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In this notes, we hope to go through basics of elliptic curves and modular curves
in three steps:

(1) As plane curves over a field (first 3 to 4 weeks);
(2) As scheme/group functor over a ring (next 3 weeks);
(3) Modular forms on modular curves.
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Elliptic curves and modular curves are one of the most important objects studied
in number theory. As everybody knows, the theory is a base of the proof by Wiles
(through Ribet’s work) of Fermat’s last theorem, it supplies a fast prime factorization
algorithm (cf. [REC] IV), and so on.

1. Curves over a field

In this section, we describe basics of plane curves over a fixed field k. We also fix
an algebraic closure k of k and a sufficiently big algebraically closed field Ω containing
k. Here we suppose that Ω has many transcendental elements over k. An example of
this setting is a familiar one: k = Q ⊂ Q ⊂ C = Ω.

1.1. Plane curves. Let a be a principal ideal of the polynomial ring k[X, Y ]. Note
that polynomial rings over a field is a unique factorization domain. We thus have
prime factorization a =

∏
p pe(p) with principal primes p. We call a square free if

0 ≤ e(p) ≤ 1 for all principal primes p. Fix a square-free a. The set of A-rational
points for any k-algebra A of a plane curve is given by the zero set

Va(A) =
{
(x, y) ∈ A2

∣∣f(x, y) = 0 for all f(X, Y ) ∈ a
}
.

It is common to take an intermediate field Ω/A/k classically, but the definition itself
works well for any k-algebra A (here a k-algebra is a commutative ring containing
k sharing identity with k). Often in mathematics, if one has more flexibility, proofs
become easier; so, we just allow Va(A) for any k-algebras A. Obviously, for a generator
f(X, Y ) of a, we could have defined

Va(A) = Vf (A) =
{
(x, y) ∈ A2

∣∣f(x, y) = 0
}
,

but this does not depend on the choice of generators and depends only on the ideal a;
so, it is more appropriate to write Va. As an exceptional case, we note V(0)(A) = A2.
Geometrically, we think of Va(Ω) as a curve in Ω2 = V(0)(Ω) (the 2-dimensional
“plane”). This is more geometric if we take k ⊂ C. In this sense, for any algebraically
closed field K over k, a point x ∈ Va(K) is called a geometric point with coefficients
in K, and V(f)(K) ⊂ V(0)(K) is called the geometric curve in V(0)(K) = K2 defined
by the equation f(X, Y ) = 0.

By Hilbert’s zero theorem (Nullstellensatz; see [CRT] Theorem 5.4 and [ALG]
Theorem I.1.3A), writing a the principal ideal of k[X, Y ] generated by a, we have

(1.1) a =
{
f(X, Y ) ∈ k[X, Y ]

∣∣f(x, y) = 0 for all (x, y) ∈ Va(k)
}
.

Thus we have a bijection

{square-free ideals of k[X, Y ]} ↔ {plane curves Va(k) ⊂ V(0)(k)}.
The association Va : A 7→ Va(A) is a covariant functor from the category of k-algebras
to the category of sets (denoted by SETS). Indeed, for any k-algebra homomorphism
σ : A → A′, Va(A) 3 (x, y) 7→ (σ(x), σ(y)) ∈ Va(A

′) as 0 = σ(0) = σ(f(x, y)) =
f(σ(x), σ(y)). Thus a = a ∩ k[X, Y ] is determined uniquely by this functor, but the
value Va(A) for an individual A may not determine a.
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Form number theoretic view point, studying Va(A) for a small field (or even a ring,
such as Z) is important. Thus it would be better regard Va as a functor in some
number theoretic setting.

If a =
∏

p p for principal prime ideals p, by definition, we have

Va =
⋃

p

Vp.

The plane curve Vp (for each prime p|a) is called an irreducible component of Va. Since
p is a principal prime, we cannot further have non-trivial decomposition Vp = V ∪W
with plane curves V and W . A prime ideal p ⊂ k[X, Y ] may decompose into a
product of primes in k[X, Y ]. If p remains prime in k[X, Y ], we call Vp geometrically
irreducible.

Suppose that we have a map FA = F (φ)A : Va(A) → Vb(A) given by two poly-
nomials φX(X, Y ), φY (X, Y ) ∈ k[X, Y ] (independent of A) such that FA(x, y) =
(φX(x), φY (y)) for all (x, y) ∈ Va(A) and all k-algebras A. Such a map is called
a regular k-map or a k-morphism from a plane k-curve Va into Vb. Here Va and Vb

are plane curve defined over k. If A1 = Vb is the affine line, i.e., Vb(A) ∼= A for all A
(taking for example b = (y)), a regular k-map Va→ A1 is called a regular k-function.
Regular k-functions are just functions induced by the polynomials in k[x, y] on Va;
so, Ra is the ring of regular k-functions of Va defined over k.

We write Homk-curves(Va, Vb) for the set of regular k-maps from Va into Vb. Obvi-
ously, only φ? mod a can possibly be unique. We have a commutative diagram for
any k-algebra homomorphism σ : A→ A′:

Va(A)
FA−−−→ Vb(A)

σ

y
yσ

Va(A
′) −−−→

FA′

Vb(A
′).

Indeed,

σ(FA((x, y))) = (σ(φX(x, y)), σ(φY (x, y)))

= (φX(σ(x), σ(y)), φY (σ(x), σ(y)) = FA′(σ(x), σ(y)).

Thus the k-morphism is a natural transformation of functors (or a morphism of func-
tors) from Va into Vb. We write HomCOF (Va, Vb) for the set of natural transformations
(we will see later that HomCOF (Va, Vb) is a set).

The polynomials (φX , φY ) induces a k-algebra homomorphism F : k[X, Y ] →
k[X, Y ] by pull-back, that is, F (Φ(X, Y )) = Φ(φX(X, Y ), φY (X, Y )). Take a class
[Φ]b = Φ + b in B = k[X, Y ]/b. Then look at F (Φ) ∈ k[X, Y ] for Φ ∈ b. Since
(φX(x), φY (y)) ∈ Vb(k) for all (x, y) ∈ Va(k), Φ(φX(x, y), φY (x, y)) = 0 for all
(x, y) ∈ Va(k). By Nullstellensatz, F (Φ) ∈ a ∩ k[X, Y ] = a. Thus F (b) ⊂ a, and F
induces a (reverse) k-algebra homomorphism

F : k[X, Y ]/b→ k[X, Y ]/a
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making the following diagram commutative:

k[X, Y ]
F−−−→ k[X, Y ]

y
y

k[X, Y ]/b −−−→
F

k[X, Y ]/a.

We write Ra = k[X, Y ]/a and call it the affine ring of Va. Here is a useful (but
tautological) lemma which is a special case of Yoneda’s lemma (in Math 210 series):

Lemma 1.1. We have a canonical isomorphism:

HomCOF (Va, Vb) ∼= Homk-curves(Va, Vb) ∼= Homk−alg(Rb, Ra).

The first association is covariant and the second is contravariant.

Here is a sketch of the proof.

Proof. First we note Va(A) ∼= HomALG/k
(Ra, A) via (a, b) ↔ (Φ(X, Y ) 7→ Φ(a, b)).

Thus as functors, we have Va(?) ∼= HomALG/k
(Ra, ?). We identify the two functors

A 7→ Va(A) and A 7→ Hom(Ra, A) in this way. Then the main point of the proof of
the lemma is to construct from a given natural transformation F ∈ HomCOF (Va, Vb)
a k-algebra homomorphism F : Rb → Ra giving F by Va(A) = HomALG/k

(Ra, A) 3
φ

FA7→ φ ◦ F ∈ HomALG/k
(Rb, A) = Vb(A). Then the following exercise finishes the

proof, as plainly if we start with F , the above association gives rise to F . �

Exercise 1.2. Let F = FRa(idRa) ∈ VRb
(Ra) = HomALG/k

(Rb, Ra), where idRa ∈
Va(Ra) = HomALG/k

(Ra, Ra) is the identity map. Then prove that F does the required
job.

We call Va irreducible (resp. geometrically irreducible) if a is a prime ideal (resp.
a = ak[X, Y ] is a prime ideal in k[X, Y ]).

Exercise 1.3. (1) Prove that for any UFD R, R[X] is a UFD.
(2) Give an example of two distinct principal prime ideals a, b of Q[X, Y ] with

Va(Q) = Vb(Q).
(3) If a and b are two distinct principal prime ideals of Q[X, Y ], prove Va(Q) 6=

Vb(Q).
(4) For a principal ideal a = (f) ⊂ k[X, Y ], prove a ∩ k[X, Y ] = a.
(5) Show that F : k[X, Y ]/b → k[X, Y ]/a is uniquely determined by F : Va → Vb

independent of the choice of (φX , φY ), give an example that F : k[X, Y ] →
k[X, Y ] depends really on the choice of (φX, φY ).

An element in the total quotient ring of Ra is called a rational k-function on Va.
If Va is irreducible, then rational k-functions form a field. This field is called the
rational function field of Va over k.
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1.2. Tangent space and local rings. Suppose a = (f(X, Y )). Write V = Va and
R = Ra. Let P = (a, b) ∈ Va(K). We consider partial derivatives

∂f

∂X
(P ) :=

∂f

∂X
(a, b) and

∂f

∂Y
(P ) :=

∂f

∂Y
(a, b).

Then the line tangent to Va at (a, b) has equation

∂f

∂X
(a, b)(X − a) +

∂f

∂Y
(a, b)(Y − b) = 0.

We write corresponding line as TP = Vb for the principal ideal b generated by
∂f
∂X

(a, b)(X − a) + ∂f
∂Y

(a, b)(Y − b). We call Va is non-singular or smooth at P =
(a, b) ∈ Va(K) for a subfield K ⊂ Ω if this TP is really a line; in other word, if
( ∂f

∂X
(P ), ∂f

∂Y
(P )) 6= (0, 0).

Example 1.1. Let a = (f) for f(X, Y ) = Y 2−X3. Then ∂f
∂X

(a, b)(X−a)+ ∂f
∂Y

(a, b)(Y −
b) = −3a2(X − a) + 2b(Y − b) (b2 = a3). Thus this curve is singular only at (0, 0).

Example 1.2. Suppose that k has characteristic different from 2. Let a = (Y 2−g(X))
for a cubic polynomial g(X) = X3 + aX + b. Then the tangent line at (x0, y0) is
given by 2y0(X − x0) − g′(x0)(Y − y0). This equation vanishes if 0 = y2

0 = g(x0)
and g′(x0) = 0; so, singular at only (x0, 0) for a multiple root x0 of g(X). Thus Va

is a nonsingular curve if and only if g(X) is separable if and only if its discriminant
4a3 − 27b2 6= 0.

Suppose that K/k is an algebraic field extension. Then K[X, Y ]/aK[X, Y ] contains
Ra as a subring. The maximal ideal (X − a, Y − b) ⊂ K[X, Y ]/aK[X, Y ] induces a
maximal ideal P = (X − a, Y − b) ∩ Ra of Ra. The local ring OV,P at P is the
localization

OV,P =
{a
b

∣∣b ∈ R, b ∈ R \ P
}
,

where a
b

= a′

b′
if there exists s ∈ R \ P such that s(ab′ − a′b) = 0. Write the maximal

ideal of OV,P as mP . Then mP ∩ R = P .

Lemma 1.4. The linear vector space TP (K) is the dual vector space of P/P 2 =
mP /m

2
P .

Proof. Write a = (f). Replacing k[X, Y ]/(f) by K[X, Y ]/(f), we may assume that
K = k. A K-derivation ∂ : OV,P → K (at P ) is a K-linear map with ∂(φϕ) =
ϕ(P )∂(φ)+φ(P )∂(ϕ). WritingDV,P for the space of K-derivations at P , which is a K-
vector space. Plainly for A := V(0), DA,P is a 2-dimensional vector space generated by

∂X : φ 7→ ∂φ
∂X

(P ) and ∂Y : φ 7→ ∂φ
∂Y

(P ). We have a natural injection i : DV,P → DA,P

given by i(∂)(φ) = ∂(φ|V ). Note that Ω(a,b) = (X − a,X − b)/(X − a,X − b)2 is a 2-
dimensional vector space over K generated by X−a and Y − b. Thus DA,P and Ω(a,b)

is dual each other under then pairing (α(X−a)+β(Y −b), ∂) = ∂(α(X−a)+β(Y−b)).
The projection k[X, Y ] � R induces a surjection

Ω(a,b) → ΩV,P = P/P 2,
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whose kernel is spanned by f mod (X−a, Y −b)2 = ∂f
∂X

(a, b)(X−a)+ ∂f
∂Y

(a, b)(Y −b)
if a = (f), since φ(X, Y ) ≡ ∂φ

∂X
(a, b)(X − a) + ∂φ

∂Y
(a, b)(Y − b) mod (X − a, Y − b)2.

Thus the above duality between Ω(a,b) and DA,(a,b) induces the duality ΩV,P = P/P 2

and TP (K) given by (ω, t) = t(ω), where we regard t as a derivation OV,P → K. �

We call TP the tangent space at P and ΩP = ΩV,P the cotangent space at P of
V . More generally, a k-derivation ∂ : Ra → Ra is a k-linear map satisfying the
Leibniz condition ∂(φϕ) = φ∂(ϕ)+ϕ∂(φ) and ∂(k) = 0. For a k-derivation as above,
f∂ : ϕ 7→ f · ∂(ϕ) for f ∈ Ra is again a k-derivation. The totality of k-derivation
DerVa/k is therefore an Ra-module.

First take a = (0); so, Va = A2. By the Leibniz relation, ∂(Xn) = nXn−1∂X,
∂(Y m) = mY m−1∂Y and ∂(XnY m) = nXn−1Y m∂X+mXnY m−1∂Y for ∂ ∈ DerA2/k;

so, ∂ is determined by its value ∂(X) and ∂(Y ). Note that (∂X) ∂
∂X

+ (∂Y ) ∂
∂Y

in
DerA2/k and the original ∂ has the same value at X and Y ; so, we have

∂ = (∂X)
∂

∂X
+ (∂Y )

∂

∂Y
.

Thus
{

∂
∂X
, ∂

∂Y

}
gives a basis of DerA2/k.

