]], Λ
or Zp. If a subgroup G ⊂ SL2(A) contains a congruence subgroup ΓA(c) for a non-zero
A-ideal c, then αGα−1 for α ∈ GL2(Q(A)) contains ΓA(c′) for another non-zero A-ideal
c′ depending on α.

Proof. For simplicity, we write Γ(c) for ΓA(c). We may suppose that G = Γ(c) for an
ideal c inside the maximal ideal of A; so, G is p-profinite. Then, we haveM0

1(G) ⊃ c ·L
for L = sl2(A). Then we see M0(G) = [M0

1(G),M0
1(G)] = c2L. Replacing α by

ξα for a suitable ξ ∈ A ∩Q(A)× for the quotient field Q(A) of A, we may assume that
α ∈M2(A)∩GL2(Q(A)). Then (αLα−1∩L) ⊃ αLαι for αι = det(α)α−1 ∈M2(A). Since
L and αLαι are both free A-module of rank 3, L/αLαι is a torsion A-module finite type
annihilated by a non-zero A-ideal c′′. ThenM(αΓ(c)α−1∩SL2(A)) ⊃ c2 ·αLα−1 ⊃ c2c′′L.
Thus the ideal cα := c2c′′ does the job (as C for G is c2 · Z(A)). �
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Let B/Zp ⊂ GL(2)/Zp (resp. Z/Zp) be the upper triangular Borel subgroup (resp. the
center of GL(2)/Zp) as an algebraic group. Write U/Zp for the unipotent radical of B/Zp

and ZU for the radical of B; so, ZU(A) = Z(A)U(A). Let B/Zp (resp. U/Zp) be the
Lie algebra of B/Zp (resp. U/Zp). We write B = G2

m n U by the splitting G2
m 3 (t, t′) 7→

( t 0
0 t′ ) ∈ B.

Lemma 3.6. Let A be a complete discrete valuation ring with finite residue field. If
G ⊂ SL2(A) is an open subgroup, its derived subgroup (i.e., commutator subgroup) is an
open subgroup of SL2(A).

Since we use this lemma only when A has residual characteristic > 2, we prove the
lemma when A/mA has characteristic p > 2.

Proof. Since G ⊃ Γ(mm) = ΓA(mm) with m = mA for m > 0, we may assume that G =
Γ(mm). Let G′ be the derived group of G = Γ(mm). We claim that G′ = Γ(m2m). Let $
be the generator of m and put a = $m. Write (x, y) = x−1y−1xy for the commutator.
Then for X, Y ∈M2(A),

(1 + aX, 1 + aY ) ≡ (1− aX)(1− aY )(1 + aX)(1 + aY ) ≡ 1 mod a2,

and hence G′ ⊂ Γ(m2m). Assuming that p is odd, we prove now that G′Γ(m2m+1)/Γ(m2m+1)
is equal to Γ(m2m)/Γ(m2m+1). Note that Γ(m2m)/Γ(m2m+1) ∼= sl2(F) for F = A/m by
1+aX 7→ X. Let X = ( 0 1

0 0 ) and Y = ( 0 0
1 0 ). Then we have [X, Y ] = XY −Y X = ( 1 0

0 −1 )
and

(1 + aX, 1 + aY )
(∗)
= (1− aX)(1− aY )(1 + aX)(1 + aY ) ≡ 1 + a2[X, Y ] mod a3.

Note here the identity (∗) is an equality not just a congruence as X2 = Y 2 = 0. Thus
G′Γ(m2m+1)/Γ(m2m+1) contains (1 + aX, 1 + aY ) which is non-trivial. By conjuga-
tion, SL2(A) acts on G = Γ(mm). The action factors through SL2(F) and induces
the conjugate action of SL2(F) on sl2(F) ∼= Γ(m2m)/Γ(m2m+1). If p > 2, it is easy to
verify this adjoint action of SL2(F) on sl2(F) is irreducible (see Exercise at the end
of §3.3). Thus G′Γ(m2m+1)/Γ(m2m+1) = Γ(m2m)/Γ(m2m+1). Suppose we have proven
G′Γ(m2m+j−1)/Γ(m2m+j ) = Γ(m2m)/Γ(m2m+j ) for j ≥ 1. Then we have

(1 + aX, 1 + a$jY ) = (1− aX)(1− a$jY )(1 + aX)(1 + a$jY )

≡ 1 + a2$j [X, Y ] mod a3$j .

