Non-abelian "class number" formula for the adjoint Selmer groups and cyclicity

Haruzo Hida Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, U.S.A.

A talk at AMS meeting in Hawaii, March, 2019.

*The author is partially supported by the NSF grant: DMS 1464106.

For a given elliptic cusp form f, we have a 2-dimensional p-adic Galois representation ρ with coefficients in a p-adic integer ring. Having ρ act on SL(2)-Lie algebra \mathfrak{sl}_2 by adjoint (conjugate action), we get a 3dimensional representation Ad. We describe the formula of the order of the p-adic arithmetic cohomology group Sel(Ad) (called the adjoint Selmer group) via the L-value L(1, Ad) = L(1, Ad(f)) and explore the question when the Selmer group is cyclic (having one generator) over the coefficient ring? A detailed proof of the results described in this note is posted as a series of pdf slide files in my graduate course web page (http://www.math.ucla.edu/~hida/207a.1.19w/index.html). The section number given in the text is the section number of this graduate course.

$\S 0.$ Set-up.

• Fix a prime $p \ge 5$; $\overline{\rho} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{F})$: an **odd** representation unramified outside $0 < N \in \mathbb{Z}$ (\mathbb{F}/\mathbb{F}_p finite) irreducible over $\mathbb{Q}[\mu_p]$; $W_{/\mathbb{Z}_p} \subset \overline{\mathbb{Q}}_p$: a discrete valuation ring with residue field \mathbb{F} . • $F(\overline{\rho}) = \overline{\mathbb{Q}}^{\operatorname{Ker}(\overline{\rho})}$, $F^{(p)}(\overline{\rho})$: the maximal *p*-profinite extension of $F(\overline{\rho})$ unramified outside $p, \mathcal{G} := \operatorname{Gal}(F^{(p)}(\overline{\rho})/\mathbb{Q})$. Fix a decomposition subgroup $D_l \subset \mathcal{G}$ of l with its inertia subgroup I_l .

- Assume $\overline{\rho}|_{D_p} = \left(\frac{\overline{\epsilon}}{0} \frac{*}{\delta}\right); \ \overline{\delta} \neq \overline{\epsilon}; \ \overline{\delta} \text{ unramified.}$
- $(R, \rho : \mathcal{G} \to \operatorname{GL}_2(R))$: the universal pair among *p*-ordinary deformations with coefficients in local *p*-profinite *W*-algebras with residue field \mathbb{F} . This means $\mathcal{F}(A) \cong \operatorname{Hom}_{W-alg}(R, A)$ for

$$\mathcal{D}(A) = \{ \rho : \mathcal{G} \to \mathsf{GL}_2(A) | \rho \mod \mathfrak{m}_A = \overline{\rho} \text{ with } \rho|_{D_p} = \begin{pmatrix} \epsilon & * \\ 0 & \delta \end{pmatrix} \}, \\ \mathcal{F}(A) = \mathcal{D}(A)/(1 + M_2(\mathfrak{m}_A)) \cong \operatorname{Hom}_{CNL}(R, A) \text{ (unramified } \delta).$$

- Assume that the ramification index of $F(\overline{\rho})/\mathbb{Q}$ of any prime is prime to p (the minimally ramified case).
- Define $Ad(\rho)$ by the conjugation action via ρ on $\mathfrak{sl}_2(A) \subset \operatorname{End}_A(\rho)$.

$\S1$. Serre's modulo p modularity conjecture.

Write $det(\overline{p}) = \overline{\nu}_p^{k-1}\psi$ $(k \ge 1)$ for the *p*-adic cyclotomic character $\overline{\nu}_p$ modulo *p* and a Dirichlet character ψ of conductor *N*.

Theorem 1 (Khare-Wintenberger). There exists a Hecke eigenform $f \in S_k(\Gamma_0(N), \psi)$ $(k \ge 2)$ with q-expansion coefficients in a valuation ring $W_{/\mathbb{Z}_p}$ such that $\rho_f \mod \mathfrak{m}_W \cong \overline{\rho}$.