Assuming Va nonsingular (including A2 = V(0)), we write the Ra-dual as ΩVa/k :=
Hom(DerVa/k, Ra) (the space of k-differentials) with the duality pairing

(·, ·) : ΩVa/k ×DerVa/k → Ra.

We have a natural map d : Ra → ΩVa/k given by φ 7→ (dφ : ∂ 7→ ∂(φ)) ∈ DerVa/k.
Note

(d(φϕ), ∂) = ∂(φϕ) = φ∂(ϕ) + ϕ∂(φ) = (φdϕ+ ϕdφ, ∂)

for all ∂ ∈ DerVa/k. Thus we have d(φϕ) = φdϕ+ ϕdφ, and d is a k-linear derivation
with values in ΩVa/k.

Again let us first look into ΩA2/k. Then by definition (dX, ∂) = ∂X and (dY, ∂) =

∂Y ; so, {dX, dY } is the dual basis of
{

∂
∂X
, ∂

∂Y

}
. We have dΦ = ∂Φ

∂X
dX + ∂Φ

∂Y
dY as we

can check easily that the left hand side and right hand side as the same value on any
∂ ∈ DerA2/k.

If ∂ : Ra = k[X, Y ]/(f)→ Ra is a k-derivation, we can apply it to any polynomial
Φ(X, Y ) ∈ k[X, Y ] and hence regard it as ∂ : k[X, Y ]→ Ra. By the above argument,
Derk(k[X, Y ], Ra) has a basis

{
∂

∂X
, ∂

∂Y

}
now over Ra. Since ∂ factor through the

quotient k[X, Y ]/(f), it satisfies ∂(f(X, Y )) = (df, ∂) = 0. Thus we have

Lemma 1.5. We have an inclusion DerVa/k ↪→ (Ra
∂

∂X
⊕Ra

∂
∂Y

) whose image is given
by {∂ ∈ Derk(k[X, Y ], Ra)|∂f = 0}. This implies ΩVa/k = (RadX ⊕ RadY )/Radf for

df = ∂f
∂X
dX + ∂

∂Y
dY by duality.

Remark 1.1. If Va is an irreducible curve; so, Ra is an integral domain, for its quotient
field k(Va), k(Va)ΩVa/k = (k(Va)dX ⊕ k(Va)dY )/k(Va)df is 1 dimensional, as df 6= 0
in ΩA2/k. In particular, if we pick ψ ∈ Ra with dψ 6= 0 (i.e., a non-constant), any
differential ω ∈ ΩVa/k can be uniquely written as ω = φdψ for φ ∈ k(Va).

Lemma 1.6. The following four conditions are equivalent:
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(1) A point P of V (k) is a smooth point.
(2) OV,P is a local principal ideal domain, not a field.

(3) OV,P is a discrete valuation ring with residue field k.
(4) lim←−n

OV,P/m
n
P
∼= k[[T ]] (a formal power series ring).

Proof. Let K = k. By the above lemma, TP is a line if and only if dimTP (K) = 1
if and only if dimP/P 2 = 1. Thus by Nakayama’s lemma, P is principal. Any
prime ideal of k[X, Y ] is either minimal or maximal (i.e, the ring k[X, Y ] has Krull
dimension 2). Thus any prime ideal of R and OV,P is maximal. Thus (1) and (2) are
equivalent. The equivalence of (2) and (3) follows from general ring theory covered
by Math 210 (see [CRT] Theorem 11.2). We leave the equivalence (3) ⇔ (4) as an
exercise. �

Write x, y for the image of X, Y ∈ k[X, Y ] in Ra. Any ω ∈ ΩVa/k can be written as
φdx+ϕdy. Suppose that Va is nonsingular. Since OVa ,P ↪→ k[[T ]] (for P ∈ Va(k)) for
a local parameter T as above, φ, ϕ, x, y have the “Taylor expansion” as an element
of k[[T ]], for example, x(T ) =

∑
n≥0 an(x)T

n with an(x) ∈ k. Thus dx, dy also have

a well define expansion, say, dx = d(
∑

n≥0 an(x)T n) =
∑

n≥1 an(x)T
n−1dT . Thus

we may expand ω = φdx + ϕdy =
∑

n≥0 an(ω)T ndT once we choose a parameter T
at P . This expansion is unique independent of the expression φdx + ϕdy. Indeed,
if we allow meromorphic functions Φ as coefficients, as we remarked already, we can
uniquely write ω = Φdx and the above expansion coincides with the Taylor expansion
of Φdx.

Exercise 1.7. Let P ∈ Va(K) for a finite field extension K/k, and pull back P to a
maximal ideal (X−a, Y − b) ⊂ K[X, Y ]. Define (X−a, Y − b)∩k[X, Y ], and project
it down to a maximal ideal p ⊂ Ra = k[X, Y ]/a. Write OVA,p for the localization of
Ra at p. Prove the following facts:

(1) p is a maximal ideal and its residue field is isomorphic to the field k(a, b)
generated by a and b over k.

(2) (p/p2)⊗k(a,b) K ∼= P/P 2 as K-vector space.
(3) Any maximal ideal of Ra is the restriction of P ∈ Va(K) for a suitable finite

field extension K/k.
(4) OVa ,p is a DVR if and only if OVa,P is a DVR.

Write Max(Ra) for the set of maximal ideals of Ra. Then plainly, we have a natural
inclusion Va(k) ↪→ Max(Ra) sending (a, b) to (x − a, y − b) for the image x, y in Ra

of X, Y ∈ k[X, Y ]. For P ∈Max(Ra), we call P is smooth on Va if OV,P is a discrete
valuation ring. By the above exercise, this is consistent with the earlier definition (no
more and no less).

For any given affine plane irreducible curve Va, we call Va is normal ifRa is integrally
closed in its field of fractions.

Corollary 1.8. Any normal irreducible affine plane curve is smooth everywhere.

Proof. By ring theory, any localization of a normal domain is normal. Thus OV,P is
a normal domain. By the exercise below, we may assume that P ∩ k[X, Y ] 6= (0).
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Then P is a maximal ideal, and hence K = k[X, Y ]/P is an algebraic extension of k.
In this case, OV,P is a normal local domain with principal maximal ideal, which is a
discrete valuation ring (cf. [CRT] Theorem 11.1). �

Exercise 1.9. (1) Let P = k[X, Y ] ∩ (X − a, Y − b) for (a, b) ∈ Va(Ω), where
(X−a, Y − b) is the ideal of Ω[X, Y ]. Is it possible to have P = (0) ⊂ k[X, Y ]
for a point (a, b) ∈ Va(Ω).

(2) If a = (XY ), is the ring OV,O for O = (0, 0) an integral domain? What is
dimk mO/m

2
O?

(3) For all points P ∈ Va(Ω) with Ra ∩ P = (0) (regarding P = (x− a, y − b) as
an maximal ideal of Ω[X, Y ]/aΩ[X, Y ]), prove that V is smooth at P .

(4) If A is a discrete valuation ring containing a field k ⊂ A which is naturally

isomorphic to the residue field of A, prove Â = lim←−n
A/mn

A
∼= k[[T ]], where mA

is the maximal ideal of A.

1.3. Projective space. Let A be a commutative ring. Write AP be the localization
at a prime ideal P of A. Thus

AP =

{
b

s

∣∣s ∈ A \ P
}
/ ∼,

where b
s
∼ b′

s′
if there exists s′′ ∈ A \ P such that s′′(s′b − sb′) = 0. An A-module M

is called locally free at P if

MP = {m
s
|s ∈ A \ P}/ ∼= AP ⊗A M

is free over AP . We callM locally free if it is free at all prime ideals of A. If rankAP
MP

is constant r independent of P , we write rankAM for r.
Write ALG/k for the category of k-algebras; so, HomALG/k

(A,A′) is made up of
k-algebra homomorphisms from A into A′ sending the identity 1A to the identity
1A′ . Here k is a general base ring, and we write ALG for ALG/Z (as ALG is the
category of all commutative rings with identity). We consider a covariant functor
Pn = Pn

/k : ALG/k → SETS given by

Pn(A) =
{
L ⊂ An+1

∣∣L (resp. An+1/L) is locally A-free of rank 1 (resp. n)
}
.

This is a covariant functor. Indeed, if σ : A → A′ is a k-algebra homomorphism,
letting it act on An+1 component-wise, L 7→ σ(L) induces a map Pn(A) → Pn(A′).
If A is a field K, then X has to be free of dimension 1 generated by a non-zero vector
x = (x0, x1, . . . , xn). The vector x is unique up to multiplication by non-zero elements
of K. Thus we have proven the first statement (for a field) of the following

Lemma 1.10. Suppose that K is a local ring with maximal ideal m. Then we have

Pn(K) ∼=
{
x = (x0, x1, . . . , xn) ∈ Kn+1|x 6≡ (0, . . . , 0) mod m

}
/K×.

Moreover, writing Di : ALG/k → SETS for the subfunctor Di(A) ⊂ Pn(A) made up
of the classes L whose projection to the i-th component A ⊂ An+1 is surjective, we
have Pn(K) =

⋃
i Di(K) and Di(A) ∼= An canonically for all k-algebras A. If A is a
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local ring K, Di
∼= An is given by sending (x0, . . . , xn) to (x0

xi
, . . . , xn

xi
) ∈ Kn removing

the i-th coordinate.

Proof. Since K = Km for its maximal ideal m, L is K-free if it is locally free. Thus
we have a generator x = (x0, . . . , xn) of L over K. Since Kn+1/L is locally free of
rank n, it has to be free of rank n over K as K is local. Take a basis v1, . . . , vn of
Kn+1/L, we can lift them to vi ∈ Kn+1 so that x, v1, . . . , vn form a basis of Kn+1 over
K. Thus x 6≡ 0 mod m for the maximal ideal m of K. In particular, for an index i,
xi 6∈ m; so, xi ∈ K×. Since the projection of L to the i-th component is generated by
xi ∈ K×, it is equal to K, and hence x ∈ Di(K). Thus Pn(K) =

⋃
i Di(K).

If L ∈ Di(A), we have the following commutative diagram

L
↪→−−−→ An+1

‖
y

yi-th proj

L
∼−−−→ A

Thus L is free of rank 1 over A; so, it has a generator (x0, . . . , xn) with xi ∈ A×.
Then (x0, . . . , xn) 7→ (x0

xi
, . . . , xn

xi
) ∈ An gives rise to a natural transformation of Di

onto An (which is an isomorphism of functors). �

If K is local (in particular, a field), we write (x0 : x1 : · · · : xn) for the point of
Pn(K) represented by (x0, . . . , xn) as only the ratio matters.

Exercise 1.11. Is there any example of a point in X ∈ P1(A) (and a ring A) such
that the projections to the first and the second coordinate are both not surjective?

We assume that K is a field for a while. When n = 1, we see P1(K) = K× t {∞}
by (x : y) 7→ x

y
∈ K t {∞}. Thus P1(R) is isomorphic to a circle and P1(C) is a

Riemann sphere.
We now assume that n = 2. Writing L = {(x : y : 0) ∈ P2(K)}. Then P1 ∼= L

by (x : y) 7→ (x : y : 0); so, L is isomorphic to the projective line. We have
P2(K) = D(K)tL for fields K, where D = D2. Thus geometrically (i.e., over fields),
P2 is the union of the affine plane added L. We call L = L∞ (the line at ∞).

1.4. Projective plane curve. For a plane curve defined by a = (f(x, y)) for f(x, y)
of degree m, F (X, Y, Z) = Zmf(X

Z
, Y

Z
) is a (square-free) homogeneous polynomial of

degree m in k[X, Y, Z]. If L ∈ P2(A), we can think of F (`) for ` ∈ L. We write
F (L) = 0 if F (`) = 0 for all ` ∈ L. Thus for any k-algebra A, we define the functor
V a : ALG/k → SETS by

V a(A) =
{
L ∈ P2(A)|F (L) = 0

}
.

If A is a field K, we sent L ∈ P2(K) to its generator (a : b : c) ∈ L when we
identified P2(K) with the (classical) projective space with homogeneous coordinate.
Since F (L) = 0 if and only if F (a : b : c) = 0 in this circumstances, we have

V a(K) =
{
(a : b : c) ∈ P2(K)|F (a, b, c) = 0

}
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which is called a projective plane k-curve. Since D2
∼= A2 canonically via (x : y :

1) 7→ (x, y) (and this coordinate is well defined even over A which is not a field), we
have V a(A) ∩D2(A) = Va(A). In this sense, we can think of V a as a completion of
Va adding the boundary V a ∩ L∞. Since in Dj

∼= A2 (j = 0, 1), V a ∩ Dj is a plane

affine curve (for example, V a ∩ D0 is defined by F (1, y, z) = 0), (L∞ ∩ V a)(k) is a
finite set. Thus V a is a sort of completion/compactification of the (open) affine curve
Va (we sort out this point more rigorously later). Of course, we can start with a
homogeneous polynomial F (X, Y, Z) (or a homogeneous ideal of k[X, Y, Z] generated
by F (X, Y, Z)) to define a projective plane curve. Following Lemma 1.1, we define
Homproj k-curves(V a, V b) := HomCOF (V a, V b).

Example 1.3. Suppose a = (y2 − f(x)) for a cubic f(x) = x3 + ax + b. Then
F (X, Y, Z) = Y 2Z − X3 − aXZ2 − bZ3. Since L∞ is defined by Z = 0, we find
L∞ ∩ V a = {(0 : 1 : 0)} made of a single point (with multiplicity 3). This point we
call the origin 0 of Va.

A projective plane curve V a is non-singular (or smooth) if V a∩Dj is a non-singular
plane curve for all j = 0, 1, 2. The tangent space at P ∈ V a(K) is defined as before
since P is in one of Dj ∩ Va.

Exercise 1.12. Suppose V a is defined by F (X, Y, Z) = 0. Let f(x, y) = F (x, y, 1)
and g(y, z) = F (1, y, z). Then the projective plane curve V a for a = (f(x, y)) satisfies
V a ∩D0 = V(g). Show that OVa ,P

∼= OV(g),P canonically if P ∈ V a ∩D0 ∩D2.

