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ABSTRACT. For a given system A(T(p)) of eigenvalues of Hecke operators act­
ing on cohomological cusp forms on GL(2) over a number field F, we look into 
the adjoint square L-function L(s, Ad(A) ® a) twisted by a Hecke character 
a. If A is associated to a 2-dimensional Galois representation ip, the adjoint 
square Ad(<£>) is the three dimensional factor of cp®1 tp"1, whose L-function is 
given by L(s, Ad(A)). The L-value L(l , Ad(A) ® a) is critical if and only if F 
is totally real and the Hecke character a is totally even. We are interested in 
both critical and non-critical cases. When a is quadratic, a rationality result: 
L( l , Ad(A)<8>a:)/f2 6 Q(A) is shown, where f2 is a canonical (topological) period 
of the base change lift of A to the quadratic extension K/F associated to a, 
and Q(A) is the number field generated by A(T(p)) for all primes p. Alongside, 
we shall give an evidence for the divisibility of the L-value by the order of the 
Selmer group of Ad(cp) 0 a. Towards the end, a period relation is given, as an 
application of our main result, when F is totally imaginary. 

1. Introduction 

If one has two canonical rational structures on a given complex vector space, one 
can define a period which is the determinant of the linear transformation bringing 
one rational structure to the other. This principle applied to cohomology groups on 
a projective variety V (defined over a number field F) yields the classical periods 
of F-rational differential forms on V. In this case, one rational structure is given 
by Betti cohomology, and another comes from algebraic de Rham cohomology. The 
two cohomology groups are put together into one vector space by the comparison 
isomorphism. This definition extends to motives, and the periods are conjectured to 
give canonical transcendental factors of the critical values of the motivic L-functions 
(a conjecture of Deligne; cf. [Hi94]). 

Even if the manifold V is not algebraic, it is feasible to define periods in a 
similar way if V is modular, that is, 

V = H(Q)\H(A)/UZH(R)COQ, 
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where H/q is a classical linear group with center ZH, COO is the standard maximal 
compact subgroup of H(M), and U is an open compact subgroup of the finite part 
iJ(A(°°)). For a locally constant sheaf L on V coming from a polynomial repre­
sentation of H, we have a canonical rational structure on the cuspidal cohomology 
group H% (V, L) coming from the rational structure of L. This cohomology group 
is often isomorphic to a product of several copies of a space S of cohomological cusp 
forms on H(A). If one can specify this isomorphism in a canonical way as Eichler 
and Shimura did for elliptic modular forms [Sh71], we have another rational struc­
ture on the cohomology groups provided that the Fourier expansion of cusp forms 
gives a good rational structure on S. If H — Res_F/QGL(2)/_p, there is an optimal 
function W, in the Whittaker model of a cuspidal automorphic representation 7r, 
giving the standard L-funetion under the Mellin transform. The Fourier expansion 
with respect to W gives a rational structure on the space of cohomological cusp 
forms. Applying the above principle to H and H x H, I proved rationality and in­
tegrality theorems for critical values of standard L and Rankin products in [Hi94]. 
This was extended to the so-called twisted tensor L-functions of ir in [Gh] for imag­
inary quadratic F. The results for GL(2) described above could be generalized to 
GL(n). Anyway hereafter we assume that H = Kesp/qGL(2)^F. 

In the investigation in [Hi94] and [Gh], only the minimal degree cohomology 
group is used, and the minimal degree seems to yield rationality only for critical 
values. If H has a holomorphic structure yielding a Shimura variety V ( 4=4> F 
is totally real), the degree of non-trivial cuspidal cohomology is unique (that is 
q = [F : Q]), which is the minimal degree I meant, and it is natural from the 
conjecture of Deligne that we can get results only for critical values. If F is not 
totally real, there are several values of q with non-trivial cohomology. However the 
space S of cohomological cusp forms is independent of q. 

In this paper, we study the rational structures for the maximal degree and 
some middle degree cohomology groups, and we shall prove a rationality result of 
the adjoint L-value L(l, Ad(7r) 0 a) for a with a2 = 1 relative to the period Q(X) 
of a cohomology class of degree depending on K/F, where K/F is the quadratic 
extension of F associated to a (Corollaries 3.2 and 4.2 for F — Q, Theorem 6.1 
for totally real F and Theorems 7.1 and 8.1 for F with complex places). Here 
we write A for the system of Hecke eigenvalues associated to 7r, that is, L(s, n) = 
]T)n A(T(n))N(tVrs, and we hereafter write L(s, Ad(A)) for L(s, Ad(?r)). This value 
L(l, Ad(A) (g)a) is non-critical if either the character a is odd at some real places of 
F or F is not totally real. Thus in the non-critical case, the automorphic period is 
close to the Beilinson period [RSS], assuming his conjecture and the existence of a 
motive yielding the adjoint L-function. While in the critical case, our automorphic 
period should be equal to the Deligne period (see [Hi94, Section 1]). Moreover, 
when F = Q and a is a quadratic Dirichlet character, we shall prove, under some 
assumptions, that the L-value gives congruences between non-base-change forms 
on GL(2)/x and the base change A of A (cf. [J] and [L]) to the quadratic extension 
K as conjectured in [DHI] (see Theorem 5.2). This shows that the p-primary 
part of the value is close to the order of the Selmer group of Ad(p) & a, p being 
the p-adic Galois representation of A. As is shown by Wiles [W, Chapter 4] and 
[TW], the p-primary part of L(l, Ad(A))/fi for many p gives the exact order of the 
Selmer group of Ad(p). Our result (Theorem 5.2) is a partial generalization of this 
non-abelian class number formula. Thus we expect the conjectures in [DHI] made 
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originally for real cyclic extensions to hold even for imaginary cyclic extensions of 
Q (see Conjecture 5.1). 

Actually the period £7 (A) giving the transcendental factor of the L-value is 
defined using the base change lift A to G = ResK/q(GL(2)) for the quadratic 
extension K/F associated to a. Because of this, we need to assume 

(cusp) A remains cuspidal. 

This condition is equivalent to the condition that the A-eigenspace in the space of 
cusp forms on H(A) is orthogonal to any theta series associated to the norm form 
of the quadratic extension K (see [L, Lemma 11.3]). We assume this condition 
throughout the paper. When F is totally real, the definition of the automorphic 
period is a little more transparent than the other cases, because we are either in 
the minimal or maximal degree case where the multiplicity of A in the modular 
cohomology group for G is basically 1 up to a group action at archimedean places. 
If F has complex place, things are more complicated, and we need to use (H, A) 
and (G, A) at the same time (see Sections 7 and 8). In addition to this, the explicit 
description of the Eichler-Shimura map obtained in [Hi94] from a result of Harder 
[Ha] is different depending on the shape of K/F, although the general principle is 
the same as explained in Section 2.4. This is why we treat the imaginary quadratic 
case in Section 3, the real quadratic case in Section 4, the case of totally real F 
in Section 6 and general cases in Sections 7 and 8. It is an interesting problem to 
study relations among periods of A of different degrees. We list some of them in 
Section 9, which follow easily from our main result. It is also interesting to know 
what type of L-values can be dealt with by looking into middle degrees. 

It is not an isolated phenomenon that topological rational structure yields a 
canonical transcendental factor of an L-value. Starting from a number field K, we 
induce the trivial Galois character from K to Q. Then IndQ id = id 0 x for an Artin 
Galois representation \. The classical class number formula is written in terms of 
L(l, x) whose main transcendental factor is the regulator of K. As is obvious from 
the definition, the regulator is the period of the maximal degree cohomology group 
of Fl/Fx for the norm 1 ideles i7^ normalized with respect to the L-function (see 
[Hi89, p. 90]). The fact that IndQ id contains the identity representation once is 
essentially used to identify the residue of the Dedekind zeta function L(s,IndQ id) 
of K with the Artin L-value L(l ,x) a s a product of the regulator and the class 
number. Computation of the residue tends to be easier than the computation of 
values. In our case, a similar phenomenon occurs. For the contragredient p v , 
p (g) pv ^ id 0Ad(/o), and the residue formula of the Rankin product L(s, p 0 pv)is 
essentially used to obtain the non-abelian class number formula for L(l, Ad(p))/Q 
[Hi81], [Hi88b] and [Hi89] (see also [U] for a generalization to imaginary quadratic 
K). The transcendental factor Q is the period of the maximal degree cohomology 
group for GL(2) x GL(2) (see [Hi81] and Section 8 in the text). Exactly the same 
phenomenon happens also for L(l, Ad(p) ® a)/fi(A), although the period may not 
be of maximal degree. The idea of proof is simple, which is summarized in Section 
2.4, although the computation, in order to get an effective integral expression of the 
L-value, is a bit demanding. In the process of obtaining the integral expression, it 
is necessary to find a Hecke character of K with a prescribed restriction to F. The 
argument to find such a character is substantially shortened by a suggestion made 
by the referee of this paper, in particular, Lemma 2.1 is supplied by him along with 

Licensed to Tata Institute of Fundamental Research.  Prepared on Tue May 16 05:43:23 EDT 2023for download from IP 158.144.67.50.



126 HARUZO HIDA 

a concise proof. Here I wish to thank the referee for the suggestion and his careful 
reading of the manuscript. 

Holomorphy of the adjoint L-function was first dealt with by Shimura [Sh75] 
and then generalized to arbitrary n and F by Gelbart-Jacquet [GeJ] (see also 
[Sh94] for another integral expression). The rationality result was dealt with for 
critical values by Sturm for F = Q and Im for general totally real F [St] and 
[I]. Our proof is a cohomological interpretation of the Rankin method studied by 
Shimura and Asai [As], which is generalized to GL(n) by Flicker [Fl] and [F1Z]. 
In the course of the proof of the congruence theorem (Theorem 5.2), we need to 
use a non-vanishing result of twisted tensor L-functions, which follows from a more 
general result of Shahidi [S81], [S88]. 

Here is general notation. We write FA for the adele ring of F. When F = Q, 
we write A for that. The finite part of A is written as A^°°\ and the infinite part of 
FA is written as F^. As a subring of A^00), we write Z for the product of the p-adic 
integer ring Zp over all primes p. For the integer ring t of F , we put r = r 0 z ^ a s 

a subring of F^ . For a number field X, we write Ix for the set of embeddings 
of X into C. We write S x for the set of archimedean places of X and decompose 
E x = EX(R) U Ex(C) for the set of all real places EX(R). For a number field 
denoted by F in the text, which is the base field, we drop the subscript "F" like / 
for Ip. 
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2. Idea of the proof, and preliminaries 

In this section, we first describe how we can interpret analytic integration of 
cuspidal automorphic forms in terms of group and sheaf cohomology theory in an 
algebraic way (Sections 2.1-2.2). Then we define various modular L-functions, and 
we study multiplicative relations among the L-functions we defined (Section 2.3). 
This relation combined with an integral expression gives a key to our proof of 
rationality theorem (Section 2.4). At the end of this section, we describe T-factors 
of L-functions and criticality of L-values in terms of motives (Section 2.5). 

2.1. Integration of cuspidal cohomology classes. Let G be a classical 
linear algebraic group defined over Z. We consider an open compact subgroup S 
of G(Z) of G(A(o°)). We write G(K) + for the identity component of the Lie group 
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G(R). We put G(A)+ - G(A(°°)) x G(R)+ and G(Q)+ - G(A)+ n G(Q), where 
A °̂°̂  is the finite part of the adele ring. Then we study the modular manifold 
associated to S 

Y(S) = G(Q)+\G(A)+/C00+Z(R)S 

for the center Z = ZQ of G and the maximal compact subgroup COQ+ of G(R)+. 
Decompose Y(S) = UaYa into a finite disjoint union of connected components Ya. 
Then we fix a and write Y — Ya. Then Ya = T\3 for a discrete arithmetic subgroup 
r of G(Q)+ and the symmetric space 3 = G(R)+/Z<3(R)Coo+. When it is necessary 
to indicate the dependence on a, we write T ^ for I\ Then we suppose that we have 
a coordinate system (t, x\, ..., 2^-1) {d = dim(y)) of a coordinate neighborhood Us 

around the cusp s of Y such that 

u3 = (t0,oo) x (rs 
3 > d — 1 > 

(for an open interval (to, oo), to > 0) with compact quotient r s \ R d _ 1 for a discrete 
subgroup Ts of r acting on Rd _ 1 . This is the case where G has a maximal Q-split 
torus of rank 1, and the variable t is given by the variable of the unique Q-split 
torus (of a Levi subgroup) in the minimal parabolic subgroup fixing the cusp s. Let 
L be a finite dimensional R-vector space with an action of T. Let w b e a G°°-closed 
p-form on (to,oo) x (Rd _ 1) with values in L decreasing exponentially as t —•> oo. 
We suppose that 7*0; = 70; for 7 G Ts. Here ryuj{x) is the image under the action 
7 : L —> L applied to the value UJ(X). We write 

UJ = ^2 ^%x...ivdxix A . . . Adxip + ^ 0ji~.jP-idt ^dxjl A . . . A ^ J p _ r 

ii<...<ip ji<---<jP-i 

Since do; = 0, 

Then we have 

u&i1...ip\t'>
 x) _ ST^t -I \ f c - l OPii...ik-iik+i---ipV'i x) 

d&i1...ip\t,
 x) j + _ \ ^ ( -\\k-l I ^Pii-'..ik-iik+i---iP 

Joe Ol k=i J^ dxik 
dt. 

Let 0 = EJl<...<jp_SfiPji...jp-i(tix)dt)dxJ1 A . . . A dx3v_x. Then dfl = UJ. Note 
that 0 is invariant under Ts, that is, 7*$ = 7$ for 7 G Ts because t is invariant 
under the action of Ts. Thus for a given a;, we can find a canonical lift 0. Let 
C be the set of all cusps of Y(S). We take an open neighborhood U8 for each 
s G C as above. Let us consider the quotient L = T\(3 x L) given by the action 
7(2, A) = (72;, 7A). We write TT : L —> V for the projection. Then we consider the 
sheaf £ made of locally constant sections of TT. For each cuspidal closed differential 
p-form UJ on Y which is a G°°-section of C 0^ ^p> we take 6(UJ\US) as above so that 
d6{uj\us) — w\us- Then we take a G°°-function <j) : Y —> R such that 0 is identically 
1 if t > t\ with a t\ > to for every 5, and outside U s Gc^s, 0 is identically 0. Then 
we define O^UJ) — Ylsec ^ M c O - The form UJ — d0^(uj) is compactly supported. 
The cohomology class [UJ — d0$((*>)] in H%(Y,C) is independent of the choice of Us 

and 0, because O^UJ) — O^^UJ) is compactly supported for any other choice of <f)f. 
For Q-rank 1 case, we have a canonical choice of t given by the variable of the 
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Q-split torus of G and {x{} coming from Q-non-split torus and unipotent radical 
of the minimal parabolic subgroup fixing s. Thus we have a canonical section 

i:HPusp(Y,C)-HP(Y,C), 

which is compatible with Hecke operator action. The compatibility follows from 
the expression of the Hecke operators on boundary cohomology groups, for example 
for GL(2), the expression is given in [Hi93b, Section 3], and the uniqueness of 
I([LJ}) = [LU - dO^iu)}. 

We now compactify Y adding the boundary oo x ( r s \M d _ 1 ) to Us for all cusps 
s. We write the compactification as Y. Then Y is a manifold with boundary dY = 
Usoc x ( r s \ R d _ 1 ) . Let C be a C°°-class p-cycle modulo dY. By our construction, 
cu — i(u) = dO^uo) is rapidly decreasing towards cusps s. We assume that Y has 
finite volume with respect to the Haar measure on G(R). Then if UJ is rapidly 
decreasing towards cusps s (that is, exponentially decreasing with respect to £), 
Jc UJ converges. We see easily from the Stokes theorem 

(itl) iU= i(UJ)' 
Jc Jc 

If p = dirnF = d, we see that Tr : Hd(Y,A) = A by the evaluation at ^-relative 
cycle Y modulo dY. In particular, if A = C, 

(it2) Tr([o;] ) = f LU = f i(cu). 

This is usually stated for Y smooth (for example, if S is sufficiently small), but 
is valid always, because of the following reason. We take sufficiently small normal 
subgroup r of T of finite index such that Y' = r ' \ 3 is smooth. Then Hd{Y, C) = 
Hd(Y', C)A for A = T / n , and Tr with respect to T induces that of Y. This shows 
the assertion (it2) for Y' implies that for Y. 

2.2. Modular cohomology groups. We summarize here the definition of 
modular cohomology groups and Hecke operator action on them. A detailed expo­
sition can be found in [Hi94] and [Hi88a]. Let F be a number field with the integer 
ring r. We consider the torus T = Res r /ZGm . We fix an algebraic closure Q of Q 
inside C. The group of characters X(T) = Homaig-gr(T,Q, G m ,Q) can be identified 
with the formal free module Z[J] generated by the set / of all field embeddings of 
F into Q. Since any a e I induces an algebra homomorphism a : F ®Q A —> A for 
any Q-algebra A by k 0 a i—>• cr(/c)a, for each n = ^2aeI naa, n as an element of 
X{T) takes a G T(A) to an = fla<j{a)n". Note that T(A) for the adele ring A is 
the idele group F£. Thus T(A)/T(Q) is the idele class group. A Hecke character 
tp : T(A)/T(Q) —> C x is called arithmetic if it induces an element oo(,0) in X(T) on 
the identity connected component T(R)+ of the archimedean part T(M) of T(A). 
This element oc(^) E Z[/] is called the infinity type of ip. We write S^ for the sub-
module of Z[7] = X{T) made of infinity types of arithmetic Hecke characters. For 
each arithmetic Hecke character tp, the field generated by ip(x) for all x G T(A^°°^) 
is a finite extension Q(tp) of Q, which is either a totally real or a CM field. A Hecke 
character uo is called algebraic if UJ(X) G Q for all x G T(A^°°^). There are many 
algebraic characters which are not arithmetic (cf. [Hi94, p. 467]). 