When k = 1, we allow f in the theorem to be ordinary p-adic Hecek eigenform. There could be finitely many such f for a fixed k. Let \mathbb{T} be the algebra generated over W by Hecke operators T acting on $\overline{\mathbb{Q}}_p$ -span of all such f's $V := \sum_f \overline{\mathbb{Q}}_p f$. \mathbb{T} is a local ring over W with $\mathbb{T}/\mathfrak{m}_{\mathbb{T}} = \mathbb{F}$. We have the modular representation $\rho_{\mathbb{T}} : \mathcal{G} \to \operatorname{GL}_2(\mathbb{T})$ such that $\operatorname{Tr}(\rho_{\mathbb{T}}(\operatorname{Frob}_l)) = T(l)|_V$. Write $f|T = \lambda(T)f$ with an algebra homomorphism $\lambda : \mathbb{T} \twoheadrightarrow W$, and decompose $\mathbb{T} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = \operatorname{Frac}(W) \oplus (\mathfrak{a} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ for $\mathfrak{a} := \operatorname{Ker}(\lambda)$ (algebra direct sum). For the image S of \mathbb{T} in $\mathfrak{a} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, define **congruence modules** by

$$C_0 := S \otimes_{\mathbb{T},\lambda} W = S/\mathfrak{a} \text{ and } C_1 = \Omega^1_{\mathbb{T}/\mathbb{Z}_p} \otimes_{\mathbb{T},\lambda} W = \mathfrak{a}/\mathfrak{a}^2$$
 (§1.5–11).

§2. Adjoint Selmer order formula (§4.18, 9.2, 9.4, 9.9). By Wiles-Taylor, we have a *W*-algebra isomorphism $\mathbb{R} \cong \mathbb{T}$ which brings ρ to $\rho_{\mathbb{T}}$. Pick $\rho \in \mathcal{D}(A)$, and define \mathcal{G} -module $Ad(\rho)^* :=$ $Ad(\rho) \otimes_A A^{\vee}$ (\vee : Pontryagin dual). Write $U_p \subset H^1(D_p, Ad(\rho))$ for the subspace spanned by classes of cocycles upper-triangular on D_p and upper-nilpotent on I_p . Put $U_l := \operatorname{Ker}(H^1(D_l, Ad(\rho)^*) \to$ $H^1(I_l, Ad(\rho)^*))$ if $l \neq p$. Define, for the inertia subgroup I_l ,

$$\mathsf{Sel}(Ad(\rho)) := \mathsf{Ker}(H^1(\mathcal{G}, Ad(\rho)^*) \xrightarrow{\prod_l \mathsf{Res}} \prod_{l \mid Np} H^1(D_l, Ad(\rho)^*))/U_l.$$

Define the **dual Selmer group** $\operatorname{Sel}^{\perp}(Ad(\rho)(1))$ replacing U_l by its orthogonal complement U_l^{\perp} under local Tate duality. We have the following result for $\rho = \rho_f$ associated to a cusp form f:

$$|L(1, Ad(\rho))/*|_p^{-1} \stackrel{\text{Hida}}{=} |C_0| \stackrel{\text{Tate, Wiles}}{=} |C_1| \stackrel{\text{Mazur}}{=} |\text{Sel}(Ad(\rho))|,$$

where "*" is a canonical period (the period determinant of f).

§3. Number of generators of R (§4.7, 4.9). As is well known in deformation theory,

$$t_R^* := \mathfrak{m}_R/\mathfrak{m}_R^2 + \mathfrak{m}_W = \Omega_{R/W} \otimes_R \mathbb{F} \cong \mathrm{Sel}(Ad(\overline{\rho}))^{\vee}$$

Here " \lor " denotes Pontryagin dual. So the number of generators of $R_{/W}$ is $r_0 := \dim_{\mathbb{F}} \text{Sel}(Ad(\overline{\rho}))$. More generally, by Mazur

$$\left|\Omega_{R/W}\otimes_{R,\varphi}A\cong \mathsf{Sel}(Ad(\rho))^{\vee}\right|$$
 (Selmer control §4.18)

for all $\rho \in \mathcal{D}(A)$ with $\varphi \circ \rho \cong \rho$.