By the above exercise, the tangent space (the dual of mP /m
2
P ) at P ∈ V a(K) does

not depend on the choice of j with P ∈ V a ∩ Dj . If a projective plane curve C is
irreducible, the rational function field over k is the field of fraction of OC,P for any
P ∈ C(k); so, independent of C ∩Dj.

Lemma 1.13. Take a nonzero f ∈ k(C). Then there exist homogeneous polynomials
G(X, Y, Z), H(X, Y, Z) ∈ k[X, Y, Z] with deg(G) = deg(H) such that f(x : y : z) =
H(x,y,z)
G(x,y,z)

for all (x : y : z) ∈ C(k).

Proof. We may write on C ∩D2 f(x, y, 1) = h(x,y)
g(x,y)

. If m = deg(h) = deg(g), we just

define H(X, Y, Z) = h(X
Z
, Y

Z
)Zm and G(X, Y, Z) = g(X

Z
, Y

Z
)Zm. If deg(h) > deg(g),

we define H(X, Y, Z) = h(X
Z
, Y

Z
)Zdeg(h) and G(X, Y, Z) = g(X

Z
, Y

Z
)Zdeg(h). If deg(h) <

deg(g), we define H(X, Y, Z) = h(X
Z
, Y

Z
)Zdeg(g) and G(X, Y, Z) = g(X

Z
, Y

Z
)Zdeg(g).

Multiplying h or g by a power of Z does not change the above identity f(x, y, 1) =
h(x,y)
g(x,y)

, because Z = 1 on C ∩D2. Thus by adjusting in this way, we get G and H. �

Example 1.4. Consider the function φ = cx + dy in k(C) for C = V a with a =
(y2 − x3 − ax− b). Then C is defined by Y 2Z −X3 − aXZ2 − bZ3 = 0, and

φ(X : Y : Z) = c
X

Z
+ d

Y

Z
=
cX + dY

Z
.

So φ has pole of order 3 at Z = 0 (as the infinity on C has multiplicity 3) and three
zeros at the intersection of L := {cx+ dy = 0} and C ∩D2 ∩ L.
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Take a projective nonsingular plane k-curve C/k. Put Ci = C∩Di which is an affine
nonsingular plane curve. Then we have well defined global differentialsDerCi/k. Since
∂ : DerCi/k induces ∂P : OCi,P → K for any P ∈ Ci(K) by f 7→ ∂(f)(P ), we have
∂P ∈ TP . If ∂i ∈ DerCi/k given for each i = 0, 1, 2 satisfies ∂i,P = ∂j,P for all (i, j) and

all P ∈ (Di ∩Dj)(k), we call ∂ = {∂i}i a global tangent vector defined on C . Plainly
the totality TC/k of global tangent vectors are k-vector space. The k-dual of TC/k is
called the space of k-differentials over k and written as ΩC/k. It is known that ΩC/k

is finite dimensional over k.

Corollary 1.14. Suppose that C is non-singular. Each φ ∈ k(C) induces φ ∈
Homproj k-curves(C,P

1). Indeed, we have k(C) t {∞} ∼= Homproj k-curves(C,P
1), where

∞ stands for the constant function sending all P ∈ C(A) to the image of ∞ ∈ P1(k)
in P1(A).

Proof. We prove only the first assertion. Suppose k = k. Write φ(x : y : z) = h(x,y,z)
g(x,y,z)

as a reduced fraction by the above lemma. For L ∈ C(A) ⊂ P2(A), we consider
the sub A-module φ(L) of A2 generated by {(h(`), g(`)) ∈ A2|` ∈ L}. We now show
that φ(L) ∈ P1(A); so, we will show that the map C(A) 3 L 7→ φ(L) ∈ P1(A)
induces the natural transformation of C into P1. If A is local, by Lemma 1.10, L is
generated by (a, b, c) with at least one unit coordinate. Then any ` ∈ L is of the form
λ(a, b, c) and therefore φ(`) = λdeg(h)φ(a, b, c). Thus φ(L) = A ·φ(a, b, c). Since A is a
k-algebra, k is naturally a subalgebra of the residue field A/m of A. Since φ(P ) for all
P ∈ C(k) is either a constant in k or ∞, we may assume that (h(P ), g(P )) 6= (0, 0)
for all P ∈ C(k). Since (a, b, c) 6≡ 0 mod m as (a, b, c) generates a direct summand
of A3. Thus (h(a, b, c), g(a, b, c)) 6≡ (0, 0) mod m. After tensoring A/m over A,
(A/m)2/(φ(L)/mφ(L)) is one dimensional. Thus by Nakayama’s lemma (e.g., [CRT]
Theorem 2.2–3), A/φ(L) is generated by a single element and has to be a free module
of rank 1 as φ(L) is a free A-module of rank 1. Thus φ(L) ∈ P1(A). If k is not
algebraically closed, replacing A by A = A⊗k k, we find φ(L)⊗k k ∈ P2(k) and hence
φ(L)⊗A A/m ∈ P2(k), which implies φ(L) ∈ P2(A).

If A is not necessarily local, applying the above argument to the local ring AP for
any prime ideal P of A, we find that φ(L)P = φ(LP ) and A2

P/φ(LP ) are free of rank
1; so, φ(L) and A2/φ(L) are locally free of rank 1; therefore, φ(L) ∈ P2(A).

Now it is plain that L 7→ φ(L) induces a natural transformation of functors. �

Exercise 1.15. Prove the following facts:

(1) If Lm is free of finite rank r for a maximal ideal m of A, LP is free of rank r
for any prime ideal P ⊂ m.

(2) If L ⊂ A2 is a free A-submodule of rank 1 and A2/L is generated by one
element over A, A2/L is A-free of rank 1.

(3) Homproj k-curves(C,P
1) \∞ ∼= k(C).

1.5. Divisors. The divisor group Div(C) of a non-singular projective geometrically
irreducible plane curve C is a formal free Z-module generated by points P ∈ C(k).
When we consider a point P as a divisor, we write it as [P ]. For each divisor D =∑

P mP [P ], we define deg(D) =
∑

P mP . Since C is nonsingular, for any point P ∈
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C(k), OC,P is a DVR, and the rational function field k(C) is the quotient field of OC,P

(regarding C as defined over k). Thus if we write the valuation vP : k(C) � Z∪{∞}
for the additive valuation of OC,P , we have a well defined vP (f) ∈ Z for any non-zero

rational k-function f ∈ k(C). Since mP = (tP ) and t
vP (f)
P ‖ f in OC,P , f has a zero of

order vp(f) at P if vP(f) > 0 and a pole of order |vp(f)| if vP (f) < 0. In other words,
the Taylor expansion of f at P is given by

∑
n an(f)tnP and vp(f) = min(n : an(f) 6=

0). For a global doifferential ω ∈ ΩC/k, we have its Taylor expansion
∑

n an(f)tnP dtP

at each P ∈ C(k); so, we may also define vP (ω) := min(n : an(ω) 6= 0). We extend
this definition for meromorphic differentials k(C) ·ΩC/k = {f ·ω|f ∈ k(C), ω ∈ ΩC/k}.
Here we quote Bézout’s theorem:

Theorem 1.16. Let C and C ′ be two plane projective k-curves inside P2 defined by
relatively prime homogeneous equations F (X, Y, Z) = 0 and G(X, Y, Z) = 0 of degree
m and n respectively. Then counting with multiplicity, |C(k) ∩ C ′(k)| = m · n.

If C is smooth at P ∈ C ∩ C ′ in C ∩D2, φ = G(X,Y,Z)
Zn is a function vanishing at

P . The multiplicity of P in C ∩ C ′ is just vP(φ). More generally, if P = (a, b) is
not necessarily a smooth point, writing C ∩D2 = Va and C ′ ∩D2 = Vb for principal
ideals a, b in k[X, Y ] and regarding P as an ideal (X − a, Y − b) ⊂ k[X, Y ], the
multiplicity is given by the dimension of the localization (k[x, y]/a+ b)P over k. The
same definition works well for any points in C ∩ D0 and C ∩ D1. One can find the
proof of this theorem with (possibly more sophisticated) definition of multiplicity in
a text of algebraic geometry (e.g. [ALG] Theorem I.7.7).

Since there are only finitely many poles and zeros of f , we can define the divi-
sors div(f) =

∑
P∈C(k) vP (f)[P ], div0(f) =

∑
P∈C(k),vP (f)>0 vP(f)[P ] and div∞(f) =∑

P∈C(k),vP (f)<0 vP (f)[P ] of f . Similarly, for meromorphic differential ω, we de-

fine again div(ω) =
∑

P vP (ω)[P ]. By Lemma 1.13, f(x : y : z) = h(x:y:z)
g(x:y:z)

for

a homogeneous polynomial h, g in k[x, y, z] of the same degree. If the degree of
equation defining C is m and C ′ is defined by h(X, Y, Z) = 0, deg0(div(f)) =
|C(k) ∩ C ′(k)| = m deg(h) = m deg(g) = deg∞(div(f)). This shows deg(div(f)) = 0
as

∑
P,vP (f)>0mP = m deg(h) and −∑

P,vP (f)<0mP = m deg(g).

Lemma 1.17. Let C be a nonsingular projective plane curve. For any f ∈ k(C),
deg(div(f)) = 0, and if f ∈ k(C) is regular at every P ∈ C, f is a constant in k.

Lemma 1.18. If f ∈ k(C) satisfies deg(div0(f)) = deg(div∞(f)) = 1, f : C → P1

induces an isomorphism of projective plane curve over k.

Proof. Write φ(x : y : z) = H(x,y,z)
G(x,y,z)

as a reduced fraction of homogeneous polynomials

G,H ∈ k[X, Y, Z] of degree n. Suppose C is defined by a homogeneous equation of
degreem. Then by Bézout’s theorem,m·n = deg(div0(φ)) = 1. Thus m = n = 1, and
it is then plain that (x : y : z) 7→ (G(x, y, z) : H(x, y, z)) gives rise to an isomorphism
C ∼= P1.

Another proof: By the proof of Corollary 1.14, deg(div0(f)) is the number of
points over 0 (counting with multiplicity) of the regular map f : C → P1. By taking
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off a constant α ∈ k ⊂ P1 to f , deg(div0(f − α)) = 1 = deg(div∞(f − α)), and
|f−1(α)| = deg(div0(f − α)) = 1; so, we find that f is 1-1 onto. Thus f is an
isomorphism. �

Write Div0(C) = {D ∈ Div(C/k)| deg(D) = 0}. Inside Div0(C), we have the

subgroup {div(f)|f ∈ k(C)×}. We call two divisors D,D′ linearly equivalent if D =
div(f) + D′ for f ∈ k(C). We call that D and D′ are algebraically equivalent if
deg(D) = deg(D′). The quotient groups J(C) = Div0(C)/{div(f)|f ∈ k(C)×} and
Pic(C) = Div(C)/{div(f)|f ∈ k(C)×} are called the jacobian and the Picard group of
C , respectively. Sometimes, J(C) is written as Pic0(C) (the degree 0 Picard group).

1.6. The theorem of Riemann–Roch. We write D =
∑

P mP [P ] ≥ 0 (resp. D >
0) for a divisor D on C if mP ≥ 0 for all P (resp. D ≥ 0 and D 6= 0). For a divisor
D on Ck

L(D) = {f ∈ k(C)| div(f) +D ≥ 0} ∪ {0}.
Plainly, L(D) is a vector space over k. It is known that `(D) = dimk L(D) <∞. For
φ ∈ k(C)×, L(D) 3 f 7→ fφ ∈ L(D − div(φ)) is an isomorphism. Thus `(D) only
depends on the class of D in Pic(C).

Example 1.5. Let C = P1. For a positive divisor D =
∑

a∈kma[a] with ma ≥ 0 and

ma > 0 for some a, regarding a ∈ k as a point [a] ∈ P1(k) = kt{∞}. On A1(k) = k,

forgetting about the infinity, div(f) +D ≥ 0 if f = g(x)Q
a(x−a)ma for a polynomial g(x).

If deg(D) ≥ deg(g(x)), the function f does not have pole at ∞. Thus L(D) =
{g(x)| deg(g(x)) ≤ deg(D)} and we have `(D) = 1+deg(D) if D > 0. If C is a plane

projective curve, we can write f = h(X,Y,Z)
g(X,Y,Z)

as a reduced fraction by Lemma 1.13.

Write D =
∑

P mP [P ], and put |D| = {P |D =
∑

P mP [P ] with mP 6= 0}. If |D|
is inside D2 ∩ C ⊂ A2 and D > 0, we may assume that V(g(X,Y,1)) ∩ C contains |D|.
Then not to have pole at C \ D2, deg(h) has to be bounded; so, `(D) < ∞. Since
L(D) ⊂ L(D+) in general, writing D = D+ +D− so that D+ ≥ 0 and −D− ≥ 0, this
shows `(D) <∞.

Exercise 1.19. Give the details of the proof of `(D) <∞.

Theorem 1.20 (Riemann-Roch). Let C = V a be a non-singular projective curve
defined over a field k. Then for g = dimk ΩC/k and a divisor K of degree 2g − 2 of

the form div(ω) for a meromorphic differential ω on C such that `(D) = 1 − g +
deg(D) + `(K − D) for all divisor D on C(k) and the equality holds for sufficiently
positive divisor D. If g = 1, K = 0.

The divisor K is called a canonical divisor K (whose linear equivalence class is
unique). Note that

L(K) = {f ∈ k(C)| div(fω) = div(f) + div(ω) ≥ 0} ∼= ΩC/k

by f 7→ fω ∈ ΩC/k. Then by the above theorem,

g(C) = dimΩC/k = `(K) = 1− g + deg(K) + `(0) = 2 + deg(K)− g(C),
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and from this, we conclude deg(K) = 2g(C)−2. One can find a proof of this theorem
in any algebraic geometry book (e.g., [ALG] IV.1 or [GME] Theorem 2.1.3).

Corollary 1.21. If g(C) = 1, then `(D) = deg(D) if deg(D) > 0.