Again we find a non-trivial element

(1 + aX, 1 + a$jY ) ∈ G′Γ(m2m+j)/Γ(m2m+j+1).

Then by induction on j, we get

G′Γ(m2m+j)/Γ(m2m+j+1) = Γ(m2m)/Γ(m2m+j+1)

for all j > 0. Passing to the limit, we have

G′ = lim←−
j

G′Γ(m2m+j−1)/Γ(m2m+j) = lim←−
j

Γ(m2m)/Γ(m2m+j ) = Γ(m2m).

This finishes the proof. �
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3.3. Lie Algebra and Lie Group over Zp. We study here the structure of closed
subgroups G of SL2(Zp). Thus in this section, we have A = Zp.

Lemma 3.7. Let K be a field of characteristic 0. If M ⊂ M2(K) is a semi-simple
quadratic extension of K, the commutant

C(M) = {x ∈M2(K)|xy = yx for all y ∈M}
of M is equal to M , and for the normalizer N(M×) of M× in GL2(K), the quotient
N(M×)/M× has order 2.

Proof. Since M is semi-simple, M2(K) is a free M-module of rank 2. Write M2(K) =
M ⊕Mx with x ∈ GL2(K). We can choose such x because

{g ∈M2(K)|g 6∈M} 6⊂ {h ∈M2(K)| det(h) = 0}
as the left-hand side is a Zariski open subset of M2(K) and the right-hand side is a
proper Zariski closed set of codimension 1. Any x ∈ GL2(K) \M does the job. If x
commutes with M , it commutes with all M2(K); so, it is a scalar matrix. Since M
contains scalar matrices, x cannot be scalar.

If such an x ∈ GL2(K) \M normalizes M×, it normalizes M , and the conjugation
a 7→ xax−1 induces a non-trivial K-algebra automorphism of M ; so, N(M×)/M× has
at most two elements. Regarding M as a two-dimensional vector space over K, we may
identify M2(K) = EndK(M), and we may regard M ⊂ M2(K) = EndK(M) sending
a ∈M to the K-linear endomorphism of M obtained from the multiplication by a ∈M .
Then the non-trivial ring automorphism σ ∈ Aut(M/K) gives rise to a nontrivial element
in GL2(K) normalizing M×. �

Lemma 3.8. Let K be a field of characteristic 0. If M ⊂ M2(K) is a maximal non-
semisimple commutative K-subalgebra of M2(K), the commutant C(M) of M is equal
to M , and the normalizer of M× in GL2(K) is M× itself.

Proof. Since M is not semi-simple, it has a nilradical N made of α with αn = 0 for
n > 1. Thus det(X − α) = X2 and therefore α2 = 0. Then if α 6= 0, with respect
to a basis u, v of K2 with αv = 0, we find α = ( 0 t

0 0 ) with t 6= 0. Then by an explicit
computation, the centralizer C is of the form

C = {( a b
0 a ) |a, b ∈ K}.

Then C ⊃ M , and maximality of M tells us M = C . Then by computation again, we
see C(M) = M and that N(M×) is the algebra of upper triangular matrices. �

Lemma 3.9. Let K be an infinite field of characteristic different from 2. Let L be a
nontrivial proper Lie subalgebra over K in sl2(K). Then L is isomorphic to one of the
following three Lie K-subalgebras:

(1) {x ∈M |TrM/Q(x) = 0} as an abelian Lie subalgebra for a semi-simple quadratic
extension M of K.

(2) U/K =
{
( 0 x

0 0 )
∣∣x ∈ K

}
.

(3) B/K =
{
( a x

0 −a )
∣∣a, x ∈ K

}
.