We put 

H = Res r / zGL(2) / r and fl = ^(M)+/C 0 0 + Z / f (E) . 
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As 5, we take 

U0(N) = U0,F(N) = {(a
c
b
d)e H(Z)\c G N} 

for an ideal N oft, where N = N®ZZ. We write Y0(N) = Y0,F{N) for Y(S). For L, 
we take polynomial representations of H. Let Fcl be the Galois closure of F/Q, and 
write xcl for the integer ring of Fcl. Writing / for the set of all embeddings of F into 
Q, for each tc/-algebra A, each a induces a projection a : H{A) —» GL2(^4) which 
coincides with a on r. In particular, H(Fcl) = Yiaei GL2(Fcl) via a \-^ (a(a))a. 
Then over Fc\ each irreducible polynomial representation of H is isomorphic to 

for integer tuples (va) and (nG) with nCT > 0. Here Sym(cr(x))®rifT is the symmetric 
n a-th tensor matrix of a(x). Thus irreducible polynomial representations of H 
are classified by tuples (n,v) of Z[i], where n = J2aeiU(7(J an<^ v = ^2av^a' 
We write K for the pair (n,v) sometimes. We can concretely realize the above 
polynomial representation on an A-free module L(K; A) made of polynomials of 
2[F : Q] variables (X&, Ya)aej with coefficients in A homogeneous of degree nCT for 
each pair (Xa, Ya). We let 7 G H(A) act on P G L(K\ A) by 

-yPiX^Y.) = det(7)^P((X ( 7 ,y a)V(7) t) , 

where 7^ = det(7)7_ 1 and det(7)v = Yladet(a{j))Va. 
By the approximation theorem, choosing a complete set R of representatives 

for the class group Cl(S) = T(Q)+\T(A)/det(5 f)T(E), we have 

ff(A)+= |Jff(Q)+(8;)5ff(R) + . 

Thus Y(S) = UaYa and Fa = T^a)\3, where T^ = tSH(R)t~l n #(Q)+ for 
t = (§0) . When 5 = E/o(N), for a Hecke character </> with ^ ( x ) = x " n - 2 u 

for all x G F ^ whose conductor is a factor of N, we twist a little the action of T^ 
on L(K; A) as follows: 

P(Xa,Ya) ^ rl>N{d)det(*y)vP((X<T,Y<T)tv(>yy) 

i f 7 = (* d) G r ( a ) ' where *I)N is the restriction of ̂  to f j p i v Fp
x C T(A). We write 

this twisted module as L(K, ip; A). To have a non-trivial sheaf, the action of r^a^ has 
to factor through the fundamental group TTI(Y) which is T^/rx. Therefore, the 
center r x of T ^ has to act trivially on L(K, ip; A). The condition: Vocfa?) = x~n~2v 

for all x G F ^ assures this. When 0 is trivial on T(Z), L(K, ip; A) = L(K; A). Thus 
L(K,ip] A) only depends on the restriction of ip to units T(Z) = trx. 

We describe the cohomology groups 

H«(Y0(N),£M;A)), H«(Y0(N),CM;A)) 

and 

Jf»U8p(y0(^))>C(K)V;^)) 

defined in [Hi94, Sections 3 and 5]. Let Q(K) be the subfield of Q fixed by the 
subgroup 

G(K) = {a G Gal(Q/Q)IKCT = (na,vcr) = K}. 
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Let Q(^) be a subfield of Q generated by ip(x) for all x G T(A^oc)), which is a CM 
field finite over Q. We write Q(K,I/J) for the composite of Q(K) and Q(ip). Write 

P(Xa,Ya)= J2 ajX^YteLiK^A), 
0<j<n 

where Xn~^ = Ua X^~^Y^% a5 G A, and 0 < j < n implies 0 < j a < na for 
all a G L Then we let a G Gal(Q/Q) act on L(K,I/J;Q) by 

]T ajX
n-jYj ^ Yl tfXna~~3aYJa' 

0<j<n 0< j<n 

Then <7 takes L(K, ^; Q) onto L(^cr, ipa;Q), where ^ a is the unique Hecke character 
such that ipa(x) = ip(x)a for T(A(°°)) and oo(^CT) - oo(^)<7. Thus the r(a)-module 
L(K,IJJ;Q(K,,IP)) is well defined, and for the integer ring Z(ft,-0) of Q(K,I/J), 

tL(K, V; Z(/c, ^)) = *£(«, ^; Z(«, ^) ®z Z) p | L(«, ^; Q(«, ^)) 

is an Z(AC, ̂ - lat t ice in L(«, T/>; Q(ft, ^)) stable under T ^ (see the paragraph below 
(3.5) of [Hi94]), where t = (§ ?)> a n d the intersection is taken in 

L ( ^ ; A ( ° ° ) ( / ^ ) ) for A ( ~ > ( « , ^ ) = Q ( « , V 0 ® Q A ( O O ) . 

Thus writing £L(v4) = tL(K,ip;A) for tL(«, /0;Z(«, ^)) 0Z(K,^) A w e have the cov­
ering I J a ^ ( ^ ) ~> ^o(^0- We write £(/-c, T/J; ̂ 4) for the sheaf of locally constant 
sections of this covering. Then, if YQ(N) is smooth, the cohomology groups Hq 

and H% are defined in the usual manner, and the cuspidal cohomology group 
H«USP(Y0{N),£{K,IP;C)) is defined to be the subspace of H<t(Y0(N), £ (« , ^ ; C)) 
spanned by cuspidal harmonic forms [Hi94, Section 2]. When YQ(N) is not smooth, 
we take a normal subgroup S C UQ(N) and define H^nsp(Yo(N),C(hi,/ij;; C)) by 
the subspace of ff*usp(y(S),£(«,V>;C)^ fixed by U0{N)/S. Similarly, we define 
H*(Y0{N), £ ( K , ^ ; C ) ) for non-smooth F0(AO- For any Z(K, ^)-subalgebra A of C, 
we define H^usp(Y0(N), £(AC,^; A)) by the intersection of H^usp(Y0{N), £(«, V; C)) 
with the natural image of H%(YO(N),C(K,IIJ;A)). Anyway, as seen in 2.1, we have 
a canonical section 

i : i%sp(Fo(A0,£(K, V;Q) - H^Yo(N),C(n,^,C)), 

and 

^usp(^o(^V), £(«, </>; C)) * ^ u s p (F 0 ( iV) , £(«, V; Z(K, </>))) ®z ( / c ,^ C. 

The cohomology groups H<!usp(Yo(N), £(K,ip; A)) have a natural action of Hecke 
operators T(n) for integral ideals n of r and the action of the center Z(A) [Hi94, 
Section 4] as long as either A is a Q(/s, ̂ >)-algebra or v > 0 ( 4=> t^ > 0 for all 
&), and i is equivariant under Hecke operators. When A is not a Q-algebra and 
u ^ 0, we need to modify T(n) as in [Hi94, Section 4] to preserve integrality. By 
a result of Harder, the cuspidal cohomology group is trivial if one of the following 
conditions is satisfied (i) q < ri(F)+r2{F): (ii) q > n(F) + 2r2(F), and (iii) n ^ nc 
for complex conjugation c (cf. [Ha], [Hi94, Section 2]), where ri(F) (resp. r2{F)) 
is the number of real (resp. complex) places of F. 

We assume that H^usp(Yo(N), C{n^ip\ C)) ^ 0. Since we have an action of the 
center Z ^ A ^ ) = T(A(°°)), we can decompose H^ (Y0(N),C(K,^ C)) into a 
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product of eigenspaces under this action: 

H«cusp(Y0(N),C(K^;Q) = ®H^wp{Y0(N),C{^;C))[^l 

where ip' runs over arithmetic Hecke characters such that ijj' = i\) on T(Z) and 
oo(^') = oc('0). We write hK(N, ip; A)/F for the A-subalgebra of 

Endc(H2usp(Y0(N),£(K,iP;C)M) 

generated by T(n) for all integral ideals n. Again by Harder [Ha], the algebra 
hK(N, ip; A) is independent of q. Let A : hK(N, -0; C) —> C be an algebra homomor-
phism. Then A-eigenspace is non-trivial in the cohomology group. Its dimension 
depends on q and F. To describe this, write E = E F (resp. E(R) = EF(R), E(C) = 
Ei?(C)) for the set of archimedean (resp. real, complex) places of F. We identify 
E(C) with a subset of complex embeddings in / so that each place is induced by 
the corresponding embedding. Note that 

(TGS(M) rGS(C) 

where Ha is a upper half complex plane on which (7(7) G GL2(M) (a G E(R)) acts 
through a linear fractional transformation, and 

on which T{J) G GL2(C) (r G 2(C)) acts as in [Hi94, 2.2]. In [Hi94, Section 
3 (Ml-4)], we defined a space of cohomological cusp forms SKtj(N;ip)/F for each 
subset J of E(IR). Actually, we need to assume that functions in SKJJ(N;IJJ)/F are 
rapidly decreasing towards cusps, which follows from the cuspidal condition [Hi94, 
M4] if F is different from Q or imaginary quadratic fields. In [Hi94], this condition 
is implicitly assumed when F is Q or imaginary quadratic field (see (ra'3) of [Hi94, 
p. 460]). An element / G SK,j(N;ip) corresponds to a real analytic modular form on 
S) holomorphic on the copy Ha at a G J and anti-holomorphic at a G E(R) — J (see 
the remark in [Hi94, p. 60] after (ra'3)). This space, when F = Q, is isomorphic to 
the classical space of elliptic cusp forms. More precisely, SKj(N^) is isomorphic 
to the space Sk(To(N),ipN) of holomorphic cusp forms of weight k = n + 2 with 
Neben character ^ v , which is the restriction of %jj to Z x regarded as a Dirichlet 
character. The isomorphism is given by / 1—• (j){x + iy) = ^ _ 1 / ( ( o i ) ) - Thus the 
space itself does not depends on v, but the Hecke operator T(n) = Tv(n) depends 
on v in the following way: When v = 0, To(n) is the classical Hecke operator acting 
on 5,/e(ro(A

r),'07v) defined by Hecke. Then Tv(n) = nvTo(n). In other words, 
by pulling back classical cusp forms in Sk(To(N),ip]sf) to H(A), we get the space 
S(n,o),i(N,il>) and 

SMAN,il>) = {f(x)\det(x)\lv\f G S ( n j 0 ) , /(iV,^)}. 

When F ^ Q, S(n,v^j(N,ip) does not necessarily have such a simple relation to 

In [Hi94, Sections 2-3], we described a very explicit map 

6j,j' : SK,j{N;^) ^ H^cusp(Y0(N), C(^, i>; C))M 

indexed by J C E(E) and J' C E(C). The linear map 6J^J> is Hecke equivariant 
and takes a cohomological cusp form / to a differential form holomorphic of degree 
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1 in the variables of Ha for a G J, anti-holomorphic of degree 1 for a G S(E) — J, 
harmonic of degree 1 for a G J' and harmonic of degree 2 for E(C) — J'. Thus the 
total degree of the differential form is r\ — \ J'\ + 2r2- We will recall the explicit 
form of 6jj' later in our computation in specific cases. Then, for d— [F : Q], 

6 = ®J,J>SJ,J> : 0 SK,j(N,il>) - ^usp(F0(iV),/:(/.,^;C))M. 
J , J ' : # ( J ' ) = d - g 

Since the A-eigenspace of SK,j(N,ip) is 1-dimensional, this completely determines 
the dimension of the cohomological eigenspace. Since T(n) leaves stable the coho-
mology group, A(T(n)) is an algebraic number in a fixed finite extension. We write 
Q(A) for the subfield of Q generated by T(n) for all n, which is a CM field or a 
totally real field containing Q(ft, ip). 

For a standard Whittaker function W = WK : T(R) + - • L((n*, 0);C) with 
n* = 2ZcrGS(C)(n^ + n^c + 2)cr, / G SK,j(N,ip) has a Fourier expansion of the 
following form [Hi94, Section 6]: 

(F) / ({l f)) = \y\FA Y, *(Zy*'J)W{Zyoo)eF(Zx), 

where £ runs over all elements in F with £a > 0 for cr G J and £a < 0 for cr G E(E) — 
J, y E T(A) with ^ G T(R)+ , n i—> a(n; / ) is a function with values in C supported 
by the set of integral ideals, D = dp is the different of F /Q, and e^ : F^/F —> C 
is the standard additive character with eF(xOQ) = exp(27rv/—TX^ei"x<7)- ^he 
function W is the optimal element in the Whittaker model at archimedean places, 
whose Mellin transform gives the exact T-factor of the standard L-function. Its 
explicit form will be recalled later. This Fourier expansion determines the cusp 
form uniquely. If / |T(n) = A(T(n))/ with a ( t ; / ) = 1, then a(n; / ) = A(T(n)). 
Thus the eigenspace of A is one dimensional (Multiplicity 1) (cf. [Hi94, Theorem 
6.4]). For any automorphism a G Aut(C), we always have fa in SKj(J,j{N,'il)(7) such 
that a(n; fa) = a(n; f)a by the Hecke equivariance of 6 and the rational structure 
of the cuspidal cohomology groups. In particular, Xa(T(n)) — X(T(n))cr gives an 
algebra homomorphism of hKa(N, ipa; C) into C. Sometimes, we call A a system of 
Hecke eigenvalues. 

2.3. Modular L-functions. We fix a system of Hecke eigenvalues 

and define several L-functions of A we will study. The standard L-function of A 
twisted by a Hecke character 7/ : T(A)/T(Q) —> C x is given by 

L(s,\®r)) = 5>(n)A(T(n))Ar F / Q (n)- s 

= J ] {(1 - apV(p)NF/Q(p)~s)(l - 0pV(p)NF/q(p)-s)y\ 
P 

which is continued to an entire function on the whole complex s-plane and has a 
functional equation if A is primitive (that is, A gives eigenvalues of a primitive form 
of conductor N; cf. [Mi]). When rj is arithmetic with infinity type —w G Z[J], 
A 0 r] : T(n) i—> 77(11) A (T(n)) for n prime to the conductor C = C(rj) of rj gives an 
algebra homomorphism of hK>(N D C2,i/jr]2] C) into C for K! — n + (0, w). Thus we 
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can view L(s, A (g) 77) as the standard L-function of A 0 77. The adjoint L-function is 
given by 

L(s,Ad(A)®7?) 

/ _ ap/VVpA / _ V(p) \ ( _ a^0Py(p)\ I " ' 
^ NF/Q(p)*J\ NF/Q{p)*)\ NF/Q(p)°)j ' 

which again has a meromorphic continuation to the whole complex s-plane [Sh75], 
[Sh94] and [GeJ]. It has a functional equation after adding finitely many Euler 
factors if necessary. For another system fj, of Hecke eigenvalues, we define the Rankin 
product of A and fi. Writing the Euler p factor of L(s,fi) as (1 - ap/7V(p)s)_1(l -
0'p/N(p)a)-\ we put 

*M®A*)=n(fi-»XOfi-vap/M 
Li\y NF/Q(pyJ\ NF/Q(P)°) 

V NF/Q(p)'J V % Q ( P ) V J ' 
For each primitive Hecke eigensystem A : hK(N,ij)\C) —> C, it is a well known 

conjecture that there exists a compatible system of (-adic representations p = p(X) 
of Gal(F/F) with coefficients in Q(A) such that L(s,p <g) rj) = L(s,\ <g> rj) (cf. 
[Hi94, Section 1]), where F is the algebraic closure of F. This conjecture is known 
for totally real F (see [BR]). If such p exists, L(s,X 0 p) = L(s,p(X) 0 p{p)) 
and L(s, Ad(A)) = L(s, Ad(p)), where Ad(p) is a three dimensional representation 
fitting into the following exact sequence: 

0 -> Ad(p) -> p <g> p v
 -H. id -> 0 

for the contragredient p v of p and the identity Galois character id. 
We take a semi-simple quadratic extension K/F. We allow K — F 0 F . We 

write a for the quadratic character of T(A)/T(Q) associated to K/F if FT is a field. 
If K — F 0 F , we simply put a = id for the identity character id. We write 1Z for 
the integral closure of r in K. We put G = Res^/ZGL(2)/-^. If K is not a field, we 
simply agree to put G — H x H. We consider the cohomological modular forms on 
G. Thus if G = H x H and N = C 0 C C ft, then 

where / <g) g{x,x') = f{x)g(x') on G(A). We define l o ^ A Q as above for G if 
K is a field, and otherwise, lo,K:(iV) = >O,F(C) X YO,F(C)- We write IK for the 
set of all non-trivial algebra homomorphisms of K into Q. Thus if K = F 0 F , 
i x = / U / canonically. Let p : hK(N,x'^)/K -^ C be a system of Hecke eigenvalues 
for AC G Z[//<:]. Suppose that K is a field and the compatible system p = p(p) 
exists. Extending a non-trivial automorphism of K/F to u G Gal(F/F) , we put 
p°(g) = p(aga~1). Then # = p®pa is equivalent to ^ a , and it extends to Gal(F/F) 
in two ways. Realizing \I/ on V 0 V for a two dimensional vector space V on which 
p acts, one of the two extensions, writing \I/+, satisfies ^/+(a)(x <S> y) = y ® p(o2)x 
and the other is given by \£_(cr)(:r ® y) — —y 0 p(cr2)x (cf. [Gh, 5.1]). We write 
the L-function of \I/+ twisted by a Hecke character 77 of F as L(s, (/i 0 A O + 0 ^)-
Then L(s, #_ 0 77) = L(s, #+ <g) 0̂ 77) = L(s, (/i 0 /ia)+ 0 0̂ 77). See [Gh, 5.1] for an 
explicit description of Euler factors of L(s, (p 0 pa) + )- Although it is assumed in 

= II< 

Licensed to Tata Institute of Fundamental Research.  Prepared on Tue May 16 05:43:23 EDT 2023for download from IP 158.144.67.50.



