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For a given elliptic cusp form f , we have a 2-dimensional p-adic Ga-
lois representation ρ with coefficients in a p-adic integer ring. Having ρ
act on SL(2)-Lie algebra sl2 by adjoint (conjugate action), we get a 3-
dimensional representation Ad. We describe the formula of the order of
the p-adic arithmetic cohomology group Sel(Ad) (called the adjoint Selmer
group) via the L-value L(1, Ad) = L(1, Ad(f)) and explore the question
when the Selmer group is cyclic (having one generator) over the coef-
ficient ring? A detailed proof of the results described in this note is
posted as a series of pdf slide files in my graduate course web page
(http://www.math.ucla.edu/~hida/207a.1.19w/index.html). The section num-
ber given in the text is the section number of this graduate course.



§0. Set-up.

• Fix a prime p ≥ 5; ρ = Gal(Q/Q) → GL2(F): an odd represen-

tation unramified outside 0 < N ∈ Z (F/Fp finite) irreducible over

Q[µp]; W/Zp ⊂ Qp: a discrete valuation ring with residue field F.

• F (ρ) = Q
Ker(ρ)

, F (p)(ρ): the maximal p-profinite extension of

F (ρ) unramified outside p, G := Gal(F (p)(ρ)/Q). Fix a decom-

position subgroup Dl ⊂ G of l with its inertia subgroup Il.

• Assume ρ|Dp =
(
ε ∗
0 δ

)
; δ 6= ε; δ unramified.

• (R,ρ : G → GL2(R)): the universal pair among p-ordinary de-

formations with coefficients in local p-profinite W -algebras with

residue field F. This means F(A) ∼= HomW -alg(R,A) for

D(A) = {ρ : G → GL2(A)|ρ mod mA = ρ with ρ|Dp = ( ε ∗
0 δ )},

F(A) = D(A)/(1 +M2(mA)) ∼= HomCNL(R,A) (unramified δ).

• Assume that the ramification index of F (ρ)/Q of any prime is

prime to p (the minimally ramified case).

• Define Ad(ρ) by the conjugation action via ρ on sl2(A) ⊂
EndA(ρ).



§1. Serre’s modulo p modularity conjecture.

Write det(ρ) = νk−1
p ψ (k ≥ 1) for the p-adic cyclotomic character

νp modulo p and a Dirichlet character ψ of conductor N .

Theorem 1 (Khare-Wintenberger). There exists a Hecke eigen-

form f ∈ Sk(Γ0(N), ψ) (k ≥ 2) with q-expansion coefficients in a

valuation ring W/Zp such that ρf mod mW
∼= ρ.

When k = 1, we allow f in the theorem to be ordinary p-adic

Hecek eigenform. There could be finitely many such f for a fixed

k. Let T be the algebra generated over W by Hecke operators

T acting on Qp-span of all such f ’s V :=
∑
f Qpf . T is a local

ring over W with T/mT = F. We have the modular representa-

tion ρT : G → GL2(T) such that Tr(ρT(Frobl)) = T(l)|V . Write

f |T = λ(T)f with an algebra homomorphism λ : T � W , and

decompose T ⊗Zp Qp = Frac(W ) ⊕ (a ⊗Zp Qp) for a := Ker(λ)
(algebra direct sum). For the image S of T in a ⊗Zp Qp, define

congruence modules by

C0 := S ⊗T,λW = S/a and C1 = Ω1
T/Zp

⊗T,λW = a/a2 (§1.5−11).



§2. Adjoint Selmer order formula (§4.18, 9.2, 9.4, 9.9).

By Wiles–Taylor, we have a W -algebra isomorphism R ∼= T which

brings ρ to ρT. Pick ρ ∈ D(A), and define G-module Ad(ρ)∗ :=

Ad(ρ)⊗AA∨ (∨: Pontryagin dual). Write Up ⊂ H1(Dp, Ad(ρ)) for

the subspace spanned by classes of cocycles upper-triangular on

Dp and upper-nilpotent on Ip. Put Ul := Ker(H1(Dl, Ad(ρ)
∗) →

H1(Il, Ad(ρ)
∗)) if l 6= p. Define, for the inertia subgroup Il,

Sel(Ad(ρ)) := Ker(H1(G, Ad(ρ)∗)
∏
lRes

−−−−−→
∏

l|Np
H1(Dl, Ad(ρ)

∗))/Ul.

Define the dual Selmer group Sel⊥(Ad(ρ)(1)) replacing Ul by

its orthogonal complement U⊥
l under local Tate duality. We have

the following result for ρ = ρf associated to a cusp form f :

|L(1, Ad(ρ))/ ∗ |−1
p

Hida
= |C0|

Tate, Wiles
= |C1|

Mazur
= |Sel(Ad(ρ))|,

where “∗” is a canonical period (the period determinant of f).



§3. Number of generators of R (§4.7, 4.9).

As is well known in deformation theory,

t∗R := mR/m
2
R + mW = ΩR/W ⊗R F ∼= Sel(Ad(ρ))∨ .

Here “∨” denotes Pontryagin dual. So the number of generators

of R/W is r0 := dimF Sel(Ad(ρ)). More generally, by Mazur

ΩR/W ⊗R,ϕ A ∼= Sel(Ad(ρ))∨ (Selmer control §4.18)

for all ρ ∈ D(A) with ϕ ◦ ρ
∼= ρ.

