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ABSTRACT. For a given system A(T'(p)) of eigenvalues of Hecke operators act-
ing on cohomological cusp forms on GL(2) over a number field F', we look into
the adjoint square L-function L(s, Ad(\) ® ) twisted by a Hecke character
a. If X\ is associated to a 2-dimensional Galois representation ¢, the adjoint
square Ad(yp) is the three dimensional factor of ¢ ®* ¢~ !, whose L-function is
given by L(s, Ad(\)). The L-value L(1,Ad()\) ® «) is critical if and only if F
is totally real and the Hecke character « is totally even. We are interested in
both critical and non-critical cases. When « is quadratic, a rationality result:
L(1,Ad(N)®a)/Q € Q(N) is shown, where € is a canonical (topological) period
of the base change lift of A to the quadratic extension K/F associated to «,
and Q(\) is the number field generated by A(T(p)) for all primes p. Alongside,
we shall give an evidence for the divisibility of the L-value by the order of the
Selmer group of Ad(y) ® a. Towards the end, a period relation is given, as an
application of our main result, when F is totally imaginary.

1. Introduction

If one has two canonical rational structures on a given complex vector space, one
can define a period which is the determinant of the linear transformation bringing
one rational structure to the other. This principle applied to cohomology groups on
a projective variety V (defined over a number field F') yields the classical periods
of F-rational differential forms on V. In this case, one rational structure is given
by Betti cohomology, and another comes from algebraic de Rham cohomology. The
two cohomology groups are put together into one vector space by the comparison
isomorphism. This definition extends to motives, and the periods are conjectured to
give canonical transcendental factors of the critical values of the motivic L-functions
(a conjecture of Deligne; cf. [Hi94]).

Even if the manifold V is not algebraic, it is feasible to define periods in a
similar way if V' is modular, that is,

V =HQ\H(A)/UZn(R)Cx,
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where H g is a classical linear group with center Zy, C is the standard maximal
compact subgroup of H(R), and U is an open compact subgroup of the finite part
H(A()). For a locally constant sheaf L on V coming from a polynomial repre-
sentation of H, we have a canonical rational structure on the cuspidal cohomology
group H{,.,(V, L) coming from the rational structure of L. This cohomology group
is often isomorphic to a product of several copies of a space S of cohomological cusp
forms on H(A). If one can specify this isomorphism in a canonical way as Eichler
and Shimura did for elliptic modular forms [Sh71], we have another rational struc-
ture on the cohomology groups provided that the Fourier expansion of cusp forms
gives a good rational structure on S. If H = Resp/gGL(2),r, there is an optimal
function W, in the Whittaker model of a cuspidal automorphic representation ,
giving the standard L-function under the Mellin transform. The Fourier expansion
with respect to W gives a rational structure on the space of cohomological cusp
forms. Applying the above principle to H and H x H, I proved rationality and in-
tegrality theorems for critical values of standard L and Rankin products in [Hi94].
This was extended to the so-called twisted tensor L-functions of w in [Gh] for imag-
inary quadratic F. The results for GL(2) described above could be generalized to
GL(n). Anyway hereafter we assume that H = Resp,gGL(2),/r.

In the investigation in [Hi94] and [Gh], only the minimal degree cohomology
group is used, and the minimal degree seems to yield rationality only for critical
values. If H has a holomorphic structure yielding a Shimura variety V ( <= F
is totally real), the degree of non-trivial cuspidal cohomology is unique (that is
g = [F : Q]), which is the minimal degree I meant, and it is natural from the
conjecture of Deligne that we can get results only for critical values. If F' is not
totally real, there are several values of ¢ with non-trivial cohomology. However the
space S of cohomological cusp forms is independent of q.

In this paper, we study the rational structures for the maximal degree and
some middle degree cohomology groups, and we shall prove a rationality result of
the adjoint L-value L(1,Ad(m) ® a) for a with a® = 1 relative to the period Q(/):)
of a cohomology class of degree depending on K/F, where K/F is the quadratic
extension of F associated to a (Corollaries 3.2 and 4.2 for F' = Q, Theorem 6.1
for totally real F' and Theorems 7.1 and 8.1 for F' with complex places). Here
we write A for the system of Hecke eigenvalues associated to m, that is, L(s,7) =
Y 2w AMT'(n))N(n)~*, and we hereafter write L(s, Ad())) for L(s, Ad(m)). This value
L(1,Ad(\) ® a) is non-critical if either the character « is odd at some real places of
F or F is not totally real. Thus in the non-critical case, the automorphic period is
close to the Beilinson period [RSS], assuming his conjecture and the existence of a
motive yielding the adjoint L-function. While in the critical case, our automorphic
period should be equal to the Deligne period (see [Hi94, Section 1]). Moreover,
when F' = Q and « is a quadratic Dirichlet character, we shall prove, under some

. assumptions, that the L-value gives congruences between non-base-change forms
on GL(2),k and the base change X of A (cf. [J] and [L]) to the quadratic extension
K as conjectured in [DHI] (see Theorem 5.2). This shows that the p-primary
part of the value is close to the order of the Selmer group of Ad(p) ® a, p being
the p-adic Galois representation of A\. As is shown by Wiles [W, Chapter 4] and
[TW], the p-primary part of L(1, Ad(\))/Q for many p gives the exact order of the
Selmer group of Ad(p). Our result (Theorem 5.2) is a partial generalization of this
non-abelian class number formula. Thus we expect the conjectures in [DHI| made
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originally for real cyclic extensions to hold even for imaginary cyclic extensions of
Q (see Conjecture 5.1).

Actually the period Q(X) giving the transcendental factor of the L-value is
defined using the base change lift Xto G = Resg/o(GL(2)) for the quadratic
extension K/F associated to o. Because of this, we need to assume

(cusp) X remains cuspidal.

This condition is equivalent to the condition that the A-eigenspace in the space of
cusp forms on H(A) is orthogonal to any theta series associated to the norm form
of the quadratic extension K (see [L, Lemma 11.3]). We assume this condition
throughout the paper. When F' is totally real, the definition of the automorphic
period is a little more transparent than the other cases, because we are either in
the minimal or maximal degree case where the multiplicity of X in the modular
cohomology group for G is basically 1 up to a group action at archimedean places.
If F' has complex place, things are more complicated, and we need to use (H, \)
and (G,/X) at the same time (see Sections 7 and 8). In addition to this, the explicit
description of the Eichler-Shimura map obtained in [Hi94] from a result of Harder
[Ha] is different depending on the shape of K/F, although the general principle is
the same as explained in Section 2.4. This is why we treat the imaginary quadratic
case in Section 3, the real quadratic case in Section 4, the case of totally real F’
in Section 6 and general cases in Sections 7 and 8. It is an interesting problem to
study relations among periods of A of different degrees. We list some of them in
Section 9, which follow easily from our main result. It is also interesting to know
what type of L-values can be dealt with by looking into middle degrees.

It is not an isolated phenomenon that topological rational structure yields a
canonical transcendental factor of an L-value. Starting from a number field K, we
induce the trivial Galois character from K to Q. Then Indé)< id = id @ for an Artin
Galois representation x. The classical class number formula is written in terms of
L(1, x) whose main transcendental factor is the regulator of K. As is obvious from
the definition, the regulator is the period of the maximal degree cohomology group
of FL/F* for the norm 1 ideles F! normalized with respect to the L-function (see
[Hi89, p. 90]). The fact that Indg id contains the identity representation once is

essentially used to identify the residue of the Dedekind zeta function L(s, Indg id)
of K with the Artin L-value L(1,x) as a product of the regulator and the class
number. Computation of the residue tends to be easier than the computation of
values. In our case, a similar phenomenon occurs. For the contragredient pV,
p® p¥ = iddAd(p), and the residue formula of the Rankin product L(s,p ® pV)is
essentially used to obtain the non-abelian class number formula for L(1, Ad(p))/Q
[Hi81], [Hi88b] and [Hi89] (see also [U] for a generalization to imaginary quadratic
K). The transcendental factor €2 is the period of the maximal degree cohomology
group for GL(2) x GL(2) (see [Hi81] and Section 8 in the text). Exactly the same
phenomenon happens also for L(1,Ad(p) ® a)/Q(X), although the period may not
be of maximal degree. The idea of proof is simple, which is summarized in Section
2.4, although the computation, in order to get an effective integral expression of the
L-value, is a bit demanding. In the process of obtaining the integral expression, it
is necessary to find a Hecke character of K with a prescribed restriction to £. The
argument to find such a character is substantially shortened by a suggestion made
by the referee of this paper, in particular, Lemma 2.1 is supplied by him along with
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a concise proof. Here I wish to thank the referee for the suggestion and his careful
reading of the manuscript.

Holomorphy of the adjoint L-function was first dealt with by Shimura [Sh75]
and then generalized to arbitrary 7 and F by Gelbart-Jacquet [GeJ] (see also
[Sh94] for another integral expression). The rationality result was dealt with for
critical values by Sturm for F' = Q and Im for general totally real F [St] and
[I]. Our proof is a cohomological interpretation of the Rankin method studied by
Shimura and Asai [As], which is generalized to GL(n) by Flicker [Fl] and [FI1Z].
In the course of the proof of the congruence theorem (Theorem 5.2), we need to
use a non-vanishing result of twisted tensor L-functions, which follows from a more
general result of Shahidi [S81], [S88].

Here is general notation. We write Fj for the adele ring of F. When F = Q,
we write A for that. The finite part of A is written as . A and the infinite part of
F is written as F... As a subring of A(>), we write Z for the product of the p-adic
integer ring Z, over all primes p. For the integer ring t of F', we put T =t ®z, Z as
a subring of F, A(fc). For a number field X, we write [x for the set of embeddings
of X into C. We write X x for the set of archimedean places of X and decompose
Yx = Xx(R) U Xx(C) for the set of all real places ¥ x(R). For a number field
denoted by F' in the text, which is the base field, we drop the subscript “F” like I
for Ip.
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2. Idea of the proof, and preliminaries

In this section, we first describe how we can interpret analytic integration of
cuspidal automorphic forms in terms of group and sheaf cohomology theory in an
algebraic way (Sections 2.1-2.2). Then we define various modular L-functions, and
we study multiplicative relations among the L-functions we defined (Section 2.3).
This relation combined with an integral expression gives a key to our proof of
rationality theorem (Section 2.4). At the end of this section, we describe I'-factors
of L-functions and criticality of L-values in terms of motives (Section 2.5).

2.1. Integration of cuspidal cohomology classes. Let G be a classical
linear algebraic group defined over Z. We consider an open compact subgroup S
of G(Z) of G(A™)). We write G(R) for the identity component of the Lie group
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G(R). We put G(A); = G(A®™)) x G(R)4 and G(Q)y = G(A); N G(Q), where
A(>®) is the finite part of the adele ring. Then we study the modular manifold
associated to S

Y(S) = G(Q)+\G(A)1 /Ccs Z(R)S

for the center Z = Zg of G and the maximal compact subgroup C+ of G(R),.
Decompose Y (S) = LU, Y, into a finite disjoint union of connected components Y.
Then we fix a and write Y =Y,. Then Y, = I'\ 3 for a discrete arithmetic subgroup
T of G(Q)+ and the symmetric space 3 = G(R)1/Z¢(R)Cs+. When it is necessary
to indicate the dependence on a, we write ') for I'. Then we suppose that we have
a coordinate system (¢, x1,...,24-1) (d = dim(Y")) of a coordinate neighborhood Uj
around the cusp s of Y such that

Us = (tg,00) x (D,\R%™1)

(for an open interval (¢, 00), ty > 0) with compact quotient I';\R?~! for a discrete
subgroup I'y of T acting on R%~!. This is the case where G has a maximal Q-split
torus of rank 1, and the variable t is given by the variable of the unique Q-split
torus (of a Levi subgroup) in the minimal parabolic subgroup fixing the cusp s. Let
L be a finite dimensional R-vector space with an action of I'. Let w be a C'*°-closed
p-form on (tp,00) x (R?~!) with values in L decreasing exponentially as ¢t — oo.
We suppose that y*w = qyw for v € T's. Here yw(z) is the image under the action
v : L — L applied to the value w(z). We write

w = Z ailmipdxil /\.../\d(l]l‘p + Z ﬂ]&--.jpfldt/\dxji /\-~~/\dxjp,1-

1< <ip J1< . <Jp—1

Since dw = 0,

Oa;, ., (t,x) o o1 0B ik vipgr.iy (5 T)
1 P — _1 - 1 1lk+1 P .

Then we have

TN (2 a L 0By i i i
A S e e

o b—1 oo 6‘7"%

Let 0 =5, o i (Jo B gy (tx)dt)dzj, A ... Adzj, . Then df = w. Note
that 0 is invariant under I'y, that is, v*0 = 70 for v € I's because t is invariant
under the action of I'y. Thus for a given w, we can find a canonical lift 6. Let
C be the set of all cusps of Y (S). We take an open neighborhood U, for each
s € C as above. Let us consider the quotient L = I'\(3 x L) given by the action
¥(z,A) = (yx,v\). We write 7 : L — Y for the projection. Then we consider the
sheaf £ made of locally constant sections of 7. For each cuspidal closed differential
p-form w on Y which is a C*-section of £ ®g QP, we take §(w|y,) as above so that
df(w|u,) = w|u,. Then we take a C*°-function ¢ : Y — R such that ¢ is identically
1if t > t; with a t; > tg for every s, and outside UsccUs, ¢ is identically 0. Then
we define 04(w) = Y .- 90(wl|v,). The form w — dfy(w) is compactly supported.
The cohomology class [w — dfs(w)] in HP(Y, L) is independent of the choice of Uy
and ¢, because 0,(w) — 04 (w) is compactly supported for any other choice of ¢'.
For Q-rank 1 case, we have a canonical choice of t given by the variable of the
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Q-split torus of G and {z;} coming from Q-non-split torus and unipotent radical
of the minimal parabolic subgroup fixing s. Thus we have a canonical section

i HP (Y, L) — HP(Y, L),

cusp

which is compatible with Hecke operator action. The compatibility follows from
the expression of the Hecke operators on boundary cohomology groups, for example
for GL(2), the expression is given in [Hi93b, Section 3], and the uniqueness of
i([w]) = [w — By (w)).

We now compactify ¥ adding the boundary co x (I's\\R?™1) to U, for all cusps
5. We write the compactification as Y. Then Y is a manifold with boundary Y =
Usoo x (T\R?1). Let C be a C*-class p-cycle modulo dY. By our construction,
w — i(w) = dbs(w) is rapidly decreasing towards cusps s. We assume that Y has
finite volume with respect to the Haar measure on G(R). Then if w is rapidly
decreasing towards cusps s (that is, exponentially decreasing with respect to t),
/. o w converges. We see easily from the Stokes theorem

(it1) /Cw:/ci(w).

If p=dimY = d, we see that Tr : HZ(Y, A) = A by the evaluation at d-relative
cycle Y modulo 9Y. In particular, if A = C,

(i12) () = [ w= [ ito)

This is usually stated for ¥ smooth (for example, if S is sufficiently small), but
is valid always, because of the following reason. We take sufficiently small normal
subgroup I' of T of finite index such that Y’ = I'"\3 is smooth. Then H¢(Y,C) =
HAY',C)» for A = T'/T”, ard Tr with respect to I'" induces that of Y. This shows
the assertion (:t2) for Y’ imvlies that for Y.

2.2. Modular cohomology groups. We summarize here the definition of
modular cohomology groups and Hecke operator action on them. A detailed expo-
sition can be found in [Hi94] and [Hi88a]. Let F' be a number field with the integer
ring v. We consider the torus T' = Res, ;7 G,,. We fix an algebraic closure Qof Q
inside C. The group of characters X (7T') = Homalg,g,.(T/@, Gm/@) can be identified
with the formal free module Z[I] generated by the set I of all field embeddings of
F into Q. Since any o € I induces an algebra homomorphism o : F ®g A — A for
any Q-algebra A by k ® a — o(k)a, for each n = Y oecr Mo, n as an element of
X(T) takes a € T(A) to a” =[], o(a)™. Note that T'(A) for the adele ring A is
the idele group F,;. Thus T(A)/T(Q) is the idele class group. A Hecke character
¥ T(A)/T(Q) — C* is called arithmetic if it induces an element co(+)) in X(T') on
the identity connected component T(R); of the archimedean part T'(R) of T'(A).
This element co(v) € Z[I] is called the infinity type of 1. We write Zp for the sub-
module of Z[I] = X(T) made of infinity types of arithmetic Hecke characters. For
each arithmetic Hecke character 1, the field generated by 1(x) for all € T(A(>))
is a finite extension Q(v) of Q, which is either a totally real or a CM field. A Hecke
character w is called algebraic if w(z) € Q for all x € T(A(>)). There are many
algebraic characters which are not arithmetic (cf. [Hi94, p. 467]).

We put

H = Resr/ZGL(Q)/r and fj = H(R)+/CM+ZH (]R)
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As S, we take
Up(N) = Uy r(N) = {(’2 e H(Z)’c € Z\A]}

for an ideal N of ¢, where N = N@Zz. We write Yo(N) = Yy g (N) for Y(S). For L,
we take polynomial representations of H. Let F be the Galois closure of F//Q, and
write ¢ for the integer ring of F°!. Writing I for the set of all embeddings of F into
@, for each t®-algebra A, each o induces a projection o : H(A) — GLo(A) which
coincides with o on t. In particular, H(F) = [] .; GLy(F) via a — (0(a))o.
Then over F, each irreducible polynomial representation of H is isomorphic to

R det(o(x)) " Sym(er(z))*"

ocl
for integer tuples (v,) and (n,) with n, > 0. Here Sym(o(x))®" is the symmetric
no-th tensor matrix of o(z). Thus irreducible polynomial representations of H
are classified by tuples (n,v) of Z[I], where n = ) __,n,0 and v = > v,0.
We write x for the pair (n,v) sometimes. We can concretely realize the above
polynomial representation on an A-free module L(k; A) made of polynomials of

2[F : Q)] variables (X,,Y,),e1 with coefficients in A homogeneous of degree n, for
each pair (X,,Y,). We let vy € H(A) act on P € L(x; A) by

VP(X5,Ys) = det(7)" P((Xs,Yo) 0(7)"),

where 7 = det(v)y ™! and det(y)" =[], det(a(v))".