Proof. For a non-constant f ∈ k(E), deg(div(f)) = 0 implies that f has a pole
somewhere. If D > 0, f ∈ L(−D) does not have pole; so, constant. Since D > 0,
f vanishes at P ⊂ D. Thus f = 0. More generally, if deg(D) > 0 and φ ∈ L(−D),
then 0 > deg(−D) = deg(φ) − deg(D) ≥ 0; so, φ = 0. Thus if deg(D) > 0, then
`(−D) = 0. Since K = 0, we have by the Riemann-Roch theorem that `(D) =
deg(D) + `(0−D) = deg(D) if deg(D) > 0. �

Because of deg(div(f)) = 0, if D � 0, `(−D) = 0. Thus in particular `(K−D) = 0
if D� 0. Thus the above theorem implies what Riemann originally proved:

Corollary 1.22 (Riemann). Let C = V a be a non-singular projective curve defined
over a field k. Then there exists a non-negative integer g = g(C) such that `(D) ≥
1−g+deg(D) for all divisor D on C(k) and the equality holds for sufficiently positive
divisor D.

By the above example, we conclude g(P1) = 0 from the corollary.

Exercise 1.23. Prove Ω
P1/k = 0.

1.7. Regular maps from a curve into projective space. Tak a divisor D on
a nonsingular projective plane curve C . Suppose `(D) = n > 0. Take a basis

(f1, f2, . . . , fn) of L(D). Thus we can write fj =
hj

gj
with homogeneous polynomials

gj , hj having deg(gj) = deg(hj). Replacing (gj, hj) by (g′0 := g1g2 · · · gn, h
′
j := hjg

(j))

for g(j) =
∏

i6=j gi, we may assume deg(g′j) = deg(h′j) for all j, and further dividing

them by the GCD of (h′1, . . . , h
′
n, g

′
0), we may assume that fj =

hj

g0
with deg(hj) =

deg(g0) for all j and (g0, h1, . . . , hn) do not have nontrivial common divisor.

Lemma 1.24. Let the assumptions on (g0, h1, . . . , hn) be as above. Suppose that
(g0(P ), h1(P ), . . . , hn(P )) 6= (0, 0, . . . , 0) for all P ∈ C(k). Define L ∈ C(A) ⊂
Pn(A), φA(L) for an A-submodule of A3 generated by φ(`) = (g0(`), h1(`), . . . , hn(`)) ∈
An+1 for all ` ∈ L. Then φ = {φA}A : C → Pn is a k-morphism of the projective
plane k-curve C into Pn

/k.

The proof of the above lemma is the same as that of Corollary 1.14; so, we leave it
to the reader:

Exercise 1.25. Prove the above lemma.

2. Elliptic curves

An elliptic curve E/k is a non-singular projective geometrically irreducible plane
curve with point 0E specified having g(E) = 1. Here we define g(E), regarding E is
defined over k. We study elliptic curves in more details.
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2.1. Abel’s theorem. When we regard P ∈ E(k) as a divisor, we just write [P ]. So
3[P ] is a divisor supported on P with multiplicity 3. We prove

Theorem 2.1 (Abel). Let E/k be an elliptic curve with origin 0E. The correspondence

P 7→ [P ]− [0E ] induces a bijection E(k) ∼= J(E). In particular, E(k) is an ableian
group.

Proof. Injectivity: if [P ] − [Q] = [P ] − [0E] − ([Q] − [0E]) = div(f) with P 6= Q
in E(k), by Lemma 1.18, f is an isomorphism. This is wrong as g(P1) = 0 while
g(E) = 1. Thus P = Q.

Surjectivity: Pick D ∈ Div0(E). Then D + [0E] has degree 1; so, `(D + [0E]) = 1
by Corollary 1.21, and we have φ ∈ L(D+[0E]). Then div(φ)+D+[0E ] ≥ 0 and has
degree 1. Any non-negative divisor with degree 1 is a single point [P ]. Thus D+ [0E]
is linearly equivalent to [P ]; so, the map is surjective. �

Corollary 2.2. If 0 6= ω ∈ ΩE/k, then div(ω) = 0.

Proof. Since E(k) is a group, for each P ∈ E(k), TP : Q 7→ Q + P gives an auto-
morphism of E. Thus ω ◦ TP is another element in ΩE/k. Since dimΩE/k = 1, we

find ω ◦ TP = λ(P )ω for λ ∈ k. Since ω 6= 0, at some point P ∈ E(k), vP (ω) = 0.
Since vQ(ω ◦ TP ) = vP+Q(ω) and we can bring any point to P by translation, we have
vP (ω) = 0 everywhere. Thus div(ω) = 0. �

We can show easily λ(P ) = 1 for all P (see [GME] §2.2.3). The nonzero differentials
ω in ΩE/k are called nowhere vanishing differentials as div(ω) = 0. They are unique
up to constant multiple.

Exercise 2.3. Take a line L defined by aX+bY +cZ on P2 and suppose its intersec-
tion with an elliptic curve E ⊂ P2 to be {P,Q,R}. Prove that [P ]+[Q]+[R]∼ 3[0E ].

A field k is called a perfect field if any finite field extension of k is separable (i.e.,
generated by θ over k whose minimal equation over k does not have multiple roots).
Fields of characteristic 0 and finite fields are perfect.

Exercise 2.4. Let C be an irreducible plane curve over a perfect field k. Let K be
the integral closure of k in k(C). Show

(1) K/k is a finite field extension;

(2) K ⊗k k ∼=
d︷ ︸︸ ︷

k × k × · · · × k as k-algebras for d = dimk K;
(3) C is geometrically irreducible if and only if K = k.

Remark 2.1. If k is perfect, k/k is possibly an infinite Galois extension; so, by Galois
theory, we have a bijection between open subgroups G of Gal(k/k) and finite exten-

sionsK/k inside k by G 7→ k
G

= {x ∈ k|σ(x) = x for all σ ∈ G} andK 7→ Gal(k/K).
Since the isomorphicm E(k) ∼= J(C) is Galois equivariant, we have

E(K) ∼= J(E)Gal(k/K) = {D ∈ J(E)|σ(D) = D for all σ ∈ G},
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where σ ∈ Gal(k/k) acts on D =
∑

P mP [P ] by σ(D) =
∑

P mP [σ(P )]. Basically by
definition, we have

J(E)(K) := J(E)Gal(k/K) =
{D ∈ Pic0(E)|σ(D) = D}
{div(f)|f ∈ K(E)×} .

Since any subfieldK ⊂ k is a union of finite extensions, the identityE(K) ∼= J(E)(K)
is also true for an infinite extensionK/k inside K. Actually we have a good definition
of Pic(E)(A) for any k-algebraA, and we can generalize the identityE(K) ∼= J(E)(K)
to all k-algebras A in place of fields K inside k.

2.2. Weierstrass Equations of Elliptic Curves. We now embed E/k into the two-
dimensional projective space P2

/k using a base of L(3[0]) and determine the equation

of the image in P2
/k. Choose a parameter T = t0 at the origin 0 = 0E. We first

consider L(n[0]) which has dimension n if n > 0. We have L([0]) = k and L(2[0]) =
k1 + kx. Since x has to have a pole of order 2 at 0, we may normalize x so that
x = T−2(1 + higher terms) in k[[T ]]. Here x is unique up to translation: x 7→ x + a
with a ∈ k. Then L(3[0]) = k1 + kx + ky. We may then normalize y so that
y = −T−3(1 + higher terms) (following the tradition, we later rewrite y for 2y; thus,
the normalization will be y = −2T−3(1+higher terms) at the end). Then y is unique
up to the affine transformation: y 7→ y + ax+ b (a, b ∈ k).
Proposition 2.5. Suppose that the characteristic of the base field k is different from
2 and 3. Then for a given pair (E, ω) of an elliptic curve E and a nowhere-vanishing
differential ω both defined over k, we can find a unique base (1, x, y) of L(3[0]) such
that E is embedded into P2

/k by (1, x, y) whose image is defined by the affine equation

(2.1) y2 = 4x3 − g2x− g3 with g2, g3 ∈ k,
and ω on the image is given by dx

y
. Conversely, a projective algebraic curve defined by

the above equation is an elliptic curve with a specific nowhere-vanishing differential
dx
y

if and only if the discriminant ∆(E, ω) = g3
2 − 27g2

3 of 4X3 − g2X − g3 does not
vanish.

An equation of an elliptic curve E as in (2.1) is called a Weierstrass equation of E,
which is determined by the pair (E, ω).

Proof. By the dimension formulas, counting the order of poles at 0 of monomials of
x and y, we have

L(4[0]) = k + kx+ ky + kx2,

L(5[0]) = k + kx+ ky + kx2 + kxy and

L(6[0]) = k + kx+ ky + kx2 + kxy + kx3

= k + kx+ ky + kx2 + kxy + ky2,

from which the following relation results,

(2.2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with aj ∈ k,
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because the poles of order 6 of y2 and x3 have to be canceled. We homogenize the
equation (2.2) by putting x = X

Z
and y = Y

Z
(and multiplying by Z3). Write C for

the projective plane k-curve in P2 defined by the (homogenized) equation. Thus we
have a k-regular map: φ : E → C ⊂ P2 given by P 7→ (x(P ) : y(P ) : 1). Thus
the function field k(E) contains the function field k(C) by the pull back of φ. By
definition, k(C) = k(x, y). Since div∞(x) = 2[0E] for x = X

Z
: E → P1, this gives

a covering of degree 2; so, [k(E) : k(x)] = 2. Similarly [k(E) : k(y)] = 3. Since
[k(E) : k(C)] is a common factor of [k(E) : k(x)] = 2 and [k(E) : k(y)] = 3, we get
k(E) = k(C). Thus if C is smooth, E ∼= C by φ as a smooth geometrically irreducible
curve is determined by its function field. Therefore, assuming C is smooth, E/k can
be embedded into P2

/k via P 7→ (x(P ), y(P )). The image is defined by the equation

(2.2).
Let T be a local parameter at 0E normalized so that

ω = (1 + higher degree terms)dT.

Anyway ω = (a + higher degree terms)dT for a ∈ k×, and by replacing T by aT , we
achieve this normalization. The parameter T normalized as above is called a param-
eter adapted to ω. Then we may normalize x so that x = T−2 +higher degree terms.
We now suppose that 2 is invertible in k. Then we may further normalize y so that
y = −2T−3 + higher degree terms (which we will do soon but not yet; so, for the
moment, we still assume y = T−3 + higher degree terms).

The above normalization is not affected by variable change of the form y 7→ y+ax+b
and x 7→ x+ a′. Now we make a variable change y 7→ y + ax+ b in order to remove
the terms of xy and y (i.e., we are going to make a1 = a3 = 0):

(y + ax+ b)2 + a1x(y + ax+ b) + a3(y + ax+ b)

= y2 + (2a + a1)xy + (2b+ a3)y + polynomial in x.

Assuming that 2 is invertible in k, we take a = −a1

2
and b = −a3

2
. The resulting

equation is of the form y2 = x3 +b2x
2 +b4x+b6. We now make the change of variable

x 7→ x+ a′ to make b2 = 0:

y2 = (x+ a′)3 + b2(x+ a′)2 + b4(x+ a′) + b6 = x3 + (3a′ + b2)x
2 + · · · .

Assuming that 3 is invertible in k, we take a′ = − b2
3
. We can rewrite the equation as

in (2.1) (making a variable change −2y 7→ y). By the variable change as above, we
have y = −2T−3(1+higher terms), and from this, we conclude ω = dx

y
. The numbers

g2 and g3 are determined by T adapted to a given nowhere-vanishing differential form
ω.

If the discriminant ∆(E, ω) of g(x) = 4x3−g2x−g3 vanishes, C has only singularity
at (x0 : 0 : 1) for a multiple root x0 of g(x) = 0. If g(x) has a double zero, C is
isomorphic over k to the curve defined by y2 = x2(x− a) for a 6= 0. Let t = x

y
. Then

for P ∈ E(k) mapping to (0, 0), vP (y) = vP (x); so, P is neither a zero nor a pole of
t. The function t never vanish outside 0E (having a pole at (a, 0)). It has a simple
zero at 0E by the normalization of x and y. Thus deg(div0(t)) = 1, and k(C) = k(t),
which is impossible as k(C) = k(E) and g(E) = 1. The case of triple zero can be
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excluded similarly. Thus we conclude ∆(E, ω) 6= 0 (⇔ C is smooth: Example 1.3),
and we have E ∼= C by φ.

Conversely, we have seen that any curve defined by equation (2.1) is smooth in
Example 1.3 if the cubic polynomial F (X) = 4X3− g2X − g3 has three distinct roots
in k. In other words, if the discriminant ∆(E, ω) of F (X) does not vanish, E is
smooth.

For a given equation, Y 2 = F (X), the algebraic curve E defined by the homoge-
neous equation Y 2Z = 4X3−g2XZ

2−g3Z
3 in P2

/k has a rational point 0 = (0, 1, 0) ∈
E(k), which is ∞ in P2. Thus E is smooth over k if and only if ∆(E, ω) 6= 0 (an
exercise following this proof).

We show that there is a canonical nowhere-vanishing differential ω ∈ ΩE/k if E is
defined by (2.1). If such an ω exists, all other holomorphic differentials ω′ are of the
form fω with div(f) ≥ 0, which implies f ∈ k; so, g = dimk ΩE/k = 1, and E/k is
an elliptic curve. It is an easy exercise to show that y−1dx does not vanish on E (an
exercise following this proof).

We summarize what we have seen. Returning to the starting elliptic curve E/k, for
the parameter T at the origin, we see by definition

x = T−2(1 + higher degree terms) and y = −2T−3(1 + higher degree terms).

This shows

dx

y
=
−2T−3(1 + · · · )
−2T−3(1 + · · · )dT = (1 + higher degree terms)dT = ω.

Thus the nowhere-vanishing differential form ω to which T is adapted is given by dx
y

.

Conversely, if ∆ 6= 0, the curve defined by y2 = 4x3 − g2x − g3 is an elliptic curve
over k with origin 0 =∞ and a standard nowhere-vanishing differential form ω = dx

y
.

This finishes the proof. �

Exercise 2.6. (1) If C is defined by y2 = x3, prove k(C) = k(t) for t = x
y
.

(2) Compute vP (dx/y) explicitly at any point P on E(k).
(3) Show that if ∆ 6= 0, the curve defined by y2 = 4x3 − g2x− g3 is also smooth

at 0 =∞.