134 HARUZO HIDA 

[Gh] that K is an imaginary quadratic field, the computation (and the description) 
is the same for general K/F. We have 

L(s, fJL 0 fjLa) = L(S, (fJL 0 / v ) + ) L ( s , (/i 0 fJLa)+ 0 «)> 

where /i a is a system of Hecke eigenvalues given by pa(T(n)) = p(T(xxa)). When 
K = F © F , we just put 

L(s, (/i 0 /v)+) = L(s, A 0 A) 

if // is given by A 0 A' taking (T(n),T(m)) to A(T(n))A/(T(m)) for two systems of 
Hecke eigenvalues A and A' of H. Then we have 

(Rl) L(s + 1, (fi 0 /i(J)+ 0 77) = L(2s, XFV2)LK/F(S, P, rj), 

where \F is the restriction of x to F£ and 

LK/F{s,n,rj) = Y,ri{n)ii{nn))NF/Q{n)-a-1 

n C t 

for a Hecke character 77 of F. Here n runs over all ideals of r (not 1Z) extended to 

n. 
2.4. Idea of the proof. There is a way to get an integral expression of 

L ( l ,Ad(A)0a ) 

for a Hecke character a with a2 = 1. Here we summarize the idea, and in the 
following sections, we shall give details of computation. This integral expression 
gives a key to prove the rationality theorem. Let p — A for the base change lift of A 
of H to G. Here we need to invoke the assumption that A remains cuspidal. When 
K is a field, A is given by Jacquet [J] so that L(s, P(X)\K 0 ?̂) = L(s, A 0 77) for all 
arithmetic Hecke character 77 of K, where p\x is the restriction of p to Gal(F/K). 
If G = H x H, we simply put A = A 0 A. Then \ = ip o NK/F and \F — ^2• 
We write /? = (n,?;) G Z[i#]2 fc>r the weight of A. We have the restriction map 
ResF : 1\IK\ ~^ %[I] which takes a to its restriction to F , where F is embedded 
into F © F diagonally if K is not a field. Writing Inff : Z[I] -> Z[IK] for the 
inflation map: Inf(a) = J2TeiK T|F=crr> w e s e e t n a ^ ^ = Inf^7 1)- Then we get, 
again looking into Euler factorization 

LK/F(s, A, 7))L(2s, (V^)2) = L(s + 1, (/i 0 Ma)+ 0 *7) 

= L(s, a^r])L{s, Ad(A) 0 ^77) 

up to finite Euler factors. Let A0 be the least common multiple of the conductor of 
77 and N D r. Since discrepancy of Euler factors can only occur for primes dividing 
Ao, we get the following exact identity: 

(R2) LNo(2s, (ipr])2)LK/F,No(s, A, 77) = LNo(s, a^rj)LNo(s, Ad(A) 0 7̂ 77), 

where we write LTV0 (S) for the L-function obtained from the original L(s) by remov­
ing Euler factors for primes p dividing A0. Thus assuming 0^77 = id, LJV0(

S> aiprj) 
has a simple pole at s — 1. Thus we get the following residue formula: 

(Resl) {Ress=1(F,No{s)}LNo(l,Ad(\) 0 a) 

= Ress=i { CF,TV0 (2S)LK/F,N0 0> X atp'1) \ . 
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Thus we need to compute the residue of the right-hand side of (Resl). Keeping 
the assumption that aipr] — id, we use for that purpose a pull back integration 
of 6(g) over Yo^(N') (for a suitable N') to get an integral expression of L(s -f 
1, (// ® //<j)_i_ ® 77), where g is a suitable cohomological modular form having Hecke 
eigenvalues related to A. To describe #, we need to express r\ — cr0_ 1 = LppLO for the 
restriction (pp of an arithmetic Hecke character tp of K to F and a Hecke character 
to of conductor 1. We will show later that this is possible in most cases. We write 
w — —oo(ip) and C for the conductor of ip. We put N' = N P\C2 Dx. Then up to 
finitely many Euler factors 

CF{S)L(S, Ad(A) (8) a) = L(s + 1, (A <8> ACT)+ <8> 77) 

= L(s + 1, ((A <8> p) ® (A 0 <p)a)+ (8) a;). 

We choose suitable J C S K ( R ) and Jf C £ K ( C ) SO that 

and 8j7j>(g) gives a cohomology class in H^USP(Y0IK(N HC2), £(/?+ (0, tu),x^2; C)) 
for g = dimYb,FCW). The cusp form p is the image of A-eigenvector / under the 
twisting operator R(ip) and the (cohomological) rationality of 6(f) and 6(f\R(cp)) 
are equal (see [Hi94, 6.8] and the proof of Theorem 8.1). Under the assumption: 
ai/ir] — id, we have a non-trivial sheaf morphism 

ix : £ ( £ + (0,W),XV2;Q\Y0MN>) "+ £ ( 0 , ^ - 2 ; C). 

Thus for a suitable Eisenstein series E(s) giving a global section of £(0,o;2; C), we 
can prove by a Rankin convolution method that the integral 

/ 7r(6j,j,(g))E(s) 
JYO,F(N>) 

gives 
L(s + 1, ((A <g> </>) <g> (A <g> <p)a)+ <8> u) 

up to the canonical T-factor and a constant. Actually, 

E(s) = E(x, s) = uj(det(x))E0(x, s) 

as a function of x G H(A), where EQ(X,S) is the weight 0 Eisenstein series attached 
to the trivial character of the Borel subgroup of H. As is well known, EQ(X, S) has 
a simple pole at s = 1 with constant residue equal to Res s =i £p(s) up to rational 
numbers (see Appendix). Then comparing the residue of the two sides of (Resl), 
we finally for C = C(ip) H r, 

(Res2) LC/(l,Ad(A) ® a) = C0 f n(6j^(g)) det(to(x)), 
JY0IF(N') 

where the constant Co is the product of the Gauss sum G(ipa) and a power of n 
up to rational numbers. Thus if the A-eigenspace iJ^usp(y0,K(Ar), £(/?,%; C))[A] is 
one dimensional, we see that 6(f) = 0(A)£ for a Q(A)-rational cohomology class £, 
and we know the algebraicity of LJV'(1> Ad(A) <g> a) up to 0(A) and a power of TT. 
This happens when K is a CM quadratic extension of totally real F. Let E^(R) 
be the set of real places of K. When F is totally real, we can further decompose 
the cohomology group through the action of C^/Coc^ — {=jIi}

s^(E) into a direct 
sum of one dimensional pieces, and hence we can still prove the algebraicity of 
the L-value. For general K/F, in place of H^USP(YO^K(N), £(/?, x; C)), we can use 
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HC(YO,F{N'),C) = C, which is one dimensional. Therefore similarly we can define 
the period Q(\) and get the algebraicity, although the definition of the transcen­
dental factor Q is not so transparent as the case where F is totally real. This is one 
of the reasons why we have divided our argument according to the shape of K/F 
at the archimedean places as described in the introduction. 

In this paper, we only study the pull back integration of degree q = dim Yoip(N/) 
cohomology class. Presumably the same process for degree q' < q would yield an­
other integral expression of LK/F(S, fi,r]). In this case, the Eisenstein series E(s) 
has to be replaced by an Eisenstein differential form. When K is an imaginary 
quadratic field, Ghate [Gh] treated the case of minimal q', that is, q' = 1 (while 
q = 2) and obtained a rationality result for critical values of L(s, (ji <S> A0 + )> which 
implies rationality of some critical values of L(s, Ad(A) (g) rj). Since our result covers 
the non-critical value L(l, Ad(A) & a) in this case, the two results are disjoint. For 
a general quadratic extension, there are several values of q' between maximal q and 
the minimal one. It is an interesting problem to study the integral for intermediate 
values q'. 

Here, we study extensibility of ty* — aip"1 to a Hecke character ip of K up to 
Hecke characters of F of conductor 1. Here is a general lemma supplied by the 
referee of this paper: 

LEMMA 2.1. Let K/F be a Galois extension. Let J" be the set of archimedean 
places of F which ramify in K. A Hecke character x of finite order of F^ extends 
to a Hecke character of finite order of K if and only if Xa = 1 for all a £ Jn'. 

PROOF. Here is a proof which is a version of the proof supplied by the ref­
eree. For a multiplicative Gal(fC/F)-module A, we write Hr{A) (resp. Hr(A)) for 
the group cohomology group Hr(Gal(K/F), A) (resp. the Tate cohomology group 
Hr(Gal{K/F),A)). Thus Hr{A) is defined also for negative r, Hr{A) = Hr(A) for 
r > 0 and H°(A) = H°(A)/NK/FA. Let Cx = Xx/Xx for a number field X be 
the idele class group. Write Dx for the identity component of Cx- Thus by the 
Art in reciprocity map, Cx/Dx is isomorphic to the Galois group of the maximal 
abelian extension of X. Note that Cp and Cp/Cp D DK a r e closed subgroups of 
CK and CK/DK, respectively. Thus we see 

1. A character x : CF —» C x is of finite order <̂ =̂> x is trivial on Dp; 
2. x extends to a finite order character of CK <=> X is trivial on Cp Pi DK-

By Hilbert's theorem 90 applied to K x , we have H°(CK) = Cp, and hence 
H°(DK) = Cp fl DK- For each complex place a £ £#(C) , we write Ta = {z £ 
Ka = C\\z\a = 1} and D'K for the image of Kx Y\ae^K{£)T° i n CK' B? t A r T > 
Theorem 4, p. 91], Hr(D'K) = Hr(DK) for all r. Applying this to r = 0, we get 

H\DK) = H\D'K)NK/F{DK) 

in DK- Let J be the subset of S ^ made of places above J". Then writing {±1}^ 
for the subgroup of order 2 in Ta, we consider the image D'^ of Kx Ylaej{^}v' 
Then by [ArT, Theorem 5], (or its proof) on page 92, H°{DK) = D'^Dp, which 
shows the assertion. • 

By this lemma, our question of the extensibility is reduced to the study of the 
infinity type of the characters in question. Let Ex be the set of all infinity types 
of arithmetic Hecke characters of a number field X. We write S for Hi?. We have 
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a typical element lx = Y2aei G ^ ^x' ^ e w r ^ e 1 f ° r I F - If a number field X 
contains a CM field, we write XCM for the largest CM subfield in X. Then 

„ J Inf jp/ jpCM(S jpCM) if F contains a CM field 

[ Z l if F does not contains any CM field. 

First suppose that F contains a CM field. If KQM 7̂  FQJVU KCM and F are linearly 
disjoint over FQM, a n d hence, 

Re$K/FEK = ^sK/FIniK/KcM(EKcM) = lnfF/FcMResKcM/FcM(EKcM). 

Note tha t ResKcM/FcM(S#CM) + Z 1 F C M
 = ^ F C A f , which follows from the fact tha t 

for any CM field X , {r — rc}Tejx and lx = J2Tei r S e n e r a t e ^x- Similarly, if K 

contains a CM field but F does not, R e s F S x = H. Thus we have 

(ResK/FEK) + Z1 = E 

if one of the following three conditions is satisfied: (i) KQM 7̂  FCM, (ii) F does not 
contains any CM field, and (iii) K does not contains any CM field. If K contains 
a CM field and KQM — FCMJ we have 

R e s x / F ^ K = 22 . 

Suppose tha t K contains a CM field L and either KCM 7̂  FQM or F does not 
contains a CM field. Let $L be a CM type of L and $ = In f f $ L . Then ® £EK. 

Choose any Hecke character £ of infinity type $ , and put /? = £ F | I F 1 , Then we 
have /3a = aa for all a <E J". If oo(^) G R e s ^ S x , then we take a Hecke character 
up' of X with ResFoc((/9 /) = OO(I/J) and ^'(xoo) = #oc for all Xoo G i ^ . Then 
^ V F = ^~1(PF *S °f nn-ite order. Since VK^oo) — x^~2v\ w e s e e ( ^ " " V F ) ^ = 1-
Thus {aip~1ipF)oG — ^oo a n d hence, by Lemma 2.1, we can find a finite order 
Hecke character up" of K such tha t ai[)~lLpF(3 = up"F. Thus a^>_ 1 = ( ^ F ^ fc>r 

<p = (v? /)~V / /C~1 a n d ^ = I |FA- IfooW>) ^ R e s f S x ^ h e n o o ^ " 1 ! I^1) G R e s f S ^ . 
In this case, choosing an arithmetic up' such tha t ^(x^) = # 5 + 2 v _ 1 for all x G F^. 

Then ( a ^ _ 1 | | F ( V ^ F ) - 1 ) ^ — 1 for a n ^ G J " and hence, by Lemma 2.1, we can 
find a finite order character up" of K such tha t a^~l\ |^1(^ /

i?)""1 = </?F. Thus again 
we get aip^1 = upFuo for up = up' up" and uo = \ \FA. 

Now suppose tha t F does not contains any CM field and J" ^ 0. Then 
R e s ^ S x = Z l + S and n + 2v = m l for an integer m. We see tha t m is even 
if and only if n + 2v G R e s ^ S ^ . Suppose tha t m is odd. Then (aip~l\ \F

m)a = 1 
for all a G J " . Thus by Lemma 2.1, we can find a finite order Hecke character up' 

such tha t aip~1\ \^™ = up'F. Thus c e ^ - 1 = upFuo with up = Lp' and uo = | |™ . If K 

contains a CM field and m is even, we can argue in the same way, replacing m by 
m — 1 and requiring oo (up') = <I>. 

Now suppose only tha t OO(I/J) G R e s F £ ^ . Thus by the above argument, if there 
exists a finite order character uo of conductor 1 such tha t a ^ = c^oo, we can find an 
arithmetic character p) of K such tha t aip~l = (pFuo. In particular, if a^ is trivial, 
then we can find up and uo. 

Note tha t oo(^) = — n — 2v and n = nc by the unitarity of cuspidal automorphic 
representations if H^usp(Y0(N), £(/£, -0; C)) 7̂  0. Thus we see tha t if x G i ^ + , then 
x n G i71

cJ+ for the identity connected component X ^ + of X ^ . Thus we have a 
unique positive square root xnl2 of x71, and there exists a Hecke character up' of i^ 
such tha t up'^Xoo) = x% v for all x^ G K^+- Then 5 — ^(/9F is a finite order 
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character. In particular, if J" = 0 (for example, if F is totally imaginary), we can 
find a finite order Hecke character <p" with as = p)"F, and hence aip-1 = ipp for 
if = (^'((p")-1. We record what we have proven as follows: 

LEMMA 2.2. (o) Suppose that oo(<0) G R e s ^ S ^ . If there exists a finite 
order character uo of conductor 1 such that a^ — UJOQ , we can find an arith­
metic character (p of K such that OL^~X = (ppuo. In particular, if a^ is 
trivial, then we can find ip with a^~l = tpp-

(i) Suppose that K contains a CM field. Suppose either that KQM ¥" FCM or 
that F does not contains a CM field. Then E = Z l + R e s ^ S ^ . Moreover 
we can find an arithmetic Hecke character ip of K such that ipF^\ \FA = OL. 

(ii) Suppose that F does not contain a CM field and there is a real place of F 
which extends to a complex place of K. Then H = Z l + R e s ^ S ^ . Write 
n + 2v = m l for m G Z. Then we can choose tp and UJ, up to finite order 
characters of conductor 1, so that a _ 1 /0 = Lppuj and 

||™ if m is odd, 
| |™-1 if m is even and K contains a CM field, 

0 if m is odd, 
3> for a CM type <I> if m is even and K contains a CM field. 

(iii) If F is totally imaginary, then we can find an algebraic Hecke character ip 
of K such that p)pi\) — a and oo(ip) = l /2(n + 2v). 

2.5. Motivic interpretation and criticality. We already mentioned the 
conjecture associating A to a compatible system p(X) of [-adic Galois representa­
tions. As is well known, we can state a stronger version of the conjecture in terms of 
pure motives of dimension 2. This is a special case of a generalization by Langlands 
of the Shimura-Taniyama conjecture, because H1 of an elliptic curve is a rank 2 
motive. A precise statement can be found in [Hi94, Conjecture 0.1]. The point of 
the conjecture is that there exists a finite extension E/Q(X), which is either totally 
real or a CM field, and a pure simple rank 2 motive M(A) with coefficients in E 
such that L(s, M(A) <g> rj) = L(s, X<8>rj). In particular, the system p(X) is obtained 
from the etale realization of M(A), and the Hodge type of M(A) ®F,a C is given by 

(na + 1 + Va,Vac), (Va.ria + 1 + Vac) 

for complex conjugation c of C Thus w = na + 1 -f va + vac is the weight of 
M(A) and is independent of a, which is known without supposing the conjecture. 
Then the Galois representation Ad(p(A)) corresponds to a rank 3 motive Ad(M(A)) 
sitting inside M(A)®M(A)~ for the dual M(A)V of M(A). The functional equation of 
L(s, Ad(A)) has the T-factor exactly equal to that predicted by the theory of motives 
[GeJ]. To describe the T-factor of L(s, Ad(A) <g> rj), we write 77̂ (—1) = - ( - 1 ) ^ 
with vG e {0,1} for the restriction rja of n to Fa for each a G Ejp(R). Then the 
T-factor of L(s, Ad(A) ® rj) coincides with that of L(s, Ad(M(A)) ® rj) and is given 
by, for a finite order character rj 

(T) r(s,Ad(A)®77) = n r c ( s + n a + l ) x J ] Tc(s)2 x J ] TR(s + ^ ) , 
crel crGE(C) crGS(E) 

where Tc(s) = (2TT)-ST(S) and TR(s) = TT-S^T(S/2). Since Ad(M) is self dual, the 
functional equation gives the reflection: s 1—> 1 — s, which is known to be true for 
L(s, Ad(A) (8) rj) with finite order 77. A motivic L-value L(ra, M) at an integer m 

-
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is called critical if the value of the T-faetor at m and at its reflection point (of the 
functional equation) is finite. Therefore L(l, Ad(A) 0 77) is critical if and only if F 
is totally real and va — 1 for all a G 7 (that is, 77 is totally even). Moreover we have 

r( i ,Ad(A)®i,) = ^ 

ord s = 0 r ( 5 , Ad(A) 0 77) = #£_(7/0 + 2r2(F), 

where ords=o is the order of the pole at s = 0; T,-(r}) — {a\ua = 0}; H+(^) = 

{a\va = 1}; fe = E . G / K + 2)(r; rF(fc) = IL r (M; ^ = EL***; and for a 

subset X of 7, x x = x # x . The number ord s =or(s, Ad(A) 0 77) is a good measure to 
know how the value L(l, Ad(A) 0 rj) is far from being critical. It is interesting that 
the period Ct(X) defined independent of ords=or(.s, Ad(A)07?) in purely automorphic 
way gives the Beilinson and Deligne period if one admits the various conjectures 
including the above one and the Deligne-Beilinson conjecture for motivic L-values 
[RSS]. Moreover, we can prove a very close relation of the L-value L(l, Ad(A) 0 a) 
to the congruence of cohomological cusp forms and hence, presumably, to the Selmer 
group of Ad(A) 0 a if K is quadratic over Q (see Section 5). This is striking 
because the definition of Q(X) is topological (and automorphic) and has nothing 
to do, in an apparent way, with the algebro-geometric property of Ad(M(A)) 0 
a. Thus the quantity fi(A) should be very close to the volume at infinity of the 
Tamagawa measure (of Bloch and Kato) of Ad(M(A)) 0 a divided by the order of 
i7°(Q, (Ad(M(A)) 0 a) 0 Q/Z) as in [BK, (5.15.1)]. 