By the approximation theorem, choosing a complete set R of representatives
for the class group CI(S) = T(Q):\T'(A)/ det(S)T(R), we have

H(A)+ = | | H@)4 (§9) SHR)..
a€R

Thus Y(S) = U,Y, and Y, = T(®¥\3, where I'®) = tSH(R)t"' N H(Q), for
t = (&9). When S = Uy(N), for a Hecke character ¢ with ¢ (x) = 7" %
for all z € FX whose conductor is a factor of N, we twist a little the action of I'®)
on L(x; A) as follows:

P(X,,Y,) — ¥n(d)det(y)"P((X,, Y, ) o(7)")

if y=(%7%) €@ where vy is the restriction of 1 to HP‘N Fy C T(A). We write
this twisted module as L(k,; A). To have a non-trivial sheaf, the action of I'(*) has
to factor through the fundamental group m(Y) which is f(“)/ t*. Therefore, the
center t* of (@) has to act trivially on L(x,%; A). The condition: v, (z) =z "2V
for all x € F assures this. When v is trivial on T(i), L(k,9; A) = L(r; A). Thus
L(k,1; A) only depends on the restriction of ¥ to units T(Z) =Tx,
We describe the cohomology groups
HY(Yo(N), L(k, 95 A)), HI(Yo(N), L(k,9; A))

and
H(?usp(YO(N)? E(Hv ’Wa A))

defined in [Hi94, Sections 3 and 5]. Let Q(x) be the subfield of Q fixed by the
subgroup

G(rk) = {0 € Gal(Q/Q)|ko = (no,vo) = K}.
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Let Q(¢) be a subfield of Q generated by ¥ (z) for all 2 € T(A(>)), which is a CM
field finite over Q. We write Q(k,¥) for the composite of Q(x) and Q(). Write

P(X,,Y,)= Y a;X"77Y7 € L(k,, A),

0<j<n

where X" 7Y = IL Xne=JeYie a; € A, and 0 < j < n implies 0 < j, < n, for
all 0 € I. Then we let o € Gal(Q/Q) act on L(k,v;Q) by

a; X" Y - ad XY,
J

0<j<n 0<j<n

Then o takes L(x,;Q) onto L(ka,17;Q), where ¥ is the unique Hecke character
such that 97 () = () for T(A®®)) and co(1)?) = co(¥)o. Thus the I'®)-module
L(k,%;Q(k,%)) is well defined, and for the integer ring Z(k, ) of Q(k, ),

tL(Kv s Z(/{v 1/))) = tL(H’ (U8 Z(KZ, d’) z Z) ﬂ L(Kv (/8 Q(Hv w))

is an Z(k, 1)-lattice in L(x,;Q(k,)) stable under T'(®) (see the paragraph below
(3.5) of [Hi94]), where t = (29), and the intersection is taken in

L(k, ;A (5,9)) for AL (k, ) = Q(k,v) @g A

Thus writing tL(A) = tL(k,; A) for tL(k,; Z(k,v)) @z(xw) A, we have the cov-
ering | |, tL(A) — Yo(N). We write L(k,; A) for the sheaf of locally constant
sections of this covering. Then, if Yy(V) is smooth, the cohomology groups H?
and H? are defined in the usual manner, and the cuspidal cohomology group
HY,o, (Yo(N), L(k,9;C)) is defined to be the subspace of H?(Yo(N),L(k,1;C))
spanned by cuspidal harmonic forms [Hi94, Section 2]. When Y5(N) is not smooth,
we take a normal subgroup S C Up(N) and define H{ . (Yo(N), L(k,9;C)) by
the subspace of HZ,. (Y (S),L(x,9;C)) fixed by Up(N)/S. Similarly, we define
Hi(Yy(N), L(k,1;C)) for non-smooth Yy(N). For any Z(k,)-subalgebra A of C,
we define HZ.,(Yo(N), L(k,1; A)) by the intersection of Hd, (Yo(N), L(k,¥;C))
with the natural image of HI(Yo(N), L(k,1; A)). Anyway, as seen in 2.1, we have
a canonical section

i s Hi\o,(Yo(N), L(r,¥; C)) — HI(Yo(N), L(,¢; C)),

cusp

and
ngsp(YO(N)7 E(Kv (/8 (C)) = ngsp(YO(N)v E(IQ, ¥; Z(H7 1/)))) ®Z(’5aw) C.
The cohomology groups HY ., (Yo(N), L(k,1; A)) have a natural action of Hecke

operators T'(n) for integral idgals n of v and the action of the center Z(A) [Hi94,
Section 4] as long as either A is a Q(k,)-algebra or v > 0 ( <= v, > 0 for all
&), and 7 is equivariant under Hecke operators. When A is not a Q-algebra and
v 2 0, we need to modify T'(n) as in [Hi94, Section 4] to preserve integrality. By
a result of Harder, the cuspidal cohomology group is trivial if one of the following
conditions is satisfied (i) ¢ < r1(F)+7r2(F): (ii) ¢ > 71 (F)+2r2(F), and (iii) n # nc
for complex conjugation c (cf. [Ha], [Hi94, Section 2]), where r|(F') (resp. m2(F))
is the number of real (resp. complex) places of F.

We assume that HZ . (Yp(N), L(k,%;C)) # 0. Since we have an action of the

cusp

center Zy(A®)) = T(A(>)), we can decompose HE,\o,(Yo(N), L(k,1;C)) into a
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product of eigenspaces under this action:

H,, (Yo(N), L(5,9;C )—eB H,, (Yo(N), L(r,4; C)) [,

where ¢’ runs over arithmetic Hecke characters such that ¢’ = ¢ on T(i) and
oo(y') = oo(vp). We write h,(N,9; A)/p for the A-subalgebra of

Endc(H, (Yo(N), L(k,¥; C))[¥])

generated by T'(n) for all integral ideals n. Again by Harder [Ha], the algebra
h(N,; A) is independent of gq. Let A : h(N,1;C) — C be an algebra homomor-
phism. Then A-eigenspace is non-trivial in the cohomology group. Its dimension
depends on g and F. To describe this, write ¥ = X (resp. Z(R) = Zp(R), 2(C) =
¥ r(C)) for the set of archimedean (resp. real, complex) places of F. We identify
3(C) with a subset of complex embeddings in I so that each place is induced by
the corresponding embedding. Note that

o= J] Hox I -

oc€X(R) T7€X(C)

where H,, is a upper half complex plane on which o(y) € GLy(R) (¢ € £(R)) acts
through a linear fractional transformation, and

HTZ{(ﬂF —_y) ]xeC,0<y€R},
y T

on which 7(y) € GL2(C) (7 € Z(C)) acts as in [Hi94, 2.2]. In [Hi94, Section
3 (M1-4)], we defined a space of cohomological cusp forms S, ;(N;v),p for each
subset J of X(R). Actually, we need to assume that functions in S, s(N;9),p are
rapidly decreasing towards cusps, which follows from the cuspidal condition [Hi94,
M4] if F is different from Q or imaginary quadratic fields. In [Hi94], this condition
is implicitly assumed when F is Q or imaginary quadratic field (see (m'3) of [Hi94,
p. 460]). An element f € S, ;(IN;) corresponds to a real analytic modular form on
$ holomorphic on the copy H,, at ¢ € J and anti-holomorphic at o € £(R) — J (see
the remark in [Hi94, p. 60] after (m'3)). This space, when F = Q, is isomorphic to
the classical space of elliptic cusp forms. More precisely, S, ;(INV,®) is isomorphic
to the space Sk(To(N),¥n) of holomorphic cusp forms of weight £k = n + 2 with
Neben character ¥, which is the restriction of ¢ to 7> regarded as a Dirichlet
character. The isomorphism is given by f — ¢(z +iy) = y* "' f((§ 7)). Thus the
space itself does not depends on v, but the Hecke operator T'(n) = T, (n) depends
on v in the following way: When v = 0, Ty(n) is the classical Hecke operator acting
on Sp(To(N),vn) defined by Hecke. Then T,(n) = n'Ty(n). In other words,
by pulling back classical cusp forms in Sk(I'o(N),¥n) to H(A), we get the space
S(n.O).I(N7 w) and

Stnw).r(N,0) = { f(2)| det(2) [ °|f € S(n.0).r (N, ¥) }-
When F # Q, S(,.0),7(N,v) does not necessarily have such a simple relation to

S(n.0).7 (N, V).
In [Hi94, Sections 2-3], we described a very explicit map

6JAJ’ : SKJ(Nw) — ngsp(YO(N)"c(ﬁ’w; C))[w]

indexed by J C ¥(R) and J' C X(C). The linear map 8, ;- is Hecke equivariant
and takes a cohomological cusp form f to a differential form holomorphic of degree
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1 in the variables of H,, for ¢ € J, anti-holomorphic of degree 1 for o € Z(R) — J,
harmonic of degree 1 for o € J' and harmonic of degree 2 for £(C) — J’. Thus the
total degree of the differential form is 7y — |J'| + 2r2. We will recall the explicit
form of &, 5/ later in our computation in specific cases. Then, for d = [F': Q],

6= @J}J’(SJ,J’ : @ SI‘C‘J(N7 ¢) = ngsp(YO(N)a 5("%#}2 C))W]
JJ:#(J)=d—q

Since the A-eigenspace of S, j(N,1) is 1-dimensional, this completely determines
the dimension of the cohomological eigenspace. Since T'(n) leaves stable the coho-
mology group, A(T'(n)) is an algebraic number in a fixed finite extension. We write
Q() for the subfield of Q generated by T'(n) for all n, which is a CM field or a
totally real field containing Q(k, v).

For a standard Whittaker function W = W, : T(R)y — L((n*,0);C) with
n* = dez(c)(ng + Noe + 2)o, f € Sk y(N,v¥) has a Fourier expansion of the
following form [Hi94, Section 6:

(F) (5 7)) = X atems nwicaereo)

EEFX™

where £ runs over all elements in F with €7 > 0foro € Jand £ < 0 for o € X(R)—
J,y € T(A) with y» € T(R)4, n— a(n; f) is a function with values in C supported
by the set of integral ideals, ® = ?p is the different of F/Q, and ep : Fy/F — C
is the standard additive character with ep(zs) = exp(2mv/—=13,.,27). The
function W is the optimal element in the Whittaker model at archimedean places,
whose Mellin transform gives the exact I'-factor of the standard L-function. Its
explicit form will be recalled later. This Fourier expansion determines the cusp
form uniquely. If f|T(n) = X(T(n))f with a(t; f) = 1, then a(n; f) = A(T(n)).
Thus the eigenspace of A is one dimensional (Multiplicity 1) (cf. [Hi94, Theorem
6.4]). For any automorphism o € Aut(C), we always have f? in S, ;(N, %) such
that a(n; f7) = a(n; f)? by the Hecke equivariance of § and the rational structure
of the cuspidal cohomology groups. In particular, \°(T'(n)) = A(T(n))? gives an
algebra homomorphism of h.,(N,17;C) into C. Sometimes, we call A a system of
Hecke eigenvalues.

2.3. Modular L-functions. We fix a system of Hecke eigenvalues
A he(N,¥;C) —C

and define several L-functions of A we will study. The standard L-function of A
twisted by a Hecke character n: T(A)/T(Q) — C* is given by

Ls,A@n) = Y n@)AT(n))Npg(n)~*

nCr

T {@ = cwn(o)Nr/o0) ™)1 = Ban(e)Neyo(0) ™)},
p

which is continued to an entire function on the whole complex s-plane and has a
functional equation if A is primitive (that is, A gives eigenvalues of a primitive form
of conductor N; cf. [Mi]). When 7 is arithmetic with infinity type —w € Z[I],
A®n: T(n) — p(n)A(T(n)) for n prime to the conductor C' = C(n) of n gives an
algebra homomorphism of h, (N N C?,¢n?;C) into C for k' = k + (0, w). Thus we
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can view L(s, A®n) as the standard L-function of A ®n. The adjoint L-function is
given by

L(s,Ad(\) ®n)

_ By me)\ ([, nlp) ) -
- I;:I{ (1 Ne/o(p)® ) <1 NF/Q(p)S> (1 Neo(p)® )} ’

which again has a meromorphic continuation to the whole complex s-plane [Sh75],
[Sh94] and [GeJ]. It has a functional equation after adding finitely many Euler
factors if necessary. For another system p of Hecke eigenvalues, we define the Rankin
product of A and . Writing the Euler p factor of L(s,u) as (1 —ap/N(p)*) (1 —

By/N(p)*)~", we put

sonem=TT{(1-525) (1- xoh)

p

() (- sr))

For each primitive Hecke eigensystem A : h,(INV,v;C) — C, it is a well known
conjecture that there exists a compatible system of [-adic representations p = p(A)
of Gal(F/F) with coefficients in Q()\) such that L(s,p ® n) = L(s,A ® ) (cf.
[Hi94, Section 1]), where F is the algebraic closure of F. This conjecture is known
for totally real F' (see [BR]). If such p exists, L(s,A ® u) = L(s, p(A) ® p(u))
and L(s,Ad(\)) = L(s,Ad(p)), where Ad(p) is a three dimensional representation
fitting into the following exact sequence:

0— Ad(p) > p®p’ —id —0

for the contragredient p¥ of p and the identity Galois character id.

We take a semi-simple quadratic extension K/F. We allow K = F & F. We
write « for the quadratic character of T(A)/T(Q) associated to K/F if K is a field.
If K = F & F, we simply put a = id for the identity character id. We write R for
the integral closure of v in K. We put G = ResgzGL(2) /. If K is not a field, we
simply agree to put G = H x H. We consider the cohomological modular forms on
G. Thusif G=H xHand N=C®C C R, then

S(n,u)(Nﬂ (¢7 W)) = Sfi(cv 1/)) ¢ SM(C» '(//)7
where f ® g(z,2') = f(z)g(z’) on G(A). We define Yy x(N) as above for G if
K is a field, and otherwise, Yy x(N) = Yo, p(C) x Yo, rp(C). We write I for the
set of all non-trivial algebra homomorphisms of K into Q. Thus if K = F @ F,
I = IUI canonically. Let uu: hy (N, x;C),/x — C be a system of Hecke eigenvalues
for k € Z[Ik]. Suppose that K is a field and the compatible system p = p(u)
exists. Extending a non-trivial automorphism of K/F to o € Gal(F/F), we put
0°(g9) = p(ogo™'). Then ¥ = p®p° is equivalent to U7, and it extends to Gal(F/F)
in two ways. Realizing ¥ on V ® V for a two dimensional vector space V on which
p acts, one of the two extensions, writing ¥, , satisfies ¥, (0)(z ® y) = y ® p(c?)x
and the other is given by ¥_(0)(z ® y) = —y ® p(0?)z (cf. [Gh, 5.1]). We write
the L-function of W, twisted by a Hecke character n of F' as L(s, (4 ® py )+ @ n).
Then L(s,¥_ ®@n) = L(s,¥+ ® an) = L(s, (4 ® piy)+ @ an). See [Gh, 5.1] for an
explicit description of Euler factors of L(s, (g ® 17)+). Although it is assumed in
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[Gh] that K is an imaginary quadratic field, the computation (and the description)
is the same for general K/F. We have

L(s,n® po) = L(s, (1 ® o) +)L(s, (1 ® pio) + ® ),
where u, is a system of Hecke eigenvalues given by p,(T'(n)) = p(T(n?)). When
K =F & F, we just put
L(s,(n® po)+) = L(s,A® A)
if u is given by A ® X taking (T'(n), T(m)) to A(T(n))N(T'(m)) for two systems of
Hecke eigenvalues A and X' of H. Then we have

(Rl) L(S + 1) (lu’ ®.u0)+ ® 77) = L(287XF772)LK/F(57N777)’

where xr is the restriction of x to F* and

Lic/p(s, ) = Y _ n(m)u(T(n)) Np/g(n) >~

nCr

for a Hecke character n of F. Here n runs over all ideals of t (not R) extended to
R.