2.3. Moduli of Weierstrass Type. We continue to assume that the characteristic
of k is different from 2 and 3. Suppose that we are given two elliptic curves (E, ω)/k

and (E ′, ω′)/k with nowhere-vanishing differential forms ω and ω′. We call two pairs
(E, ω) and (E ′, ω′) isomorphic if we have an isomorphism ϕ : E → E ′ with ϕ∗ω′ = ω.
Here for ω′ = fdg, ϕ∗ω′ = (f ◦ ϕ)d(g ◦ ϕ); in other words, if σ : k(E ′) → k(E) is
the isomorphism of the function fields associated with ϕ, ϕ∗ω′ = σ(f)d(σ(g)). Let
T ′ be the parameter at the origin 0 of E ′ adapted to ω′. If ϕ : (E, ω) ∼= (E ′, ω′),
then the parameter T = ϕ∗T ′ mod T 2 is adapted to ω (because ϕ∗ω′ = ω). We
choose coordinates (x, y) for E and (x′, y′) for E ′ relative to T and T ′ as above. By
the uniqueness of the choice of (x, y) and (x′, y′), we know ϕ∗x′ = x and ϕ∗y′ = y.
Thus the Weierstrass equations of (E, ω) and (E ′, ω′) coincide. We write g2(E, ω) and
g3(E, ω) for the g2 and g3 of the coefficients of the Weierstrass equation of (E, ω). If
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a field K has characteristic different from 2 and 3, we have

[
(E, ω)/K

] ∼=
{
(g2, g3) ∈ K2

∣∣∆(E, ω) 6= 0
} ∼= HomALG(Z[

1

6
, X, Y,

1

X3 − 27Y 2
], K),

where [·] indicates the set of isomorphism classes of the objects inside the bracket
and Spec(R)(K) for a ring R is the set of all algebra homomorphisms: R→ K. The
last isomorphism sends (g2, g3) to the algebra homomorphism φ with φ(X) = g2 and
φ(Y ) = g3. We will see later this identity is actually valid any algebra A in ALG/Z[ 1

6
]

in place of a field K.

Exercise 2.7. If k has characteristic 2, show that we cannot have any ring R such
that [

(E, ω)/K

] ∼= HomALG(R, K)

for all field extension K/k. Here the isomrophism is a natural transformation bewteen
the functors K 7→ [(E, ω)/K ] and K 7→ HomALG(R, K) from the category of fields into
SETS.

We now classify elliptic curves E eliminating the contribution of the differential
from the pair (E, ω). If ϕ : E ∼= E ′ for (E, ω) and (E ′, ω′), we have ϕ∗ω′ = λω
with λ ∈ K×, because ϕ∗ω′ is another nowhere-vanishing differential. Therefore we
study K×-orbit: (E, ω) mod K× under the action of λ ∈ K× given by (E, ω)/K 7−→
(E, λω)/K , computing the dependence of gj(E, λω) (j = 2, 3) on λ for a given pair
(E, ω)/K . Let T be the parameter adapted to ω. Then λT is adapted to λω. We see

x(E, ω) =
(1 + Tφ(T ))

T 2
⇒x(E, λω) =

(1 + higher terms)

(λT )2
= λ−2x(E, ω),

y(E, ω) =
(−2 + Tψ(T ))

T 3
⇒y(E, λω) =

(−2 + higher terms)

(λT )3
= λ−3y(E, ω).

Since y2 = 4x3 − g2(E, ω)x− g3(E, ω), we have

(λ−3y)2 = 4λ−6x3 − g2(E, ω)λ−6x− λ−6g3(E, ω)

= 4(λ−2x)3 − λ−4g2(E, ω)(λ−2x)− λ−6g3(E, ω).

This shows

(2.3) g2(E, λω) = λ−4g2(E, ω) and g3(E, λω) = λ−6g3(E, ω).

Thus we have

Theorem 2.8. If two elliptic curves E/K and E ′
/K are isomorphic, then choosing

nowhere-vanishing differentials ω/E and ω′
/E′, we have gj(E

′, ω′) = λ−2jgj(E, ω) for

λ ∈ K×. The constant λ is given by ϕ∗ω′ = λω.

We define the J -invariant of E by J(E) = (12g2(E,ω))3

∆(E,ω)
. Then J only depends on E

(not the chosen differential ω). If J(E) = J(E ′), then we have

(12g2(E, ω))3

∆(E, ω)
=

(12g2(E
′, ω′))3

∆(E ′, ω′)
⇐⇒ gj(E

′, ω′) = λ−2jgj(E, ω)
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for a twelfth root λ of ∆(E, ω)/∆(E ′, ω′). Note that the twelfth root λ may not be
in K if K is not algebraically closed.

Conversely, for a given j 6∈ {0, 1}, the elliptic curve defined by y2 = 4x3 − gx − g
for g = 27j

j−1
has J -invariant 123j. If j = 0 or 1, we can take the following elliptic curve

with J = 0 or 123. If J = 0, then y2 = 4x3 − 1 and if J = 123, then y2 = 4x3 − 4x.
Thus we have

Corollary 2.9. If K is algebraically closed, then J(E) = J(E ′) ⇔ E ∼= E ′ for two
elliptic curves over K. Moreover, for any field K, there exists an elliptic curve E
with a given J(E) ∈ K.

Exercise 2.10. (1) Prove that gj(E
′, ω′) = λ−2jgj(E, ω) for suitable ω and ω′

and a suitable twelfth root λ of ∆(E, ω)/∆(E ′, ω′) if J(E) = J(E ′).
(2) Explain what happens if J(E) = J(E ′) but E 6∼= E ′ over a field K not neces-

sarily algebraically closed.

3. Modular forms

We give an algebraic definition of modular forms and then relate it to classical
defintions.

3.1. Elliptic curves over general rings. What we have done over fields can be
also done over general noetherian rings A. We sketch the theory without much proof.
Here is a definition of a plain projective curve over a ring A as a subfunctor C ⊂ P2.
Recall L ∈ P2(R) for an A-algebra R is a locally free R-submodule of R3 of rank 1
with locally free quotient R3/L. For a given homogeneous plynomial Φ(X, Y, Z) ∈
A[X, Y, Z], we define Φ(L) = 0 if Φ(`) = 0 for all ` ∈ L. Assume that F (X, Y, Z) is not
a zero-divisor inA[X, Y, Z]. Then a homogeneous polynomial F (X, Y, Z) ∈ A[X, Y, Z]
defines a subfunctor (called a plane projective A-curve) by

R 7→ C(R) = {L ∈ P2(R)|Φ(L) = 0}.
Plainly C is a covariant subfunctor of P2. If the residue ring A[X, Y, Z]/(F (X, Y, Z))
modulo its nilradical is an integral domain, we call C irreducible.

Exercise 3.1. If A is a field k, verify that this definition is equivalent to the definition
of irreducibility of the plane k-curve already given earlier.

We define
HomA-curves(C,C

′) := HomCOF (C,C ′),

and in this way, we get the category of plane projective A-curves. Fix such a curve
C ⊂ P2

/A. First suppose that A is a local ring with maximal ideal m. Write k for

A/m. We then define

R0 = A[Y, Z]/(F (1, Y, Z)), R1 = A[X,Z]/(F (X, 1, Z)), R2 = A[X, Y ]/(F (X, Y, 1)).

Then consider a covariant functor Ci : R 7→ HomALG/A
(Rj, R) from ALG/A to SETS.

This functor can be identified with a subfunctor of C , for example, by

C2(R) 3 φ 7→ L = R · (φ(X), φ(Y ), 1) ∈ C(R),
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and C2 can be identified with the functor sending R to the zero set of F (X, Y, 1) in
R2. If R is a local ring, we know C(R) = C0(R)∪C1(R)∪C2(R). For any finite field
extension K of k, P ∈ Ci(K) therefore gives rise to an A-algebra homomorphism
φ : Ri → K; so, Ker(φ) is a maximal ideal of Ri.

Exercise 3.2. Under the above setting, prove

(1) Ker(φ) is a maximal ideal of Ri if K/k is a finite field extension,
(2) any maximal ideal of Ri is given in this way as Ker(φ).

The point P ∈ C(k) is therefore called a maximal point of C . We define

OC,P = {a
b
|b ∈ Ri \Ker(φ)}/ ≈ .

Again OC,P is determined independent of the choice of i with P ∈ Ci(K). Then OC,P

is a local ring with maximal ideal mP with OC,P/mP
∼= Im(φ) ⊂ K. The cotangent

space at P is defined by P/P 2 and the tangent space at P over K is by definition
its dual HomK(P/P 2, K). Again the tangent space is isomorphic to the space of
K-derivations ∂ : OC,P → K. Consider completions

Â = lim←−
n

A/mn and ÔC,P = lim←−
n

OC,P /m
n
P .

Then ÔC,P is naturally an algebra over Â. We call P ∈ C(K) smooth over A if

ÔC,P
∼= Â[[T ]] for a variable T (the variable T is again called the local parameter at

P ). If C is smooth over A at all maximal point P ∈ C , we call C smooth over A.

Exercise 3.3. Prove that if C is a smooth plane projective curve over an integral
domain A, C is smooth over the quotient field of A, regarding C a plane projective
curve over the quotient field.

For general A not necessarily local, we call C smooth over A if C is smooth over
the localization of A at every maximal ideal of A.

Suppose C is smooth over A. We can define the Ri-module of derivations DerCi/A

just by the Ri-module of derivations trivial over A (so, (∂ : Ri → Ri) ∈ DerCi/A

satisfies ∂(ϕφ) = ϕ∂(φ) + φ∂(ϕ) and ∂(a) = 0 for all a ∈ A). The Ri-dual ΩCi/A

of DerCi/A is called the Ri-module of 1-differentials over Ci. Each ∂ ∈ DerCi/A

gives rise to an AP -derivation ∂P : OC,P → OC,P given by ∂P (a
b
) = ∂(a)b−a∂(b)

b2
for a

maximal point P ∈ Ci, where AP is the localization of A at P ∩A (regarding P as a
prime ideal of Ri). By duality, ω ∈ ΩCi/A therefore gives rise to the cotangent vector
ωP ∈ ΩOC,P /AP

:= HomAP
(DerOC,P /AP

,OC,P ). The Ri-module ΩCi/A is a locally-free
Ri-module of rank 1. Then we define ΩC/A to be collection of all ω = (ωi ∈ ΩCi/A)i

such that ωi,P = ωj,P for all P ∈ (Ci ∩ Cj)(k). If C is smooth over A, again ΩC/A is
a locally free A-module of rank g, and this number g is called the genus g(C) of C
over A.

An elliptic curve over A is a plane projective smooth curve E of genus 1 with
a specific point 0E ∈ E(A). If ΩE/A = Aω, the differential ω is called a nowhere
vanishing differential. If φ : E → E ′ is a morphism of elliptic curve, we can pull back
a nowhere vanishing differential ω′ on E ′ by φ, which is written as φ∗ω′. Note here
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that φ∗ω′ may not be nowhere vanishing (though it is, if φ is an isomorphism). If

A
σ−→ A′ is an algebra homomorphism and if a plane projective A-curve C is defined

by an equation F (X, Y, Z) =
∑

i,j,l ci,j,lX
iY jZ l, the σ-transform σ(F )(X, Y, Z) =∑

i,j,l σ(ci,j,l)X
iY jZ l defines a plane projective A′-curve σ(C). Note that σ(Ci) is

defined by the ring Ri ⊗A,σ A
′; so, often we write C ⊗A A′ for σ(C) and call it

the base-change C ⊗A A′
/A′ of C/A. Similarly, if ∂ : Ri → Ri is an A-derivation,

∂ ⊗ 1 : Ri ⊗A A
′ → Ri ⊗A A

′ given by ∂ ⊗ 1(φ ⊗ a) = σ(a∂(φ)) is an A′-derivation.
This shows DerCi/A⊗AA

′ = DerCi⊗A′/A′ . Thus by duality, we also have ΩCi/A⊗AA
′ =

ΩCi⊗A′/A′. In particular, ω ∈ ΩC/A induces σ∗(ω) = ω ⊗ 1 ∈ ΩC⊗A′/A′. We write the
pair (E ⊗A A′, σ∗ω) as (E, ω) ⊗A A′. This makes P : ALG → SETS given by
P(A) =

[
(E, ω)/A

]
a covariant functor from the category of algebras into sets. We

again have the following result basically in the same way as in the case of fields (see
[GME] §2.2.6 for a proof):

Theorem 3.4. Let R = Z[ 1
6
, g2, g3,

1
∆

]. Then we have a canonical equivalence of
functors from ALG/Z[ 1

6
] to SETS:

P(?) ∼= HomALG
/Z[ 16 ]

(R, ?).

In other word, for a given pair (E, ω)/A of an elliptic curve E over A and a nowhere
vanishing differential ω, there exists unique coordinate (g2(E, ω), g3(E, ω)) ∈ A2 such
that E is defined by Y 2Z = 4X3 − g2(E, ω)XZ2 − g3(E, ω)Z3 and ω is given by dX

Y
on D2. We also have

(1) If (E, ω) is defined over a Z[ 1
6
]-algebra A, we have gj(E, ω) ∈ A, which depends

only on the isomorphism class of (E, ω) over A,
(2) gj((E, ω)⊗A A

′) = σ(gj(E, ω)) for Z[ 1
6
]-algebra homomorphism σ : A→ A′,

(3) gj(E, λω) = λ−2jgj(E, ω) for any λ ∈ A×.

3.2. Geometric modular forms. Let A be an algebra over Z[ 1
6
]. We restrict the

functor P to ALG/A and write the restriction P/A. Then by Theorem 3.4, for RA :=
A[g2, g3,

1
∆

],

P/A(?) = HomALG/A
(RA, ?).

A morphism of functors φ : P/A → A1
/A is by definition given by maps φR : P/A(R)→

A1(R) = R indexed by R ∈ ALG/A such that for any σ : R→ R′ in HomALG/A
(R,R′),

φR′((E, ω) ⊗R R′) = σ(f((E, ω)/R)). Note that A1
/A(?) = HomALG/A

(A[X], ?) by

R 3 a↔ (ϕ : A[X]→ R) ∈ HomALG/A
(A[X], ?) with ϕ(X) = a. Thus in particular,

φRA
: P(RA) = HomALG/A

(RA,RA)→ A1(A[X],RA) = RA.