In particular, sl2(K) is the smallest simple Lie K-algebra containing non-trivial nilpotent
elements.
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A Lie algebra L over a field k is simple if it contains no nontrivial normal k-subalgebras
L′ (i.e., if [L, L′] ⊂ L′, then L′ = L or L′ = 0).

Proof. We may suppose 0 6= L ( sl2(K). Thus 1 ≤ dimK L ≤ 2. First suppose
that L contains a nontrivial nilpotent element N . Then we have L ⊃ n = K · N .
Since the characteristic polynomial det(X −N) of N is X2, choosing a basis of K well,
we may assume that n =

{
( 0 x

0 0 )
∣∣x ∈ K

}
. Note that the normalizer of n is equal to

B =
{
( a x

0 −a )
∣∣a, x ∈ K

}
. If L ⊃ n contains an element not in n normalizing n, since B

has dimension 2 over K, we must have L = B. If L contains a semi-simple element s
outside B, then s has two distinct eigenvalues as Tr(s) = 0 (and characteristic 6= 2).
Multiplying by a scalar in K, we may assume that s has infinite order in the group
GL2(K). Thus the centralizer of s in M2(K) is a semi-simple quadratic extension M over
K. Then TM := M ∩ sl2(K) = {x ∈ M |TrM/K(x) = 0}, which is one-dimensional over
K; so, TM = Ks ⊂ L. Since M and n do not commute (and do not normalize each other
by Lemmas 3.7 and 3.8), we find [s, n]∩(TM +n) = {0}; so, L = [s, n]⊕TM⊕n = sl2(K),
which is impossible by our assumption that 1 ≤ dimK L ≤ 2.

Now assume that L is made up of semi-simple elements and 0, pick one nonzero
s ∈ L, we have TM ⊂ L for the centralizer M of s in M2(K). If L 6= TM , we have
another semi-simple quadratic extension M ′ and TM ′ ⊂ L. Since the K-subalgebra of
M2(K) generated by M and M ′ is M2(K), the subalgebras M and M ′ do not commute.
Consider the adjoint representation Ad : L→ EndK(L) given by Ad(x)(y) = [x, y]. This
is a representation of Lie algebras by Jacobi’s identity. The action of TM under Ad(x)
is semi-simple (as TM is semi-simple); so, Ad(x) for generic x ∈ TM has three distinct
eigenvalues a, 0,−a on sl2 in an algebraic closure of K. Write Vb for the eigenspaces
with eigenvalue b. The existence of TM ′ in L tells us W := (Va +V−a)∩L is non-zero. If
a is in K, Va is in L and one verifies that Va is a nilpotent Lie subalgebra, against semi-
simplicity of L. If a is not K, as a is quadratic over K, W has to be two-dimensional.
Since V0 = TM has dimension 1, we find dim L = 3, a contradiction. �

Lemma 3.10. Let K be a field of characteristic 6= 2 and L/K be a field extension. If
0 6= L ⊂ sl2(L) is a vector K-subspace stable under the adjoint action of SL2(K), then
there exists g ∈ GL2(L) such that gLg−1 ⊃ sl2(K).

Proof. Put n(X) =
{
( 0 x

0 0 ) ∈ sl2(X)
∣∣x ∈ X

}
for any intermediate extension L/X/K.

Since adjoint action: Y 7→ gY g−1 (Y ∈ sl2(L)) of g ∈ SL2(K) is absolutely irre-
ducible (see the exercise at the end of this subsection), we find that L spans sl2(L)
over L. In particular, L ∩ n(L) 6= 0. Let T be the diagonal torus in GL2; so, T (X) ={
( a 0

0 b ) ∈ GL2(X)
∣∣a, b ∈ K×

}
. Note that T (X) acts transitively on n(X) \ {0}. Thus

conjugating L by an element of T (L), we may assume that ( 0 1
0 0 ) ∈ L. Since the ad-

joint action of SL2(K) on sl2(K) is absolutely irreducible, L ∩ sl2(K) 6= {0} implies
L ⊃ sl2(K), as desired. �

Taking a basis w1, w2 of a semi-simple quadratic extension M/Qp, we can embed M
into M2(Qp) by sending α ∈ M to a matrix ρ(α) ∈ M2(Qp) given by (αw1, αw2) =
(w1, w2)ρ(α). Then we write TM for TIm(ρ). If we start a semi-simple element 0 6= s ∈
M2(Qp), the centralizer of s in M2(Qp) is just Qp + Qps, and taking (w1, w2) = (1, s),
we have TM = TIm(ρ). Since Aut(M/Qp) has order 2, for its generator σ, if we define
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τ ∈M2(Qp) by (σ(w1), σ(w2)) = (w1, w2)τ , τ normalizes TM , and as seen in Lemma 3.7,
the normalizer NM of TM is generated by τ and TM ; so, NM/TM

∼= Aut(M/Qp).

Corollary 3.11. Suppose p > 2. If G is a closed subgroup of SL2(Zp) of infinite order,
then G has one of the following four forms

(1) G is an open subgroup of SL2(Zp);
(2) G is an open subgroup of NM for a semi-simple quadratic extension M/Qp ⊂

M2(Qp);
(3) G is isomorphic to an open subgroup of the upper triangular Borel subgroup
B(Zp) ⊂ SL2(Zp);

(4) G is isomorphic to an open subgroup of the upper triangular unipotent subgroup
U(Zp) ⊂ SL2(Zp).

Proof. Since G∩ΓZp (p) is normal of finite index in G, replacing G by G∩ΓZp (p), we may
assume that G is p-profinite. Write M1(G) = C ⊕M0

1(G) for the Lie subalgebra L of
sl2(Zp) associated to G as in Theorem 3.3. Then, by Lemma 3.9, L :=M0

1(G)⊗Zp Qp is
either sl2(Qp) or a Cartan subalgebra (the case (1) of Lemma 3.9) or a nilpotent subalge-
bra (the case (2) of Lemma 3.9) or a Borel subalgebra (the case (3) of Lemma 3.9). Since
M0

1(G) determines G up to abelian error by Theorem 3.3, this classification corresponds
to the classification in the corollary. �

Lemma 3.12. Suppose p > 2 and A be an integral domain finite flat over Fp[[T ]]. If a
closed subgroup G of SL2(A) contains

T :=
{(

(1+T )s 0

0 (1+T )−s

) ∣∣s ∈ Zp

}

and non-trivial upper unipotent and lower unipotent subgroups, then, up to conjugation,
G contains an open subgroup of SL2(Fp[[T ]]), and if G is p-profinite, M(G) contains an
open submodule of M2(Fp[[T ]]).

Proof. Replacing G by G ∩ ΓA(mA), we may assume that G is p-profinite. Writing
K = Fp((T )) and L = A ⊗Fp[[T ]] K, L is a finite field extension of K. Consider the
X-span LX of M0

1(G) for X = K, L. Then dimL LL = 3; so, LL = sl2(L). Thus up
to conjugation, LK contains sl2(K) (cf. Lemma 3.9) by the existence of non-trivial
unipotent elements. Thus we may assume that A = Fp[[T ]]. By adjoint action of T ,
the unipotent groups U = U(Fp[[T ]])∩G and Ut = tU(Fp[[T ]])∩G are non-zero Fp[[T ]]-
modules; so, [U(Fp[[T ]]) : U ] < ∞ and [tU(Fp[[T ]]) : Ut] < ∞. Let u (resp. ut) be the
Lie algebra of U (resp. Ut). Thus we find that [u, ut] 6= 0 is also an Fp[[T ]]-module
in M0(G), and hence M0(G) has rank 3 over Fp[[T ]]. Also C = Tr(M0(G) · M0(G))
as in Theorem 3.3 contains uut regarding u and ut as an ideal of Fp[[T ]] by an obvious
isomorphism U(Fp[[T ]])∼= tU(Fp[[T ]])∼= Fp[[T ]]. Then G contains ΓFp [[T ]](uut) and hence
is open in SL2(Fp[[T ]]). Then plainly,M(G) is open in M2(Fp[[T ]]). �

Exercise

(1) Let K be a field. Prove that the adjoint action of SL2(K) on sl2(K) is absolutely
irreducible if and only if the characteristic of K is different from 2.