2.4. Idea of the proof. There is a way to get an integral expression of
L(1,Ad(\) ® «)

for a Hecke character o with a? = 1. Here we summarize the idea, and in the
following sections, we shall give details of computation. This integral expression
gives a key to prove the rationality theorem. Let u =  for the base change lift of A
of H to G. Here we need to invoke the assumption that A remains cuspidal. When
K is a field, X is given by Jacquet [J] so that L(s, p(A)|x ® ) = L(s, A®n) for all
arithmetic Hecke character 1 of K, where p|x is the restriction of p to Gal(F/K).
If G = H x H, we simply put X = A®A. Then X = Yo Ngsp and xp = P2,
We write ® = (7,D) € Z[Ik]? for the weight of \. We have the restriction map
Res® : Z[Ix] — Z[I] which takes o to its restriction to F, where F is embedded
into F @ F diagonally if K is not a field. Writing Infk : Z[I] — Z[Ix] for the
inflation map: Inf(o) = >- o/, ., 7, We see that n = Inff (n). Then we get,
again looking into Euler factorization

Lic/r(s, A\ n)L(2s, (¥n)?) = L(s + 1, (1 @ po )+ @ 1)
= L(s,ayn)L(s, Ad(\) ® ¥m)

up to finite Euler factors. Let Ny be the least common multiple of the conductor of
n and N Nt. Since discrepancy of Euler factors can only occur for primes dividing
Ny, we get the following exact identity:

(R2) Ly (25, ()2 Lic/ kg (5, M71) = L (5, a0m) Liv, (5, Ad(A) & ¥m),

where we write Ly, (s) for the L-function obtained from the original L(s) by remov-
ing Euler factors for primes p dividing Ny. Thus assuming atyn = id, Ly, (s, ayn)
has a simple pole at s = 1. Thus we get the following residue formula:

(Resl) {Ress=1Cr.ny (5)} Ln, (1, Ad(\) ® @)
= Res,—1 {CF,NO(QS)LK/F.NO(S>:\\7 0”/'141)} .
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Thus we need to compute the residue of the right-hand side of (Resl). Keeping
the assumption that aiymn = id, we use for that purpose a pull back integration
of §(g) over Yy p(N’) (for a suitable N’) to get an integral expression of L(s +
1, (4 ® po)+ ®n), where g is a suitable cohomological modular form having Hecke
eigenvalues related to X. To describe g, we need to express n = ap ! = prw for the
restriction ¢ of an arithmetic Hecke character ¢ of K to F' and a Hecke character
w of conductor 1. We will show later that this is possible in most cases. We write
w = —o00(p) and C for the conductor of . We put N’ = NN C?Nt. Then up to
finitely many Euler factors

Cr(s)L(s,AdN\) ® a) = L(s + 1,(A® Ag)4+ ® 1)
—Ls+1L,(A2¢0) @ A®p))s ®w).
We choose suitable J C L (R) and J' C £x(C) so that
9 € Sxe0u)s (NN Cxp) A @]
and 6. (g) gives a cohomology class in HZ (Y x (N NC?), L(K+ (0,w), xp?; C))

cusp

for ¢ = dim Yy p(N’). The cusp form g is the image of \-eigenvector f under the
twisting operator R(y) and the (cohomological) rationality of §(f) and §(f|R(¢))
are equal (see [Hi94, 6.8] and the proof of Theorem 8.1). Under the assumption:

ayn = id, we have a non-trivial sheaf morphism
m: LR+ (0,w),x¢*;C)lyy vy = L(0,w™%C).

Thus for a suitable Eisenstein series E(s) giving a global section of £(0,w?;C), we
can prove by a Rankin convolution method that the integral

/ 7(65.00(0))E(s)
Yo, r(N')

gives R
Lis+1,(A2¢) @ (A®¢)s)+ Qw)
up to the canonical I'-factor and a constant. Actually,

E(s) = E(z,s) = w(det(x))Ey(z, s)

as a function of x € H(A), where Ey(z, s) is the weight 0 Eisenstein series attached
to the trivial character of the Borel subgroup of H. As is well known, Ey(z, s) has
a simple pole at s = 1 with constant residue equal to Res;—1(r(s) up to rational
numbers (see Appendix). Then comparing the residue of the two sides of (Resl),
we finally for C' = C(p) N,

(Res2) Lo(1L,AdN) @ a) = C’o/ (6.5 (g)) det(w(x)),

Yo.r(N’)
where the constant Cj is the product of the Gauss sum G(¥a) and a power of 7
up to rational numbers. Thus if the A-eigenspace HZ . (Yo.x(N), L(R,x;C))[}] is

cusp
one dimensional, we see that 6(f) = Q(X)& for a Q(X)—rational cohomology class &,
and we know the algebraicity of Ly/(1,Ad(\) ® a) up to Q(X) and a power of 7.
This happens when K is a CM quadratic extension of totally real F. Let ¥ (R)
be the set of real places of K. When F is totally real, we can further decompose
the cohomology group through the action of Cu/Cacy = {£1}*5®) into a direct
sum of one dimensional pieces, and hence we can still prove the algebraicity of
the L-value. For general K/F', in place of H (Yo x(N), L(K, x;C)), we can use
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HY(Yy p(N'),C) 2 C, which is one dimensional. Therefore similarly we can define
the period Q(X) and get the algebraicity, although the definition of the transcen-
dental factor €2 is not so transparent as the case where I’ is totally real. This is one
of the reasons why we have divided our argument according to the shape of K/F
at the archimedean places as described in the introduction.

In this paper, we only study the pull back integration of degree ¢ = dim Yy p(N')
cohomology class. Presumably the same process for degree ¢’ < q would yield an-
other integral expression of Lx,p(s,u,n). In this case, the Eisenstein series E(s)
has to be replaced by an Eisenstein differential form. When K is an imaginary
quadratic field, Ghate [Gh] treated the case of minimal ¢’, that is, ¢ = 1 (while
q = 2) and obtained a rationality result for critical values of L(s, (i ® p)4), which
implies rationality of some critical values of L(s, Ad(A) ®n). Since our result covers
the non-critical value L(1, Ad(A) ® «) in this case, the two results are disjoint. For
a general quadratic extension, there are several values of ¢’ between maximal q and
the minimal one. It is an interesting problem to study the integral for intermediate
values ¢'.

Here, we study extensibility of 1/’ = at~! to a Hecke character ¢ of K up to
Hecke characters of F' of conductor 1. Here is a general lemma supplied by the
referee of this paper:

LEMMA 2.1. Let K/F be a Galois extension. Let J” be the set of archimedean
places of F which ramify in K. A Hecke character x of finite order of F\* extends
to a Hecke character of finite order of K if and only if xo =1 for all o € J".

PrROOF. Here is a proof which is a version of the proof supplied by the ref-
eree. For a multiplicative Gal(K/F)-module A, we write H"(A) (resp. H"(A)) for
the group cohomology group H"(Gal(K/F), A) (resp. the Tate cohomology group
H"(Gal(K/F),A)). Thus H"(A) is defined also for negative r, H"(A) = H"(A) for
r>0and H(A) = H(A)/Nk,pA. Let Cx = X /X* for a number field X be
the idele class group. Write Dy for the identity component of C'x. Thus by the
Artin reciprocity map, C'x /Dx is isomorphic to the Galois group of the maximal
abelian extension of X. Note that Cr and Cr/Cr N Dy are closed subgroups of
Ck and Cg /D, respectively. Thus we see

1. A character x : Crp — C* is of finite order <= Yy is trivial on Dp;

2. x extends to a finite order character of C'xr <= x is trivial on Cp N Dy.
By Hilbert’s theorem 90 applied to K*, we have H'(Cx) = Cp, and hence
H°(Dg) = Cp N Dg. For each complex place o € L (C), we write T, = {z €
K, = (C||z|a = 1} and D) for the image of K* HGEEK(‘C) T, in Ck. By [ArT,
Theorem 4, p. 91], I?r(D’K) = ﬁT(DK) for all ». Applying this to r = 0, we get

H°(Dg) = H*(Df )Nk p(Dk)

in Dg. Let J be the subset of ¥, made of places above J”. Then writing {£1},
for the subgroup of order 2 in T, we consider the image D% of K [] . {£1},.
Then by [ArT, Theorem 5], (or its proof) on page 92, H*(Dg) = DY, Dp, which
shows the assertion. O

By this lemma, our question of the extensibility is reduced to the study of the
infinity type of the characters in question. Let Zx be the set of all infinity types
of arithmetic Hecke characters of a number field X. We write = for Zr. We have
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a typical element 1x = 2061\, o € ZEx. We write 1 for 1z. If a number field X
contains a CM field, we write X/ for the largest CM subfield in X. Then

= JInfr/p., (EF.,,) if F contains a CM field
R VA if F' does not contains any CM field.

First suppose that F' contains a CM field. If K¢y # Foar, Koy and F oare linearly
disjoint over Frjs, and hence,

ReSK/FEK = ReSK/FIan/KCAI (EKCAI) = Ian/FcM ReSKc,\l/Fc.u (EKCM)'

Note that Resg,.,,/rcy (Exca) +Z1Ee,, = EFe,,, which follows from the fact that
for any CM field X, {7 — 7c},er, and 1x = > ;7 generate Zy. Similarly, if K

contains a CM field but F does not, ReskZx = Z. Thus we have

if one of the following three conditions is satisfied: (i) Kcnr # Feur, (ii) F does not
contains any CM field, and (iii) K does not contains any CM field. If K contains
a CM field and K¢y = Feay, we have

RGSK/FEK = 2Z.

Suppose that K contains a CM field L and either K¢y # Foar or F' does not
contains a CM field. Let ®; be a CM type of L and & = Inffq)L. Then ¢ € Zk.
Choose any Hecke character £ of infinity type ®, and put 8 = &p| |;[1 Then we
have 3, = a, for all 0 € J”. If 0o(1)) € Res® Zg, then we take a Hecke character
¢’ of K with Resfoo(¢) = co(1) and ¢'(z) = 25" for all o € KX. Then
Y o = a1 ). is of finite order. Since ¥(x.) = x "%, we see (¥ k) = 1.
Thus (@ 1)) = as and hence, by Lemma 2.1, we can find a finite order
Hecke character ¢ of K such that ay~'¢}.3 = ¢%. Thus ayp~! = gpw for
o =(¢) "¢ andw = | |g,. If oo(t)) & ResE =, then co(y | ];1) € ResBEg.
In this case, choosing an arithmetic ¢’ such that ¢/.(z) = 2721 for all z € FX.
Then (! |}}1(s0'F)71)0 =1 for all 0 € J” and hence, by Lemma 2.1, we can
find a finite order character ¢” of K such that ay~!| [/ (¢}) ™ = ¢.. Thus again
we get ap ™! = ppw for ¢ = " and w = | |f,.

Now suppose that F does not contains any CM field and J” # §. Then
ResIF(EK = Z7Z1+ = and n + 2v = m1 for an integer m. We see that m is even
if and only if n 4 2v € Resi Zx. Suppose that m is odd. Then (atp~!| 7)o =1
for all ¢ € J”. Thus by Lemma 2.1, we can find a finite order Hecke character ¢’
such that ayp™!| |5 = ¢f. Thus ap™! = ppw with ¢ = ¢" and w = | |, If K
contains a CM field and m is even, we can argue in the same way, replacing m by
m — 1 and requiring co(¢’) = ®.

Now suppose only that co(y) € Resg Zk- Thus by the above argument, if there
exists a finite order character w of conductor 1 such that . = wes, we can find an
arithmetic character ¢ of K such that atp™! = ppw. In particular, if a. is trivial,
then we can find ¢ and w.

Note that co(¥) = —n—2v and n = nc by the unitarity of cuspidal automorphic
representations if HS,.,(Yo(N), L(k,1;C)) # 0. Thus we see that if x € K7, then
z" € FX, for the identity connected component X2, of XX. Thus we have a
unique positive square root z”/2 of 2", and there exists a Hecke character o of K
such that ¢/ (z.) = 22/ for all 2o € K2 ,. Then ¢ = ¥/ is a finite order
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character. In particular, if J” = ( (for example, if F is totally imaginary), we can
find a finite order Hecke character ¢” with as = ¢/, and hence ayy™! = ¢p for
@ = ¢'(¢")~t. We record what we have proven as follows:

LEMMA 2.2. (o) Suppose that co(yp) € Res,{fEK. If there exists a finite
order character w of conductor 1 such that oo = ws, we can find an arith-
metic character ¢ of K such that ay™' = prw. In particular, if as is
trivial, then we can find ¢ with op™! = pp.

(i) Suppose that K contains a CM field. Suppose either that Koy # Foa or
that F does not contains a CM field. Then = = Z1 + ResEZx. Moreover
we can find an arithmetic Hecke character ¢ of K such that pp| |p, = a.

(ii) Suppose that F' does not contain a CM field and there is a real place of F
which extends to a complex place of K. Then = = Z1 + Res?EK, Write
n+ 2v = ml for m € Z. Then we can choose ¢ and w, up to finite order
characters of conductor 1, so that o~ ' = prw and

IR if m is odd,
w= | |’1§1_1 if m is even and K contains a CM field,
so(g) = 0 if m is odd,
¥ = ® for a CM type & if m is even and K contains a CM field.

(iil) If F is totally imaginary, then we can find an algebraic Hecke character ¢
of K such that opt) = a and oo(p) = 1/2(n + 20).

2.5. Motivic interpretation and criticality. We already mentioned the
conjecture associating A\ to a compatible system p(A) of [-adic Galois representa-
tions. As is well known, we can state a stronger version of the conjecture in terms of
pure motives of dimension 2. This is a special case of a generalization by Langlands
of the Shimura-Taniyama conjecture, because H' of an elliptic curve is a rank 2
motive. A precise statement can be found in [Hi94, Conjecture 0.1]. The point of
the conjecture is that there exists a finite extension F/Q(\), which is either totally
real or a CM field, and a pure simple rank 2 motive M () with coeflicients in E
such that L(s, M(\) ® n) = L(s, A\ ®n). In particular, the system p(\) is obtained
from the étale realization of M (X), and the Hodge type of M () ® p, C is given by

(no + 14+ v5,005¢); (Vo, Mo + 14 V5c)

for complex conjugation ¢ of C. Thus w = n, + 1 + v, + v, is the weight of
M () and is independent of o, which is known without supposing the conjecture.
Then the Galois representation Ad(p())) corresponds to a rank 3 motive Ad(M (\))
sitting inside M (A\)®@M (A)” for the dual M (A)Y of M(\). The functional equation of
L(s, Ad(\)) has the I'-factor exactly equal to that predicted by the theory of motives
[GeJ]. To describe the I'-factor of L(s, Ad(\) ® ), we write n,(—1) = —(=1)""
with v, € {0,1} for the restriction 1, of n to F, for each ¢ € ¥r(R). Then the
I-factor of L(s, Ad(\) ® n) coincides with that of L(s, Ad(M()\)) ® n) and is given
by, for a finite order character n

() T(s,AdN)@n) = [[Tels+no+1)x [ Tels)>x [ Trls+wo),
oel oceX(C) ge€X(R)

where I'c(s) = (27r)°T'(s) and T'g(s) = 7~%/2I'(s/2). Since Ad(M) is self dual, the
functional equation gives the reflection: s +— 1 — s, which is known to be true for
L(s,Ad()\) ® n) with finite order 7. A motivic L-value L(m, M) at an integer m
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is called critical if the value of the I'-factor at m and at its reflection point (of the
functional equation) is finite. Therefore L(1, Ad(\) ® n) is critical if and only if F'
is totally real and v, = 1 for all o € I (that is, n is totally even). Moreover we have

Ir(k)
(27r) k+22(C) 4 ()’

ords_oI'(s,Ad(A\) ® ) = #Z_(n) + 2r2(F),

where ords—o is the order of the pole at s = 0; ¥_(n) = {o|v, = 0}; T,.(n) =
{olvo = 1} k = 3 ;(ne +2)o; Tr(k) = [1, T(ko); «* =[], x*; and for a
subset X of I, X = z#¥X. The number ord,—oI'(s, Ad(A) ®7) is a good measure to
know how the value L(1, Ad(\) ® n) is far from being critical. It is interesting that
the period Q(X) defined independent of ords—oI'(s, Ad(A)®n) in purely automorphic
way gives the Beilinson and Deligne period if one admits the various conjectures
including the above one and the Deligne-Beilinson conjecture for motivic L-values
[RSS]. Moreover, we can prove a very close relation of the L-value L(1, Ad()\) ® a)
to the congruence of cohomological cusp forms and hence, presumably, to the Selmer
group of Ad(\) ® « if K is quadratic over Q (see Section 5). This is striking
because the definition of Q(}) is topological (and automorphic) and has nothing
to do, in an apparent way, with the algebro-geometric property of Ad(M (X)) ®
«. Thus the quantity Q(X) should be very close to the volume at infinity of the
Tamagawa measure (of Bloch and Kato) of Ad(M())) ® a divided by the order of
H(Q,(Ad(M()\) ® o) ® Q/Z) as in [BK, (5.15.1)].

r,Ad\) ®n) =

3. Imaginary quadratic case

Let K be an imaginary quadratic field with discriminant —D (D > 0). Thus
the different d of K/Q is generated by v/—D. We write ¢ for the unique non-
trivial automorphism of K. Then H = GL(2)/9 and G = Resg/gGL(2),x. We
write Sz(N, x),kx for the space Sz ¢(IV, x) of cohomological cusp forms on G(A) of
weight ®. Let 1 : Q*\AX — C* be a Hecke character such that ¢ (z) = x7 "%
for all z € R*. We put x = v o Nk g and consider the isomorphism for K = (7, v):

§=06p0: Se(N,X)/K = Hlup (Yo (N), LR, x; ©)[x]-

We write I = Iy = {7} and use the same symbol 7 to indicate a fixed extension
of 7 to K. For complex conjugation ¢ of C, o7 = 7c. Then x is an arithmetic
Hecke character whose oo-type is —n — 20 = —n,7 — n,7¢c — 2v,7 — 2v,7c for
0<7n=n,7+n,7¢c € Z{lk] and ¥ = v,7 + v,7c € Z[Ig]. Let f € Sz(N,x) be
a cusp form, and write f(*) € Sz(I'(®), y) for the classical cusp form corresponding
to f (see [Hi94, 3.5]). In other words, we consider f(*)(w) = f((49)w) for
w € SLy(C) € G(R) and a € R C T(A(>)) (see 2.2). The Fourier expansion of f(1)
is given as follows (cf. [Hi94, (6.1)]):

FOw) = lyl" ylx, § D alyo, HEW(Ey)ex(&x) o,

EEK™

where w =y~ /2 (¥7) € SLy(C) and

wo = > (%) (\/_—%,y)wam%1<4w1y|)S"‘QTa (n" =2n. +2)

0<a<n*
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with values in L((n*,0);C) = 3, CS™ —oT>, We now write down 5(f(1>) fol-
lowing the process described in [Hi94, Section 2.5]. For that, we write f(1) =
Zogagn* fa (noj)S" —oT< and

(X, V =Y, U)" (XU + Y. V)" (AV — BU)?