3. Imaginary quadra t ic case 

Let K be an imaginary quadratic field with discriminant — D (D > 0). Thus 
the different D of K/Q is generated by \J—D. We write a for the unique non-
trivial automorphism of K. Then H = G L ( 2 ) / Q and G — Resx/QGL(2)/x. We 
write SK{N,\)/K f° r the space S^^(N,x) of cohomological cusp forms on G(A) of 
weight /?. Let %[) : QX \AX —> C x be a Hecke character such that ^oc(^) = x~n~2v 

for all x G Mx. We put x = ^ ° ^K/Q a n d consider the isomorphism for /? = (n, v): 

6 = 6U : SK(N,X)/K = H2
CUSP(Y0,K(N),C^,X;Q)[X]-

We write 7 = 7Q = {r} and use the same symbol r to indicate a fixed extension 
of r to K. For complex conjugation c of C, or — re. Then x is a n arithmetic 
Hecke character whose oo-type is — n — 2v = —nTr — nTrc — 2vTr — 2vTrc for 
0 < n = nTr + nTrc G %[IK] and v = vrr + vTrc G Z[7#]. Let / G S^(N,x) be 
a cusp form, and write f^ G 5^(r^ a \x) f° r the classical cusp form corresponding 
to / (see [Hi94, 3.5]). In other words, we consider f(a\w) = / ( ( o ? ) w ) f° r 

w G SL2(C) C GQR) and a G R C T(A(°°)) (see 2.2). The Fourier expansion of / W 
is given as follows (cf. [Hi94, (6.1)]): 

/ ( 1 ) H = | i / r i l / k A | £ SL(Sy*,f)CVW(Zy)eK(Zx)\, 

where w = t/"1/2 (g f) € SL2(C) and 

0<a<n* ^ ^ ^ ^ ^ i l 2 / | / 
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with values in L((n*, 0);C) = ]TQ C S ^ ^ T " . We now write down S(f^) fol­
lowing the process described in [Hi94, Section 2.5]. For that, we write f^ = 
E o < . < n * / 4 n i ) ^ * - a ^ a n d 

(XTV - YTU)UT (XTCU + YTCV)nT (AV - BU)2 

= ^ {( - i^(n r ) i r^->y^r-^^x J2 (nT) 
0<jT<n ^TS 0<jTC<n^rcS 

X%-i"Y£cUnT-jTcVJTC} x (A2V2 - 2ABUV + B2U2) 

_ V ^ / j_yV [ ] J ^ n - j y j r y n r - j T - | - j T c + 2jry-nT+j r- jT C^2 

0<j<n ^ ' 

where (^) = (";)(£;)• Then replacing UaVn*~a by ( - l ) n * - a ^ 1 } , (A, B) by 

( y - 1 / 2 ^ , ? / - 1 / 2 ^ ) , and (,42, AB,£ 2 ) by y~x{dy A dx, -2dx A dx, dy A dx), we have 

0<j<n ^ ' 

- fnT+jT-jTC+iy~2dx A dx + fnT+jT-jTC+2y~2dy A dx), 

where w acts on (XT,YT,XTC,YTC) as 

0 * ^ (AT , y r , A T C , JVC) i—> ( A r , y r , A T C , y r c j i n ^ , 

Now we restrict 6(f^) to the upper half complex plane fj from 3 = Wr and write 
the pull back as S(f^)\q. Then we have, for w as above 

*( / ( 1 ) ) IQ = 

{-l)^w £ ( - l ) J ' " ( n )A- B - ^^{ / n T + j r _ j r c +/nT+jV_JTC+2}j/-2dyAda;. 
0<j<n ^ ' 

This differential form has values in 

L(K,X-X)\S) = L(K,XF;C) ® L(K;C). 

Noting that \F = ^ 2 , we know that 

L(/«, XF; A) 0 L(«; A) ^ 0o<i<nT£((2n r - 2%, 2vr + i), ̂ 2 ; A) 

for any Q(ft,-0)-algebra A [Hi94, (11.2a)]. In order to write down the projection 
to L((0, 2vT -f n r ) , XF ; ^4), we introduce a differential operator: 

a2 s 2 d2 d2 

V = dXTC<9FT 8XTdYTC dXardYT dXTdYaT 

Following the expression of the projection in [Hi94, p. 498], it is given by (n r!)~2 Vnr 

Thus we need to compute (V n r 6( /^ ) |Q) . We see 

Q2 \ k / Q2 x m~k 

0</c<m X N 
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and kl^id/dT^T171 = {^)Tm-k. The differential operator V decreases the degree 
by (1,1) either in (XT,YaT) or in (XaT,YT). Thus applying V to a monomial nT 

times, we see 

vnrXn-jY3 = o unless nT = jT + j a T . 

If nT =jr + jar, we get 

(nT\)-2^X^-^Y^X^-^Y^ = (-l) i T^)2 ) 2fr) = ("W^) • 

Thus noting the fact that 

Vn-(wP) = Vn^P if det(w) = 1, 

and writing j for j r , we have 

( n T ! ) - 2 ( V ^ ( / « ) | Q ) 

= E (n-) {nT\)-2Vn*Xn'-*Y>XicYZ-1 {f2j + f2j+2}y-2dy Adx 
0<j<nT ^ 3 ' 

= E (nj)(f2j+f21+2)y-2dyAdx, 
0<j<nT 

which is the explicit form of the pull back differential form we have written as 
7r(6/,J'(/)) in Section 2.4. 

Now we start computing the integral fY ,N,, Tr(6jtj'(f)).We put 

$ = H(Q) n U0(N')H(R)+ = To(N') 

for H = GL(2) /Q and N' = N n Q. Then KO,Q(^ ' ) = * \ S - We now define 

which is the stabilizer of the cusp oc in <£. Then we look at 

/ (nT\)-2(v*6Ull))\Q)va= E (n-) r I (hj+f2J+2)dxys-~2dy. 
•/*=o\£ V ' 0<j<nT V J / A) JO 
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Now we assume that f\T(n) — ti(T(n))f for a system of Hecke eigenvalues /i of G 
and / is normalized so that a (n , / ) = /i(T(n)). We compute 

j™ j f2jdxy-2dy = J2 tiTm)C*(j£ 
££K> 

pOO pi 

• / ^+sK2j__nT_1(47r|e?/|) / e(Tr(Ox)dxdy 
Jo Jo 

= DVT Yl l^(T{m))m-2vsgn(m)n-+1-2j 

0^m£Z 
poo 

Jo 
oc 

= DVr (1 + (-l)^+!+2-) J2 ^(T(m))m-2v 

7 7 2 = 1 

poo 
• / yn-+ 8 t f2 j_n T_1(47rir1 /2 |my|)d J / 
./o 

(4TT JD- 1 /2)«T+S+I ^ 2 

/ 2 n I + s + 2 - 2 j \ 

where w(a) = |a|£T+2l,T and thus w((£)) = |^|-»r-2iv ( s e e Lemma 2.2 (ii)). Similarly 
we get 

/o j0fw****V= (4^-i/̂ m r l -^"J 

• r l - l i/c/Q(s , /x, w). 

We see from T(s + 1) = sr(s) that 

r (8 + 2i\ r p " r + 8 + 2 - 2 j \ + r / s + 2j + 2 \ r / 2n T + s - 2j 

2nT + s - 2 J r / s + 2 A r (2nT + s - 2j 

s + 2JT / s + 2 A r ^2nT + s - 2j 

= (nT + S)r ( ^ - j r (̂  

Note that by [Hi94, p. 505] 

y (m)T (LtM) r f2™ + * ~ 2 A = r ( f ) r ( f ) r ( 8 + m)_ 
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This shows 

/ (nT\)-\^6(f^)\Q)ys 

_ (i + (-i)nr+i+2v^2nT+s-iDvT r(§)r(§)r(s + nT +1) 
(47rD-1/2)n7.+s+i T(s) 

because (cf. (r) in 2.5) 

£ K / Q ( S > M , U ; ) , 

(n r + s 
r(f)r(f)r(g + nT) = r(f)r(f)r(s + nT + i) 

T(s) T(s) 

We now apply convolution method and rewrite the above integral as an integral 
of the product of (nT\)~2(Vn"rS(f^)\Q) and an Eisenstein series. There are two 
ways of associating a Dirichlet character to a Hecke character £ of Q. Let C be a 
positive multiple of the conductor C(£) of £. Restricting £ to Yleic^ C A x , we 
get a character £c of (Z/CZ) x . On the other hand, for each prime £ prime to C, we 
consider £^ G Ax which is equal to 1 at all places dividing C and coincides with £ 
outside C. Then £* :£ ^ £(£{c)) induces a Dirichlet character £* : (Z/CZ) x -> C x . 
Since £(£) = 1, £* = f̂ 1- We note that L(s-00(f ) , 0 = E^°=i f W ^ " s = £(«,£*) 
identifying SQ with Z via r H 1. Let A/7 be a positive integer generating i V n Z 
and ^2

N, = (XQ)AT' be the restriction of x to Z x . We extend ipN' to $ so that 
^N' : (c d) ^ V>JV'(d)- We have 

/ (rMrVnT*(/(1))ta)yfl = / X) {K')"2(vn^(/(1))|Q)ya}o7 
7 G $ o o \ ^ 

/ (nT!)-2(V^(/«)|Q)ys £ ^(7)|j(7^)r2s . 

Thus writing 

E(s) = E(8,1>lfl)=LN,(28,{r)2)ya £ ^ ( 7 ) b ' ( 7 ^ ) r 2 s , 
7<E<I>00\<I> 

we get 

(nr\r2(Vn*6(fM)\Q)E(s) J 
_ (1 + (-l)nT + l+2v)2nT+8-lDvT F ( f ) r ( f ) T ( s + n r + 1) 

(47rL)-1/2)nr+s+i ffV) 

• L(s + 1, (// ® / i a ) + 0 a;). 

This follows from (i?l) because a; = | \™ for m = n r + 2fr and 

LJV/(2S, ty;*)2) = LN,{2s, ( ^ ) 2 ) = L ^ ( 2 5 , X Q ^ 2 ) . 

On the other hand, we have 

E(z; s, ifa,) = -ys J2 ^2
N>(n)\mNz + n|~2s . 

( m , n ) G Z 2 - ( 0 , 0 ) 

Licensed to Tata Institute of Fundamental Research.  Prepared on Tue May 16 05:43:23 EDT 2023for download from IP 158.144.67.50.



144 HARUZO HIDA 

As will be seen in Appendix (see also [Hi93a, Chapter 9, p. 293(1)]), the Fourier 
expansion of the Eisenstein series is given by 

E{-w-z'a^N')=2 N {27vy) w 
+ Fourier expansion with coefficients in entire functions of s. 

This shows that 

Resa=1E(z;s,<<l>2
N,) = 2" W ^ i V ' ) ^ , , ^ , 

where 6£^ is 1 or 0 according as e = e' or not, and <j> is the Euler function. From 
this we get, if n + 1 + 2v is even, 

(Res3) Res s =iL(s + 1, (/i (g) /v)+ 0 ^ 0 

(2itD-l/2)n+2(t)(Nf) 
\*M [ (nTl)-2(Vnr6(fW))\Q. 

Let (f : KX\K^ —> C x be a Hecke character of infinity type — w with conduc­
tor C — C(ip). We replace / in the above formula by the twist g = f\R(ip) G 
SK+(O,W)(NnC2iXP2) defined in [Hi94, p. 480] whose Fourier coefficients are given 
by a(n, f\R(cp)) = G(<£>)a(n, f)<p{n). Here G(ip) is the Gauss sum given by 

G(ip) = ^{dy1 ^2 ^Pc(u)eK(d~1u), 
ueR 

where R is a complete set of representatives of C~l/7Z in IIpic^-p an<^ ^ ^ ^ A 
with d^ = 1 such that d7Z is the different D = DK of if /Q. We write N' for 
the positive generator of N D C2 D Z. Then we have from [Hi94, (6.8)], writing 
E(s) = E(s,(^)2

N,), 

[ (nT\)-2(Vn*6(gW)\Q)E(s) 

(1 + (_1)n+l + 2V+Res(«;))2n+s-ljD^A/Z^i;G(v?) 

r(f)r(f)r(s + nT + i) 
(47rD- 1 /2)n r + s +i 

L C / (5 + 1, ((// 0 <£>) ® (/i (g) </?)a)_ 
r(s) 

where C" = C n Z, and CJ(X) = |x |^+2^+R e s(™) w riting Res(^) for Res^w G Z. 
If V^QU; = a and u; = | | ^ + 2 ^ + R e s ( - \ then 1 + (_i)n+i+2.+ResW = 2? a n d t h e 

above integral does not vanish trivially (it could vanish by a different reason). Now 
as in (Res2) in 2.4, we get 

PROPOSITION 3.1. Let F = Q and K = Q(y/—D) be an imaginary quadratic 
field with discriminant —D and K = (nTT,vrr) G Z[7] with I = {r}. Let (p be an 
arithmetic Hecke character with oo((p) = —w G TL\LK\ and the conductor C. Let 
X = ijj o NK/Q for an arithmetic Hecke character ip with ^oo^) — X~UT~2VT for 

all x G A ^ = Mx . Suppose that a = (pquuip with uo{x) = |x|^T Vr W and 
a = (——). If a primitive system \i : h^(N, x; C)/x -^ C is a base change lift of 
X : hK(NQ^2p'1C)/Q —» C ; then we have 

(n T ! ) - 2 (V^%( 1 ) ) | Q ) = C0-1LC ' ( l ,Ad(A)®a), 
YO.Q(.N') 
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where g = f\R(ip) for the normalized primitive form f with f\T(n) = fi(T(n))f for 
all n C 1Z, N' is the positive generator of N DC 2 H Z ; C = C H Z and 

Co = {2nD-l/2)n^2D~vV:::D~W {G{ip)T(nT + 2)}~1<I>(N')N,~2 

= (x^)oo(V::D)D-1{G^)T(l, Ad(A) 0 a)}~l^N')Nf~\ 

If /J, : /i«(iV, x; C)/x —• C is not a tot of any base change lift, then 

f (nr!)-
2(V^%W)|Q)=0. 

JYo^(N') 

PROOF. We only need to show the vanishing when \i is not a base change lift 
from H. We follow the argument in [HaLR, 3.12] (and [Fl, Section 5]). For that, 
it is sufficient to show that L(s, ((// (g) (p) 0 (/i 0 ^)a)± ® k>) is holomorphic at s = 2. 
Since /i(g)<£ is not a base change lift, we may rewrite \i for //(g)<£?. Then we see, writing 
H! — H+(0,w) = (n',*/) for the weight of/i, L(s, (/i<8)/x<j) + (8)u;) = L{s-\-m, (/i(g)/za) + ) 
for m = nT + 2vr + Res(ii;). Note that m i x = n' + 2?/ + ?T/C + 2?/c. Looking into 
Euler factorization, we get 

L(s, fa ® fi,(7)+)L(s, fa <8> fjia)-) = L(s , / / (8)^) 

with the notation of 2.3. Since fi ^ /j,a for non-base change /i, L(s,fi 0 fia) is an 
entire function of s ([J], [U] and [GeJ]). We show that L(s , ( / i0ju)_) is entire. 
For that, we recall a result in [Gh]. Let (j) : hKn (M, £; C) —•> C be a system of Hecke 
eigenvalues of weight K" = (n",v") for G. Then writing 

S' = «50,j : SK..(M,£) * Jf/c
1

usp(y0,K(M),£(K"^;C))[e] 

for J = { T } , we have 

/ [«'(h)A2<7200] 

= dT(s + < -f 2)r ( ^ ) r ( s 4- 2 ) L « + Res(i/') + s, (0 0 ^ ) + ) , 

if < = Res(i/') mod 2 [Gh, 7.3(21) and 7.4], where /i satisfies h\T(n) = cf>(T(n))h. 
Here ^ ( s ) is a degree 1 Eisenstein differential form of weight 2 which is finite at 
s — 2 and Ci 7̂  0. We choose (pf such that ip'F{{m)) — a(m)mRes(w ) for all m G Z. 
Then Res (it/) is odd, and for 0 = ji 0 <£>', 

L(rc" + Res(i/') + s, (0 0 0 a) + ) = L « + Res(v') + s, (/x 0 /v)-)« 

We can check the condition n" = Res(t>") mod 2 using the fact that Res(w') is odd 
and ippQOJ = a. This shows the holomorphy of L(s, (//0/xcr)_). On the other hand, 
by a result of Shahidi [S88, Theorem 5.1] and [S81, p. 564] (see also [Fl, Section 
5] and [F1Z]), L(s ,( / i0/ i f f)±) does not vanish at m + 2. Then the result follows 
from the holomorphy of L(s,/J,<8> fj,a). • 

Let i be a Dedekind domain in C containing the values fi(T(n)) for ideals 
n C ^ . Then it is easy to see that A contains %(n) for ideals n c ^ . We further 
suppose that H2

USP(YO,K(N), £(/?,%; A))[/i] = A£(/JL). This condition holds for dis­
crete valuation rings A and the integer ring A of sufficiently large finite extension 
of Q(/i). We define n 2 ( / ^ ; A) by 

«2(/p) = n2(^;A)e(Mr, 
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where £(p)p is the Galois conjugate of £(/z) under the cohomological rational struc­
ture, and similarly, fp is the Galois conjugate of / under the rational structure with 
respect to Fourier expansion. This is the definition of modular (second) periods in 
imaginary quadratic case. We put £t2(fjL', Q(/J>)) = (^2(^5 Q(M P ) ) )P a s a n element 
of Q(p) 0 Q C = Yin C, where p runs over all embeddings of Q(p) into C. Since 
R{ip) sends H*usp(Y0,K{N),C{^X', A))[p] into 

as seen in the proof of Theorem 8.1 of [Hi94], 

G ( ^ ) 0 2 ( M ® v>; Q(M ® y>)) = 0 2 ( M ; Q(AO) 

in Q(/x 0 cp) 0 Q C up to factors in Q(/i ® <p)x, where G(y>) = (G((pp))p G Q(<p) 0 C. 
For each p G Aut(C/Q), we take m(p) G Z x such that the Artin symbol 

[ra(p),Q] coincides with p on the maximal abelian extension of Q. We now look 
into the ratio: G((f)/G(aip~1). We conclude from a^~l = (pqcu with uo of conductor 
1 that 

G(<p) V <p{m{p))G{pP) G(^) 

KG(oal>-1)) a^{m{p))G{{a^-l)p) G ( a ( ^ ) - 1 ) ' 

Hence G ^ / G ^ V " 1 ) £ QO)- We then put 

(X^) (oo)(VZID)DT(1, Ad(A) 0 a)LC/ (1, Ad(A^) <g> a) 
L(A') 

G(a^)n2(A^;A) 

Now assume that A is a valuation ring in Q(A). In the process of proving Proposi­
tion 3.1, the only point where we might get a denominator in the L-value is through 
the maps: R(<p) and (n r!)~2Vn r . Thus if cp = id and the residual characteristic 
of the valuation ring A is prime to n r!, we get an A-integral value. Then from 
Proposition 3.1, we conclude 

COROLLARY 3.2. If A = Q(A), we have, for all p G Aut(C), 

L(A)' = L(A'). 