Recall the dual Selmer group

$$\mathsf{Sel}^{\perp}(Ad(\overline{\rho})(1)) := \mathsf{Ker}(H^1(\mathcal{G}, Ad(\overline{\rho})(1)) \to \prod_{l \mid Np} H^1(D_l, Ad(\overline{\rho}))/U_l^{\perp})$$

An important fact (§5.7) due to Greenberg and Wiles is **Theorem 2.** $r_0 = \dim_{\mathbb{F}} \operatorname{Sel}(Ad(\overline{\rho})) \leq \dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1)) =: r.$

The right hand side is often **computable** by Kummer theory.

§4. Presentation Theorem: $\mathbb{T} \cong \frac{W[[X_1,...,X_r]]}{(S_1,...,S_r)}$ (§9.4).

To prove their " $R = \mathbb{T}$ " theorem, Taylor and Wiles proved the existence of a presentation as above, where $r = \dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1))$.

On the other hand, the minimal number of generators of $R = \mathbb{T}$ is given by the dimension r_0 of its co-tangent space \mathbb{F} -dual to $\operatorname{Sel}(Ad(\overline{\rho}))$. By a general ring theory (for example, Matsumura's book Theorem 21.2 (ii) in Cambridge study series), we can reduce the number of variables to $r_0 \leq r$; so,

$$\mathbb{T} \cong \frac{W[[T_1, \dots, T_{r_0}]]}{(s_1, \dots, s_{r_0})} \quad (\text{local complete intersection over } W).$$

This implies $|C_0| = |C_1|$ by Tate, and

$$\mathsf{Sel}(Ad(\rho))^{\vee} \cong C_1 = \Omega_{\mathbb{T}/W} \otimes_{\mathbb{T},\varphi} A = \frac{A \cdot dT_1 + \dots + A \cdot dT_{r_0}}{A \cdot ds_1 + \dots + A \cdot ds_{r_0}}.$$

§5. Cyclicity: When r = 1? Let $F := \overline{\mathbb{Q}}^{\ker(Ad(\overline{p}))}$ with integer ring O and $G := \operatorname{Gal}(F/\mathbb{Q}) \cong \operatorname{Im}(Ad(\overline{p}))$. By Kummer theory, Sel^{\perp}($Ad(\overline{p})(1)$) (restricted to the stabilizer \mathcal{H} of F in \mathcal{G}) is generated by Kummer cocycle $u(\sigma) = \sqrt[p]{\alpha}^{(\sigma-1)}$ for $\alpha \in F^{\times}$ very unramified. Let $\widehat{O}^{\times} = O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Assume $\widehat{O}^{\times} = \mathbb{Z}_p[G]\varepsilon$ (cyclicity of \widehat{O}^{\times} over $\mathbb{Z}_p[G]$) for a Minkowski unit $\varepsilon \in O^{\times}$ which is implied by $p \nmid |G|$ (i.e., \overline{p} is a reduction of an Artin representation ρ). Hard to know about Cl_F ; so, we assume $p \nmid |Cl_F[Ad]|$ for Adisotypical component $Cl_F[Ad]$. Essentially by unramifiedness of u, cyclicity is implied by (§5.12)

 $\dim_{\mathbb{F}} \operatorname{Sel}^{\perp}(Ad(\overline{\rho})(1)) \leq \dim_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}[G]}(O^{\times} \otimes \mathbb{F}, Ad(\overline{\rho})) =: r_1.$

Without $p \nmid |Cl_F[Ad]|$, if $r_1 \leq 1$, we get an exact sequence for $\rho = \rho_f$ for f classical of weight 1 (§7.10, 8.6),

 $\operatorname{Hom}_{\mathbb{Z}_p[G]}(Cl_F, Ad(\rho)^*) \hookrightarrow \operatorname{Sel}(Ad(\rho)) \twoheadrightarrow \operatorname{Hom}_{\mathbb{Z}_p}(\widehat{O}_{\mathfrak{p}}^{\times}[\delta^{-1}\epsilon]/\overline{\langle \varepsilon_{\delta^{-1}}\epsilon \rangle}, W^{\vee}),$

where and $\varepsilon_{\epsilon\delta^{-1}}$ is the projection of ε in the $\epsilon\delta^{-1}$ -eigenspace $\widehat{O}_{\mathfrak{p}}^{\times}[\epsilon\delta^{-1}] \subset \widehat{O}_{\mathfrak{p}}^{\times}$ for the prime $\mathfrak{p}|p$ associated to D_p .