X 1

0<j, <n 0<jrosn MTE

XTIy Ireynr—ireVire} x (A?V? — 2ABUV + B*U?)

= Z (—1)7- (”) XPoIY I {Ynr—irtiret2pnetic—ire 42
0<j<n J
e —Jr A iret Ly e+ —jret1 r=JrtireT R tir—jret+2 R2
— QYT Tl ey HIr T ire R AR Y T Tire g T Tire T2 BRL

where (7) = ("7)(77). Then replacing U*V"™ ~® by (~1)" ~¢ ) (A,B) by

J Jr/ \Jre

(y='/2A,y~Y/?B), and (A%, AB, B?) by y~'(dy A dx, —2dzx A dT,dy A dZ), we have
@ )y =w Y (= (’?)Xﬁ--fw‘{fn,ﬂ;j”y*zdy A dz
0<j<n J
- f77«r+j77jrc+1y72dz A df + fnT+jT_ch+2y~2dy A dj}’

where w acts on (X,,Y,, X, Y,.) as
[
(Y X Vo) e (8 XY (6 )

Now we restrict 6(f(!)) to the upper half complex plane §) from 3 = H, and write
the pull back as §(f(!))|g. Then we have, for w as above

§(fM)g =
n e (T gy -
(=1)"w Y (=1 <j>X Y frrtjrmioe + Frotin—irer2 by 2dy A da.

0<j<n
This differential form has values in
L(R,x; Q)]s = L(k, xr; C) ® L(k; C).
Noting that xp = 1%, we know that
Lk, xp; A) ® L(k; A) = @o<ic<n, L((2n, — 21,20, +1),07%; 4)

for any Q(k,)-algebra A [Hi94, (11.2a)]. In order to write down the projection
to L((0,2v, + n;), xr; A), we introduce a differential operator:

0? 0? o? 02
T 0X,0Y, 0X,0Y,. 0X,.0Y, 0X,0V,,

Following the expression of the projection in [Hi94, p. 498], it is given by (n,!)72v"r.
Thus we need to compute (V"7 8(f1)|g). We see

. m\ 62 k 82 m—k
V= > () (k) <8X,,T8YT> (0XT8YM>

0<k<m

v
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and k!=1(0/0T)*T™ = (7)T™ *. The differential operator V decreases the degree

by (1,1) either in (X;,Y,.) or in (X,.,Y;). Thus applying V to a monomial n.,
times, we see

VX" IYI =0 unless nr = jr + jor.

If n, = jr + jor, we get

o . . (5152 . -1
(net)~2wme Xne vy e Xngrieryger = (~1yi- Udor ) <n> =" <n> |

(n:1)? \Jr T

Thus noting the fact that
V' (wP) =v* P if det(w) =1,
and writing j for j,, we have

(n) 729 8(F D))
2

= Z (TL7—> (nT!)_QV”*X""jYTjXZCYT"C*_j{fgj +f2j+2}y_2dy/\dx
0<j<n, N7

Z (nT> (faj + foj+2)y *dy A da,

0<j<n, N7

which is the explicit form of the pull back differential form we have written as
m(65.4:(f)) in Section 2.4.
Now we start computing the integral fYo S(NY) (650 (f)). We put

® = H(Q)NUop(N')H(R)+ = To(N')

for H = GL(2),g and N' = NN Q. Then Y o(N') = ®\$. We now define

@mz{:tG) ”f)lmez},

which is the stabilizer of the cusp co in ®. Then we look at

Lm\s‘a(m!)_2 (vnré(f(l))l@) v = OSJZSM <TET> /0°° /Ol(fzj + fajr2)dzy®2dy.
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Now we assume that f|T(n) = p(T(n))f for a system of Hecke eigenvalues p of G
and f is normalized so that a(n, f) = u(T(n)). We compute

/Ox /01f2jd:cys_2dy &XK:X p(T(€0))E™" ( él)nrﬂ_%
. / Tyt K (dmlEy]) /0 ' (Tr(¢))ddy

= D% 3 p(Tm)m gy
0#mEZ

oo
/ Y " T Koj_p 1 (4D 2 myl)dy
0

- DUT(1+ TL7+1+2L Z’u

m=1

/ Yt Koy 1 (4D 2 my|)dy
0

_ 2n,—+s—1(1 + (_1)n,—+1+2v)DvT r s+ 2_7
- (47I-D—1/2)n,-+s+1 2

2n, +s+2—2j
T <*—2———> LK/Q(S,N,CU),

where w(a) = |a|}7 %" and thus w((¢)) = |¢| " ~2r (see Lemma 2.2 (ii)). Similarly
we get

o~ pl - ! ! ]
on-+s 1(1 + (_1)nT+1+2l)D7~T s+ 25+ 2
s—2 _
/0 /0 fojqodzy® “dy = (4rD=1/2)n-+s+1 I ( 2 )

2n, +s— 25
(YL

We see from I'(s + 1) = sI'(s) that

P(s—i-22])r(2nf+s+2 23) F<s+23+2> <2n7+28—2j>

+
+ 2nT+s—2j
2

+s+2]F< 2])F<2 +s—23>

r <2nT +s— 2])
Note that by [Hi94, p. 505]

i( ) <5+2J)1"<2m+23—2j) _ F(%)F(r%\()sf(sﬁ-m)'

Jj=0
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This shows

/ (n )27 8(F V) [g)y?
P \H

(14 (=1)nrHH2e)gnets=i por D(D($)D(s + 1y + 1)
(dr D172yt T(s)

LK/Q(’Sanw)v

because (cf. (T') in 2.5)

45 FETEIG+n0) T($T(S)T(s + ny +1)
i I'(s) - I(s) '

We now apply convolution method and rewrite the above integral as an integral
of the product of (n,!)~2(v" 8(f(1))|g) and an Eisenstein series. There are two
ways of associating a Dirichlet character to a Hecke character £ of Q. Let C be a
positive multiple of the conductor C(&) of £. Restricting £ to Hé|C Z; C A*, we
get a character £¢ of (Z/CZ)*. On the other hand, for each prime £ prime to C, we
consider £(©) € A* which is equal to 1 at all places dividing C and coincides with ¢
outside C. Then ¢* : £ — £(¢()) induces a Dirichlet character ¢* : (Z/CZ)* — C*.
Since () = 1, £* = £,'. We note that L(s—00(€),£) = 300, £*(n)n~° = L(s, &%)
identifying =¢ with Z via 7 — 1. Let N’ be a positive integer generating N N Z
and ¥%, = (xg)n’ be the restriction of x to Z*. We extend Yy to @ so that
Y i (24) — ¥ (d). We have

/ x\ﬁ(m!)*?(vnfé(f(“)m)w= L \ > AN THEE(FD))yt oy

f’we@ \@
= [ s e Y vkt )
®\5 YEDL\D
Thus writing
E(s) = E(s,¥%) = Ln(25,(@")))y° > ¥R (v |J 7, 2)| 7%,
'qu)ac\q)
we get
IR GRS
D\ H
(14 (—notezvygnets=ipue T(T(5) (s + nr + 1)
B (4mD~1/2)n-+s+1 I(s)
’ L(S +1, (/J' ® l’lo)-%— @ w)'
This follows from (R1) because w = | |J* for m = n, + 2v, and

Ly+(2s,(¥*)?) = Ly (2s, (¥w)?) = Ly (25, xqw®)-

On the other hand, we have

1
E(zs,vi)=5v" D>, wi(n)mNz+n[7.

(m.,n)€Z2—(0.0)
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As will be seen in Appendix (see also [Hi93a, Chapter 9, p. 293(1)]), the Fourier
expansion of the Eisenstein series is given by
[(2s —1)Ly/(25 — 1, (1*)?)
I(s)?
+ Fourier expansion with coefficients in entire functions of s.

1 f 26 NS (g 1
E (—m;s,wﬁ) = 217N (2my) e

This shows that
Res,—1 E(z:5,0%) = 27 7N" *6(N)8y2 ia,
where 6. .+ is 1 or 0 according as ¢ = ¢’ or not, and ¢ is the Euler function. From
this we get, if n + 1 4 2v is even,
(Res3) Ress—1L(s+ 1,(1 ® o)+ @ w)
(2n D12 26(N')

N’ZDUTF(TLT+2) WN/-,d @\ﬁ( ) ( (f ))|Q

Let ¢ : K*\K; — C* be a Hecke character of infinity type —w with conduc-
tor C = C(p). We replace f in the above formula by the twist g = f|R(p) €
S74(0,w) (NNC?, xp?) defined in [Hi94, p. 480] whose Fourier coefficients are given
by a(n, f|R(¢)) = G(v)a(n, f)p(n). Here G(p) is the Gauss sum given by

Gle) = o(d)™' Y pelu)er(d u),
u€ER
where R is a complete set of representatives of C~!/R in Hp\c K, and d € K

with d® = 1 such that dR is the different 0 = 25 of K/Q. We write N’ for
the positive generator of N N C? NZ. Then we have from [Hi94, (6.8)], writing

E(s) = E(s. (b)),
/ (n, 1) 2977 6(¢) o) E(s)
@\ $H

_ (1 4 (_1)71,+1+2U+Res(w))2n+371Dv,. muG(@)
(47T.D~1/2)n,-+s+1

AT 2D ) (s 1, (52 0) © (0@ o) D),

I'(s)
where ¢’ = C N Z, and w(z) = |z|77 27 TF) writing Res(w) for Resfi w € Z.
If Poow = a and w = | IXT+2vr+Res(W), then 1 + (_1)n+1+27:+Res(w) = 2, and the

above integral does not vanish trivially (it could vanish by a different reason). Now
as in (Res2) in 2.4, we get

PROPOSITION 3.1. Let F = Q and K = Q(v/—D) be an imaginary quadratic
field with discriminant —D and k = (n.7,v,7) € Z[I] with [ = {r}. Let ¢ be an
arithmetic Hecke character with co(yp) = —w € Z[Ik] and the conductor C. Let

X = ¥ o Ng/qg for an arithmetic Hecke character ¢ with {(x) = x T2 for

all z € AL = R*. Suppose that o = powyp with w(z) = [xlX’+2vT+ReS(w) and

a = (=2). If a primitive system p : hz(N,x;C),x — C is a base change lift of
At he(No,; C) g — C, then we have

[ s = O el AdY @ a),
Yo.o(N)

Licensed to Tata Institute of Fundamental Research. Prepared on Tue May 16 05:43:23 EDT 2023for download from IP 158.144.67.50.



NON-CRITICAL VALUES OF ADJOINT L-FUNCTIONS FOR SL(2) 145

where g = f|R(p) for the normalized primitive form f with f|T(n) = u(T(n))f for
alln C R, N’ is the positive generator OfN NCc?’nz, C'=CNZ and

Co = (2rD~ V3" +2D~"/=D "{G(¢)T(n, +2)} ' o(N')N' "
= (X¢)oe(V=D)D HG(p)T (1, Ad(A) ® )} "' ¢(N')N' .
If 2 ha(N, x; C) /g — C is not a twist of any base change lift, then

o8 =
Yo,p(N’)

ProOF. We only need to show the vanishing when p is not a base change lift
from H. We follow the argument in [HaLR, 3.12] (and [F1, Section 5]). For that,
it is sufficient to show that L(s, (1 ® ») ® (4 ® ¥)s)+ @w) is holomorphic at s = 2.
Since @y is not a base change lift, we may rewrite p for u®¢. Then we see, writing
k' = R+(0,w) = (n',v') for the weight of u, L(s, (u®pus)+Qw) = L{s+m, (S fis)+)
for m = n, + 2v, + Res(w). Note that m1lx =n'+ 2v' + n’c + 2v’c. Looking into
Euler factorization, we get

L(s, (1 ® po)+)L(s, (1 @ pig) =) = L(s, 4 ® pior)
with the notation of 2.3. Since p # p, for non-base change p, L(s,p ® py) is an
entire function of s ([J], [U] and [GeJ]). We show that L(s, (¢ ® p)_) is entire.
For that, we recall a result in [Gh]. Let ¢ : hov (M, &;C) — C be a system of Hecke
eigenvalues of weight " = (n”,v”) for G. Then writing

6 = 5@ J - Sk ”(M 5) cusp(}/()-K(Al)7 (H”ag; C))[&]
for J = {7}, we have

[ e
Yo,0(M7)

:C1F(s+n'7/+2)1"(8+2

) T(s +2)L(n] + Res(v") + 5,(¢ @ ¢5)+),

if n” = Res(v”) mod 2 [Gh, 7.3(21) and 7.4], where h satisfies h|T(n) = ¢(T'(n))h.
Here Fs(s) is a degree 1 Eisenstein differential form of weight 2 which is finite at
s =2 and C] # 0. We choose ¢ such that /x((m)) = a(m)mR®") for all m € Z.
Then Res(w') is odd, and for ¢ = u ® ¢,

L(n//+R€S(UI) (¢®¢)0) ) (n +Res( ) 57(#@/’/0)—)'

We can check the condition n! = Res(v”) mod 2 using the fact that Res(w’) is odd
and Ypgw = «. This shows the holomorphy of L(s, (u® pty)—). On the other hand,
by a result of Shahidi [S88, Theorem 5.1] and [S81, p. 564] (see also [F1, Section
5] and [F1Z]), L(s, (4 ® po )4 ) does not vanish at m + 2. Then the result follows
from the holomorphy of L(s, u ® ps). O

Let A be a Dedekind domain in C containing the values p(T(n)) for ideals
n C R. Then it is easy to see that A contains x(n) for ideals n C R. We further
suppose that chmp(}/()_K(N), L(R,x; AN[pn] = AE(u). This condition holds for dis-
crete valuation rings A and the integer ring A of sufficiently large finite extension

of Q(i). We define Q(u?; A) by
02(f") = Qa(p’; A (1),
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where £(p)? is the Galois conjugate of £(u) under the cohomological rational struc-
ture, and similarly, f* is the Galois conjugate of f under the rational structure with
respect to Fourier expansion. This is the definition of modular (second) periods in
imaginary quadratic case. We put Q,(p; Q1)) = (Q2(p?; Q(1?))), as an element
of Q(u) ® C = [],C, where p runs over all embeddings of Q(x) into C. Since
R(p) sends H2,. . (Yo.x (N), L(R, x; A))[1] into

cusp
HZp (Yo, (N N C?), LR + (0,w), x¢%; A))[1 & ]
as seen in the proof of Theorem 8.1 of [Hi94],

G(P) (1 ®¢; Qu® ¢)) = Qy(1;Q(w))

in Q(u® ¢) ®g C up to factors in Q(u® ¢)*, where G(p) = (G(¢”)), € Qp)®C.

For each p € Aut(C/Q), we take m(p) € Z* such that the Artin symbol
[m(p), Q)] coincides with p on the maximal abelian extension of Q. We now look
into the ratio: G()/G(ay™!). We conclude from ary~! = pgw with w of conductor
1 that

( G(yp) >” __ em(p)Gle?)  _ G(¥)
Glay™1) ap(m(p))G((ey1)r)  G(a(yr)~1)
Hence G(p)/G(arb™1) € Q(¢). We then put

(xp)>)(vV=D)DT'(1,Ad(N\) ® a)Ler (1, Ad(N) ® a)

L) = Glavr) 2 (0v; A)

Now assume that A is a valuation ring in Q(\). In the process of proving Proposi-
tion 3.1, the only point where we might get a denominator in the L-value is through
the maps: R(y) and (n,!)~2v"r. Thus if ¢ = id and the residual characteristic
of the valuation ring A is prime to n.,!, we get an A-integral value. Then from
Proposition 3.1, we conclude

COROLLARY 3.2. If A = Q()), we have, for all p € Aut(C),
LV = LOW).
This shows that {L(X?)}, € Q(A) ® 1 in Q(\) ®g C. Moreover, if A is a discrete

valuation ring in Q(N\) with residual characteristic prime to 6(n!) and if ¢ = id,

then for the positive generator Ny of N NZ,

(>)(/=D)DI'(1,Ad(\) ® a)L(1,Ad(\) ® a)
Qz(XS A)

No?o(Ng) X c A

4. Real quadratic case

We assume that K = Q(+/D) is a real quadratic field with discriminant D >
0. Let Ix = {7,07} be the set of real embeddings of K for the generator ¢ of
Gal(K/Q). Let ¢ : K*\K; — C* be a Hecke character of infinity type — =
—wr — wor with conductor C. Put w = | [F72"*?* identifying Z[I] = Z by
nt < n. We keep the notation for A introduced in Section 3. Thus x = ¢ o Nk /g
and Yoo(z) = 2772 for x € AX. Let J be a subset of I with |J| = 1. We
consider a normalized primitive form f € Si s(N,x) with f|T(n) = u(T(n))f for
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all integral ideals n, where k = (1,7) with 7 = no7T + nt and ¥ = vor + vr. We
may assume that J = {7}. Then, for y=1/2 (¥ 7) € SLy(FL,), we see

(6 )

/2

vl > p(T(£0))1€] 7" exp(—2m (1€ yor | + 167y ]))e(62) o

EEKX ,£°7<0,£7>0

() =5 1)

= (" ylr,) V(1) Xy = 2:Y2)"(Xor — Zor Yor)"d2r AdZgr.