This shows that {^(A^)}^ G Q(A) ® 1 in Q(A) ®Q C. Moreover, if A is a discrete 
valuation ring in Q(A) with residual characteristic prime to 6(n!) and if tp = id, 
t/ien /or £/ie positive generator NQ of N n Z, 

^ 2 , ( ] V r 1 ( x ) ( o o ) ( x ^ P ) ^ r ( l , Ad(A) (g> a)£( l , Ad(A) ® a) g ^ 

4. Real quadratic case We assume that K = Q(v.D) is a real quadratic field with discriminant D > 
0. Let IK — {T, err} be the set of real embeddings of K for the generator a of 
Gal(if/Q). Let <p : KX\K£ —> C x be a Hecke character of infinity type -w = 
- w r - w r with conductor C. Put a; = | \n

k+
2v+2w identifying Z[7] ^ Z by 

nr <-• n. We keep the notation for A introduced in Section 3. Thus X — ^ ° NK/Q 
and ^oo(^) = £~ n - 2 i ; for x G A£>. Let J be a subset of IK with \J\ = 1. We 
consider a normalized primitive form / G Sk,j(N,x) with / |T(n) = p(T(n))f for 
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all integral ideals n, where K = (n,v) with n — nar + nr and v — var + vr. We 
may assume that J = {r}. Then, for y~1^2 (Q °[) G SL^-Foo)? w e s e e 

/<"(»-i,2(? i 

(^^x,C f fT<o,^>o 

= ( ! / B / 2 | y k A ) _ 1 / ( 1 ) ( - l ) n ( ^ r - zTYT)n{XaT-zaTYaT)ndzTMzaT. 

This shows, as in the same manner in the previous section, 

( n ! ) - 2 ( V W « ) | Q ) 

= {z-z)n\ Y, KT^m^r^M-M\C\ + \eT\)y)eK(Tr(Ox)\dzAdz, 
[cCTr<o,er>o J 

where the summation is taken over £ e Kx with £>
CTT < 0 and £ r > 0. Replacing / 

by 9 = f\R(v), we get 

(n!)"2(Vn% ( 1 ))lQ) 

G{ip)(-2iy)n { ^ / i ( T ( ^ ) ) | ^ e x p ( - 2 7 r ( | r i + \^T\)y)eK(Tr{0x) \ dz A dz 

Then, noting dz A dz = 2idy A dx 

/ (n\)-\^6(g^)\Q)ys 

- - ( -2 i ) n + 1 G((p)(47rL>- 1 / 2 ) - s - n - 1 D v + w r (s + n + l)L(s, /i, 

By Rankin convolution method, writing E(s) = E(s, {ip(f)2
N,) for N' = N fl C2 fl Z 

as in the previous section, we get 

(-2i)n+1G(^)L>v+™r(s + n + 1) 
(47r.D-1/2)s+n+i 

where C = C fl Z. In particular, if // = A, 

/ (n!)-2(V"«5(5<
1))|Q)JE;(S) 

(-2i)n+1G(if)Dv+wT{s + n + 1) 

Lc"(s + !,((//®<p) (g> (//<g)y>)a) + (8) a;), 

(4TTL>- 1 /2 ) 5+n+l 
Lc'(s, Ad(A) ®ipLpQLu)L(s,ipa(pQUj). 
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Thus assuming that a = ipipquj for a = ( —) and comparing the residues at s = 1, 
we have 

/ ( n ! ) - 2 (V"«5( ( / | ^ ) ) W ) | Q ) 

= - ( - i ) ^ ^ ^ ) - 1 ^ 2 v ^ n + 2 " + 2 " + 2 G ( ^ ) r ( l , Ad(A) <g> a)Lc>(1, Ad(A) 0 a) . 

In the real quadratic case, H^nsp(Yo}K{N), £(/?, x; C))[A] is two dimensional. 
Thus we need to further decompose this space into 1 dimensional pieces. As ex­
plained in [Hi88a, Section 7] (see Proof of Theorem 7.2), the finite group S = 
C W C W acts on 3 = G(R) + /C 0 0 + , Sa,j(iV,x) and Fc

2
usp(F0 ,K(iV),/:^,X;^)), 

where C^ (resp. Coc+) is the standard maximal compact subgroup of G(R) (resp. 
G(R) + ). We can identify S = {±1}IK by taking the determinant and S with 
the power set of IK by c i—• {^|cv = +1}. Thus we can think of cJ C I K for 
each J (1 IK- Identifying F^ with R x R via £ i-> (^j^*77"), w e identify 3 with 
HT x WaT for copies of upper half planes Har and Hr- Then for / G S-%,j(N,x)i 
cf(x) = /(arc) for c - (cT,C(TT) with cv e {( V ?)}• T h e n c / G S ^ J W X ) with 
a(n,cf) — a(n, / ) for all n. Thus c takes 5«,j(iV,x) into S?~,cj(N, x)> a n d this 
action of 5 commutes with Hecke operators T(n). When there is a unit £ £ rx 

with £pdet(cp) > 0 for both p = r and a r , cf^{z) = f(a\ez), where ezp = £pz^ 

{^ if det(c ) = 1 
_p p ' I f there is not such a unit, we find e e Fx and 

zp if det(cp) = —1. 
another member a' of the complete set {a} of representatives for CIF such that (i) 
£^det(cp) > 0 for both p = r and J T , (ii) ax = edx, and (hi) cf^a'\z) = f{a\ez). 

We take a character e : 5 —> {±1} and consider the projection 

7T£: F4sp(Fo(iV),£(K)x;^)) - tfcusp W 0 , £ K,X; A M 

given by 7re(x) = # (5 ) 1J2ces
£(c)c(x)- Through the Eichler-Shimura isomor­

phism introduced in Section 2.2 

S'- 0 SKJJ(N;X)/K = H2
cusp(Y0(N),£(^X'X))[x], 

JCIK 

we can attach Fourier expansion to cohomology classes in the right-hand-side of the 
above formula, which we write as H2

usp. Thus (f) 6 #cUSp
 n a s Fourier coefficients 

a(n; </>) for ideals n given by a(n;#(/)) = a (n ; / ) . The action of S preserves the 
Fourier coefficients: a(n;c(0)) = a(n;0). Note that 

cS ( ( / ) ( a ) ) 

= {c}(j / a / 2 |y | / f A)- 1(c/) ( a ' )(- l )"{(X r - z%YrY{Xar -KTYaTr}dzc
T Adzc

aT, 

where identifying S — {±1}IK , we write {c} = YlveI cv and 

Note that, identifying 5 with the power set of IK, if either c — J or — J, the 
restriction 6((cf)^) to S) just vanishes, where J r = +1 and JaT = — 1 because 
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J = { T } . Let c = (—1T, — lcrr)- Then we have 

= (yH/2\y\Kk)-
1f{1)(-z)(-l)n{(XT-zc

rYTnxaT-zc
aTYaT)n}dzTAdzrTT. 

We execute the computation done for S(g^) replacing it by cS(g^) and obtain 

/ (n!)-2 fanc6(gM)\Q) ys = (-l)n+1 [ (n\)~2 fan6(gW)\Q) y°. 

Therefore, assuming e(—lT, —lcrr) = (—l)n+1> M = A and a = iptfqu;, we have 

/ (n!)"2 (vn*s6{{f\R(<p))W)\Q) 

= -{-i)n+l4>{N')-lN'2^/Dn+2v+2w+2 • G(<p)T{l, Ad(A) ® a )L C ' ( l , Ad(A) ® a) . 

As seen in the proof of Theorem 8.1 in [Hi94], the twisting operator R(<p) takes 
^ s P (^ ,K(A r ) , / : (« ,xM))N=o] in toFLp(^o ,K(A r nC 2 ) ,£ (K+(0 ,« ; ) , X ^ 2 ; ^ ) ) [ £ ] , 
where we identify 5 with {±1}IK C K^ and consider (f^ as a character of 5. 
Since a = ippqu;, <^oo((—1, — 1)) = ( — l ) n . This shows that £o = £^00 satisfies 
£o(—1, — 1) = — 1. We record what we have proven: 

PROPOSITION 4.1. Let F = Q and K = Q(\/Z)) be a real quadratic field with 
discriminant D > 0 and K — (nr,vr) G Z[I]2 with I = {r}. Let ip be an arithmetic 
Hecke character with oo(<p) = — U>(T + CTT) G %[IK] and °f conductor C. Let \ — V;o 

NK/Q for an arithmetic Hecke character ip with /0oo(^) = x _ n _ 2 v /or a// x G A ^ = 
R x . Suppose that a = (pqcjip withcu(x) = \x\r^+2vT+2w and a = ( —). If a primitive 
system \i : h^(N, x; C)/x —> C zs a 6ase change lift of X : hK(No,ijj', C ) / Q —> C, t/ierz 

/ ( n ! ) - 2 ( W ^ ( ^ 1 ) ) | Q ) 
•/Vb.Q(N') 

= -(-i)n + 1<f>{N ,)-1N'2v /Dn + 2"+ 2"+ 2G((^)r(l , Ad(A) 0 a )L c , ( 1 , Ad(A) ® a) , 

w/iere g = f\R(ip) for the primitive form f with f\T(n) = /i(T(n))/ for all n C 1Z, 
C = CDZ, andN' is the positive generator of'NnC2nZ. If fi : h^(N,x'X)/K -> C 
is not a twist of any base change lift, then 

[ (n!)-2(Vw7re%(1))|Q) = 0. 
JYO,Q(N') 

PROOF. The proof of the vanishing is given in [HaLR, 3.12] and is basically 
the same as that of Proposition 3.1. • 

We now define the modular periods. Let A be a Dedekind domain in C con­
taining all values of fi(T(n)) for ideals n C 1Z. We assume that 

H2
cusp(Y0MN),C^X;A))l8,fi} = AU») 

for a character e of S. Then we define Qi(e, [ip\ A) G C x by 
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where fp is the primitive form in S^j{N,xp) with fp\T(n) = fi{T(n))pfP. This 
period Oi is well defined up to units in A. We also define 

O I ( W Q ( M ) ) = (ni(Mp;Q(Mp)))p e Q(/i) 0 Q C. 

The period OI(M;Q(AO) is well defined as an element of (Q(/i) ®Q C) x /Q( / i ) x 0 1. 
Again we have 

Oi(/i®y>;Q(/J®¥>)) = G(<P)-1OI(A*;Q(AO)-

COROLLARY 4.2. / / A = Q(A), we have, for alls : S —• {±1} wiJft e ( - l , -1 ) = 

- 1 , 
(1 0 zn + 1 v ^ n r ( l , Ad(A) ® a))LC ' (1, Ad(A) ® a) 

G(a^)0i(£,A;Q(A)) 
in Q(A) 0 Q C7 where 

he (s, Ad(A) 0 a) = (LC/ (5, Ad(A') 0 a) ) p 

Aas values in Q(A) ®Q C. Moreover, if A is a discrete valuation ring in Q(A) wz£/& 
residual characteristic prime to 6(n\) and if ip = id7 then for the positive generator 
N0 ofNDZ 

r+VMNy)-1 >^n+2v+2r^ A d(A)f "M1* Ad(A) ® a) e A. 
fii(e,A;A) 

5. Congruence and the adjoint L-values 

Here we study a simple consequence of Corollaries 3.2 and 4.2 on congruence 
of systems of Hecke eigenvalues. To describe such congruence among cusp forms 
in terms of Hecke algebras and deformation rings of Galois representations, we 
here introduce a general notion of congruence modules and differential modules: 
Let R be an algebra over a Dedekind domain A. We assume that R is an A-flat 
module of finite type. Let <\> : R —> A be an yl-algebra homomorphism. We define 
C\{<j)\ A) = O^/^(8)jR50lm(</)), which we call the differential module of (p. We suppose 
that R is reduced (that is, the nilradical of R vanishes). Then the total quotient ring 
Frac(i?) can be decomposed uniquely into Frac(i^) =Prac(Im(0)) x X as an algebra 
direct product. Let a =Ker(R —> X). Then we put C0(</>; A) ,= (R/a) 0 f l ^ lm(0) = 
Im(0)/(Im(</>) C\R) (cf. [Hi88b, Section 6]), which is called the congruence module 
of (j> but is actually a ring. Here the intersection lm(0) D R is taken in Frac(ii). 
Suppose now that A is a subring of a number field in Q. Since Spec(Co(0; A)) is the 
scheme theoretic intersection of Spec(lm(0)) and Spec(i?/a) in Spec(i^), a prime p 
is in the support of Co(0; A) if and only if there exists an yl-algebra homomorphism 
4>f : R —> Q factoring through R/a such that (j)(a) = (pf(a) mod p for all a G R. In 
other words, 0 mod p factors through R/a and can be lifted to <f)''. 

Let K/Q be a quadratic extension with discriminant D. Let a = ( —). We 
consider a system of Hecke eigenvalues A : hK(D, ip; A) —> A for a discrete valuation 
ring A in Q(A) with residue field F of characteristic p > 2, where ip{x) — a(x)\x\^n. 
Prom our assumption that ipoc(x) = x~n~2v for all x G Mx, we conclude that v = 0 
and 

{ odd if K is imaginary, 

even if K is real. 
The space we are looking into has the Neben character a and level Z), under the 
classical notation, Sn+2(ro(-D), ( —)). Let O be the completion under the m^-adic 
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topology for the maximal ideal m^ of A. Let m be the maximal ideal of O. We 
consider the Galois representation p\ : Gal(Q/Q) —> G\J2{0) which is the m^-adic 
member of the compatible system p{\) associated to A. We define the residual 
representation p : Gal(Q/Q) -> GL2(F) by px mod m. Let Q = Gal(K^/Q) for 
the maximal extension K^/K unramified outside {p, oc}. Then p\ factors through 
Q. Let E be a number field in K^ with integer ring t, and put H = Gsl(K^/E). 
For any representation p of Q, we write PE for the restriction of p to H. We consider 
the following condition: 

(AIE) ~PE is absolutely irreducible. 

We now consider deformations of p, introduced by Mazur [Ma], over the cate­
gory CNLQ of complete local noetherian O-algebras with residue field F. A Galois 
representation p : H —> GL2{B) for B G CNLQ is a deformation of ~pE if PE 
mod m^ coincides with ~p as matrix representations. We look into the deformation 
functor T : CNLQ - • SETS given by 

TE{B) = {p:H-+ GL2(S)|p mod mB = p}/ « , 

where "«" is the conjugation by elements in 1 + ¥2(1115). We impose more condi­
tions on deformations. A deformation p is called p-ordinary over a number field E 
if p\v ^ (6£ * ) with an unramified character 6x> on every decomposition subgroup 
V of H at p|p. We like to impose some of the following two conditions depending 
on the situation: 

(ord#) p is p-ordinary over E with two distinct characters 6x> and e-v for all T>; 
{/IE) p\v is realized on the generic fibre of a finite flat group scheme over vp for 

all p\p. 

For primes i\D outside p, we impose the following condition: 

{OLE)P — ( n ) o n the- inertia subgroup I[ C 7i for each prime \\D and \\p. 

Let v be the p-adic cyclotomic character. By class field theory, we regard ^ as a 
character of Q. Then det(pA) = v&- Hereafter we suppose that p \ D. We consider 
the following subfunctor of TE '• 

F'E(B) = 

{ {p £ FE(B)\ P satisfies (ord#), {OLE) a n d det(p) = {VIP)E} if n > 0, 

{p G J7E(B)\ p satisfies (ord^), {/IE), {OLE) and det(p) = {I/^)E} if n = 0. 
Under {AIE) and (ord#) for p, this functor is representable by a universal couple 
{RE,QE) (see [Ma] and [Hi96, Appendix]). 

We put hK(D, V>; O) = hK{D, ^; A) <8u O and define hK(Dp, ip; O) similarly. Let 
e0 = lim T{p)n] G hK{D^\0) and e = lim T(p)nl G hK(Dp,i/j;(D). 

n—>oo n—>oc 

Since T{p) of level D and that of level Dp are different, we know eo ^ e and we have 
a surjective (D-algebra homomorphism of ehK(Dp, ty\ O) onto eohK(D, ip; O) taking 
T(n) to T(n) for all n prime to p [MaT]. If n > 0, e0hK(D, ^; O) ^ ehK(Dp, ^; 0 ) , 
which is a consequence of [Hi86, Proposition 4.7]. We assume that A factors 
through eohK(D,i/j; O), which is equivalent to X(T{p)) G Ax and implies that p\ is 
p-ordinary. Let h = hq (resp. hq) be the unique local ring of eohK(D,ip; O) (resp. 
ehK{Dp, ip; O)) through which A factors. Thus if n > 0, hq = hL. As is well known, 
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under (Alq), there is a unique Galois representation pq, up to isomorphisms, such 
that Tr(pq(Frob£)) = Th{£) for all primes £ outside Dp (for uniqueness, see [C]), 
where Frobi is the Frobenius element in Q at the prime £, and Th(£) is the pro­
jection of T{£) to hq. Let k(E) = E{^{-l)^l)/2p). It has been proven by 
Taylor and Wiles [W] and [TW] (see also [Fu] when n = 0) that, under (AIk^) 
and (ordQ) for p, FL is representable by the pair (hq,pq). Thus in this case, the 
natural morphism 7TQ : Rq —> hq with irqQq « /)Q is a surjective isomorphism in 
CNLQ. When E is totally real, this result is generalized by Fujiwara [Fu] un­
der certain assumptions. We describe it here for real quadratic K. Since K^ 
is unramified outside {p, 00}, T'K is (basically) defined by ramification condition 
(ordx) and the determinant condition. We define in the same way the idempotent 
e = limn_+00 T(p)nl 6 h%(p, id; O) and eo £ /i«(l,id; (9). Let /&#• (resp. /^K) be the 
local ring of eoh^(l,id;0) (resp. eh^(p, id; (9)) through which the base change lift 
A factors through. We again have hx = h'K if n > 0. We have a modular deforma­
tion pK ' H —> GL2 (/&#:). Then Fujiwara has proven that T'K is representable by 
(IIK,PK) under the following condition in addition to (Alk(K)) a n d (ord^) for ~pK\ 
(unr) p is unramified in K. 
We write TTK • RK — aK for the isomorphism inducing TIRQK ~ PK-

When it is necessary to indicate the dependence on E, we write AQ for A and 
\K for A. Since the conductor of the Neben character coincides with the level, HE 
and the Hecke algebras are reduced. In the course of the proof of the above result: 
RE — h<E for E — K or Q, it is shown that RE is a local complete intersection. 
This fact is basically equivalent to 

(CI) \Ci{\E\ C)\ = \C0(XE; 0 ) | for E = Q and real K, 

where A# : HE —> 0 . When E — Q, the above fact implies that, for any given 
character e : S = {±1} —• {±1}, 

(mltQ) H^^YQ^D),C(K,^; 0))[hq,e] = hq = Rq as %-modules, 

where the left-hand-side is the eigenspace for hq, in other words, writing 1^ for the 
idempotent of hq in hK(D,ip; 0 ) , 

jyc
1

usp(y0,Q(Z?),£(K,V';0))[ftQ,e] = lh(ffc
1

usp(Fo,Q(r>),r(«,V';0))[e]). 