Recall the dual Selmer group

Sel⊥(Ad(ρ)(1)) := Ker(H1(G, Ad(ρ)(1)) →
∏

l|Np
H1(Dl, Ad(ρ))/U

⊥
l )

An important fact (§5.7) due to Greenberg and Wiles is

Theorem 2. r0 = dimF Sel(Ad(ρ)) ≤ dimF Sel⊥(Ad(ρ)(1)) =: r.

The right hand side is often computable by Kummer theory.



§4. Presentation Theorem: T ∼= W [[X1,...,Xr]]
(S1,...,Sr)

(§9.4).

To prove their “R = T” theorem, Taylor and Wiles proved the ex-

istence of a presentation as above, where r = dimF Sel⊥(Ad(ρ)(1)).

On the other hand, the minimal number of generators of R = T

is given by the dimension r0 of its co-tangent space F-dual to

Sel(Ad(ρ)). By a general ring theory (for example, Matsumura’s

book Theorem 21.2 (ii) in Cambridge study series), we can re-

duce the number of variables to r0 ≤ r; so,

T ∼= W [[T1, . . . , Tr0]]

(s1, . . . , sr0)
(local complete intersection over W ).

This implies |C0| = |C1| by Tate, and

Sel(Ad(ρ))∨ ∼= C1 = ΩT/W ⊗T,ϕ A =
A · dT1 + · · · +A · dTr0
A · ds1 + · · · +A · dsr0

.



§5. Cyclicity: When r = 1? Let F := Q
ker(Ad(ρ)

with integer

ring O and G := Gal(F/Q) ∼= Im(Ad(ρ)). By Kummer theory,

Sel⊥(Ad(ρ)(1)) (restricted to the stabilizer H of F in G) is gen-

erated by Kummer cocycle u(σ) = p
√
α(σ−1) for α ∈ F× very

unramified. Let Ô× = O×⊗Z Zp. Assume Ô× = Zp[G]ε (cyclic-

ity of Ô× over Zp[G]) for a Minkowski unit ε ∈ O× which is implied

by p - |G| (i.e., ρ is a reduction of an Artin representation ρ).

Hard to know about ClF ; so, we assume p - |ClF [Ad]| for Ad-
isotypical component ClF [Ad]. Essentially by unramifiedness of

u, cyclicity is implied by (§5.12)

dimF Sel⊥(Ad(ρ)(1)) ≤ dimF HomF[G](O
× ⊗ F, Ad(ρ)) =: r1.

Without p - |ClF [Ad]|, if r1 ≤ 1, we get an exact sequence for

ρ = ρf for f classical of weight 1 (§7.10, 8.6),

HomZp[G](ClF , Ad(ρ)
∗) ↪→ Sel(Ad(ρ)) � HomZp(Ô

×
p [δ−1ε]/〈εδ−1ε〉,W∨),

where and εεδ−1 is the projection of ε in the εδ−1-eigenspace

Ô×
p [εδ−1] ⊂ Ô×

p for the prime p|p associated to Dp.



§6. Proof of cyclicity by Dirichlet’s unit theorem (§5.17):

Theorem 3. Assume (O× ⊗Z Zp) = Zp[G]ε or p - |G|. Then we

have dimF HomF[G](O
× ⊗ F, Ad(ρ)) ≤ dimFAd(ρ)

c=1 = 1.

By the proof of Dirichlet’s unit theorem, for the subgroup C

generated by a complex conjugation c,

(O× ⊗Z Q)⊕ Q ∼= Q[G/C] = IndGC Q and hence

Zp[G/C] ↪→ (O× ⊗Z Zp) ⊕ Zp ↪→ Zp[G/C] ∼= IndGC Zp.

Assuming (O×⊗Z Zp) = Zp[G]ε, the above inclusions are isomor-

phisms, and by Shapiro’s lemma,

HomGal(F/Q)(O
× ⊗Z F, Ad(ρ)) ↪→ HomF[G](IndGC Zp, Ad(ρ))

= HomF[C](Zp, Ad(ρ))
∼= Ad(ρ)c=1 (the c-fixed subspace).

Since Ad(ρ)(c) ∼ diag[−1,1,−1], we get dimF Sel(Ad(ρ)(1)) ≤ 1.



§7. Qustions towards general cyclicity.

Starting the compatible system {ρp} associated to a cusp form

f , if F := F (Ad(ρp)) for ρp = ρp mod p is independent of p,

p - |ClF | gives a condition for cyclicity; i.e., when ρ is a reduction

modulo p of an Artin representation. Assuming ρ comes from an

Artin representation, we proved cyclicity of Sel(Ad(ρp))∨ over W ,

which implies cyclicity of Sel(Ad(ρ))∨ over T (even if Sel(Ad(ρp)),

Sel(Ad(ρ)) and T depend on p).

In the general non-Artin case, fundamental questions are:

Is p - |ClF [Ad]| for most p (even if F depends on p)?

and only thing we need for cyclicity of Sel(Ad(ρ)) and Sel(Ad(ρ))

is cyclicity of O× ⊗Z Zp over Zp[G]; so,

Is O× ⊗Z Zp cyclic as Zp[G]-modules for most of p?

For p for which the above questions are affirmative, Sel(Ad(ρ))∨

is cyclic over A for every ρ ∈ D(A).