=Y

This shows, as in the same manner in the previous section,

(n)2(v"8(fD)le)

=EZ-2"S D> wTE))E " exp(—2m(I€"| + €7 y)ex (Tr(E)z) » dz A dz,

£97<0,£7>0

where the summation is taken over £ € K* with £°7 < 0 and £ > 0. Replacing f
by g = fIR(p), we get

(n1)2(v"6(9™)e)

- G2 § D MTE) (€0) exp(~2m(1€7] + 6 Dy)er (Te()x) { d= A dz

Then, noting dz A dzZ = 2idy N dx

/ (n1)2(7"6(s™)le)y’
B\ v
— (-20)"G() (4m DY) DT (s 4 1)L, 1y ).

By Rankin convolution method, writing F(s) = E(s, (¥¢)%/) for N = NNC?*NZ
as in the previous section, we get

/ (n))2(7"8(g V) o) E(s)
P\ H

(—2))""1G(p) DT (s +n+ 1)

T (4rD—1/2)s+n+1 Lo(s+1L,(k®9) @ (L® p)o)+ ®w),

where C’ = C N Z. In particular, if u = X,

/ (n)~2(v"8(g D) |0) E(s)
P\ H

—24)" LG () DVT¥T +1
) (47T(g)—1/2)s+n(+‘?1+ - >LC/(5;Ad(/\) ® Ypow) L(s, papqw).
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Thus assuming that o = ¥pgw for a = (£) and comparing the residues at s = 1,
we have

/ () 29" 6((f1R(2))lo)
@\ 5
= (=) (N TINAVD T G )0 (1, Ad() ® 0) Lor (1, Ad() ® @),

In the real quadratic case, HCQHSP(YE)K(N),E(E,X;(C))[:\\] is two dimensional.
Thus we need to further decompose this space into 1 dimensional pieces. As ex-
plained in [Hi88a, Section 7] (see Proof of Theorem 7.2), the finite group S =
Co/Cocy acts on 3 = G(R)1/Cooy, Szs(N,x) and HZ, (Yo x(N),L(k,x; A)),
where C, (resp. Co ) is the standard maximal compact subgroup of G(R) (resp.
G(R)y). We can identify S = {£1}/¥ by taking the determinant and S with
the power set of Ix by ¢ — {v|e, = +1}. Thus we can think of ¢J C I for
each J C Ii. Identifying F., with R x R via £ — (£7,£°7), we identify 3 with
H, X Hor for copies of upper half planes H,, and H,.. Then for f € Sz ;(N,x),
cf(x) = f(zc) for ¢ = (cr,cor) with ¢, € {(%'Y)}. Then cf € Sz.s(N,x) with
a(n,cf) = a(n, f) for all n. Thus c takes Sz ;(IV,x) into Sz .s(N,x), and this
action of S commutes with Hecke operators T'(n). When there is a unit € € t*

with e” det(c,) > 0 for both p = 7 and o7, cf@(z) = f@(ez), where €z, = €z

zp, if det(c,) =1,

Z, if det(c,) = —1.

another member a’ of the complete set {a} of representatives for Clp such that (i)

e? det(c,) > 0 for both p =7 and o7, (ii) at = ea't, and (iii) cf@)(z) = f@)(ez).
We take a character ¢ : S — {%1} and consider the projection

with 27 = If there is not such a unit, we find ¢ € F* and

e By V), £ x5 ) = By ()£ (04[5 ) ) 16

given by m.(z) = #(S)"' > .cqe(c)e(z). Through the Eichler-Shimura isomor-
phism introduced in Section 2.2

8: @D Sea(Nix)/x = Higp(Yo(N), L(x, x; C)) ],
JCIk

we can attach Fourier expansion to cohomology classes in the right-hand-side of the

above formula, which we write as HZ,,. Thus ¢ € Hfusp has Fourier coeflicients

a(n; ¢) for ideals n given by a(n;6(f)) = a(n; f). The action of S preserves the
Fourier coefficients: a(n;c(¢)) = a(n; ¢). Note that

s (1))
= {0 lyl,) " e (D)X = 2Y) " (Kor — 25, Yor )"}z A dZ5,
where identifying S = {£1}/% we write {c} = []

velx Cu and

o Zo if ¢, = —1,
Zy if ¢, = +1.

Note that, identifying S with the power set of Ig, if either ¢ = J or —J, the
restriction 6((cf)(®)) to $ just vanishes, where J, = +1 and J,, = —1 because
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J ={7}. Let ¢ = (—1,,—1,,). Then we have
s ((H™)
= " lylk,) " O (=2) (1) {(Xr — 22Y2)" (Xor — 25, Yor)"} d2r A dzor.

We execute the computation done for §(g(")) replacing it by c6(g(")) and obtain

/ o (77t e v = (1 / 7 (o) v

Therefore, assuming &(—1,, —1,,) = (=1)"*!, p = Xand a = Yogw, we have
[ o (s siRe) o)
Yo,o(N’)

— (=) TGN TINPVD T G(0)T(1, Ad(N) @ @) Ler (1, Ad(N) @ a).

As seen in the proof of Theorem 8.1 in [Hi94], the twisting operator R(y) takes
Hgllsp(YO,K(N)v E(Ev X5 A))[E(Poc] into ngsp(}/UaK(NmCQ)’ E(E'i' (07 ﬁ'\')v X(p2; A))[5]7
where we identify S with {£1}/%¥ C KX and consider ., as a character of S.
Since @ = Ypgw, Yoo((—1,—1)) = (=1)". This shows that ey = ey satisfies
eo(—1,—1) = —1. We record what we have proven:

PROPOSITION 4.1. Let F = Q and K = Q(v/D) be a real quadratic field with
discriminant D > 0 and k = (n1,v7) € Z[I]* with I = {r}. Let  be an arithmetic
Hecke character with co(p) = —w(T+07) € Z[Ik] and of conductor C. Let x = o
Nk q for an arithmetic Hecke character 1 with 1 (x) = " forallx € AX =

R*. Suppose that a = pow) withw(zx) = |z} 22" and a = (2). If a primitive
system p : hz(N, x;C) x — C is a base change lift of A : hy(No,; C) g — C, then
we have

/ (n)~2(vm.5(g™M)]o)
Yo,0(N)

= (=)L) INAVDT T G (o) (1, Ad(V) ® @) Ler (1, Ad(N) @ @),

where g = f|R(p) for the primitive form f with f|T(n) = p(T(n))f for alln C R,
C' = CNZ, and N' is the positive generator of NNC?*NZ. If pu : hz(N, x; C)xk—C
is not a twist of any base change lift, then

/ (n)~2(v"m.6(gM)
Yo,q(N')

g) =0.
PRrROOF. The proof of the vanishing is given in [HaLR, 3.12] and is basically

the same as that of Proposition 3.1. O

We now define the modular periods. Let A be a Dedekind domain in C con-
taining all values of u(7T'(n)) for ideals n C R. We assume that

Heoop (Yo (N), L(R, x; A)) [, 1] = A (u)
for a character € of S. Then we define Q4 (g, u?; A) € C* by
71'E(é\(fp)) = Ql (E) ,U’pa A)g(u)py
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where f? is the primitive form in S; j(N, x?) with f°|T(n) = p(T'(n))?f°. This
period €2 is well defined up to units in A. We also define
Q1 (15 Qp)) = (A (w;Q(r”))), € Qu) ®g C.

The period Q; (u; Q(p)) is well defined as an element of (Q(u) ®g C)*/Q(p)* ® 1.
Again we have

(1 ®9;Qu® ¢)) = G(9) "D (15 Q(w))-
COROLLARY 4.2. If A= Q()), we have, for alle : S — {£1} withe(-1,—1) =

)

-1
(19"t 'VD"T(1,Ad(A) ® a))Ler (1, Ad(N) ® @)

G(a)Q, (e, X Q(N))

€ Q)

in Q(X) ®qg C, where
Lo/ (s, Ad(N) ® a) = (Lo (s, Ad(N) @ a)),
has values in Q(\) ®g C. Moreover, if A is a discrete valuation ring in Q(X) with
residual characteristic prime to 6(n!) and if ¢ = id, then for the positive generator
NO OfN NZ
VDT, AN © @) L(L, Ad(V) ® a) A
Ql (67 )‘; A)

" No2p(No)

5. Congruence and the adjoint L-values

Here we study a simple consequence of Corollaries 3.2 and 4.2 on congruence
of systems of Hecke eigenvalues. To describe such congruence among cusp forms
in terms of Hecke algebras and deformation rings of Galois representations, we
here introduce a general notion of congruence modules and differential modules:
Let R be an algebra over a Dedekind domain A. We assume that R is an A-flat
module of finite type. Let ¢ : R — A be an A-algebra homomorphism. We define
C1(¢; A) = Qr/a®p.¢Im(¢), which we call the differential module of ¢. We suppose
that R is reduced (that is, the nilradical of R vanishes). Then the total quotient ring
Frac(R) can be decomposed uniquely into Frac(R) =Frac(Im(¢)) x X as an algebra
direct product. Let a =Ker(R — X). Then we put Cyo(¢; A) = (R/a) Qg 4 Im(¢) = .
Im(¢)/(Im(¢) N R) (cf. [Hi88b, Section 6]), which is called the congruence module
of ¢ but is actually a ring. Here the intersection Im(¢) N R is taken in Frac(R).
Suppose now that A is a subring of a number field in Q. Since Spec(Cy(¢; A)) is the
scheme theoretic intersection of Spec(Im(¢)) and Spec(R/a) in Spec(R), a prime p
is in the support of Cy(¢; A) if and only if there exists an A-algebra homomorphism
¢ : R — Q factoring through R/a such that ¢(a) = ¢'(a) mod p for all @ € R. In
other words, ¢ mod p factors through R/a and can be lifted to ¢'.

Let K/Q be a quadratic extension with discriminant D. Let o = (£). We
consider a system of Hecke eigenvalues A : h, (D, 1; A) — A for a discrete valuation
ring A in Q(\) with residue field F of characteristic p > 2, where ¢¥(z) = a(x)|z| ™.
From our assumption that 1. (z) = 27"~2" for all x € R*, we conclude that v = 0
and

) { odd if K is imaginary,
n is
even if K is real.

The space we are looking into has the Neben character a and level D, under the
classical notation, S, 2(To(D), (£)). Let O be the completion under the m 4-adic
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topology for the maximal ideal m4 of A. Let m be the maximal ideal of O. We
consider the Galois representation py : Gal(Q/Q) — GLy(O) which is the m 4-adic
member of the compatible system p(A) associated to A. We define the residual
representation 5 : Gal(Q/Q) — GLy(F) by p) mod m. Let G = Gal(K® /Q) for
the maximal extension K (?) /K unramified outside {p,00}. Then p, factors through
G. Let E be a number field in KP) with integer ring t, and put H = Gal(K®)/E).
For any representation p of G, we write pg for the restriction of p to H. We consider
the following condition:

(Alg) P is absolutely irreducible.

We now consider deformations of 5, introduced by Mazur [Mal], over the cate-
gory CN Lo of complete local noetherian O-algebras with residue field F. A Galois
representation p : H — GL2(B) for B € CNLp is a deformation of pp if pg
mod mpg coincides with p as matrix representations. We look into the deformation
functor F : CNLo — SETS given by

Fe(B)={p:H — GLz(B)|p mod mp =5}/ =,

where “a” is the conjugation by elements in 1+ Ms(mp). We impose more condi-
tions on deformations. A deformation p is called p-ordinary over a number field E
if p|p = (63’ o ) with an unramified character §p on every decomposition subgroup
D of H at p|p. We like to impose some of the following two conditions depending
on the situation:

(ordg) p is p-ordinary over E with two distinct characters ép and ep for all D;

(flg) plp ts realized on the generic fibre of a finite flat group scheme over t, for
all plp.

For primes [|D outside p, we impose the following condition:

(ap)p = <(1) 2) on the inertia subgroup I; C H for each prime [|D and [{ p.

Let v be the p-adic cyclotomic character. By class field theory, we regard v as a
character of G. Then det(p)) = vi). Hereafter we suppose that pt D. We consider
the following subfunctor of Fg:

Fp(B) =
{p € Fr(B)| p satisfies (ordg), (ap) and det(p) = (v¥)g} ifn >0,
{P € fE(B)| p satisfies (ordg), (flg), (ag) and det(p) = (Vw)E} if n=0.

Under (Alg) and (ordg) for p, this functor is representable by a universal couple
(Rp, o) (see [Ma] and [Hi96, Appendix]).
We put hy(D,; O) = hy(D,v; A)®4 O and define h,(Dp, ¥; O) similarly. Let

eo = lim T(p)™ € hu(D,9;0) and e = lim T(p)™ € hu(Dp,1;0).

Since T'(p) of level D and that of level Dp are different, we know ey # e and we have
a surjective O-algebra homomorphism of eh,(Dp, ; O) onto egh, (D, ¥; O) taking
T(n) to T(n) for all n prime to p [MaT]. If n > 0, eph.(D,; O) = eh,(Dp,¥; O),
which is a consequence of [Hi86, Proposition 4.7]. We assume that A factors
through egh, (D, ; O), which is equivalent to A(T'(p)) € A* and implies that p) is
p-ordinary. Let h = hq (resp. hg) be the unique local ring of eoh.(D,v; O) (resp.
eh.(Dp, ; O)) through which A factors. Thus if n > 0, hg = hg. As is well known,
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under (Alg), there is a unique Galois representation pg, up to isomorphisms, such
that Tr(pg(Frobe)) = Tr(¢) for all primes ¢ outside Dp (for uniqueness, see [C]),
where Froby is the Frobenius element in G at the prime ¢, and T (¥) is the pro-
jection of T(f) to hg. Let k(E) = E(y/(—1)»=1/2p). It has been proven by
Taylor and Wiles [W] and [TW] (see also [Fu] when n = 0) that, under (Al q))
and (ordg) for p, Fy is representable by the pair (hg, pg). Thus in this case, the
natural morphism g : Rg — hg with mgog =~ pg is a surjective isomorphism in
CNLp. When FE is totally real, this result is generalized by Fujiwara [Fu] un-
der certain assumptions. We describe it here for real quadratic K. Since K
is unramified outside {p, 0}, Fj is (basically) defined by ramification condition
(ordg ) and the determinant condition. We define in the same way the idempotent
e = lim, .. T(p)™ € hz(p,id; O) and ey € hz(1,id; O). Let hg (resp. hx) be the
local ring of eghz(1,id; O) (resp. ehz(p,id; O)) through which the base change lift
X factors through. We again have hx = R’ if n > 0. We have a modular deforma-
tion px : H — GLa(hk). Then Fujiwara has proven that FJ is representable by
(hk, pr) under the following condition in addition to (Al k)) and (ordg) for p:
(unr) p is unramified in K.
We write 7mx : Rx = hy for the isomorphism inducing 7y ox = pk.

When it is necessary to indicate the dependence on E, we write Ag for A and
Ak for . Since the conductor of the Neben character coincides with the level, hg
and the Hecke algebras are reduced. In the course of the proof of the above result:
Rp 2 hg for E = K or Q, it is shown that Rp is a local complete intersection.
This fact is basically equivalent to

(C1) [C1(Ag; O)] = |Co(AE; O)]  for E = Q and real K,

where A : hgp — O. When E = Q, the above fact implies that, for any given
character ¢ : § = {£1} — {%1},

(mltg) H\,(Yoo(D), L(k,¥;0))[hg,e] 2 hg 2 Ry as hg-modules,

where the left-hand-side is the eigenspace for hg, in other words, writing 1;, for the
idempotent of hg in hy(D,y; O),

Heosp (Yoo (D), L(k,%; 0))[hg, €] = 1n(Heyep, (Yoo (D), L(5,9; 0))[e).

cusp
Since E = Q, there are only two ¢; one is trivial, which we write as “+”, and we write
the other as “~". By virtue of (mltg), we can compute Cy(X; O) using cohomology
groups. To explain this, we write L(B) = H_,,(Yo.o(D), L(k,v; B))[e]. Then
L(O) = L(A) ®4 O. Decomposing Frac(h, (D, ; A)) =Frac(Im(}\)) x X, we define
L*(A) to be the image of L(A) in L(A)®p, (p.y.4)Frac(Im())) and a cohomological
congruence module by
Gy’ (A A) = LM(A)/(L(A) N LA (A)).

Then (mltg) shows that Co(Ag; O) = CL(\; A). It is shown in [Hi81] and [Hi88b)]
that the p-adic absolute value of T'(1, Ad(A))L(1, Ad(X))/Qu(+, A; A)Q1(—, A; 4) is
the inverse of the order of the right-hand-side module of the above equation. That
is, under (Alg) and (ordg) for p, if p4 6D,

I'(1, Ad(A))L(1, Ad(A)) |-~ "

= ; = A A)) = A A
where r = r(O) = rankz, O, and | |, is the p-adic absolute value of A normalized so
that |p|, = p~'. It is easy to see that for a non-zero element n(\) € A, Cy(\; A) &

(C2)
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A/n(N)A, and (C1) is equivalent to saying that the L-value is equal to n(\) up to
A-units. Even if p|D, there is a similar formula (see [Hi88b] for details).

The Selmer group over E of Ad(p,) is defined as follows. Let V(\) be the
O-free module of rank 2 on which G acts via py. For each decomposition subgroup
D, C H at p|p for primes p of E, we write V, for the ép eigenspace in V(). For
primes [|D prime to p, we write V| for the subspace fixed by the inertia at [. Let
K =Frac(OQ). We identify Ad(p,) with trace 0 subspace W of Homo (V(A), V(A)).
We put Wi = {¢ € W|¢(Vi) = 0} for [|[Dp. Define, for | ramifying in K®/E,
writing Z; for the inertia subgroup of [ in H,

L[ = Ker(Hl(D[, W*) — HI(I[, (VV/W[)*)),
where X* = X ®0 K/O. Then we put

Sel(Ad(p)) /e = [ |Ker(H'(H,W*) — H' (D, W*)/Ly),

where [ runs over all primes ramifying in K»)/E. Tt is a general fact [MaT] (see
also [Hi96, 3.2]) that

(03) Sel(Ad(pA))/E = Homzp (01(/\[; onmg: Rp — O; O),QP/ZP) if n > 0.