Since E = Q, there are only two e; one is trivial, which we write as "+", and we write 
the other as "—". By virtue of (mlt^), we can compute Co (A; 0 ) using cohomology 
groups. To explain this, we write L(B) = H^usp(Yo,<Q(D),C(K/,ijj;B))[e]. Then 
L(0) = L(A) ®A 0 . Decomposing Frac(/iK(L>,^; A)) =Frac(Im(A)) x X, we define 
LX{A) to be the image of L(A) in L(A)<S>hK^^;A)Frac(Im(A)) and a cohomological 
congruence module by 

C*(\;A) = L\A)/(L(A)nLx(A)). 

Then (mltQ) shows that C0(XE; 0 ) ^ C^(A; A). It is shown in [Hi81] and [Hi88b] 
that thep-adic absolute value of T(l, Ad(A))L(l, Ad(A))/fti(+, A; A)fi i (- , A; A) is 
the inverse of the order of the right-hand-side module of the above equation. That 
is, under (Alq) and (ordQ) for p, if p\6D, 

<c2» ! ^ B i ™ r - *<c"ix--Af> - #(c»(A:'4>»=#(c'(A;-4»-
where r — r (0 ) = rank^p 0 , and | \p is the p-adic absolute value of A normalized so 
that \p\p = p~l. It is easy to see that for a non-zero element 77(A) G A, Co (A; A) = 
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A/rj(\)A, and (CI) is equivalent to saying that the L-value is equal to 77(A) up to 
^4-units. Even if p|D, there is a similar formula (see [Hi88b] for details). 

The Selmer group over E of Ad(p\) is defined as follows. Let V(X) be the 
O-free module of rank 2 on which Q acts via p\. For each decomposition subgroup 
Vp C 7i at p\p for primes p of E, we write Vp for the 6x> eigenspace in V(X). For 
primes \\D prime to p, we write V\ for the subspace fixed by the inertia at I. Let 
K, =Frac((9). We identify Ad(/?A) with trace 0 subspace W of Hom0(V(A), V(\)). 
We put Wi = {(f) e W\</)(Vi) = 0} for l\Dp. Define, for I ramifying in K^/E, 
writing T\ for the inertia subgroup of I in K, 

U = K e r ( # H A , W*) -+ H\XU (W/Wi)*)), 

where A* = X 0 O /C/<9. Then we put 

Sel(Ad(PA)) /£; = (^Keitf1 (H,W*) - ^ ( A , W*)/ i [ ) , 

where I runs over all primes ramifying in K^ jE. It is a general fact [MaT] (see 
also [Hi96, 3.2]) that 

(C3) Sel(Ad(/9A))/jB = HomZp(C'i(Ai5 0 7 ^ : RE -> O; 0),Qp/Zp) if n > 0. 

Thus combining all we said, we get the following order formula of the Selmer 
group under (AT^Q) ) , (OMQ) for p and p\§D, 

This is a non-abelian generalization of a classical analytic class number formula (see 
[W, Chapter 4] and [HiTU]). The definition of the Selmer group can be interpreted 
by Fontaine's theory, and the above formula can be viewed as an example of the 
Tamagawa number formula of Bloch and Kato for the motive M(Ad(A)) (see [W, 
p. 466] and [BK, Section 5]). By using this interpretation, we can modify the 
definition of the Selmer group, and the formula (CN2) is valid even for n = 0 for 
the modified Selmer group. 

There is a partial generalization of the above facts for quadratic fields K. We 
define LK{B) = Hl^)+r2{K\Y^K{l),C{2,id-B))[el where we fix for the mo­
ment a character e : S —> {±1} when K is real. If K is imaginary, we just for­
get about s. Then we define the cohomological congruence module CQ{\\A) by 
L^(A)/(L^(A)nLK(A)), where decomposing Frac(/i^(l, id; A)) =Prac(Im(A)) x AT, 
L\(A) is the image of LK(A) in LK(A)(g)/^(1>id;A)Frac(Im(A)). It has been proven 
by Urban [U], under (ordq)) for p, when K is imaginary and p \ 6D, 

| r ( l ,Ad(A))L( l ,Ad(A)) r r ( 0 ) 

(C4) 
f̂  (A; ,4)ft2(A; ,4) 

= #(C0
ff(A;A)). 

Here are several remarks to be made. In [U], (0) the result is more general covering 
non-base change lift, (i) the normalization of the period is different from the one 
we made here by a power of 27r, (ii) there is a rational constant an showing up in 
[U, Theorem A], which is not explicitly computed (see [U, 5.5a]) as a product of 
factorials. The computation of an can be done (see ci(s) below (A) in Section 8 in 
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the text), and an is included in the Gamma factor. Finally (iii) it is assumed in [U] 
that the level N of A is sufficiently large to ensure the smoothness of 1 O , K ( N ) , which 
guarantees the duality between (the p-ordinary parts of) H^ (YO^K(^)^ £ ( A , X ; ^ ) ) 
and i ^ ( 1 O , K ( A 0 J £ ( A , X ; . A ) ) . The duality is a key to the proof of the above 
formula. However, for any N, we can take a multiple N' so that YO,K(N') is 
smooth. Then if p f [YO,K{N') : YQ^K(N)], by using the restriction-corestriction 
technique, we can recover the duality. By varying N', the common divisor of the 
covering degree [Yo^{Nf) : YQ,K{N)] is made of primes appearing in the order of 
elliptic elements in SL^if)? which is in turn a product of primes dividing the order 
of roots of unity £ such that [K(Q : K] = 2 (see [Hi88a, Lemma 7.1]). Since K is 
imaginary quadratic, the possibility of such primes are only 2 and 3. In this way, 
we get the result for p > 3 and for level 1. 

Although only imaginary quadratic fields K are treated in [U], all argument 
can be generalized to arbitrary E at least for p-ordinary A. In particular, we get for 
real K, supposing (OMQ) for p and p \ 6D (see Section 8 in the case of K = F xF), 

(C5) 
^(l )Ad(A))i( l ,Ad(A)) , r ( 0 ) 

fMe.AMJfM-e.AjA) 
= #(C^(X;A)), 

V 

where (—e){—lr) — — ie(~IT)) for embeddings r G IK-
We consider the following condition: 

(mil*) H^^^K\Y0^K(l)X0iAd;O))[hK,e} * hK * RK as h -̂modules. 

When K is real, it is plausible to get (mlt^), under (cl) and (unr), as an application 
of the method of Taylor, Wiles and Fujiwara [Fu], where a similar statement is 
proven for the modular cohomology group obtained from everywhere unramified 
definite quaternion algebra over K. When K is imaginary, the assertion (mlt^) 
might follow similarly, but it is certainly more difficult. Anyway in this paper, we 
do not touch this point, but we would just like to remark that the generalization 
of (CN1-2) for quadratic K follows from (mlt^). 

As we have shown in [DHI], there is a natural action of Gsl(K/Q) = (a) on 
HK- This action brings T(n) to T(na) and induces an action on Ci(A; O). When p 
is odd, we get a decomposition: 

Ci(A; O) = Ci(A; 0)[id] 0 d ( A ; 0)[a], 

where "[a]" indicates a-eigenspace regarding a as the unique non-trivial character 
of Gsl(K/Q). 

CONJECTURE 5.1. Suppose (AIK), A(T(p)) e Ax, (ordQ) for~p and thatp \ 6D. 
Then 

|r(l,Ad(A)e,a)L(l>Ad(A)0a)|-^) = ^ ^ ^ 

where e( — 1, — 1) = —1 when K is real, we disregard s if K is imaginary, and 

12 if K is imaginary, 
a — < 

11 if K is real. 
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When K is real, we have 

(P) ni(g,A;A) 
1 ^ fii(+,A;A)ni(-,A;A) 

This conjecture is made in [DHI] for even Dirichlet characters in place of 
quadratic a. Some numerical example supporting the conjecture is given there for 
real K. The point here is the inclusion of imaginary quadratic characters a into 
the scope. We prove here a consequence of the conjecture on congruence among 
systems of Hecke eigenvalues without referring to the conjecture. 

Let M be a sufficiently large number field containing all Hecke eigenvalues 
on 5^(1, id) and such that H% (YO,K(1), £(/S,id; 0))[e,/j] is O-free of rank 1 for 
all Hecke eigensystems /i : h%(l,id;0) —> O, where O is the integer ring of M. 
Such M always exists because the above module is an O-module projective of 
rank 1. For two systems A ^ fi of Hecke eigenvalues, we write, for a prime p 
in O, A = /i mod p if A(T(n)) = fi(T(n)) mod p for all integral ideals n C H. 
If this happens, A mod p factors through Co(A;<9). Thus we call primes in the 
support of Co(A;0) congruence primes of A. We write A =H /i mod p if for 
a generator f(A) of i^usp(y0,A:(l)>£(^> id; 0))[e, A], there is an element £(/x) € 
^usp(^0,x(l), / :(^id;O))[£,/i] such that 

£(A) - £ M e P ^ U S P ( F 0 , K ( 1 ) , £(«, id; O)), 

where g = r\(K) + ^ ( I f ) - Of course, we have 

A =H \i mod p => A = fx mod p. 

The converse follows if (mlt^) holds. The cohomological congruence A ~H \i mod 
p is equivalent to p £ Supp(Co* (A; O)). Conjecture 5.1 implies that for non-base 
change /i : h-%(l, id; O) —> O, 

^ , * u ,r(l,Ad(A)(8)a)L(l,Ad(A)(8)a) 
A = H mod p tor a non-base change^ <=> p| ^ 

ttd(e,\;0) 

under the assumption and the notation of the conjecture. 
THEOREM 5.2. Let the notation be as in the conjecture. 

1. Suppose that p \ 6D(nl). If A =H [i mod p for a prime p\p of O and a 
non-base-change JJL, then 

T(l, Ad(A) 0 q)L(l, Ad(A) 0 a) \ 1 
P' 0*(*,A;0) G L6^(n!) 

2. Let K be a real quadratic field. Suppose the assertion (P) of the conjecture 
for a choice of s in addition to p \ 6D, X(T(p)) G Ax, (AI^^) and (ordQ). 
Then if a prime p with p\p of O divides 

T(l, Ad(A) <g> a)L(l , Ad(A) <g> a) 

fti(e,A;0) 

but is prime to T(l, Ad(A))L(l, Ad(A))/fii(+, A; 0 ) f i i ( - , A; O), t/ien t/iere 
exists a non-base-change lift JJL such that \i = A mod p. 
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PROOF. Let A be the valuation ring Op. We consider the following sequence 
of maps: 

i* : tfc*usp(F0^(l),/:(£,id; A)) —* H2asp(Y0,Q(l),£(K,id;A)\YoQ{1)); 

TT. : H^sp(YoM(l),C(K,id;A)\YQQ(1)) —» H^Y0,Q(1),A) = A. 

The map z* is induced by the inclusion i : YO,Q(1) ^ ^O,K(1) a n d ^* is induced by 

the morphism of sheaves n : £(/?, id; ^4)|y0 Q(i) —> A, which is induced by P(X, Y) \-> 
(n!)~2VnP(X, y ) . Thus the composite JE1^ = ^ o i* is well defined integrally over 
A if p is prime to n!. Suppose that f(A) - £(//) G pi^c

9
usp(lo,K(l),>C(/?,id; A)). By 

Propositions 3.1 and 4.1 and their proof, Ev(£(\)) is equal to the L-value 

r ( l , Ad(A) ® a)L(l , Ad(A) 0 a) 

ftd(e,A;0) 

up to A-units because p { 6D. On the other hand, if ji is not a base change lift, twists 
of \i by any Hecke characters cannot be base change lift, because \i is of level 1. Thus 
again by Propositions 3.1 and 4.1, Ev{£{[i)) = 0. Thus Ev(^(\)) = Ev(f (A) - f ( / / ) ) , 
which is divisible by p by definition of the cohomological congruence. This proves 
the assertion (1). 

Under the assumption (P), we see that 

P 

because 

T(l, Ad(A) <g> a)L(l, Ad(A) ® a) i T(l, Ad(A))L(l, Ad(A)) 

fii(e, A; O) I fii(e, A; 0 ) f i i ( - e , A; O) 

r(l,Ad(A))L(l,Ad(A)) 

Q ^ A ^ ^ - ^ A ; ^ ) 
_ T(l, Ad(A))L(l, Ad(A))T(l, Ad(A) 0 a)L(l , Ad(A) 0 a) 

" ni(+,A;A) 2f i 1(- ,A;A) 2 

up to ^4-units. Thus by (C5), we have a congruence A = fi mod p. As shown in 
[DHI], Ci(A; A)[id] = Ci(A; A). This combined with (CN1) shows that the factor 
p has to be an associated prime of Ci(A; A)[a], which shows the result. • 

6. The case of quadratic extensions of totally real fields 

Let F be a totally real field and K be a quadratic extension of F. We use the no­
tation introduced in Section 2. Thus H — Rest//^GL(2) and G = Res^/^GL(2). We 
consider a weight K — (n, v) G %[I}2 with n > 0. Then we write /? = (n, v) = Inf(ft) 
in IA[IK}2- We then consider a cohomological primitive form /o E SK:I(NO,IJJ)/F 
with /0 |T(n) = A(T(n))/0. We choose a subset ^ of IK such that JK ' = * U a^ 
for the generator a of Gal(X/F). Then we put J = £^(R) n * and choose £x(C) 
in / # so that ^ = £ K ( C ) U J. Let / G SKJ(N,X)/K be the base change lift of /o 
with / |T(n) = A(T(n))/. Thus * = ^ ° NK/F. For each £ - (g °) G ff(A(°°)), we 
consider 

C/a = tU0{N)t-\ T^a) = (7aG(R)+ fl G(Q) and $ ( a ) = #(Q)+ H T ^ , 

where H(Q)+ = H(Q) n ff(R)+. Here note that Yo^AO = Ua$(a)\*3 for S) = 
i7(R) + /Coo+, where a runs over a complete set of representatives for F^ /FX?XFC^ ) + 
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with the identity component F^+ of F£. Let d = VK be the absolute different of 
K/Q. Let Clx be the strict class group of X, that is 

{fractional ideals of X}/{(f)|f e l , ( » 0}, 

where £ ^> 0 means that image of £ is positive for every real embedding of X. 
For z = y~1/2 (g *) G SL2(Koo) C G(R)+ for real positive y 

fiaHz) = f(tz) = yn/2\o.y\KA\ E A(r(£ac)))r^(ey)e(^ 

where £ runs over all elements in a~1d~1 such that £ r > 0 for all r G J and £T < 0 
for all r G £ K ( R ) - J. Here, writing < = 2n r + 2 for r G £*:(C) 

Wfo) = J] Wr(Vr) 

with 

w ( ) = f E a ( n i ) ( ^ ^ ) n T + 1 " a l f a - n T - l ( 4 7 r | I / | ) ^ - a ^ if T € E * ( C ) , 

\exp(-27r|2/|) i f r G E K ( R ) , 

where a runs over integers with 0 < a < n*. 
For each subset Y of Ix and m G Z[Jx]> w e write m! = Ĵ [T mr\ and m(y) = 

E r G y Tnrr; in particular, we write n(C) = Res^ra(Ex(C)) and n(R) = Res^n(J) . 
For x G X 0 Q C, we write xm — f i re / ^ r m r a n d xY = r iTeY^- ^ o r s o m e 

specific number, x = 7r or x = 2i, we write x m and x y identifying x with a tuple 
(x ,x , . . . ,x) G rirG/x ^ = X (g)Q C; thus, for example, (2iri)rn = (27ri)^-m- . Note 
that SK(C)c = a E ^ C ) . Then we consider Vr = d2/dXaTdYr - d2/dXTdYaT and 
write Vn = n r G * V?T. We then compute the pull back S/n6(g^)\F = i*Vn6(g(a)) 
for g = f\R(ip) and z : f) <-̂  3: 

( n ! ) - 2 V n % < a ) ) | F = ( n ! ) - 2 V ^ j ( ^ ) | F 

= (-i)J(-^r(RHJ £ ( n ( c ) W a ) ^ 
0<j<n(C) ^ ^ ' 

where we write 

9{a)= E 5 i a , ( n J ) 5 " * - t t T « f o r n * = E . e S K ( C ) K + n T C T + 2)r, 
0<a<n* ^ ' 

and 
dfi(z) = f\ yT

2dyT AdxT. 

We now choose A G Kx such that Aa = - A , EX(C) = {r G JK(C) | Im(A r) > 
0} and J = {te E K (R) |A r > 0}, where IK(C) = SK(C) U EK(C)c is the set of all 
complex embeddings of K into C. Then we see 

CA"1 e {xe a~1D~1|x°' = -x) 4=^ £ G G T V ^ A n F. 

Note that a_1c)_1A is an ideal of F and 7^ = \£ U cr^. For ( G F , 

iVf /Q^A"^) = | ^ / Q ( 0 | i ? F | A - * | ^ / Q ( £ > A r / F ) 1 / 2
> 

where A - * = n r e * ( A T ) - 1 . 
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The stabilizer &^o of the cusp oo of Q^ is an extension of ax by t+ = {s G 
rx \e ^> 0}, that is, the following sequence is exact: 

Let (f be an arithmetic Hecke character of conductor C and with infinity type 
—w. Note that {n\)~2{\/n6{g^)\F) is a differential form on YQ:F(N/) with values 
in L((0, n + 2v + Res(iu)), 0 / w ) 2 ; C) because we have (cf. [Hi94, 11.2a]) 

L{(n,v + w),X^2-X)\F= 0 L((2n-2j,2v + Res(w)+j),{ij><pF)2',C). 
0 < j < 2 n 

Let UJ = | | ™ for m l f = n + 2v + Res(w). Thus we have 

/ (n!)-2(V"<5(ffW)|F)|a|sKAj/sl = ( - l ) J ( - 2 i ) ( n ( J ) ) + J K A 

^ F R / r ^ F o o / a r 0 < j < n ( c ) \ J / 

= cj(a)"1ci(s)G'(^)La(5,A,^a;), 

where r2 = 7*2 (if) is the number of complex places of K and 

La(s,A,<pu;) 

E A(T(eaA- 1D))(pFa;(^A- 1 ) iVF / Q (eaA- 1D)- s - 1 

C l ( s ) = (-l)n(J)V^ln{J)+J2J^-^-21\DF^+m+aN(DK/F )-("»+«+i)/2 

n (i+(-ir+i)}(ElP)r2W{nrc(S+nr+i)] 
Here £ ^> 0 implies £ r > 0 for all r e I, and we have used the fact that 

f dx=\DF\"2\a\Fl • 
• / F a / a t 

for the discriminant DF of F/Q; 

/ ^ ( z ) = / / 2 | a y | K A E A ( T ( ^ ) ) r ^ ( ^ ) e K ( ^ ) , 

where £ runs over all elements in a _ 1 D _ 1 such that £ r > 0 for all r G J and £ r < 0 
for a l l r G E K ( R ) - J, and 

y * / 2 = y * and |a|^A = |a^A. 