Thus φRA
(idRA

) ∈ RA; so, write φRA
(idRA

) = Φ(g2, g3) for a two variable rational
function Φ(x, y) ∈ A[x, y, 1

x3−27y2 ]. Let E/RA
be the universal elliptic curve over RA

defined by Y 2Z = 4X3 − g2XZ
2 − g3Z

3 with the universal differential ω = dX
Y

. If
we have (E, ω)/R, we have a unique A-algebra homomorphism σ : RA → R given by
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σ(gj) = gj(E, ω); in other words, (E, ω)/R
∼= (E, ω)RA

⊗RA
R. Thus

φR(E, ω) = φR((E, ω)⊗RA
R) = σ(φRA

(E, ω))

= σ(φRA
(idRA

)) = Φ(σ(g2), σ(g3)) = Φ(g2(E, ω), g3(E, ω)).

Theorem 3.5. Any functor morphism φ : P/A → A1
/A is given by a rational function

Φ ∈ RA of g2 and g3 so that φ(E, ω) = Φ(g2(E, ω), g2(E, ω)) for every eliiptic curve
(E, ω) over an A-algebra.

Define a weight function w : A[g2, g3] → Z by w(ga
2g

b
3) = 4a + 6b, and for general

polynomials Φ =
∑

a,b ca,bg
a
2g

b
3, we put w(Φ) = max(w(ga

2g
b
3)|ca,b 6= 0). A polynomial

Φ =
∑

a,b ca,bg
a
2g

b
3 of g2 and g3 is called isobaric if ca,b 6= 0⇒ 4a + 6b = w.

A weight w modular form defined over A is a morphism of functors P/A → A1
/A

given by an isobaric polynomial of g2 and g3 of weight w with coefficients in A.
Write Gw(A) for the A-module of modular forms of weight w. Then f ∈ Gw(A) is
a functorial rule assigning each isomorphism class of (E, ω)/R for an A-algebra R an
element f(E, ω) ∈ R satisfying the following properties:

(G0) f ∈ A[g2, g3],
(G1) If (E, ω) is defined over an A-algebra R, we have f(E, ω) ∈ R, which depends

only on the isomorphism class of (E, ω) over R,
(G2) f((E, ω) ⊗R R

′) = σ(f(E, ω)) for A-algebra homomorphism σ : R→ R′,
(G3) f((E, λω)/R) = λ−wf(E, ω) for any λ ∈ R×.

Exercise 3.6. For a field K with 1
6
∈ K, prove for 0 < w ∈ 2Z,

dimK Gw(K) =

{[
w
12

]
if w ≡ 2 mod 12,[

w
12

]
+ 1 otherwise.

3.3. Topological Fundamental Groups. In the following three sections, we would
like to give a sketch of Weierstrass’ theory of elliptic curves defined over the complex
field C. By means of Weierstrass P–functions, we can identify E(C) (for each elliptic
curve E/C) with a quotient of C by a lattice L. In this way, we can identify [(E, ω)/C]
with the space of lattices in C. This method is analytic.

We can deduce from the analytic parameterization (combining with geometric tech-
nique of Weil-Shimura) many results on the moduli space of elliptic curves, like, the
exact field of definition of the moduli, determination of the field of moduli (of each
member), and so on (e.g., [IAT] Chapter 6). We have come here in a reverse way:
starting algebraically, mainly by the Riemann-Roch theorem, we have determined a
unique Weierstrass equation over A for a given pair (E, ω)/A, and therefore, we know
the exact shape of the moduli space before setting out in studying analytic method.
After studying analytic theory over C, combining these techniques, we start studying
modular forms.

Let (E, ω)/C be an elliptic curve over C. Then

E(C) = E(g2, g3)(C) = {(x : y : z) ∈ P2(C)|y2z − 4x3 + g2z
2x+ g3z

3 = 0},
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and E(C) is a compact Riemann surface of genus 1. A path γ : y → x on E(C)
is a piecewise smooth continuous map γ from the interval [0, 1] into E(C) (under
the Euclidean topology on E(C)) such that γ(0) = y and γ(1) = x. Two paths
γ, γ′ : x → x are homotopy equivalent (for which we write γ ≈ γ′) if there is a bi-
continuous map ϕ : [0, 1]× [0, 1]→ E(C) such that ϕ(0, t) = γ(t) and ϕ(1, t) = γ′(t).
Let Z be the set of all equivalence classes of paths emanating from 0.

More generally, for each complex manifold M , we can think of the space Z =
Z(M) of homotopy classes of paths emanating from a fixed point x ∈ M . An open
neighborhood U of x is called simply connected if Z(U) ∼= U by projecting (γ : x→ y)
down to y. For example, if U is diffeomorphic to an open disk with center x, it is
simply connected (that is, every loop is equivalent to x). If γ : x→ y and γ′ : y → z
are two paths, we define their product path γγ′ : x→ z by

γγ′(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2

γ′(2t− 1) if 1/2 ≤ t ≤ 1.

By this multiplication, πM = π(M,x) = {γ ∈ Z(M)|γ : x → x} becomes a group
called the topological fundamental group of M . Taking a fundamental system of neigh-
borhoods Uy of y ∈M made of simply connected open neighborhoods of y, we define
a topology on Z(M) so that a fundamental system of neighborhoods of γ : x → y
is given by {γU |U ∈ Ux}. Then πM acts on Z(M) freely without fixed points. By
definition, we have a continuous map π : πM\Z(M)→ M given by π(γ : x→ y) = y,
which is a local isomorphism. Since π−1(x) = {x}, π : πM\Z(M) ∼= M is a home-
omorphism. Since π : Z(M) → M is local isomorphism, we can regard Z(M) as a
complex manifold. This space Z(M) is called a universal covering space of M .

We now return to the original setting: Z = Z(E(C)), and write Π = π(E, 0). Since
E(C) is a commutative group, writing its group multiplication additively, we define
the sum γ + γ′ on Z by, noting that γ and γ′ originate at the origin 0,

(γ + γ′)(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2

γ(1) + γ′(2t− 1) if 1/2 ≤ t ≤ 1.

Then (γ + γ′)(1) = γ(1) + γ′(1), and we claim that γ + γ′ ≈ γ′ + γ. In fact, on the
square [0, 1] × [0, 1], we consider the path α on the boundary connecting the origin
(0, 0) and (1, 1) passing (0, 1), and write β the opposite path from (0, 0) to (1, 1)
passing (1, 0). They are visibly homotopy equivalent. Thus we have a continuous
map φ : [0, 1] × [0, 1] → [0, 1] × [0, 1] such that φ(0, t) = α(t) and φ(1, t) = β(t).
Define

f : [0, 1]× [0, 1]→ E(C) by f(t, t′) = γ(t) + γ′(t′).

Then it is easy to see f ◦ φ(0, t) = (γ′ + γ)(t) and f ◦ φ(1, t) = (γ + γ′)(t).
By the above addition, Z is an additive complex Lie group. Since γ + γ′ = γγ′ if

γ ∈ Π and γ′ ∈ Z by definition, Π is an additive subgroup of Z and Π\Z ∼= E(C),
where the quotient is made through the group action.

Now we define, choosing a C∞–path [γ] in each class of γ ∈ Z modulo Π and a
nowhere vanishing differential form ω on E, a map I : Z → C by γ 7→

∫
[γ]
ω ∈ C.
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Since ω is holomorphic on Z, the value of I is independent of the choice of the
representative [γ] by Cauchy’s integration theorem. Since ω is translation invariant
on E(C), it is translation invariant on Z and I(γ+γ′) = I(γ)+I(γ′). In particular, I
is a local homeomorphism because E(C) is one dimensional and for simply connected
U , Z(U) ∼= I(U). The pair (E(C), ω) is isomorphic locally to the pair of the additive
group C and du for the coordinate u on C, because du is the unique translation
invariant differential (up to constant multiple). Since I−1([0]) = {0}, I is a linear
isomorphism into C. For an open neighborhood U of 0 with U ∼= Z(U) 3 γ 7→
I(γ) =

∫
γ
ω ∈ C giving an isomorphism onto a small open disk D in C centered at

0, we have two γ1, γ2 ∈ U giving rise to a two linearly independent I(γj) (j = 1, 2).
Then I(mγ1 + nγ2) = mI(γ1) + nI(γ2) for all m,n ∈ Z. Replacing γj by 1

a
γj ∈ Z(U)

such that I( 1
a
γj) =

I(γj)

a
for any positive integer a, by the same argument, we find

I(mγ1 + nγ2) = mI(γ1) + nI(γ2) for all m,n ∈ Q; so, I is a surjective isomorphism.
This also shows that if α : E → E is an endomorphism of E with α(0E) = 0E, α

lifts an endomorphism of Z sending a path γ from 0E to z ∈ C to a path α(γ) from
α(0E) = 0E to α(z). In particular, α(γ + γ′) = α(γ)+α(γ′). Thus α induces a linear
map from C = Z to C. Since α is holomorphic (as it is a polynomial map of the
coordinates of P2

/C
), α is a C-linear map. We thus get a natural inclusion:

(3.1) End(E/C) ↪→ C.

Writing L = LE for I(Π), we can find a base w1, w2 of L over Z. Thus we have a
map

P(C) 3 (E, ω) 7−→ LE ∈ {L|L : lattice in C} = Lat,

and we have (E(C), ω) ∼= (C/LE , du). Therefore the map: P(C) → Lat is injective.
We show its surjectivity in the next subsection.

By the above fact combined with (3.1), we get

Proposition 3.7. We have a ring embedding End(E/C) ↪→ {u ∈ C|u · LE ⊂ LE},
and hence End(E/C) is either Z or an order of an imaginary quadratic field.

Proof. The first assertion follows from (3.1). Pick α ∈ End(E/C) corresponding u ∈ C

as above. Note that LE = Zw1+Zw2. Then uw1 = aw1+bw2 and uw2 = cw1+dw2 for
integers a, b, c, d. In short, writing w = ( w1

w2 ) and ρ(α) = ( a b
c d ), we get uw = ρ(α)w;

so, ρ : End(E/C)→ M2(Z) is a ring homomorphism. By the first assertion, the image
has to be an order of imaginary quadratic field or just Z. �

When End(E/C) 6= Z, E is said to have complex multiplication.

3.4. Classical Weierstrass Theory. Conversely, for a given L ∈ Lat, we define the
Weierstrass P–functions by

xL(u) = P(u) =
1

u2
+

∑

`∈L−{0}

{
1

(u− `)2
− 1

`2

}
=

1

u2
+
g2

20
u2 +

g3

28
u4 + · · ·

yL(u) = P ′(u) = − 2

u3
− 2

∑

`∈L−{0}

1

(u− `)3
= −2u−3 + · · · ,
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where

g2 = g2(L) = 60
∑

`∈L−{0}

1

`4
and g3 = g3(L) = 140

∑

`∈L−{0}

1

`6
.

Then ϕ = y2
L−4x3

L+g2xL+g3 is holomorphic everywhere. Since these functions factors
through the compact space C/L, ϕ has to be constant, because any non-constant
holomorphic function is an open map (the existence of power series expansion and
the implicit function theorem). Since xL and yL do not have constant terms, we
conclude ϕ = 0. We have obtained a holomorphic map (xL, yL) : C/L − {0} → A2

/C
.

Looking at the order of poles at 0, we know the above map is of degree 1, that is, an
isomorphism onto its image and extends to

Φ = (xL : yL : 1) = (u3xL : u3yL : u3) : C/L→ P2
/C.

Thus we have an elliptic curve EL = Φ(C/L) = E(g2(L), g3(L)). We then have

ωL =
dxL

yL
= du.

This shows

Theorem 3.8. (Weierstrass) We have [(E, ω)/C] ∼= Lat.

We would like to make the space Lat a little more explicit. We see easily that
w1, w2 ∈ (C×)2 span a lattice if and only if Im(w1/w2) 6= 0. Let H = {z ∈ C| Im(z) >
0}. By changing the order of w1 and w2 without affecting their lattice, we may assume
that Im(w1/w2) > 0. Thus we have a natural isomorphism of complex manifolds:

B =
{
v = ( w1

w2 ) ∈ (C×)2
∣∣∣ Im(w1/w2) > 0

}
∼= C× × H via ( w1

w2 ) 7→ (w2, w1/w2).

Since v and v′ span the same lattice L if and only if v′ = αv for α ∈ SL2(Z),

Lat ∼= SL2(Z)\B.
This action of α = ( a b

c d ) ∈ SL2(Z) on B can be interpreted on C× × H as follows:

α(u, z) = (cu+ d, α(z)) for α(z) =
az + b

cz + d
.

3.5. Complex Modular Forms. We want to write down definitions of modular
forms over C. We consider f ∈ Gw(C). Writing L(v) = L(w1, w2) for the lattice
spanned by v ∈ B, we can regard f as a holomorphic function on B by f(v) =
f(EL(v), ωL(v)). Then the conditions (G0–3) can be interpreted as

(G0) f ∈ C[g2(v), g3(v)];
(G1) f(αv) = f(v) for all α ∈ SL2(Z);
(G2) f ∈ C[g2(v), g3(v),∆(v)−1];
(G3) f(λv) = λ−wf(v) (λ ∈ C×).

We may also regard f ∈ Gw(C) as a function on H by f(z) = f(v(z)) for v(z) =
2πi ( z

1 ) (z ∈ H). Here multiplying ( z
1 ) by 2πi is to adjust the rationality coming from

q-expansion to the rationality coming from the universal ring Z[ 1
6
][g2, g3], as we will
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see later (2πi)−jg(( z
1 )) has Fourier expansion in Q[[q]] for q = exp(2πiz). Then we

have the following interpretation:

(G0) f ∈ C[g2(z), g3(z)];
(G1,3) f(α(z)) = f(z)(cz + d)w for all α = ( a b

c d ) ∈ SL2(Z);
(G2) f ∈ C[g2(z), g3(z),∆(z)−1].