§6. Proof of cyclicity by Dirichlet's unit theorem (§5.17):

Theorem 3. Assume $(O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \mathbb{Z}_p[G] \varepsilon$ or $p \nmid |G|$. Then we have $\dim_{\mathbb{F}} \operatorname{Hom}_{\mathbb{F}[G]}(O^{\times} \otimes \mathbb{F}, Ad(\overline{\rho})) \leq \dim_{\mathbb{F}} Ad(\overline{\rho})^{c=1} = 1$.

By the proof of Dirichlet's unit theorem, for the subgroup C generated by a complex conjugation c,

$$(O^{\times} \otimes_{\mathbb{Z}} \mathbb{Q}) \oplus \mathbb{Q} \cong \mathbb{Q}[G/C] = \operatorname{Ind}_{C}^{G} \mathbb{Q}$$
 and hence
 $\mathbb{Z}_{p}[G/C] \hookrightarrow (O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}) \oplus \mathbb{Z}_{p} \hookrightarrow \mathbb{Z}_{p}[G/C] \cong \operatorname{Ind}_{C}^{G} \mathbb{Z}_{p}.$

Assuming $(O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \mathbb{Z}_p[G]\varepsilon$, the above inclusions are isomorphisms, and by Shapiro's lemma,

 $\begin{aligned} & \operatorname{Hom}_{\operatorname{Gal}(F/\mathbb{Q})}(O^{\times}\otimes_{\mathbb{Z}}\mathbb{F},Ad(\overline{\rho})) \hookrightarrow \operatorname{Hom}_{\mathbb{F}[G]}(\operatorname{Ind}_{C}^{G}\mathbb{Z}_{p},Ad(\overline{\rho})) \\ &= \operatorname{Hom}_{\mathbb{F}[C]}(\mathbb{Z}_{p},Ad(\overline{\rho})) \cong Ad(\overline{\rho})^{c=1} \text{ (the } c\text{-fixed subspace).} \\ & \operatorname{Since} Ad(\overline{\rho})(c) \sim \operatorname{diag}[-1,1,-1], \text{ we get } \operatorname{dim}_{\mathbb{F}}\operatorname{Sel}(Ad(\overline{\rho})(1)) \leq 1. \end{aligned}$

$\S 7.$ Qustions towards general cyclicity.

Starting the compatible system $\{\rho_{\mathfrak{p}}\}\$ associated to a cusp form f, if $F := F(Ad(\overline{\rho}_{\mathfrak{p}}))$ for $\overline{\rho}_{\mathfrak{p}} = \rho_{\mathfrak{p}} \mod \mathfrak{p}$ is independent of p, $p \nmid |Cl_F|$ gives a condition for cyclicity; i.e., when $\overline{\rho}$ is a reduction modulo p of an Artin representation. Assuming $\overline{\rho}$ comes from an Artin representation, we proved cyclicity of $\operatorname{Sel}(Ad(\rho_{\mathfrak{p}}))^{\vee}$ over W, which implies cyclicity of $\operatorname{Sel}(Ad(\rho))^{\vee}$ over \mathbb{T} (even if $\operatorname{Sel}(Ad(\rho_{\mathfrak{p}}))$, $\operatorname{Sel}(Ad(\rho))$ and \mathbb{T} depend on \mathfrak{p}).

In the general non-Artin case, fundamental questions are:

Is $\mathfrak{p} \nmid |Cl_F[Ad]|$ for most \mathfrak{p} (even if F depends on \mathfrak{p})? and only thing we need for cyclicity of $Sel(Ad(\rho))$ and $Sel(Ad(\rho))$ is cyclicity of $O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ over $\mathbb{Z}_p[G]$; so,

Is $O^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ cyclic as $\mathbb{Z}_p[G]$ -modules for most of \mathfrak{p} ? For \mathfrak{p} for which the above questions are affirmative, $Sel(Ad(\rho))^{\vee}$ is cyclic over A for every $\rho \in \mathcal{D}(A)$.