We now look into 

£ " (° ) /" ( n ! ) - 2 ( V ^ ( ^ ) | F ) | a | F A ^ . 
aeClF 

As a runs over a complete set of representatives in i7^ for ClF, the set of ideals 
{aAd} gives again a complete set of representatives for the ideal class group ClF 
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because Ad is an ideal of F. Thus we get 

£ u(a) I {v)r2^nK9{a))\F)\a\s
Fky

sl = cl{s)G^)L{sX^FUJ). 

atciF
 J*%\* 

By the Rankin convolution method, we get 

/ (n\)-2(Vn6{gM)\F)yal = [ (n\)-2(Vn6(g^)\F)ysl£^(s), 

where 

We now put 

E(s) = E(x,s)= £ ^(a)\a\s
FA£^(s) 

aeClF 

as a function of x e if (A). Writing Y = Y0,F{N') = UaeCiFY{a\ if M > < P F ) 2 = id, 
by (RES3) in Appendix, we get 

Ress=1CF,N'(2s) [ E(s){nl)-2(Vn6{g)\ 
JY 

w(F)\DF\ ^ ~ ^ ' JY 

r>[F :Q] - l_ [F :Q] o r 

NF/Q{N')-2W) , , l n 1 E W W / («0- 2 (v n «( 5 ) |F) , 

where i ?^ is the regulator of F. Let e : S = C00/C00+ = {±1}S*(R) -> {±1} be a 
character such that 

e ( ( - l , -1)T ) = ( - 1 ) ^ + 1 for all T e J, 

where (—1, — l ) r is an element of S whose component is equal to 1 outside {r, ar} 
and is equal to —1 at r and ar. We consider the projection n£ to the £-eigenspace. 
In the same manner as in Section 4, under the condition of the parity of £ as above, 
the application of TT£ on the integrand does not have any effect on the outcome of 
the computation. Thus if Dijj(pF — a, 

Res s=1CF,^(2s) J £(S)(n!)"2( W % ) | F ) 

= c1{l){Re8a=1CF,N'F{s)}L{l,Ad(\)®a). 

Thus we get 

r ( l , Ad(A) ® a)Lc>{l, Ad(A) ® a) = c0N{DK/F)l'2G{v)-lin{J)+J 

xh(F)-lY,"(a) [ ( n ! ) - 2 ( W £ % ) | F ) , 

where 

Co = 2r^K^r^K^2^\NF/QN'r24>(N')\DF\-m~3NF/Q(DK/F^m+1^2 e Q. 

Let /i be a system of Hecke eigenvalues of level N and with character x- Let 
d = [F : Q] and A be a Dedekind domain in Q containing //(n) for all ideals n e t . 
For each character £ : S —• {±1}, we consider Hd(Yo,K(N), £(£, X; A))[e,/x] which 
is projective of rank 1 over A. Extending A a bit, we may assume that it is free of 
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rank 1 over A. Let £ be the generator of this free ^4-module of rank 1. Let / be 
the normalized Hecke eigenform with eigenvalues }i. We define 

where [(f)] indicates the cohomology class of a closed form <j>. Here the subscript 
"Ex(M), 2Ex(C)" indicates that the cohomology class is of degree 1 at archimedean 
places in Ex(M) and of degree 2 at archimedean places in Ex(C). When A = Q(/z), 
we have the cohomological conjugate 

e e Hd{Y0.K{N),C^P,Xp;A))[e,^] 

and define automorphic conjugate fp by a(n, fp) — a(n, f)p. Then we define 

M J , 0 ( / ' ) ] = ftzK(m^K(c)(e,»p;A)e, 

and put 

as an element of (Q(/i) C*DQ C ) X . Then we get similarly to Corollaries 3.2 and 4.2 
the following result. 

THEOREM 6.1. Suppose that we have an arithmetic Hecke character Lp of K 
and u of F such that (i) the conductor of uo is 1 and (ii) ipippto = a. Then we have 

( l ® r ( l , A d ( A ) 3 a ) ) I ^ ( l , A d ( A ) g , a ) ^ g c 

(1 ® JVF/Q(I>Ar/F)V2in(J)+J)G(^a)0S/f(R),2SK(C)(e,A;Q(A)) 

/or any e with £(( —1, — l ) r ) — —1 / o r a ^ r E J. Moreover if (p can be chosen 
to be the identity character, then for all valuation ring A of Q(A) with residual 
characteristic prime to 2e{n])DK, we have 

( J V F / Q ^ O ) 2 0 ( ^ O ) " 1 ^ F / Q P K / F ) 1 / 2 ^ ( J ) + J r ( l , Ad(A) ® a)L(l , Ad(A) 0 a) 

^ E K ( M ) , 2 S K ( C ) ( ^ 5 A; A) 

where No — TV D t and e is £/ie /eas£ common multiple of the order of maximal 
torsion subgroups ofT^/1Zx for all a. 

If either K is totally real or a CM field, we can always find uo and (f as in the 
theorem (see Lemma 2.2). If K has both complex and real places, this condition 
really imposes a restriction. Probably one could remove this condition taking the 
integral over Y(S) for a smaller subgroup S in Uo(Ne) allowing uo with non-trivial 
conductor, but we might lose more Euler factors of the adjoint L in the process. 
Since this would further complicate our computation, we do not look into this point 
in the present paper. 

We can formulate the divisibility of the L-value by congruence primes of A as 
is done in Section 5 for quadratic fields, which we leave to the reader. 

The parity restriction on £ is explained by the following fact: 

¥>((-l, -1)T) = < M ( - 1 ) T ) = tf((-l)r)a((-l)r) = ( - 1 ) ^ . 

Thus the condition that e((—1, — 1)T) = —1 is equivalent to 

e V o o ( ( - i , - i ) T ) = ( - i ) n T + 1 , 

and we have 

^EK(M),2EK(C) (e^oo, A (8) UD\ Q(A)) = G ( ^ ) ~ 1 ^ E K ( R ) ) 2 S X ( C ) (e, A; 
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7. Quadratic extensions K of an imaginary quadratic F 

Now we assume F to be an imaginary quadratic field and keep notation intro­
duced in the previous sections. We write a for the generator of Gal(K/F), and 
fix an embedding r : K —> C. We then write Jf — {err}. For each i G IK, we 
write [L] for the archimedean place arising from i. Thus this correspondence in­
duces a linear map [ ] : Z[IK] —> Z[E] for the set E = H^ = IK/{C) of archimedean 
places. If no confusion is likely, we write E for E ^ to simplify the notation. We 
decompose IK = ^ U cr\I/ with ^ = {T,TC}. We identify E with {r, err}. Let / 
be a cohomological modular form on G of weight (n, v). Then we can write for 
z G 3 = G(R)/Z(R)<7oo given by y ' 1 / 2 (o i ) e S l ^ i ^ ) 

fia)(z) = f (ty^2 (* * ) ) = / / 2 N | K A | £ KT(^))rdW^y)e(Cx) 
ZeK> 

where 

W(V)= E f j ) ( 7 = ^ j ) n a ^ - n - i ( 4 r r M ) 5 " * - a T M n * = [n] + 2E). 
0 < a < n 

We write f^a\z) = Eo<a<n* / a a ) ( ^ ) f J ) ^ * _ a T a . Then by a computation similar 
to (6) in Section 3 and~[Hi94, Section 2], z^Sj^f^) for z = <T1/2 (o ! ) i s S i v e n 

by the following formula through replacing UapU(3e by f[apP+pee}-

y~ly~2 J2 (-l)n^J^n-'J-c(n^jXn-JYJ 

0<j<n 
x {UnTC+jT-jTCdyT A dxr - AUnTc+jT-jTC+idxT A dxT + UnTC+JT-JTC+2dyT Adxr} 

A { ^ < T T C + i a r - i < 7 T C ^ T ~ 2 ^ n ( T r c + j C T T - J C T T C + 1 ^ T ~ ^ n C T T C + J C T T - jar c + 2 ^ ( 7 T } , 

where we have written XH~W for E U / K X^"jpY^, g ) for r i p G / x © , and j 
runs over j G Z[/#] with 0 < j p < np for all p £ IK- We get a non-trivial result only 
for base change lift; so, we may assume that nT — nTC = naT = naTC. The action of 
z does not affect the outcome of the differential operator Vn = (vrVTC)n7~ applied 
to 6jf(f)\p (Vp = d2ldXapdYp - d2/dXpdYap); so, we forget about it. We then 
restrict the differential form to S) = H(M)/ZH{1^)C00 and hence, we may assume 
that y = yT = VGT and x — xT — xGT. Thus we get 

( n ! ) " 2 V " M / ) l F 

= ( -1 ) " ' £ - ( - 1 ) ' (n\ {fw+2JI] - 8 / K + E ] + / K + 2 ( E _ J 0 ] } ^ ( 2 ) , 
0<j<n ^ ' 

where d/i = y~3dy A dx A dx, (") = (^ ) (^ c
c ) , and n' = n(E) + j * for j # = 

(jV — jrc)?" + (jVc — 3T)<?T. We now compute for X = J7, E — J' , E, writing x for 
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the number of elements in X and g for /|i?(<^), 

-(-iy+-22^+2sV^yol(FR/at)G(^)\a\s
F

+
A\\DF\NF/Q(DK/F)1^) 

T(nT + 1 + s)2T(nT + s + jT - jTC + x)T(nT + s + jT - jTC + 2-x) 
T{2nT + 2 + 2s) 

• J2 A(T(eoA- 1 0) )^ (eaA- 1 5) r n - 2 t ' " R e s ( t " ) A s + u ' + " / 2 Ar F / Q^A- 1 5) - 1 - s , 
ZeF* 

where A € Kx satisfies Aa = — A and we have used the identity: 

Np/QiA-1*) = | ^ F | | A - T | 2 i V F / Q ( ^ / F ) 1 / 2 

along with the convention that A(T(n)) = 0 for non-integral ideals n. 
Now we suppose to have a Hecke character oo of conductor 1 of F£/Fx with 

OO(UJ) = n + 2v + Res(w). For that, we may need to allow algebraic character (p not 
necessarily arithmetic to have such UJ (see Lemma 2.2). Note that 

Then we have, for g — f\R((p), 

f ( n ! ) - 2 ( V " ^ ( 5 W ) | F ) | a y | ^ ( - l ) ^ + 1 2 2 ^ + 2 s (47r ) - 2 ^- 2 - 2 s x^Tvol (F R / a r ) 

• G(<p)(\DF\NF/Q(DK/F)^2)1+' x u K a A - ^ - i A ^ + ^ r K + 1 + s)2 

• {G0(s) + 8Gi(a) + G2(s)}La(s, %<pFu), 

where 

La{sXvFUj) = Yl A(T(^aA- 1c)))^(eaA- 1r)) iVF / Q^aA- 1r))- 1- s , 

/n\ T(nT + s + j r - jTC + x)T(nr + s + jT - j r c + 2 - x) 
CM - £ (") T(2nT + 2 + 2s) 

for x = 0,1, 2. Using the formula in [Hi94, p. 505] twice, we get 

ro + £)ro + 2-x) 
Gx(s) 

r(2 + 2s) 

G0(s) + 8G1(s) + G2(s) = 2(5s + l) + . 

Then using the fact that vol(Foo/t) = 2~1\Dp\l^2-) we have 

J2 w(o) / ( n ! ) - 2 ( V " ^ ( ^ ) ) | F ) | a | F A y s l =Cl(a)L(8,X<PF^, 

where 

Cl(s) = ^ I | Z ) F | 1 / 2 ( | D F | i V F / Q ( J D ^ / F ) 1 / 2 ) 1 + s G ( ^ V ( A - 1 t . ) - 1 A ^ + " / 2 

• ^l)nr + l22nT+2s{AlT)-2nT-2-2s^s + 1) ^ ^ + ^ T(nT + 1 + Sf. 
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By Rankin's convolution method, we get 

/ W)-2{Vn6j,{gM)\F)yal = [ (n!)-2(Vn«J 'b ( f l )) |F)f ( f l )W, 

where 

Put E{s) = EaeCT F
w ( a ) l a lF / ( a ) ( s ) - I f ( W ^Y?F) 2 = id, by (RES3) in Appendix, 

we get for Y = Y0/(N') = uleCiFY^ 

Ress=iCF,iv(2s) J E(s)(n\)-2(7n6(g)\F) 

= NF/Q{N')-2<KN')^^ J2 ^a)f (^(<7{a))lF). 

On the other hand, if a = ipujLpp-, we have 

Ress=1CF,;v'(2s) j E(s)(n\)-2(Vn6(g)\F) 

= ci(l){Rfiss=iCF,AT'(s)}LC'(l,Ad(A)®a). 

Comparing the two expressions, we get 

r ( l , Ad(A) ® a)Lc> (1, Ad(A) ® a) = c0G(v>)_1u;(A-1?))A- ,?-u,-fi/2 

• V^lh(F)-1 Y, ^W / (n'-)"2(Vn«(5(o))|F), 

where c0 = 2 ( - l ) " - + 1 | D F | - 3 i V F / Q ( D K / F ) - 1 G Q. 
At the beginning, we fixed an embedding r of K into C. We study what happens 

if we start with CTT instead of r. The result is the same, but J' will be replaced by 
; K ( C ) forms a base of #fu s p( {r}. Note that { M / ) } J ' C E K ( Q forms a base of H^SJY0(N),C(^,X;QM- Thus 

tf3(Q(A))[A] = Hllsp(Y0(N),£(K,x;®(X)))i\] ^Q(A) 2 . 

Then a acts on YQ(N) via the Galois action: x i—> xa on G(A), because TV"7 = iV. 
We let a act on L(n; Q(A)) by a(XT, y r ) = (XaT,Yar). Thus for a differential form 
(j) on 3 with values in L(n; C) such that 7*0 = 70, we see 

7 * ( a ( c r » ) = aa*(ja)*(j> = 0 " 7 a ( c r » = 7 C r ( ( 7 » . 

Thus via 0 H^ ora*0, Gal(X/F) acts on H3
usp(Y0(N), £(/?,%; Q)- We see that 

a*6{Ty(f) = ^{ f f T}(/) . Since A is stable under cr, H3[X] is stable under the action 

of a. Thus i/3(Q(A))[A][<r — 1] is one dimensional, and we take a generator £ such 

that 

# 3 (Q(A))[A][a- l ]=Q(A)£. 

The action of a defined above commutes with the Galois action induced covariantly 
by the Galois action on L(/?, x; Q(A)). We write £p for the Galois conjugate of £ 
under the latter action. We note that H3(C)[Xp][a - 1] = C(6{r](f

p) + 6{aT}(fp))-
We then define a complex number fi(i,2)(Ap;Q(A)) G C x by 

(£ { r }(n + ^T } ( /p ) ) = %!2)(A>;Q(A))e>. 
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We put 

0(i,2)(A,Q(A)) = (fi(i,2)(Ap;Q(A))WQW € (Q(A)®QC)X . 

Note that A~xd = $F£- Thus for a finite idele d of F generating dFl we have 
uj(A~1d) = u;(d)£ n + 2 v + R e s (^ because UJ is of conductor 1. We choose <p as in 
Lemma 2.2. Then it is easy to see that £n+2V+Res(™) e Q. This shows that 

U J ^ ^ G ^ / G ^ O ) € Q(A). 

Since Gty^o^Gtya) e Q, we finally get 

THEOREM 7.1. Suppose that we have an arithmetic Hecke character Lp of K 
and UJ of F such that (i) the conductor of UJ is 1 and (ii) ipippuj — a. Then we have 

( l « A ^ ^ r ( l , A d ( A ) 0 a ) ) W ( l , A d ( A ) 0 a ) £ c c 

( l®v^T)G(Va)0 ( 1 ,2 )(A;Q(A)) 

7f <£ and UJ are algebraic Hecke characters satisfying (i) and (ii), then we have 

r( l ,Ad(A)®a)£ C ' ( l ,Ad(A)®a) c ^ 

0(i,2) (A; Q(A)) 

Since the L-value in Theorem 7.1 does not depends on the choice of (/?, even if <p 
is not arithmetic, presumably, the Q(A)-rationality would hold in general. Further 
study has to be done to prove this. 

The period ^(1,2) ls o n ly defined for the base change lift A, while we have defined 
similar periods for any system \i of Hecke eigenvalues in the previous sections when 
F is totally real. When /i ^ / i a , the action of a on H3(Q(fj,)) does not preserve 
# 3 (Q0)) [ / i ] , and this causes a trouble. If F has complex places, the same problem 
shows up as will be seen in the following section. 

8. General quadratic extensions 

Let K/F be a semi-simple quadratic extension of a number field F. Thus we 
allow here K = F 0 F. When K = F 0 F , we regard DK/F — 1 and a = id; other­
wise, a denotes the quadratic character of F£ /FX corresponding to K/F. We shall 
prove the rationality theorem of L(l, Ad(A) 0 a) in this general case. Computation 
is the same as in the previous sections. Since the definition of / 1—> 6(f) is given 
in [Hi94] by a procedure which is basically a tensor product of definitions over 
archimedean places, the computation of the pull back 6(f)\p is again essentially 
the tensor product of the pull back over archimedean places of K. Thus the com­
putation is the same as in Section 3 for a complex place of K over a real place of 
F , the same as in Section 4 for two real places of K over a real place of F and the 
same as in Section 7 for two complex places of K over a complex place of F . After 
computing 6(f), the computation of the Rankin product is fairly standard. Thus 
our exposition of the computation will be brief, but we state the result in a precise 
form. When K = F 0 F , we regard that every archimedean place of F splits in K. 