Thus combining all we said, we get the following order formula of the Selmer
group under (Alyq)), (ordg) for p and p 16D,

I'(1,Ad(N)L(1,Ad(N))

QD (XA (=, A A)
(1, Ad(N))L(1,Ad(N))|—(O)
Qi+, A (=, N A) Ip
This is a non-abelian generalization of a classical analytic class number formula (see
[W, Chapter 4] and [HiTU]). The definition of the Selmer group can be interpreted
by Fontaine’s theory, and the above formula can be viewed as an example of the
Tamagawa number formula of Bloch and Kato for the motive M(Ad())) (see [W,
p. 466] and [BK, Section 5]). By using this interpretation, we can modify the
definition of the Selmer group, and the formula (CN2) is valid even for n = 0 for
the modified Selmer group. :

There is a partial generalization of the above facts for quadratic fields K. We
define Lk (B) = H;ﬂﬁé")ﬂzm)(YO_K(l),E(E,z’d; B))[e], where we fix for the mo-
ment a character ¢ : S — {1} when K is real. If K is imaginary, we just for-
get about £. Then we define the cohomological congruence module CZ? (/)\\, A) by
L) (A)/(LX(A)NLk(A)), where decomposing Frac(hz(1,id; A)) =Frac(Im(X)) x X,
Li(A) is the image of Lk (A) in LK(A)®ha_(1‘_id:A)Frac(Im(X)). It has been proven
by Urban [U], under (ordg) for p, when K is imaginary and p{ 6D,

—r(0)
= #(C5 (X 4))-

(CN1) n(A) up to A-units, and

(CN2) = #(Sel(Ad(py)) q) if n > 0.

T'(1, Ad(\)L(1, Ad(N))

(C4) = 2
Q1(A; A)Q2(A; A)

Here are several remarks to be made. In [U], (0) the result is more general covering
non-base change lift, (i) the normalization of the period is different from the one
we made here by a power of 2, (ii) there is a rational constant «,, showing up in
[U, Theorem A], which is not explicitly computed (see [U, 5.5a]) as a product of
factorials. The computation of «, can be done (see c;(s) below (A) in Section 8 in
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the text), and «,, is included in the Gamma factor. Finally (iii) it is assumed in [U]
that the level N of A is sufficiently large to ensure the smoothness of Yy x (IV), which
guarantees the duality between (the p-ordinary parts of) H} . (Yo x (N), L(A, x; A))

cusp

and Hfusp(Yo,K(N),E(X,X;A)). The duality is a key to the proof of the above
formula. However, for any N, we can take a multiple N’ so that Yo x(N') is
smooth. Then if p { [Yo x(N') : Yo x(N)], by using the restriction-corestriction
technique, we can recover the duality. By varying N’, the common divisor of the
covering degree [Yp x(N') : Yy k(N)] is made of primes appearing in the order of
elliptic elements in SLy(K'), which is in turn a product of primes dividing the order
of roots of unity ¢ such that [K({) : K] = 2 (see [Hi88a, Lemma 7.1]). Since K is
imaginary quadratic, the possibility of such primes are only 2 and 3. In this way,
we get the result for p > 3 and for level 1.

Although only imaginary quadratic fields K are treated in [U], all argument
can be generalized to arbitrary E at least for p-ordinary A. In particular, we get for
real K, supposing (ordg) for p and p t 6D (see Section 8 in the case of K = F x F),

~ ~ _|—T(O)
(1, AdOV)L(1, Ad(N)

(e, X A (=&, X 4) |

(C5) = #(CH (X 4)),

where (—¢)(—1,) = —(e(—1,)) for embeddings 7 € Ik.
We consider the following condition:

(mltg) HREOTT2U(Y, 1 (1), L(R,id; O))[hs, €] = hi = Ry as hy-modules.

When K is real, it is plausible to get (mltx), under (cl) and (unr), as an application
of the method of Taylor, Wiles and Fujiwara [Fu|, where a similar statement is
proven for the modular cohomology group obtained from everywhere unramified
definite quaternion algebra over K. When K is imaginary, the assertion (mltg)
might follow similarly, but it is certainly more difficult. Anyway in this paper, we
do not touch this point, but we would just like to remark that the generalization
of (CN1-2) for quadratic K follows from (mltx).

As we have shown in [DHI], there is a natural action of Gal(K/Q) = (o) on
hx. This action brings T'(n) to T(n?) and induces an action on C; (X 0). When p
is odd, we get a decomposition:

C1(0) = C (X 0)[id] @ ¢, (X O)[al,

where “[a]” indicates a-eigenspace regarding « as the unique non-trivial character

of Gal(K/Q).

CONIJECTURE 5.1. Suppose (Alx), A(T(p)) € A, (ordg) forp and thatp 1 6D.
Then
I'(1,Ad(N\) ® o) L(1,Ad(N\) ® o) |=7(O)
Qe X; A) P

(CN3) = #(C1(X; 0)[a)),

where e(—1,—1) = —1 when K is real, we disregard € if K is imaginary, and

de 2 if K is imaginary,
IR if K is real.
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When K is real, we have

Ql(sa /):v A)
QD+ X A)Q(=, A 4)

(P) € A"

This conjecture is made in [DHI] for even Dirichlet characters in place of
quadratic o. Some numerical example supporting the conjecture is given there for
real K. The point here is the inclusion of imaginary quadratic characters « into
the scope. We prove here a consequence of the conjecture on congruence among
systems of Hecke eigenvalues without referring to the conjecture.

Let M be a sufficiently large number field containing all Hecke eigenvalues
on Sz(1,id) and such that H¢,,(Yo (1), L(%,id; O))[e, p] is O-free of rank 1 for
all Hecke eigensystems p : hz(1,id;O) — O, where O is the integer ring of M.
Such M always exists because the above module is an O-module projective of
rank 1. For two systems h) # u of Hecke eigenvalues, we write, for a prime p
in O, X = p mod p if X(T(n)) = u{T(n)) mod p for all integral ideals n C R.
If this happens, X mod p factors through CO(X;O). Thus we call primes in the
support of CO(X;O) congruence primes of X. We write A = u mod p if for
a generator £(\) of HY (Yo x (1), L(R, id; O))[a,/):], there is an element &(u) €

cusp

He, (Yo.x (1), L(R,id; O))[e, u] such that

§(N) = &(m) € pHp (Yo (1), £(7,1d; 0)),
where ¢ = r1(K) + ro(K). Of course, we have

~

)\EHpmodp::\\Eumodp.

The converse follows if (mlty) holds. The cohomological congruence A=H 1 mod
p is equivalent to p € Supp(Cl(X;0)). Conjecture 5.1 implies that for non-base

change p : hz(1,id; O) — O,
I'(1,Ad(\) ® @) L(1,Ad()\) ® a)
Qa(e, 2 0)

X = p mod p for a non-base changey <= p|

under the assumption and the notation of the conjecture.

THEOREM 5.2. Let the notation be as in the conjecture.
1. Suppose that p 1 6D(n!). If/)\\ = 1 mod p for a prime plp of O and a
non-base-change i, then
I'(1,Ad(N\) ® ) L(1, Ad()\) ® @) 1
pl = Ol —=—1-
Qale, X;0) 6D(n!)
2. Let K be a real quadratic field. Suppose the assertion (P) of the conjecture
for a choice of € in addition to pt 6D, A\(T(p)) € A*, (Alyq)) and (ordgy).
Then if a prime p with p|p of O divides
T(1,Ad(\) @ o) L(1, Ad(N\) ® «)
Q1 (87 /)\\a O)

but is prime to T'(1, Ad(\))L(1, Ad(A))/Q(+, X; O)Q21(—, X; 0), then there
exists a non-base-change lift p such that p = X mod p.
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PRrOOF. Let A be the valuation ring O,. We consider the following sequence

of maps:

it gusp(yb K(l)v L"(Ea 1d7 A)) - H((:]usp(YO,Q(l)a ﬁ(/l%, id; A)[YOAQ(I));

T chsp(YO Q( )7£(E71d7A)|Y()Q(1)) - Hg(YO,Q(l)’A) = A
The map ¢* is induced by the inclusion i : Y5 g(1) — Yj (1) and 7, is induced by
the morphism of sheaves 7 : L(%,id; 4)|y, ,1) — 4, which is induced by P(X,Y) -
(n!)=2v"P(X,Y). Thus the composite Ev = m, oi* is well defined integrally over
A if p is prime to n!. Suppose that {(\) — () € pHE, (Yo x (1), L(K,id; A)). By
Propositions 3.1 and 4.1 and their proof, Ev(§ ()\)) is equal to the L-value

I'(1,Ad(\) ® o) L(1,Ad(N) ® «)
Qu(e, X;0)

up to A-units because p 4 6D. On the other hand, if x is not a base change lift, twists

of 1 by any Hecke characters cannot be base change lift, because y is of level 1. Thus
again by Propositions 3.1 and 4.1, Ev(§(p)) = 0. Thus Ev(f( ) = Ev(ﬁ(/\) &),
which is divisible by p by deﬁnition of the cohomological congruence. This proves
the assertion (1).

Under the assumption (P), we see that

(1, AdQ) ® 9L(L,AdN) 8a) _ T(1, Ad(OV)L(1, Ad(V))
Q1(e,X; 0) Q1(e,X;,0)Q (=, X, 0)

because

I'(1, Ad(\)L(1, Ad(N))
D1(e, s A (—¢, A; A)
T(1, Ad(\)L(1, Ad(M\)T(1, Ad(N) ® a)L(1, Ad(\) ® @)
Q1 (+, X A2 (=, \; A)2

up to A-units. Thus by (C5), we have a congruence 2= © mod p. As shown in
[DHI], C;(A; A)[id] =2 C1(X; A). This combined with (CN1) shows that the factor
p has to be an associated prime of Cy(\; A)[a], which shows the result. O

6. The case of quadratic extensions of totally real fields

Let F be a totally real field and K be a quadratic extension of F'. We use the no-
tation introduced in Section 2. Thus H = Res,/;GL(2) and G = Resg,;zGL(2). We
consider a weight k = (n,v) € Z[I]? with n > 0. Then we write & = (7,7) = Inf(k)
in Z[Ix]?>. We then consider a cohomological primitive form fo € S, 1(No,v) /F
with fo|T(n) = AM(T(n))fo. We choose a subset ¥ of Ix such that I[x = ¥ UoW
for the generator o of Gal(K/F'). Then we put J = ¥x(R) N ¥ and choose Xk (C)
in Ix so that ¥ = X (C)U J. Let f € S. j(N,Xx),x be the base change lift of fj
with f|T(n) = X(T(n))f. Thus x = 1 o N/p. For each t = (§9) € H(AP)), we
consider

U, =tUg(N)t™, T@W =U,GR); NG(Q) and & = H(Q), NI,

where H(Q), = H(Q) N H(R),. Here note that Yy r(N’) = U, D@\ § for =
H(R)./Cs+, where a runs over a complete set of representatives for F,* /F*T*F}
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with the identity component FS, of FX. Let 0 = 0k be the absolute different of
K/Q. Let Clx be the strict class group of X, that is

{fractional ideals of X}/{(§)|€ € X, & > 0},

where £ > 0 means that image of £ is positive for every real embedding of X.
For z = y~Y/2(¥7) € SLa(K) C G(R), for real positive y

f@(2) = f(t2) = v layl, § D AT (6a0)e "W (Ew)e(éx)
EeEK X
where £ runs over all elements in ¢~ !197! such that £ > 0 for all 7 € J and £7 < 0
for all 7 € Sk (R) — J. Here, writing n* = 2n, + 2 for 7 € i (C)

W(y) = [[ W)

TEX K
with

W-(y) = {

*

S () ()" Koo, a(4rly)STOT2 i 7€ £x(0),
exp(—2mly|) if r € Ex(R),
where a runs over integers with 0 < a < nl.

For each subset Y of I'x and m € Z[Ix], we write m! = [[_m,! and m(Y) =
Y +cy M- T; in particular, we write n(C) = Resk7i(Zk(C)) and n(R) = Reskn(J).
For z € X ®q C, we write 2™ = [[ o, 2™ and ¥ = [] .y 2". For some
specific number, z = 7 or x = 2i, we write 2™ and z" identifying = with a tuple
(x,z,...,x) € HTEIX C = X ®q C; thus, for example, (27i)™ = (2mi)X- ™7, Note
that Y (C)c = 06Xk (C). Then we consider vV, = §%/0X,,0Y, — 0?/0X,0Y,, and
write V" =[] oy V77. We then compute the pull back vn8(g\ )| = i*v8(g')
for g = f|R(p) and i : § — 3:

(n!)~29"6(g )| r = (n!)~29"6,(9')|r

WIS (”(Q) (625 + (62 12)y" P du(z),

0<j<n(@) N 7

where we write
n* -
g(a) = Z g((la) < o ) S™ 7T for n* = ZTEEK(C) (nq— +nro + 2)7—7
0<aln*

and
du(z) = |\ v, dys A da,.

TElR
We now choose A € K* such that A = —A, Xk (C) = {7 € Ig(C)|Im(A7) >
0} and J = {t € Ex(R)|A” > 0}, where Ix(C) = Ex(C) U Xk (C)c is the set of all
complex embeddings of K into C. Then we see

EATT € {ze a oz = —r} < €€ a0 TANE.
Note that a 107 'A is an ideal of F and Iy = VU oW. For £ € F,
Nrjo(§A710) = [Npg(€)|Dp|A™Y [Nrjg(Dr/r) 2,
where A™Y =T .o (A7)
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The stabilizer &' of the cusp oo of ®(@) is an extension of at by v = {e €
t™|e > 0}, that is, the following sequence is exact:

0—ar— @@ L85 ex g,

Let ¢ be an arithmetic Hecke character of conductor C' and with infinity type
—w. Note that (n!)~ 2(Y7”6(g(‘1))|p) is a differential form on Yy p(N’) with values
in L((0,n + 2v + Res(w)), (¢ r)?; C) because we have (cf. [Hi94, 11.2a])

L((A, 04 w), x¢*C)lr = €D L((2n — 24,20 + Res(w) + j), (¥er)*; C).
0<j<2n

Let w = | |7 for m1lp = n+ 2v + Res(w). Thus we have

/ (1) "2(9"6(g®) | ) alie, v = (—1)? (~26) "D |l
@\j’j

n(C a a -
/ / ( (. ))((g( Naj + (') 2j42)dayls= DB gy
F]R/t+ C>O/ar0< i<n(C J

= W(a)_lcl(S)G(w)La(s,X,ww),
where ro = r5(K) is the number of complex places of K and
La(s, ), pw)

= Z X(T(.faA_lb))gapw(faaA_l)Np/@(faA‘lb)fs*l
0ké€a"10"1ANF

n n(J)+J —8)— m+s —(m-+s
ei(s) = (=1)"D V=1 )+ 5(1-s) 2| D |3/ 4mts N( Dy )~ (bt D)2
S F TQ(K)
X H 1+ (=1)™* (%) {H F@(s+n7+1)}.
TeW(C) Tel

Here £ > 0 implies €7 > 0 for all 7 € I, and we have used the fact that

/ dz = |Dp["?]a];)
Fr/at

for the discriminant Dp of F/Q;
FO(z) =" aylx, Z AT (£a0)§ "W (€y)ex (&),
where £ runs over all elements in a='9~! such that £&7 >0 for all 7 € J and €7 < 0
for all 7 € ¥ (R) — J, and
v =y" and la|x, = alf,.

We now look into

S w(a) / ()20l

(a)
W€CIF P\

As a runs over a complete set of representatives in F,* for Clp, the set of ideals
{aAd} gives again a complete set of representatives for the ideal class group Clp
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because AD is an ideal of F. Thus we get
> W(a)/ () 729789 ) el y"" = e1(s)G(P) (s, X prw).
By the Rankin convolution method, we get

/ ()26 (g ) p)y™ = A DBy E ),

EN) = Y eyt o
sed(a) /ol
We now put
E(s)=E(z,s) = Y w(a)lal}, £ (s)
acClg
as a function of x € H(A). Writing Y = Yy p(N') = Ugec1, Y'Y, if (wippr)? =

by (RES3) in Appendix, we get
Res,_1Crv(25) / E(s)(n!>—2<v"6<g>lF>
Y

_N (N’)*%(N/)Q[FQ] =Yt [ o))l
- F/Q |DF| wia TL g)lF),

where R is the regulator of F. Let £: S = Coo/Cooy = {£1}75¥® — {£1} be a
character such that

(=1, -1);) = (=)™ " forall 7€

where (—1,—1), is an element of S whose component is equal to 1 outside {r,07}
and is equal to —1 at 7 and o7. We consider the projection m. to the e-eigenspace.
In the same manner as in Section 4, under the condition of the parity of £ as above,
the application of 7. on the integrand does not have any effect on the outcome of
the computation. Thus if wppr = «,

Res.o1rv, (25) | B)nd) (7" m.5(0)1)
= c1(1){Ress=1(r 2 () }L(1,Ad(X) ® ).
Thus we get
I'(1,Ad(\) ® a)Ler (1, Ad(N) ® @) = coN(Dgyr) /2 G(p) i DH

P 3 ula o [ sl

where
co = 2r2(K) (ri(K)/2)— (NI'/QN ) (N/)IDF|#m~3NF/Q(DK/F)(m+1)/2 €Q.