Since ( 1 1
0 1 ) (z) = z + 1, any f ∈ C[g2(z), g3(z),∆

−1(z)] is translation invariant.
Defining e(z) = exp(2πiz) for i =

√
−1, the function e : C→ C× induces an analytic

isomorphism: C/Z ∼= C×. Let q = e(z) be the variable on C×. Since f is translation
invariant, f can be considered as a function of q. Thus it has a Laurent expansion
f(q) =

∑
n�−∞ a(n, f)qn. We have the following examples (see the following section

and [LFE] Chapter 5):

12g2 = 1 + 240
∞∑

n=1





∑

0<d|n
d3




 qn ∈ Z[[q]]×,

−63g3 = 1− 504
∞∑

n=1





∑

0<d|n
d5




 qn ∈ Z[[q]]×,(3.2)

∆ = q
∞∏

n=1

(1− qn)24 ∈ q(Z[[q]]×).

This shows that

J =
(12g2)

3

∆
= q−1 + · · · ∈ q−1(1 + Z[[q]]).

In particular, we may regard g2 and g3 as elements of Z[ 1
6
][[q]].

We consider a projective plane curve E∞/Z[[q]] called the Tate curve defined over
the power series ring Z[[q]] by the equation Y 2Z = 4X3 − g2(q)XZ

2 − g3(q)Z
3 and

define ω∞ = dX
Y

. Since ∆ is a unit in Z[ 1
6
]((q)) := Z[ 1

6
][[q]][ 1

q
], we see that (E∞, ω∞)

gives an elliptic curve over Z[1/6]((q)) with nowhere vanishing differential ω∞. For
any f ∈ Gw(A), f(q) = f((E∞, ω∞)⊗Z[ 1

6
]((q))A((q))) ∈ A[[q]] is called the q–expansion

of f . In particular, if f ∈ Gw(C), the q–expansion f(q) coincides with the analytic
Fourier expansion via q = e(z), because f is an isobaric polynomial in g2 and g3 and
by definition g2(q) and g3(q) are their analytic expansions.

Write P1(J)/Z[ 1
6
] for the projective line over Z[ 1

6
] whose coordinate is given by

J (in other words, P1(J) = D0 ∪ D1 over local rings with D1 = A1 defined by
the affine ring Z[ 1

6
][J ]). Since the coordinate at ∞ of P1(J) can be given by J−1

(J−1 ∈ q(1 + qZ[[q]])), we know that Z[[q]] = Z[[J−1]] and

(3.3) ÔP1(J),∞ ∼= Z[1/6][[q]] via q–expansion,

where ÔP1(J),∞ is the (q)–adic completion of the local ring OP1(J),∞ at ∞.
Since we have

M1(C) = Lat/C× = H× C×/(SL2(Z)× C×) ∼= SL2(Z)\H,
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which is isomorphic to P1(J)−{∞} by J . Thus we see that (G0) over C is equivalent
to

(G0′) f is a holomorphic function on H satisfying the automorphic property (G1,3),
and its analytic q–expansion f(q) is contained in C[[q]].

More generally, for modular forms f ∈ Gw(A), we can interpret (G0) as

(G0′′) f : P/A → A1
/A is a morphism of functors satisfying the automorphic property

(G3) in §3.2, and its algebraic q–expansion f(E∞, ω∞) is contained in A[[q]].

3.6. Hurwitz’s theorem, an application. In 1897, Hurwitz studied an analogue
of the Riemann zeta function:

L(4k) =
∑

a+bi∈Z[i]−{0}

1

(a+ bi)4k

for Gaussian integers Z[i] and showed that for positive integer k,

L(4k)

Ω4k
∈ Q (Ω = 2

∫ 1

0

dx√
1− x4

=

∫

γ

dx

y
: period of the lemniscate).

Nowadays, we regard this value as a special value of a Hecke L-function:

L(s, λ) =
∑

a

λ(a)N(a)−s of the Gaussian field Q[i] (i =
√
−1).

Here λ = λ4k is a Hecke ideal character of Q[i] with λ4k((α)) = α−4k and L(4k) =
4L(0, λ) and a runs over all nonzero ideals of the Gaussian integer ring Z[i].

The plane affine curve y2 = 1−x4 was first studied by Gauss around the same time
when he finished his first major treatise “Disquisitiones Arithmeticae” in 1978 when
he was 21 years old (though unpublished, he claimed that he can extend his theory
of drawing regular polygon in a circle to this lemniscate or more general curves).

This Gauss’ lemniscate is equivalent to Y 2 = 4X3 − 4X by Y = (4+4i)y
((i−1)x+(1−i))2

and

X = (1+i)x+1+i
(i−1)x+1−i

; so, it is an elliptic curve (E, ωE := dX
Y

)/C with a given nowhere

vanishing differential ωE . We have X = 0 ⇔ x = −1 and X = ∞ ⇔ x = 1. Since∫ 1

−1
dx√
1−x4 = 2

∫ 1

0
dx√
1−x4 , we get

Ω = 2

∫ 1

0

dx√
1− x4

=

∫ ∞

0

dX√
4X3 − 4X

.

Here, writing the path γ := [0,∞] = −[0, 0E ] ∈ π1(E(C), 0E), we have the “period” Ω
in the lattice LE ∈ Lat of E, which is a part of a Z-basis of LE .

Gauss’ curve has an automorphism [i] : (x, y) 7→ (ix, y). This corresponds to the
automorphism [i] : (X, Y ) 7→ (iX,−Y ) of the elliptic curve E. Note that [i](0E) = 0E .
By Abel’s theorem, we have a commutative diagram:

E(C)
∼−−−→ J(E)

[i]

y
y[i]∗

E(C)
∼−−−→ J(E),
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where at the divisor level

[i]∗(
∑

P

mP [P ]) =
∑

P

mP [[i](P )].

Thus [i] is a group endomorphism of E.
We can verify this fact differently. Any curve endomorphism α : E → E sending 0E

to 0E induces an endomorphism of the universal covering α : Z(E(C)) → Z(E(C))
by sending a path γ : 0E → z to α(γ) : 0E = α(0E) → α(γ) (the image of γ under
α). Then by the definition of composition of paths, we have α(γγ′) = α(γ)α(γ′).
The group structure on Z(E(C)) = C is given by this product structure (up to
translation), α : C→ C is an additive group endomorphism. Since α is holomorphic
(as it is a polynomial map in coordinates of P2

/C
containing E), α has to be a C-linear

map; so, the original α : C/LE → C/LE is a group homomorphism.
Now the vertical line LY0 defined by Y = Y0 intersects with E(C) at [i]2(X0, Y0) =

(−X0, Y0) and (X0, Y0) and the infinity 0E . Thus in End(E/C), [i] satisfies [i]2 = −1.
In other words, we have an embedding Z[i] ↪→ End(E/C) given by a + bi 7→ a +
b[i]. Therefore [i] acts on π1(E(C), 0E) ∼= LE by [i] on the left-hand-side and via
multiplication by i on the right-hand-side. In short, E has complex multiplication by
the Gaussian integers Z[i]. Since the path [−1, 1] is one of the generators of H1(R,Z)
for the Riemann surface R associated to y2 = 1− x4, we find that LE = Z[i] ·Ω ⊂ C.

Hurwitz’s formulation is modular: For any lattice L = Zw1 + Zw2 ⊂ C, we can
think about

E2k(L) =
1

2

∑

aw1+bw2∈L

1

(aw1 + bw2)2k
(Eisenstein series, 1847),

which is a function of lattices satisfying E2k(αL) = α−2kE2k(L). The quotient C/L
gives rise to an elliptic curve X(L) ⊂ P2 by Weierstrass theory. Since X(L) has a
unique nowhere vanishing differential du for the variable u of C and we can recover
out of (X(L), du) the lattice L as {

∫
γ
du|γ ∈ π1(X(L))}, we can think of E2k as a

function of the pairs (E, ω) of an elliptic curve E and a nowhere vanishing differential
ω satisfying E2k(E, αω) = α−2kE2k(E, ω). Note that E4(E, ω) = 1

120
g2(E, ω) and

E6(E, ω) = 1
280
g3(E, ω). More generally, E2k is a rational isobaric polynomial of g2

and g3. Thus E2k is a modular form f of weight 2k.
Since Weierstrass’ function has the following Laurent expansion

(3.4) xL(u) = u−2 + 6E4(E, ω)u2 + · · ·+ 2(2k + 1)E2k+2(E, ω)u2k + · · · .
Taking the derivative, we get

(3.5) yL(u) = −2u−3 + 12E4(E, ω)u+ · · ·+ 4k(2k + 1)E2k(E, ω)u2k−1 + · · · .
Plug this into the relation y2

L = 4x3
L−g2(E, ω)xL−g3(E, ω), we get a recurrence rela-

tion of E2k, and solving the recurrence relation, we can compute the exact form of the
isobaric polynomial Φ2k(X, Y ) ∈ Q[X, Y ] with E2k(E, ω) = Φ2k(g2(E, ω), g3(E, ω)).

Returning to Gauss’s curve (E, ωE ) defined by y2 = 4x3−4x, we have LE = Z[i] ·Ω.
Thus

E2k(E, ωE) = E2k(Z[i] · Ω) = Ω−2kE2k(Zi+ Z) = Ω−2kE2k(i),
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where at the extreme right, we regard E2k as a function on H by E2k(z) = E2k(Zz+Z).
On the other hand,

E2k(E, ωE ) = Φ2k(g2(E, ωE), g3(E, ωE)) = Φ2k(4, 0) ∈ Q.

Note that E2k(i) = L(0, λ2k). Thus we get

Theorem 3.9 (Hurwitz [Hz], 1897). We have L(0,λ4k)
Ω4k ∈ Q for all 0 < k ∈ Z.

We can apply the same technique to the curve defined by y2 = x3 − 1 which has
complex multiplication by the field Q[

√
−3], as a cubic root of unity ζ acts on the

curve by (x, y) 7→ (ζx, y).
This is an obvious analogue of the rationality of Riemann zeta values by Eu-

ler/Bernoulli:

ζ(2k)

(2πi)2k
=

1

(2πi)2k

∞∑

n=1

1

n2k
∈ Q.

Indeed, 2πi is the integral
∮
|z|=1

dz
z

of the invariant differential of the multiplicative

group Gm/Z sending a ring A to its multiplicative group A×, and also note Gm(C) =

C× ∼←−−
exp

C/2πiZ, while E(C) ∼= C/Ω · Z[i].

The rationality results of Hurwitz is now generalized to all imaginary quadratic
fields M and L-values of the form L(0, λk,j) with integers j < 0 ≤ k for characters of
the form λk,j(α) = αkαj by the effort of many outstanding mathematicians, notably,
Damerell, Manin, Mazur, Weil, Shimura and Katz, and the value is algebraic up to
a power of the period Ω(E, ω) and a power of 2πi. Here Ω(E, ω) is given by

∫
γ
ω for

a pair (E, ω) defined over a number field with complex multiplication by the integer
ring of M . Probably the most elementary treatment of this generalization is in Weil’s
book [EEK].

We can further ask

(Q1) Is there a good expression by an L-value of the value of a non-Eisenstein
series f ∈ Gw(Q) at (E, ωE) (or at more general elliptic curves with complex
multiplication)?

(Q2) What happens? if we evaluate a modular form in Gw(Q) at a rational elliptic
curve (E, ω)/Q without complex multiplication.

To get a reasonable answer, we need to assume that the modular form in question is
an eigenvector of all Hecke operators (as Eisenstein series are examples of such eigen-
forms). Under this assumption, as for (Q1), there are good answers by Waldspürger
[Wa] and also by Gross–Zagier [GZ] (which promoted much progress towards solution
of the Birch-Swinnerton Dyer conjecture). As for (Q2), not much is known yet.

4. Elliptic curves over p–adic fields

In this section, we recall the theory of Tate curves, following Tate’s original paper
[T1] (dating back to 1959, although it was published in 1995). This fact has been
generalized to higher dimensional abelian varieties by Mumford and Faltings-Chai
[DAV] II, III.
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4.1. Power series identities. By Weierstrass theory, every elliptic curve over C is
isomorphic to E with E(C) = C/L for L = Z(2πi) + Z log q for an element q ∈ C× =
Gm(C) with |q| < 1. The covering map: C → E(C) factors through exp : C → C×

given by exp(x) = ex =
∑∞

n=0
xn

n!
. Thus E(C) = C×/qZ, where qZ = {qm|m ∈ Z},

which is a discrete subgroup of C×. We see from the definition of Weierstrass functions
in Subsection 3.4 that

g2(L) =
1

12
+ 20

∞∑

n=1





∑

0<d|n
d3




 qn =
1

12
+ 20

∞∑

n=1

n3qn

1− qn
,

g3(L) = − 1

216
+

7

3

∞∑

n=1





∑

0<d|n
d5




 qn = − 1

216
+

7

3

∞∑

n=1

n5qn

1− qn
,(4.1)

∆(L) = q
∞∏

n=1

(1− qn)24.

The first two formulas follow from the following partial fraction expansion of the
cotangent function for z = log q

2πi
:

(4.2)
1

z
+

∞∑

n=1

{
1

(z + n)
+

1

(z + n)

}
= π cot(πz) = πi

{
−1− 2

∞∑

n=1

qn

}
,

and its derivatives by
(
(2πi)−1 d

dz

)k
=

(
q d

dq

)k

:

(4.3)
∞∑

n=−∞

1

(z + n)k
=

(2πi)k

(k − 1)!

∞∑

n=1

nk−1qn.

To obtain the product expansion of ∆, one need to work a little more (see [EEK], IV,
(36)).

Write w = exp(u) = eu (u = logw). We now compute q–expansion of the Weier-
strass function PL(u): By (4.3), we get for w with |q| < |w| < |q|−1

PL(u) =
1

u2
+

∞∑

m=−∞, m6=0

{
1

(u+ 2πim)2
− 1

(2πim)2

}

+

∞∑

n=1

{ ∞∑

m=−∞

1

(−u+ 2πim+ n log q)2
− 1

(2πim+ n log q)2

}

+

∞∑

n=1

{
1

(u+ 2πim+ n log q)2
− 1

(2πim+ n log q)2

}

=
∞∑

m=1

mwm − 2ζ(2)

(2πi)2
+

∞∑

n=1

∞∑

m=1

{
mw−mqmn +mwmqmn − 2qmn

}
.
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Differentiating 1
1−w

=
∑∞

m=0 w
m, we have

w

(1− w)2
=

∞∑

m=1

mwm.