Let u be a system of Hecke eigenvalues of level N and with character x. Let
d = [F : Q] and A be a Dedekind domain in @ containing p(n) for all ideals n C «.
For each character ¢ : § — {£1}, we consider H¥(Yy x(N), L(R, x; A))[e, 1] which
is projective of rank 1 over A. Extending A a bit, we may assume that it is free of
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rank 1 over A. Let £ be the generator of this free A-module of rank 1. Let f be
the normalized Hecke eigenform with eigenvalues p. We define

[meb50(f)] = Qs (®) 25k (©) (&, 15 A)E,
where [¢] indicates the cohomology class of a closed form ¢. Here the subscript
“Yx(R),2X(C)” indicates that the cohomology class is of degree 1 at archimedean
places in £ (R) and of degree 2 at archimedean places in X (C). When A = Q(u),
we have the cohomological conjugate

é-p € Hd()/().,K(N)7 ['(Epv Xp; A))[E> .u'p]
and define automorphic conjugate f? by a(n, f*) = a(n, f)?. Then we define

[me670(f7)] = Qs (v) 254 () (6, 173 AP,
and put
QZK(IR),2ZK(C)(E» p; A) = (s r) 25k (©) (6 17 A))r)elwz)
as an element of (Q(u) ®y C)*. Then we get similarly to Corollaries 3.2 and 4.2
the following result.

THEOREM 6.1. Suppose that we have an arithmetic Hecke character ¢ of K
and w of F such that (i) the conductor of w is 1 and (it) Yppw = . Then we have
(1®T(1,Ad(N) ® a))Le (1, Ad(N) ® a)
1® NF/Q(DK/F)I/Qin(J)+J)G(¢a)QZK(R),QZK(C)(67X; QM)
for any e with e((—1,-1);) = —1 for all T € J. Moreover if ¢ can be chosen

to be the identity character, then for all valuation ring A of Q(X\) with residual
characteristic prime to 2e(n!) Dy, we have

(Nr/gNo)?d(No) " Npjg(Dre/p) /2T (1, Ad(N) ® @) L(1,Ad(N) ® a)
Qs (®),25,(©) (6, A3 A)

where Ny = N Nt and e is the least common multiple of the order of maximal
torsion subgroups of T'® /R* for all a.

€ QA cQ(N)®eC

€ A,

If either K is totally real or a CM field, we can always find w and ¢ as in the
theorem (see Lemma 2.2). If K has both complex and real places, this condition
really imposes a restriction. Probably one could remove this condition taking the
integral over Y (S) for a smaller subgroup S in Uy(N’) allowing w with non-trivial
conductor, but we might lose more Euler factors of the adjoint L in the process.
Since this would further complicate our computation, we do not look into this point
in the present paper.

We can formulate the divisibility of the L-value by congruence primes of X as
is done in Section 5 for quadratic fields, which we leave to the reader.

The parity restriction on ¢ is explained by the following fact:

e((=1,-1)7) = vr((-1)7) = P((=D)r)a((=1)7) = (=1)"".
Thus the condition that e((—1,—-1),;) = —1 is equivalent to

epec((—1,-1)7) = (—l)nT-Hv

and we have

Q5 (R),25 1 (C) (EP00s A ® ©; Q(N)) = G(9) 'y (v) 251 (©) (£, Q).
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7. Quadratic extensions K of an imaginary quadratic F

Now we assume F' to be an imaginary quadratic field and keep notation intro-
duced in the previous sections. We write o for the generator of Gal(K/F), and
fix an embedding 7 : K — C. We then write J' = {o7}. For each ¢ € I, we
write [¢] for the archimedean place arising from ¢. Thus this correspondence in-
duces a linear map [ ] : Z[Ix] — Z[X] for the set ¥ = ¥ = Ik /{c) of archimedean
places. If no confusion is likely, we write ¥ for ¥ to simplify the notation. We
decompose Iy = VU U o¥ with ¥ = {7,7¢}. We identify ¥ with {r,07}. Let f
be a cohomological modular form on G of weight (7,7). Then we can write for
2€3=G(R)/Z(R)Cx given by y~ /2 (§7) € SLa(Kx)

f<a><z>=f(ty*/2 (g f)>=yﬁ/2laylm S R(T(€ad))e W (Ey)e(cr)

e KX

where

ww= 5 (T) () KeaatimhsT T =425

0<a<n* o _Hyl

We write f(¢)(z) = D 0<a<hr féa)(z) (@)Sﬁ*'aT". Then by a computation similar
to (6) in Section 3 and [Hi94, Section 2], =18,/ (f(¥)) for z = y~1/2(¥7) is given
by the following formula through replacing Ua,Ug, by f(a, 48,0

y;leT—2 Z (_1)”7_j7c+n07“j07'c (ﬁ)Xﬁ—jyj

0<;<n J
X AUn ot jr—jreys N e = AUn, 1j, —j, 4180 NdTr + Un, 4o —j o v2dyr N dZ;

/\ {Unoerjmvjwcdon - 2Unmc+jmﬂ'wc+1dyor - Unam+jw~jma+2d§ar}v

where we have written X? 7Y for er X,eeye, (?) for [ e, (?Z), and j
runs over j € Z[Ix] with 0 < j, <7, for all p € Ix. We get a non-trivial result only
for base change lift; so, we may assume that n, = n,. = nyr = n,r.. The action of
z does not affect the outcome of the differential operator V" = (V. V,.)" applied
to 8/ (f)lF (V, = 8%/0X,,0Y, — 8?/0X,0Y,,); so, we forget about it. We then
restrict the differential form to $ = H(R)/Zg(R)Cy and hence, we may assume
that y = y, = yor and r = z,; = z,,. Thus we get

()28 (f)lF

= 0" 3 0 () o = 8o + sy 2)

0<y<n

where du = y~3dy A dz A dz, (7) = (") (mf), and n’ = A(X) + j¥ for j# =

Jr Jre
(Jr — jre)T + (Gre — jr)or. We now compute for X = J' | ¥ — J', 2, writing z for
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the number of elements in X and g for f|R(p),

L(‘”\?, 9[(2?4-2)(] |ay|f, du(2)

= —(=1)7Fe22n 20 /[ Tvol (Fr /ax)G(p)lal 5 (| DrINFyo(Dkp) /%)
‘ T(n, +1+8)°T(ns +5+jr — jre + )TNy + 8+ jr — jre +2 — )
I'2n, +2+ 2s)

. Z X(T(gaA—10))so(gaA—la)g—n—Zv—Res(w)A5+w+ﬁ/2NF/Q(§A—10)»1—s,
§EFX

where A € K* satisfies A° = —A and we have used the identity:
Npo(A™'9) = |Dp||A™"|*Np/q(Dir)'?

along with the convention that A(T(n)) = 0 for non-integral ideals n.

Now we suppose to have a Hecke character w of conductor 1 of F)/F* with
oo(w) = n+ 2v+ Res(w). For that, we may need to allow algebraic character ¢ not
necessarily arithmetic to have such w (see Lemma 2.2). Note that

w(aAT10) = w(aATo)gm A HRL),
Then we have, for g = f|R(yp),

A(G)\ﬁ(n!)_z(vnéw(g(a))|F)|ay|spA(—1)"’+L22"’+23(47r)_2"’_2_25\/—1V01(F]R/at)

- G(@)(IDFINFo(Dr/p)/*)T x w(@A™10) LA 2T (0, 414 5)°
+{Go(s) + 8G1(s) + G2(s)} La(s, A, prw),
where

Lo(s, N prw) = Y MT(6aA™'0))pw(EaA™10) N g(ad™10) 717+,
EEFX [rX

B n\T(nr +s+jr —jret ) l(nr + 8+ jr —jre +2 —x)
Gals) = D (;) T(2n, + 2+ 25)

0<j<n
for z = 0,1,2. Using the formula in [Hi94, p. 505] twice, we get
I(s+z)T'(s+2-2x)
T2+2s)
, B I'(s)I'(s+1)
Go(s) +8G1(s) + Ga(s) =2(5s+ 1) T2t 2s)
Then using the fact that vol(F../t) = 27| Dp|'/2, we have

S wia) / (n) (V"8 (¢) | ¢ al3, 5t = er(s)L(s, D opw),

G.(s) =

01(3) = \/__1|DF|1/2(tDFlNF/Q(DK/F)1/2)1+SG(@)W(A_ID)—IAE+w+ﬁ/2
I(s)L(s+1)

(1 \nrt1l92n.+2s —2n,—2-2s
(—1)"+12 (47) R

T(n, +1+s)2
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By Rankin’s convolution method, we get

[ 2@ gy = [ )@ () )E ),
@5’ \9

B(a)\ &
where
EDs) = Y k(Y on.
vED(@) /P
Put E(s) = Y occin w(a)\a\}éf(a)(s)‘ If (wpr)? = id, by (RES3) in Appendix,

we get for Y =Y p(N') = uaeClFY(“)

Reso_1Crv (25) /Y E(s)(n))"2(9"6(0)| )

N2 , 212 R ner (@)
= Nr/o(N')""¢(N') > wla) (V"6(g" )| F)-
On the other hand, if a = Ywyr, we have

Res,1Gr(25) | E(s)(n) *("8(9)lr)
Y
= ¢1(1){Ress=1Cr N’ (s)} Lo (1, Ad(N) ® «).
Comparing the two expressions, we get

I'(1,Ad(\) ® o)L (1,Ad(N) @ @) = 0G(p) \w(A D) AT w=A/2
. \/:Th(F)_l Z w(a) L(a) (n!)*Q(vné(g(a))lFL

a€Clp
where ¢y = 2(—1)n7+1|DF‘_3NF/Q(DK/F)—1 € Q.
At the beginning, we fixed an embedding 7 of K into C. We study what happens
if we start with o7 instead of 7. The result is the same, but J’ will be replaced by
{r}. Note that {67/ (f)}. s (c) forms a base of H3 , (Yo(N), L(%, x; C))[A]. Thus

HY QO = Hiop (Yo(N), LR, x: Q)R] = Q)

Then o acts on Yy(N) via the Galois action: = — 2% on G(A), because N7 = N.
We let o act on L(n; Q(A)) by o(X,Y;) = (Xsr, Ysr). Thus for a differential form
¢ on 3 with values in L(7; C) such that v*¢ = v¢, we see

Y (o(079)) =007 (1) ¢ = 077 (07 ) = yo(079).
Thus via ¢ — 00*¢, Gal(K/F) acts on Hy,  (Yo(N),L(R,x;C)). We see that

0%6(r1(f) = 0645} (f). Since A is stable under o, H® [X] is stable under the action

of 0. Thus H3(Q(A))[A][c — 1] is one dimensional, and we take a generator £ such
that

H* Q)Mo — 1] = Q(N)E.
The action of o defined above commutes with the Galois action induced covariantly
by the Galois action on L(RK, x; Q(\)). We write £ for the Galois conjugate of £
under the latter action. We note that H3(C)[\?]jo — 1] = C(o47y(f?) + 64503 (f7))-
We then define a complex number €, o) (//\\”; Q(X)) € C* by

(63 (F2) + 81ary (F7)) = Q1.2) (W Q(N) €7
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We put
Q1.2 X Q) = (1,2 A Q) perg, € (Q(A) ®g C).

Note that A='9 = dp&. Thus for a finite idele d of F generating 9z, we have
W(AT) = w(d)ent2viRes(w) hecause w is of conductor 1. We choose ¢ as in
Lemma 2.2. Then it is easy to see that £»T2vtRes(w) ¢ . This shows that

w(AT)IG(p) /G a) € Q(N).
Since G(¥'a)G(va) € Q, we finally get

THEOREM 7.1. Suppose that we have an arithmetic Hecke character ¢ of K
and w of F such that (i) the conductor of w is 1 and (1) Yorw = a. Then we have

(1 ® A"Fw+7/21(1, Ad(\) ® @))Ler (1, Ad(N) @ a)
(18 V=D)G(¥)2 2 (3 Q)
If ¢ and w are algebraic Hecke characters satisfying (i) and (it), then we have
I'(1,Ad(\) ® a)EC«(l, Ad(N) ® a) cQ.
Q(w)()\;(@()\))

Since the L-value in Theorem 7.1 does not depends on the choice of ¢, even if ¢
is not arithmetic, presumably, the Q(\)-rationality would hold in general. Further
study has to be done to prove this. R

The period )(; ») is only defined for the base change lift A, while we have defined
similar periods for any system p of Hecke eigenvalues in the previous sections when
F is totally real. When p # u,, the action of o on H?(Q(u)) does not preserve
H3(Q(u))[1], and this causes a trouble. If F' has complex places, the same problem
shows up as will be seen in the following section.

€ Q(\) € Q(\) ® C.

8. General quadratic extensions

Let K/F be a semi-simple quadratic extension of a number field F. Thus we
allow here K = FF® F. When K = F'@® F, we regard Dg/r = 1 and a = id; other-
wise, a denotes the quadratic character of F,* /F* corresponding to K/F. We shall
prove the rationality theorem of L(1, Ad(A) ® ) in this general case. Computation
is the same as in the previous sections. Since the definition of f +— §(f) is given
in [Hi94] by a procedure which is basically a tensor product of definitions over
archimedean places, the computation of the pull back §(f)|r is again essentially
the tensor product of the pull back over archimedean places of K. Thus the com-
putation is the same as in Section 3 for a complex place of K over a real place of
F, the same as in Section 4 for two real places of K over a real place of F' and the
same as in Section 7 for two complex places of K over a complex place of F. After
computing 6(f), the computation of the Rankin product is fairly standard. Thus
our exposition of the computation will be brief, but we state the result in a precise
form. When K = F & F, we regard that every archimedean place of F splits in K.

We decompose I = I(C) U I(R) and I(C) = Z(C) U X(C)c. Similarly we
decompose I = Ix(R)UIk(C). We decompose I = WU oV for the generator o €
Gal(K/F) and ¥ = ¥U(R) U ¥(C), where ¥(R) is the subset of all real embeddings
of U. When K = F& F, we have o(z®y) = yda. We write J' (resp. J”) for {oT €
oW(C)|Resg/p(1) € £(C)} (resp. {7 € I(R)|r extends to a complex place of K})
and put J = U(R). When K = F @ F, we identify Ix with I LT through the right
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and left projections of K to F. Then we identify ¥ with the left component I in
Ik . Then we shall make use of the isomorphism

6100 Saa(N,x) = HU(Yo(N), L(K, x; C)) (k = (n,v))

defined in [Hi94, Proposition 2.1], where ¢ = [F : Q] + 71 (F) + r2(F) = dim(8).
When K = F&F, then Yy x (N) = Yo p(No) XYy, r(Ny) for the ideal N = No@& Ny C
t®t=TR. In this case,

L((m, ), x; C) = L((n,v),%; C) &c L((n,v),¥; C).

For normalized Hecke eigenforms fo € Sy 1(=)(No,%; C)[A] and fg € S, ¢(No,v; C)[A],
the base change lift f € Sz (N, x;C) to G = H x H is just f(z,2') = fo(2)fy(2))
for (z,2/) € H x H =3 and

65,0/ (f) = 81(=y.1(0) (fo) (2) A bp,0(fo)(2),

which gives a cohomology class in

H(Yo n (No),L((1,0),9; C)) ®c HY (Yo,r(No), L((n,v),;C))
C H?(Yo,x(N), L((R,),x; C))

for @ = q+¢' = dim ) as real manifolds, ¢’ = r1(F)+2ry(F) and g = r1 (F)+r2(F).
In this case, we have a standard choice of ¢: ¢ =id x~ 1.

We compute the integral of m.(V™8(g)) on Yy p(N') for g = f|R(y). At each
real place p of K, we follow the computation done in the real quadratic case, at each
complex place p over a real place of F', we follow the computation in the imaginary
quadratic case, and for each p over complex place of F', we follow the computation
done in the case of quadratic extension of an imaginary quadratic field.

We have

F@ (y/ (g “’1”)) =yﬁ/2taym{ S X(T(eao»f-ﬁvv(sy)e(gx)},

EEK™X

where, writing n} = 2n, + 2 for 7 € L (C),

W(y): H WT(yT)7

TEX K
nr n* nr+l—a nr—arma .
W) = [ Zom0 (D) ()" K ialdnly) ST T2 if 7 € Zke(C),
exp(—27|y|) if 7 € g (R).

We consider V. = 8%/0X,,0Y; — 8?/0X.0Y,, and write V" =[], . V7.

Take an algebraic Hecke character ¢ of K and an everywhere unramified Hecke
character w of F' with co(p) = —w € 1/2Zk such that Ywer = a. We then
compute the pull back (n!)=2(v"8;.,(¢')|r) = *((n!)~29"8,. 1 (¢\?)) for g =
fIR(p) and ¢ : § — 3 induced by the inclusion H C G. Here we identify J’ with a
subset of I by Resk and J” with {7 € I(R)| 7 extends to a complex place of K}.
We put n* = 3>° v (c)(2nr +2)7. We write I’ for I(C) U J”. For each j € Z[I'],
we also write n’ (resp. j') for n(I’) (resp. R(Ex(C)) + 25(J") + j¥), where j# =
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Y reyUr = Jre)T + (Jre — jr)7c. Then we have
(n))72v"85,5:(¢")r

(= 1)) (244 ) (—1)7d©) (”_/) du(2)
JELI 0N <n(I) J

(a) (a) (a) (a)
* { - gj/+2’]/ + gj/+2‘]”+.]/+0.]l - gj’+20J’ - gj/+2J”+2.]’

(a) (a)
+ gj’+2J”+J’+O’J/ - gj/+2J”+20‘J’}’

where
du = /\ y=2dy, Adzx, /\{/\y;g’dyf/\de/\dfT},
Tel(R) TEE
g(a) _ Z gga) (ﬁ*)sﬁ*_aToc.
o<a<n* o

We choose A € K* such that
(A) A% = —-A and Y(R) = {r € Ix(R)|A" > 0}.

If K = F@F, as already explained, there is a standard choice of J, J’. In this case,
A =(1,-1) € K is an optimal choice of A. Anyway we see

AP e{zea v 2" =z} & fealAD! ﬂF
Thus we have

> wl@) [ )0 () el = e(s)Lis A o),

~ ~ 1+s
c1(s) = w(ATI) AT 2| D 26 ) (IDFINE /o D/ r) ?)

.2n+sI(C)+sJ”+J(_1)n(JUJ’)+J’\/_—1”(J)+J+J’ (47r)_n—(s+1)1

) 2_J// H (1 + (_1)n7+1+2vT+Res(w)T)

reJr
(55 + DI(0(s + D\ (T(5)7)
( [(2+2s) ) <r<23)> 1t +1+9.

We apply the Rankin convolution method. For that we put
E(s)= ) w(a)lalf,E(s),
a€Clp

where
ED) = > QR (MyTton.

yeD(@) /ol
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Write Y = Y5 p(N') = yec, Y@, if (wipor)? =id, by (RES3) in Appendix, we
get in exactly the same manner as in the previous sections,

Res,_1Crv (25) /Y E(s)(n!)"2(9"6,.5 (9)] )

_ SN AT VR s [ ()R (w78 (g
= NP2, @ 5 6 e

Then by choosing a character € : Cy /Cooy — {£1} with e((—1,-1),) = (=1)"H!
for all 7 € J as in Section 5, we compute the residue using the Euler factorization of
the zeta function of the right hand side, and we get, choosing ¢ so that wppy =

I'(1,Ad(\) ® a)Ler (1, Ad(A) ® o)
= CoG(gp)_lw(A—lb)—lA—ﬁ—w—ﬁ/z\/_—1—n(J)+J+J'

Y wla) [ ) s (g,

acClp Yl

where c¢g is an explicit non-zero constant in Q.

We now define a modular transcendental factor of the above L-value. When
F has more than one complex places, we cannot define the transcendental factor
solely using the data of cohomology group for Yy i (V) as in the previous sections.
Instead we need to use cohomology groups for Yy x(N) and Yj p(N’). Because of
this, we can define the period only for X and not for general non-base-change lift.
Let € : S = Co /Coot+ — {1} be a character satisfying e((=1),, (1)) = —1 for
all 7 € J. We start with a system of Hecke eigenvalues A for H with character ¥
and write its base change lift to G as X, whose conductor is N. Let ¢ = dim($)) =
2r1(F) + 3ra(F). We write

H(A)N ] = Hyyo (Yo, (N), £((7,9), x; A)) [N, ]

for the subspace on which T'(n) acts via X and S acts via e. Note that {mbs ()},
J’ running through all subsets of £, (C) of cardinality #(X(C)), forms a base of
H(C)[A,e]. Let N, = N N C? for the conductor C of p. We have the following
sequence of maps:

R(p) : H(A)\, ] — Hiyop (Yo(N,), LI(R, T+ w), x¢*; A))[\, epucl;

i* HE o (Yo(N,), L((R, 7 + w), x%; A)) — HE, o (Y, L((7,0 4+ w), (x¢?); A)|y);

cusp
Tt HE, (Y, L((R,0 + w), (x¢?) 3 A)) — HL(Y, L(0,w™?; A));

we: HY(Y,L(0,w™ % 4)) — HI(Y,A) = A.
Uldet(w)]
The map ¢* is induced by the inclusion i : Y — Y{ g (NNV,,), and 7, is induced by the
morphism of sheaves 7 : L((R,? + w), xp?; A)ly — L(0,w™2; A) (here x¢? is well
chosen under the condition that wypy = « so that the map 7 exists). The last
map is induced by the cup product with the global section det(w) of £(0,w?; A).
We consider the composition Ev = Ev, = w, o m, 0i* o R(p). Then by the
above computation, Ev([r:6,/(f)]) # 0. We write M for the image under Ev
of H(A)[\,e]. We suppose that M C A is free of rank 1 over A and write its

Licensed to Tata Institute of Fundamental Research. Prepared on Tue May 16 05:43:23 EDT 2023for download from IP 158.144.67.50.



168 HARUZO HIDA

generator as £.(f). Since the value Ev([r.6;.4/(f)]) is independent of J', we can
define ] ,(g, A; A) € C* by the following formula:

Ev([m.65.0(f)]) = Q) 2(e, X5 A)E(f),

where f is the cohomological modular form whose Fourier coefficient at ideal n is
given by A(T'(n)). For the moment, we assume that ¢ and w are arithmetic, and A
is a Dedekind domain inside a finite extension of Q(A, p,w). Here we note that

Ev([rb.0(f)]) = Z w(a) (n) "2 (V 7650 (FIR(#))]F)-
a€Clp Y@
We also define for p € Aut(C) a constant ] (¢, A\?; A) by

Euv([mebs, (f7)]) = Q) 5(e, A7 A)&(f7).

If we have two choices of (p,w), say (¢,w) and (¢’,w’), the ratio:

Evy([mebs.0 (/)])/ Eve ([mebyar (£)])
is just equal to the identity component of
(W(AT) T @ G(p)/ (W (AT T @ 1)G(¥)

in Q(A, ¢, ¢') ®g C, and therefore, by an argument on Gauss sums close to the one

given just above Theorem 7.1, (G(ubpa)‘lﬁ'l,g(s,:\\p; A)), is a well defined element
in

QN ®e C)*/(QN)* ® 1),
which we write QOQ)(E,X;Q()\)) = (G(z,b"a)‘lﬂ’lyz(s,l):; A)),. When ¢ or w is
algebraic (but not arithmetic), we write simply Q1 2)(¢,A; Q) for Q19 (e, :; Q).
Then we have

THEOREM 8.1. Let a be a Hecke character of F/F* with o? = 1. We allow
a = id. Suppose that we have an arithmetic Hecke character ¢ of K and w of F'
such that (i) the conductor of w is 1 and (ii) Yprw = a. Then we have

(1 ® AT+w+7/2D(1, Ad(\) ® a))Ler (1, Ad(N) ® a)
(10 v=T"""" )G ()2 ) (e, 1 Q)

for each character € : S — {1} with e((—1,-1),) = =1 for all T € J. If v is an
algebraic Hecke character satisfying (i) and (ii), then we have

I'(1,Ad(\) ® a)Ler (1, Ad(N) ® ) cQ
Q2 (5,3 Q) .

€Q) cQN) &eC

9. Period relation

We shall list here several period relations which follow easily from the main
theorems. Some of them is a partial generalization of such relations for totally
real extensions studied by Shimura, Harris and Yoshida (cf. [Y95], [Y94]). For
simplicity, we suppose that F'is totally imaginary. Let ¢” be a unique cohomological
form on H whose Mellin transform is the standard L-function of A?. We write Cj
for the conductor of ¢. Then we choose a generator &,,,(¢*) (m = 1,2) of

Hgﬁgp(YO,F(CO% ﬁ((n, ’l)), ZD? Q(/\p))[/\p}
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for ¢ = [F: Q]/2 so that &, (¢”) = &,,(¢)?, where p € Aut(C) acts on the cohomol-
ogy group through covariant functoriality of its action on L((n,v),¥;Q()}). We
then define a constant ,,,(A\?; Q(\)) (m =1,2) by

[6(67)] = Q2 (A3 Q(N"))&m (67).

Of course, we can give more integral definition of ., (A?; A) for, say, a discrete
valuation ring A of Q(A\?). However, here we just want to discuss rational and
algebraic relations among modular periods €); and Q; 5. In other words, we like to
study relations among periods of harmonic forms of different degree but belonging
to the same system of Hecke eigenvalues.

First we apply Theorem 8.1 to F @ F with the standard choice of ¢ = id x~1.
Then it is easy to conclude from an argument given in Urban [U] for imaginary
quadratic fields F that

T(1,Ad(N))L(1, Ad()))
Q1(NQN))22(X; Q(N))
Thus writing a ~ b if a/b € @X, we see that

Q2 Q) ~ Q1 (A Q)X Q).

This is one of the reasons why we have written the period as ;5. This type
of relation can be shown in a little more general case. These quantities £, are
defined depending only on F (and A), but ;o is defined relative to a general

quadratic extension K/F (and A). Thus we fix A and write QJF()\) (resp. Qféﬁ(x\))
for Q;(A; Q(X)) (resp. Ql’Q(X;Q()\)) relative to K/F). When a = id, we get from
the above identity

(P1) Qs oy ~ of ek ().

cQ”.

Applying (P1) to X in place of A, we get
of MOF Q) ~T(1, AdN))L(1, Ad(V))
=T(1,Ad(N))L(1, Ad(M\)P(1, Ad(A) @ o) L(1, Ad(N) ® )
~ O (NS R,
On the other hand, it is proven in [Hi94, Theorem 8.1] that
2m)*1QE(N) ~ L(0,A®no Nk, )
= L(0,A®n)L(0, A®@ na) ~ (2m)7 2107 (A)?

if 0 <j <nandoo(n) =j+v+1, as long as the modular standard L-values are
non-zero for some j, for example, if n, > 2 for all 7. Thus we conclude (see (P) of
Conjecture 5.1), if n,. > 2 for all 7,

(P2) Q) ~ 0F (V)2
This shows

QF (N2QF ) ~ QFVQE Q) ~ of (W ()R (v,
and hence

(P3) Al QKR ~ QF (N ().
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We put
2z () =2 ()" 0.
Then we have
(P4) A () ~ Qf N2z ().
This formula seems to be a generalization of (P2) for .. It is an interesting

problem to find out its motivic meaning. Suppose that A = XO for a system of
Hecke eigenvalues Ao for GL(2),, for a totally real subfield L with [F: L] = 2. We
further assume that K = F'F’ for two totally imaginary quadratic extensions F/L
and F’'/L. Then one can prove easily from the above relations that, if n, > 2 for
all 7

(P5) Q5 ()~ (W), 70 ~af el (u)
and Q5 (X) ~ Qf ()L (),
where 1 is the base change lift of A\g to GL(2) /5.

Appendix A. Eisenstein series of weight 0

Here, for the reader’s convenience, we shall prove the residue formula of the
Eisenstein series we used in the principal text, which seems not to be found in the
literature in its exact form.

Let F be a number field. We consider the algebraic group H = Resp,gGL(2)/p.
We use the same symbol introduced in [Hi91, Section 4], where F is assumed to
be totally real, but symbols themselves have meaning. For a finite order character
x and 6 of the idele class group F'/F* modulo an ideal C of t, we consider the
following Eisenstein series £(z,s) = £(z, x,6;s) : H(A) — C:

Es)= > X (@b(hamhe),
verx B@Q\H(Q)
where

B(A)z{(g ’1’) la e (FogA)* and beF®QA}CH(A)

for Q-algebras A, and for the identity component H(R) of H (]R),.

xc(dc) forz = (Z Z) if z € B(A)Up(C)H (R)+,

X" (z) =
0 otherwise,
0a) ifze(® ) zua)H@)C
9(1‘) — 0 1 H oo+
0 otherwise,
and n =0 for § = | |r,. We normalize the Eisenstein series in the following way:

E*(2,x.0;5) = Niyg(C)2 72| D? 3 X" ()€ (au, x, 6; 9),

where a runs over a complete set of representatives for F, /F*t*FZ and r; is the
number of complex places of F'. We further put

E(z,x,0,5) = Lo(2s,x70%)E (2, X, 0; 9)-
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We now compute the Fourier expansion of the above Eisenstein series. We put
following [Hi94, Appendix]

Cwti3) = [ exp(=2miTe(er))(irf +47)
C
Then for the modified Bessel function K;(¢) as in [Hi94, Section 6],

(2m)°T(s) "Ly =t T K (Anltly) it A0,

Cly,t;8) = {W(S_ 1)~1y2-2s if t = 0.

We take e = (§ ') and compute the residue at s = 1 of E(z,s) = E(zel>), ) via
its Fourier expansion. Let w be a variable of H(R),. Then we write z = w(zp),
where zg , = \/—1 if 0 isreal and ¢ if o is complex. We write y(z) = (y,) € Fo when
Ze = Ty + V/—1y, for o real and z, = (Z; 27) for o complex. For 7, = (‘;;’ Z‘; )
we define an automorphic factor by

CoZs + dy if o is real,

det(p(cy)zs + p(ds))  if o is complex,

j(’yo'; ZC’) = {
where p(z) = (%2). Then by [Hi91, Lemma 6.4], we have

(eaate) ()16 = xlacac),

lteaate) (5 9) ) = @)l
-2

n((caa(@)w)e) = ladey(2)lr ] lilcaa(@)s, )72,
oel/{c)

!/
0((cac(x) <((I) ?) e~ 1)) = f(a%a’t) ifal =1,
b((aa()w)us) = 1,
where a(x) = ({ %). Then the Fourier coefficient b(¢,u, s) at { € F of E(z, s) given
by
/ E(a(x)u, s)ep(—&x)dx,
Fu/F

we get from [Hi91, Lemma 6.6] that for v = 2 (¢ {)w with as = ac = 1 and
T e ZH(A(OO))
tcalC™ ol ifb(€,u,s) #0,
where 0 is the absolute different of F/Q and a = ar. Then we see from [Hi91,
(6.11)]
b€, u,8) = Npyo(C) T 1Dp| ™ ?x07 (¢ )x(2) Ny (a)*™
/ Nexa (Voo )W)’ € (—EVos Voo
F,

X T ) NEg(m) T D u(n/B)Neyg(b),

n~za 6DOn+£aCd

where ¢ ~ b means that the two ideals belong to the same ideal class. As seen
in [Hi91, 6.12b], from its definition combined with the above formula, the Fourier
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coefficient at & for E*(u, x, 0; s) is given by

X071 (a®)Npjg(a)* "' Lo(2s, x 102! / N(ea(voe )w)®ep (—Evoe ) dvog

oo

) 2 b5¢aCh X102 (b)Npjg(b)!=2  if £ #0,
Le(2s —1,x716?) if € = 0.

Following [Hi94, Appendix|, we get for a complex place o

2_1 An(ga(va)owo)seF(_gvd)dva = |yo|2S<(y, 6;2330)
(2m)%°T(28) " 'y 1>~ Koo (4mléyl)  if £ #0,
m(2s — 1) 1y2728 if £ =0.
For real o, we get from [Hi91, 6.9b]

/ n(ea(vy)owey)’er(—Evy)dus
R

_ [m () el exp(~2nléylw(anleyl s, 5) i€ £0,
7D(s)~20(2s — 1) (4yo )1 —* if € =0,

where w(t; s, s) is the hyper-geometric function defined in [Hi91, Section 6]. By
this computation, we know that the Eisenstein series has meromorphic continuation
to the whole complex s-plane. Moreover the non-constant term of E(z, x,id, s) is
an entire function of s, and hence the residue is constant. The constant term is

given by
X(@ ™)) Npo(a) ! (m4!*T(s) ~*T (25 — 1)) (w(2s = 1)) yl}; *Le(2s = 1,x).
This shows
(RES1) Ress=1 E(z, x,id, s)
0 if x # id,
- 1 21*’2 LlFRAR W(F) .
NF/Q( ) ¢(C) F)Dri7?) if x=1id

where ¢ is the Euler function: ¢(C) = #('C/C)X, - Is the regulator of F' and
w(F') is the number of roots of unity in F.

We now show that the Eisenstein series £(z, x;s;C) = £(x,x,id; s) gives a
section of the sheaf L((0,0),x *;C) over Yy (C). The identity

(¢ D3 2) (3 2)sc o,

for t = (&9) implies that
) (g f) & BA)U(C)t H(R), = BAU(C)t H(R)-.

Thus (c,d) is the second row of a matrix in & = H(Q) N tUy(C)t *H(R).
This shows that we can choose the v modulo t* B(Q), inside ®(®. Note that
o) Ne*B(Q)y = 3. Then for w == ¥

ywt = yoowtt 4 ()t € Yoo WtUp(C).
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This shows that, for z = w(zp) which is the image of (§7) in 9,

n(ywt) = la|py* oy ( for 1= 2‘7) and x"(v (3 f) t) = xc(d).

oel
Thus we get

e(e(} 7)usc) =l X et or =l W),

yeP(@) /ol

This shows the claim.
Out of (RES1), we compute the residue of £. We shall make use of the following
identity:

ST E*(zixg) = N2 |De|2 )" > (xe) ()€ (az, x)

¢ a€Clp

= Npso(C)272|Dp|? Y x(a) ™) pla™")E(az, xp)

a€Clp ©
= h(F)Np)o(C)27 ™| Dp|/?E(x, X),

where ¢ runs over all characters of the class group Clr of F'. We know from the
above residue formula that

(RES2) Res,—1 Lo (28, x ) E* (x; )

oritre=1glF QR h(F)
w(F)|Dp|!/? ’

= 641 NF(C)19(C)

1 ifx =id,
where 0, jq = )
’ 0  otherwise.

In the principal text, we have used the residue formula when x = w™2 for
w chosen so that a = Yepw under the notation of Section 2.4. In this case,
C = N'. Since the Euler product for L (2s,w?) converges at s = 1, we note that
Lc(2,w?) # 0. This shows that if x = w™2 = (Yer)?,

(RES3) Resszlial%Ag(“)(z)
UFQA-1,[F-Q R _

= Cpn(2) T Npjg(N') 2 ¢(N)

w(F)|DF|
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