Then from the fact: ζ(2) = π2

6
, we see

(4.4) xL(u) = PL(u) = tL(w) +
1

12
,

where

(4.5) t(q, w) = tL(w) =
∞∑

m=−∞

qmw

(1− qmw)2
− 2

∞∑

m=1

qm

(1− qm)2
.

We can rewrite

t(q, w) =
w

(1− w)2
+

∞∑

n=1

nqn

1− qn
(wn + w−n − 2).

This shows that t(q, w) ∈ Z[w,w−1, (1−w)−1][[q]]. Regarding w as an indeterminate,
we write Aw for Z[w,w−1, (1 − w)−1], which is a finitely generated Z–algebra. We
have seen that t(q, w) ∈ Aw[[q]].

Differentiating with w d
dw

= d
du

, we get

(4.6) yL(u) = P ′(u) = tL(w) + 2sL(w),

where

(4.7) s(q, w) = sL(w) =
∞∑

m=−∞

(qmw)2

(1− qmw)3
+

∞∑

m=1

qm

(1− qm)2
.

From the identity: y2
L = 4x3

L − g2(L)xL − g3(L), we get

(4.8) s2(q, w) + t(q, w)s(q, w) = t(q, w)3 − b2(q)t(q, w)− b3(q),

where

b2(q) = b2(L) =
1

4

(
g2 −

1

12

)
= 5

∞∑

n=1

n3q

1− qn
∈ qZ[[q]]

b3(q) = b3(L) =
1

4

(
g3 +

g2

12
− 1

432

)
=

∞∑

n=1

(
7n5 + 5n3

12

)
qn

1− qn
∈ qZ[[q]].

Although we computed the above identity using function theory, we note that all
the functions in (4.8) have power series expansion in Aw[[q]] and the identity is the
algebraic identity in the power series ring, because the identity is valid over the open
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set |q| < |w| < |q|−1 in C2. We note one more identity in Aw[[q]]:

(4.9) ∆ = g3
2 − 27g2

3 =

(
4b2 +

1

12

)3

− 27

(
4b3 −

b2
3
− 1

216

)2

= b3 + b22 + 72b2b3 − 432b23 + 64b32 = q
∞∏

n=1

(1− qn)24.

Since w 7→ (t(q, w), s(q, w)) factors through C×/qZ, we have

(4.10) t(q, qw) = t(q, w) and s(q, qw) = s(q, w) in Aw[[q]].

Of course, this can be verified by computation using only power series expansions of
the functions involved. We can easily check by power series computation the following
identity:

(4.11) s(q, w−1) + s(q, w) = −t(q, w) in Aw[[q]].

The canonical differential on E(C) is given by

dw

w
= du =

dx
dx
du

=
dx

y
.

Exercise 4.1. (1) Show that the projective plane curve over C a field k defined
by X3−XY Z−Y 2Z = 0 is singular at (0 : 0 : 1) which is an ordinary double
point;

(2) Show the function field of the curve C for k = Fp as above is isomorphic to

Fp(w) by x = X
Z

= w
(1−w)2

and y = Y
Z

= w2

(1−w)3
.

4.2. Tate curves. By the computation above, we get the following projective plane
curve E∞ defined over Z[[q]] By the equation

S2U + TSU − T 3 + b2(q)TU
2 + b3(q)U

3 = 0.

It has an integral point 0 given by (S, T, U) = (1, 0, 0). More generally we can think
of a surjective homomorphism:

Z[[q]][S, T, U ]/(S2U + TSU − T 3 + b2(q)TU
2 + b3(q)U

3)→ Z[[q]][S]

taking (S, T, U) to (S, 0, 0). To compute the tangent space at 0, we use the affine
equation of u = U/S and t = T/S. Then the equation becomes

u+ tu = t3 − b2u2t− b3u3,

and we have
Ω bOE∞,0/Z[[q]] = Z[[q, t]]dt.

This shows that ÔE∞,0 = Z[[q, u]] and 0 is a smooth point of E∞.
Since ∆ is a product of q and a unit in Z[[q]][q−1]] = Z((q)), the curve defines an

elliptic curve E∞ over Z((q)) with an invariant differential ω∞ = dx
y

= dt
t+2s

= dw
w

. The

curve E∞ over Z[[q]] (without inverting q) has one singular point, that is, E∞ mod q
is singular only at (s, t) = (0, 0) (which is not the origin of E∞ = E∞ mod q), and

the (completed) stalk ÔE∞,P is isomorphic to Z[[t, s]]/(ts), which is a regular ring (cf.
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[CRT] §19; for example, a Dedekind domain and a power series ring over a Dedekind
domain are regular). Thus the local ring at every geometric point of E∞/Z is a regular
ring of dimension two (we call such a curve a regular curve). The smooth locus of
E∞ is isomorphic to P1 removed 2 points, that is, Gm (here we may think Gm as
a covariant functor sending a ring A to its multiplicative group A×). The fact that
E∞ mod q = E∞ ⊗Z[[q]] Z[[q]]/(q) is as above is obvious from the equation of E∞:

s2 + st = t3, because b2(q) ≡ b3(q) ≡ 0 mod q. Thus E∞/Z is a projective regular
plane curve with a nowhere vanishing differential ω∞. The argument computing the
Weierstrass equation of elliptic curve does not require full smoothness over the base
but only smoothness at the origin and the existence of nowhere vanishing differential
(see Subsection 2.2). Thus E∞/Z[ 1

6
][[q]] with the above ω∞ is determined by a unique

Weierstrass equation y2 = 4x3 − g2(q)x− g3(q) in Z[ 1
6
][[q]][x, y]. By the computation

as above, the equation in s, t is even well defined over Z[[q]].
Let K be a complete field with discrete valuation | | = | |K (for example, the p-

adic field Qp and its field extensions finite degree). Write A for the valuation ring
of K. We pick qE ∈ K× with |qE| < 1. The specialization of E∞ under the algebra
homomorphism q 7→ qE gives rise to an elliptic curve EK = E∞ ⊗Z[[q]] K defined over
K. Let P,Q,R ∈ EK(K). By Abel’s theorem (Theorem 2.1),

P +Q+R = 0 ⇐⇒ [P ] + [Q] + [R] ∼ 3[0],

where “∼” indicates the linear equivalence.
We are going to express explicitly the coordinates of the sum P +Q in terms of the

coordinates of each P and Q. By the equation defining EK , 3[0] = EK ∩ L∞, where
L∞ = {U = 0} ⊂ P2 is the line at infinity. Since any two lines in P2 are linearly
equivalent (that is, L∞ −L is the divisor of the function U/φL for the linear form φL

defining L),

P +Q+R = 0 ⇐⇒ [P ] + [Q] + [R] = L ∩EK

for the line L ⊂ P2 passing through two of the three points P,Q,R, because if P and
Q are on L (this condition of course determinesL), we find the third point R ∈ L∩EK

by the Bézout theorem. Here the line L is the tangent line at P if P = Q.
Write P = (s, t), Q = (s′, t′) and R = (s′′, t′′). We suppose that P and Q are

different from 0; so their coordinates are finite. Suppose that the line L (having P
and Q on it) passes through 0 (thus R = 0). If a line passes through 0 = (0, 1, 0), its
equation: φ(S, T, U) = aT+bS+cU = 0 (s = S

U
and t = T

U
) satisfies φ(1, 0, 0) = b = 0;

so, L is parallel to s–axis, we have t = t′. Thus by the equation (4.8), then assuming
P 6= Q (i.e., s 6= s′ or equivalently 2P 6= 0),

s2 + st = s′
2
+ s′t ⇐⇒ s+ s′ = −t.

The line L is parallel to s–axis in the (s, t)–plane,

(4.12) t = t′ and s+ s′ = −t ⇐⇒ P +Q = −R = 0.
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If P +Q 6= 0, then the equation of L can be written as s = µt+ν. Again by equation
(4.8), we have

µ =
s− s′
t− t′ =

t2 + tt′ + t′2 − b2 − s′
s+ s′ + t

(4.13)

ν = s− µt = s′ − µt′.
Now we solve, using the above equations, the third solution of L ∩E∞. We get

(4.14) t′′ = µ2 + µ − t− t′ and s′′ = −t′′− µt′′ − ν.
Here is a result in [T1] Theorem 1:

Theorem 4.2 (J. Tate). Let A = lim←−m
A/qmA be a q–adically complete local Z[[q]]–

algebra. Then

(1) The map w 7→ (s(q, w), t(q, w), 1) ∈ P2(A) induces an injective homomor-
phism of A× into EA(A) for EA = E∞ ⊗Z[[q]] A.

(2) If A is the integer ring of a local field K (that is, a finite extension of Qp or
Fp((q))), then π extends to an isomorphism of K×/qZ ∼= EK(K).

Proof. By definition, we see t(q, w) − w
(1−w)2

and s(q, w) − w2

(1−w)3
are contained in

Z[w,w−1][[q]]. Thus, if w ∈ A×, the series ((1−w)3s(q, w), (1−w)3t(q, w)) converges
in A2 under the q–adic topology. In particular, it gives a point

π(w) = ((1− w)3s(q, w) : (1− w)3t(q, w) : (1−w)3) ∈ EA(A)

as long as one of the coordinates is non-zero. Since (1 − w)3s(q, w) ≡ w2 mod qA,
(1−w)3s(q, w) ∈ A× for all w ∈ A×. Thus the map π : A× → EA(A) is well defined.
If π(w) = 0EA

= (1 : 0 : 0), we have (1−w)3 = 0; so, w = 1. Thus π−1(0) = {1}.
We do not give a detailed proof of “homomorphy” of π (i.e., π is a group ho-

momorphism) here, but instead, we just remark that the assertion (2) implies ho-
momorphy because the addition and the inverse is basically power series identities.
More precisely, taking parameters (w,w′) on E∞ × E∞, we have a power series
Φ(W,W ′) ∈ Z[[q]][[W,W ′]] for W = 1 + w and W ′ = 1 + w′ such that if P ∈ E∞ has
coordinate w and Q ∈ E∞ has coordinate w′, then the w-coordinate of P +Q ∈ E∞ is
given by Φ(W,W ′). This fact is valid by (2) after evaluating the variable q of the base
ring Z[[q]] at many different qE ∈ A; so, it should be valid as power series identity.

We now prove (2). We first assume that K is of characteristic 0. We can easily
check the convergence of

π(w) = (s(q, w) : t(q, w) : 1) ∈ P2(K) if |q| < |w| < |q|−1

for q ∈ K× with |q| < 1. We simply put π(w) = 0 ∈ EA(K) if w ∈ qZ. Thus
π : K×/qZ → EA(K) is well defined by (4.10), and by the first assertion,

(4.15) π−1(0) = qZ.

We take u, v, w ∈ K× with w = uv. Since π depends only on the class modulo qZ

(4.10), we may assume |q| < |u| ≤ 1 and 1 ≤ |v| < |q|−1. Thus |q| < |w| < |q|−1,
and π(u), π(v) and π(w) are well defined (that is, the power series s(q, ?) and t(q, ?)
converge at these points). Since π(1) = π(q0) = 0 by definition, (4.11) and (4.12)
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shows the desired result when uv = 1. Thus we may assume that π(u) = P , π(v) = Q
and π(w) = R are all different from 0 and that P 6= Q. Write P = (s, t) Q = (s′, t′)
and R = (s′′, t′′). By (4.12), (4.13) and (4.14), π(u) + π(v) = π(w) is equivalent to
the following simultaneous identities:

(t− t′)2t′′ = (s− s′)2 + (s− s′)(t− t′)− (t− t′)2(t+ t′)(4.16)

(t− t′)s′′ = −(t− t′)(s+ t′′) + (s− s′)(t− t′′).
Assuming w = uv, we want to show this identity (4.16) holds for π(u) = P ,

π(v) = Q and π(w) = R. Since w = uv, (4.16) is the identity in

Z[u, u−1, v, v−1, (1− u)−1, (1− v)−1, (1− uv)−1][[q]].

Since Z[u, u−1, v, v−1, (1− u)−1, (1− v)−1, (1− uv)−1] is finitely generated over Z, we
can embed this ring into C. Then the identity holds, by extending this embedding
to K ↪→ C and consider EC = EK ⊗K C over C, since the identities (4.16) hold for
elliptic curves defined over C. We only verified homomorphy assuming P 6= ±Q, but
any map between infinite groups satisfying π(uv) = π(u) + π(v) if π(u) 6= ±π(v)
can be easily verified to be a homomorphism (cf. [T1] Lemma 1). This shows that
π : K×/qZ → EK(K) is a homomorphism; so, as remarked already, the assertion (1)
also holds for any q–adically complete A. In particular, π is also a homomorphism
for local fields of characteristic p. Then the injectivity follows from (4.15).

We only give a sketch of a proof of the surjectivity when A is the integer ring
of a finite extension K/Qp. Since a convergent power series gives an open map
on a convergent open disk into an open disk under the p-adic topology (cf. [T1]
Corollary 1), π(K×) is an p-adic open subgroup of EA(K). Since P2(K) is a compact
p-adic set, EA(K) is a compact p-adically closed subset of P2(K). Since EA(K) =⋃

x∈EA(K)(x + π(K×)), EA(K) is covered by finitely many open set of the form x +

π(K×). Thus π(K×) is a subgroup of EA(K) of finite index. Thus EA(K)/π(K×)
is finite group. In other words, for any x ∈ EA(K), Nx ∈ π(K×). Write Qp for

an algebraic closure of Qp containing K. Since Qp/q
Z is divisible and all torsion

points of EA is contained in π(Q
×
p ), we find that Nx ∈ π(K×) implies x ∈ π(Q

×
p ).

Thus Q
×
p /q

Z ∼= EA(Qp). By definition π(wσ) = π(w)σ for σ ∈ Gal(Qp/K). If
π(w)σ = π(w), we have wσ = qmw. Since |q| < 1 and |w| = |wσ|, we find wσ = w.

Thus taking Gal(Qp/K) invariant of Q
×
p /q

Z ∼= EA(Qp), we get K×/qZ ∼= EA(K) as
desired. �
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