We decompose I = 1(C) U 7(R) and 1(C) - S(C) U E(C)c. Similarly we 
decompose IK = I X ( ^ ) L - 1 / K ( ^ ) - We decompose IK = ^Ucr^ for the generator a E 
Gal(K/F) and * = #(R) U *(C), where *(R) is the subset of all real embeddings 
of \J>. When K = F 0 F , we have a(x^y) =y®x. We write J' (resp. J") for {ar e 
o~ty(C)\ResK/F(T) £ S(C)} (resp. {r £ 7 ( R ) | T extends to a complex place of K}) 
and put J = *(R). When K = F 0 F , we identify IK with lul through the right 
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and left projections of K to F . Then we identify ^ with the left component I in 
IK • Then we shall make use of the isomorphism 

h,j> : Sz,j(N,X) ^ H«(Y0(N),Cfcx'X)) (« = M) 

defined in [Hi94, Proposition 2.1], where q = [F : Q] + n(F) + r2(F) = dim(^). 
When K = F e F , then Y0iK(N) = Y0iF(No)xYoiF(N0) for the ideal N = N0®N0 c 
r 0 r = 1Z. In this case, 

L((n, £), x; C) ^ L((n, v), ^ C) 0 C L((n, v), ̂ ; C). 

For normalized Hecke eigenforms /o G 5K,/(R) C^O, V>5 C) W a n d /o ^ ^« ,0 (^OJ ^5 C)[A], 
the base change lift / G ^,j(A^, x; C) to G = H x H is just / (z , z') = /o(*)/o(z') 
for (2;, z') G io x # = 3 and 

<$J,J '(/) = <$/(R),/(C)(/o)(z) A «0 ,0 ( /o ) (^ )» 

which gives a cohomology class in 

i?9(>o,/v(iVo),/:((n,«), V; C)) ®c # ? ' (YO,F(N 0 ) , C((n, v),$; Q ) 

C^Q(y0 .A:(iV),£((n,«) )x;C)) 

for Q = g+g' = dimi} as real manifolds, q' — r\{F) + 2r2{F) and # = r\{F)+r2{F). 
In this case, we have a standard choice of (/?: ^ = id x ^ - 1 . 

We compute the integral of 7r£(V
n<5(g)) on Y0^F(N/) for g = /|i?(<^). At each 

real place pof K, we follow the computation done in the real quadratic case, at each 
complex place p over a real place of F, we follow the computation in the imaginary 
quadratic case, and for each p over complex place of F, we follow the computation 
done in the case of quadratic extension of an imaginary quadratic field. 

We have 

/ (a) ^ - 1 / 2 ^ ty = y*/2\ay\Kk { > J A(T(£ai>))r*W(ft,)e(£r) 

where, writing n* = 2n r + 2 for r G £ # ( €) , 

W(2/)= J ] WT(yT), 
rEE* 

W i y ) = ) TTaLo ft) ( I f t [ ) n T + 1 " a / f n T + l - a ( 4 7 r | y | ) S ? - t t ^ if T G E * ( C ) , 

\exp(-27r|2/|) if r G E ^ ( E ) . 

We consider Vr - d2/dXaTdYr - d2/dXTdYaT and write Vn = [ ] T G ^ Kr • 
Take an algebraic Hecke character ip of K and an everywhere unramified Hecke 

character u of F with 00(<p) = —if G 1/2EK such that i^cupF — a. We then 
compute the pull back (n!)-2(Vn£j, j , (^ a)) |F) = L*((n\)-2Vn6j,j,(g^)) for # = 
f\R((p) and ^ : io -̂> 3 induced by the inclusion H C G. Here we identify J' with a 
subset of I by Res^ and J" with {r G /(K)| r extends to a complex place of K}. 
We put n* = Ere£K(C)(2 nT + 2 ) T - W e w r i t e I' f o r J(C) U J". For each j G Z[J'], 
we also write n' (resp. j ' ) for n(T) (resp. n(Ex(C)) -f 2j(J / /) + j # ) , where j # = 
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YsTeJ'tir - 3rc)r + (jrc ~ JT)TC. Then we have 

(nl)-2Vn6Jtj>{9la))\F 

jez[i'],o<j(i')<n(r) ^J ^ 
( _ (a) . (a) _ (a) _ (a) 
I 9j'+2J' ~T~ 9j'+2J" + J'+aJf 9j'+2aJ' 9j'+2J"+2J' 

_i_ ( a ) ( a ) \ 

"•" ^ j / +2J / / + J /+crJ / "" #j '+2J"+2<7j 'J> 

where 

^ = \ l\ VT 2dyr A d;rT > A < l\yT
 3dyT A dxT A dxT > , 

[rG/(M) J IrGH J 

9{a)= £ <£)(^V"-°Ta. 
0<a<n* \ a / 

We choose A £ Kx such that 

(A) A a - - A and *(R) = {r e / K ( M ) | A T > 0}. 

If K = F 0 F , as already explained, there is a standard choice of J, J7. In this case, 
A = (1, — 1) G i^ is an optimal choice of A. Anyway we see 

£A _ 1 e{xe a - 1 * - 1 ! ^ = -x} ^=> f G a ^ A l T 1 p | F . 

Thus we have 

£ W(a) / (n!)-2(V^ J , J-(5W)|F) |a | s
F Ay s l = C l(s)L(S , A,¥W), 

where 

ci(s) =a; (A- 1 D)- 1 A« + w + f i / 2 |D F | 1 / 2 G(^) ( l ^ l ^ / Q ^ ^ ) 1 / 2 ) 1 ^ 

. 2 n + s / ( c )+ s J / / + J (_ i ) n ( J U J / )+ J / ^/ZX n ( J ) + J + J / (4 7 r ) -^ - (s+i ) i 

. 2~J" Y\ (l -f (_l\nT + l+2vT+Res(w)T\ 

reJ" 

(5s + l)T{s)T(s + 1 ) \ r 2 ( F ) /r(f )2 \ !J"' T T 

We apply the Rankin convolution method. For that we put 

E{s)= £ oj(a)\a\s
FAS^(s), 

aeClF 

where 

£<»>(*) = £ A'^(7)l/s lo7-
7 G ^ ) / ^ 
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Write Y = Y0,F{N') = UaeciF
 y ( a )> i f M V > F ) 2 = id, by (RES3) in Appendix, we 

get in exactly the same manner as in the previous sections, 

Ress=1(F,N,(2s) J E(s)(n\)-2(Vn6j,j.(g)\F) 

NF/Q{N>)*w(F)\DF\ ^ ( }JY,a) 
J2 "(«)/. (n!)-s(vV(jl°')|p). 

Then by choosing a character £ : C^/Coc^ —> {±1} with £(( —1, —l)r) = ( - l ) n T + 1 

for all r G J as in Section 5, we compute the residue using the Euler factorization of 
the zeta function of the right hand side, and we get, choosing ip so that cup pip = ot 

r ( l , Ad(A) ® a)Lc>(1, Ad(A) <8> a) 
--n(J) + J+J ' 

c 0 G((^)- 1 a ; (A- 1 t ) ) - 1 A-^- w -^ 2 v / : r l _ 

2 w(a) / (n!)-2(Vw7rc«JfJ,((yW)|F), 

aeci 

where CQ is an explicit non-zero constant in Q. 
We now define a modular transcendental factor of the above L-value. When 

F has more than one complex places, we cannot define the transcendental factor 
solely using the data of cohomology group for YO,K{N) as in the previous sections. 
Instead we need to use cohomology groups for YQ^K(N) and Yo:p(Nf). Because of 
this, we can define the period only for A and not for general non-base-change lift. 
Let s : S = Coo/Co^ —> {±1} be a character satisfying e((—l)r, ( —l)ar) = — 1 for 
all r E J. We start with a system of Hecke eigenvalues A for H with character xjj 
and write its base change lift to G as A, whose conductor is N. Let q = dim(5}) = 
2ri(F) + 3r2(F). We write 

F ( ^ ) [ X e ] = ^ u s p ( F o , K W , A ( n ^ ) , x ; ^ ) ) [ A ^ ] 

for the subspace on which T(n) acts via A and S acts via e. Note that {TT£SJ^ J> ( /)} j>, 
J' running through all subsets of E^(C) of cardinality #(£(C)) , forms a base of 
H(C)[\,e}. Let N^ = N n C2 for the conductor C of </?. We have the following 
sequence of maps: 

R(<p) : H(A){\,s] —> H^YoiN^Cmv + w^xf^A))^^]; 

i* :H2usp(Y0(Nv),£((n,v + w),xv2;A)) -^ H^sp(Y,£((n,v + w),(xV
2);A)\Y); 

^:H2usp(Y,£((n,v + w),(x<p2)F;A))-^H«(Y,C(0,u;-2-,A)y, 

w. : H*(Y,C(0,a,-2;A)) —> H?(Y,A) * A. 
U[det(u;)] 

The map z* is induced by the inclusion i : Y ^ 1 O , K ( ^ ) ? a n d K* is induced by the 
morphism of sheaves TT : £((n,v + iu),x^2; A)\y —» £(0,c<;~~2; A) (here x</?2 is well 
chosen under the condition that LUtppip = a so that the map 7r exists). The last 
map is induced by the cup product with the global section det(cj) of £ (0 ,CJ 2 ; A). 
We consider the composition Ev = Ev^ = u;* o 7r* O i* o i?(<£>). Then by the 
above computation, Ev([ir£6j,j'(f)]) ^ 0. We write M for the image under Ev 
of if(A)[A,£]. We suppose that M C A is free of rank 1 over A and write its 
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generator as £ e( /) . Since the value Ev([7r£Sj,j'(f)]) is independent of J ' , we can 
define Q[ 2(e, A; A) G C x by the following formula: 

St;([7r efi J ,^(/)])=fii i 2(e )A;A)6(/), 

where / is the cohomological modular form whose Fourier coefficient at ideal n is 
given by A(T(n)). For the moment, we assume that p and UJ are arithmetic, and A 
is a Dedekind domain inside a finite extension of Q(A, ip,u>). Here we note that 

Ev([nc6j,j,(f)])= E w(") / (n!)-2(v"7r£^ J , ( / | JR(^)) |F) . 

We also define for p G Aut(C) a constant £![ 2(£, A ;̂ A) by 

£ « ( M J , J ' ( / " ) ] ) = fi'li2(e,A";A)6(/p). 

If we have two choices of (<£>,£*;), say (p,ou) and {ip*,u'), the ratio: 

% ( M J / ( / ) ] ) / B V ( M ; / ( / ) ] ) 
is just equal to the identity component of 

(^ (A- 1 ^) - 1 ® l)G{<p)Hu)\£TlT>)-1 <g> l ) G ( ^ ) 

in Q(A, cp, pf) <g)Q C, and therefore, by an argument on Gauss sums close to the one 
given just above Theorem 7.1, {G{il)pa)~lVL,

l 2 ^ Ap; A))p is a well defined element 
in 

(Q(A)0 Q C) X / (Q(A) X 0 1), 

which we write Q(i,2)(e> A;Q(A)) = ( G ^ a ) " 1 ^ ^ , A; A))p. When ^ or CJ is 

algebraic (but not arithmetic), we write simply fi(i,2)(£> A;Q) for fi^ 2N(£, A;Q). 

Then we have 

THEOREM 8.1. Le£ a be a Hecke character of F£/Fx with a2 = 1. We allow 
a — id. Suppose that we have an arithmetic Hecke character p of K and LU of F 
such that (i) the conductor of oo is 1 and (ii) ipppu = a. Then we have 

(1® V ^ r < J | + J + J )G(*a)Q(1,2)(e,A;CKA)) 

for each character e : S —> {±1} wit/i £(( —1, —l)r) — — 1 / o r a ^ r £ J. If p is an 
algebraic Hecke character satisfying (i) and (ii), then we have 

r(l,Ad(A)<8)a)Lc/(l,Ad(A)(g)a) ^ 

^(1,2) (e, A; Q) 

9. Period relation 

We shall list here several period relations which follow easily from the main 
theorems. Some of them is a partial generalization of such relations for totally 
real extensions studied by Shimura, Harris and Yoshida (cf. [Y95], [Y94]). For 
simplicity, we suppose that F is totally imaginary. Let (j)p be a unique cohomological 
form on H whose Mellin transform is the standard L-function of Xp. We write Co 
for the conductor of (p. Then we choose a generator £m(^p) (m = 1, 2) of 

H™%(YoACo),C({n,v),iP;®(\pmP} 
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for q — [F : Q]/2 so that £m(0p) = £m(0)p, where p G Aut(C) acts on the cohomol-
ogy group through covariant functoriality of its action on L((ra, v), ip; Q(A)). We 
then define a constant Om(Ap;Q(A)) (m = 1,2) by 

Of course, we can give more integral definition of 0m(Ap; A) for, say, a discrete 
valuation ring A of Q(AP). However, here we just want to discuss rational and 
algebraic relations among modular periods Oj and fh,2- In other words, we like to 
study relations among periods of harmonic forms of different degree but belonging 
to the same system of Hecke eigenvalues. 

First we apply Theorem 8.1 to F (B F with the standard choice of ip — id xtp'1. 
Then it is easy to conclude from an argument given in Urban [U] for imaginary 
quadratic fields F that 

r(l,Ad(A))£(l,Ad(A)) ^ x 
n1(A;Q(A))fi2(A;Q(A)) ^ ' 

Thus writing a ~ b if a/b G Q , we see that 

fti,2(A;Q(A)) ~ fii(A;Q(A))n2(A;Q(A)). 

This is one of the reasons why we have written the period as 0i,2- This type 
of relation can be shown in a little more general case. These quantities Oj are 
defined depending only on F (and A), but Oi52 is defined relative to a general 
quadratic extension K/F (and A). Thus we fix A and write Of (A) (resp. Ox ̂  (A)) 

for fy(A;Q(A)) (resp. Oi?2(A;Q(A)) relative to K/F). When a = id, we get from 
the above identity 

(PI) fif|F/F(A)~ftf(A)ft2
F(A). 

Applying (PI) to A in place of A, we get 

ftf (A)ftf (A) ~ r ( l , Ad(A))L(l, Ad(A)) 

= r ( l , Ad(A))L(l, Ad(A))r(l, Ad(A) ® a)L{l, Ad(A) <g> a) 

~ ftf (A)fi^(A)ft*2
/F(A), 

On the other hand, it is proven in [Hi94, Theorem 8.1] that 

(27r)2 j+210f (A) ~ L(0, A ® 77 o JVK/F) 

= L(0, A <g> ry)L(0, A 0 77a) - (27r)2^+210f (A)2 

if 0 < j < n and 00(77) = ,7 + v + 1, a s l°ng a s the modular standard L-values are 
non-zero for some j , for example, if nT > 2 for all r . Thus we conclude (see (P) of 
Conjecture 5.1), if nr > 2 for all r, 

(P2j Of (A)~Of(A) 2 . 

This shows 

Of (A)2Of (A) - Of (A)Of (A) - Of (A)Of (A)0^ F (A) , 

and hence 

(P3) Of (A)Of (A) - Of (A)Of2
/F(A). 
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We put 

fi'f (A) = Qf (A) - 1 ^ 2
/ F (A) . 

Then we have 

(P4) ftf(A)~ft2
F(A)<(A). 

This formula seems to be a generalization of (P2) for f̂ - It is an interesting 
problem to find out its motivic meaning. Suppose that A = Ao for a system of 
Hecke eigenvalues A0 for GL(2)/L for a totally real subfield L with [F : L] = 2. We 
further assume that K = FF' for two totally imaginary quadratic extensions F/L 
and F'/L. Then one can prove easily from the above relations that, if nT > 2 for 
a l l r 

(P5) < ( A ) ~ ^ f (M), < 2
/ F ( A ) ~ n f ( A ) n f M 

and nf(A)~f t f (A)f t f ( /x) , 

where /J, is the base change lift of Ao to GL(2)/pv. 

Appendix A. Eisenstein series of weight 0 

Here, for the reader's convenience, we shall prove the residue formula of the 
Eisenstein series we used in the principal text, which seems not to be found in the 
literature in its exact form. 

Let F be a number field. We consider the algebraic group H — Res^/QGL(2)/F. 
We use the same symbol introduced in [Hi91, Section 4], where F is assumed to 
be totally real, but symbols themselves have meaning. For a finite order character 
X and 0 of the idele class group F£ /Fx modulo an ideal C of r, we consider the 
following Eisenstein series £(x,s) = £(x,X)0\s) '• H(A) —> C: 

£(x,8)= Yl X*M0(7x)rjMs, 
7€t><B(Q)\H(Q) 

where 

B(A) = {(Q J ) \a € (F ®Q A)x and b e F ®Q A\ C H{A) 

for Q-algebras A, and for the identity component H(R)+ of H(M), 

Xc(dc) for x = ( " J HXGB(A)U0(C)H(R) + J 

6{x) = I 

0 otherwise, 

0(a) i f x e r b) ZH(A)H(Z)C00+ 

0 otherwise, 

and 7] = 0 for 6 = \ \FA- We normalize the Eisenstein series in the following way: 

E*(x,x,9;s) = i V F / Q ( C ) 2 - ' ' 2 | D F | 1 / 2 ^ x - 1 ( a ^ ( a W , x ^ ; s ) , 
a 

where a runs over a complete set of representatives for F£ /Fx1txF£> and T2 is the 
number of complex places of F. We further put 

E(x, x, 0, s) = Lc(2s, X~l02W(x, X, 0; s). 
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We now compute the Fourier expansion of the above Eisenstein series. We put 
following [Hi94, Appendix] 

C(y,t;s) = / exp{-2mTr(tT)){\r\2 + y2)-sdr. 
Jc 

Then for the modified Bessel function Ks(t) as in [Hi94, Section 6], 

j(2TrrT(s)-W-s\t\s-1Ks-1(^\t\y) ift^O, 
U y " S J ~ \ 7 T ( S - l ) - V - 2 S if * = 0. 

We take e = (? "Q1 ) and compute the residue at s = 1 of E(x, s) = S(xe^°°\s) via 
its Fourier expansion. Let w be a variable of H(M)+. Then we write z = w(zo), 
where zo,a = ^/~—i if a is real and e if a is complex. We write y(z) = (ya) G F^ when 
z<7 = x a + \T-\-yo for cr real and za = ( ^ "l^7) for cr complex. For 7^ = ( ^ ^ ) , 
we define an automorphic factor by 

•( \ _ J Ccr2;cr ~*~ °k ^ °" *s rea*' 
1 det(p(ccr)zcr -f p{d(j)) if cr is complex, 

where p{x) = (g §)• Then by [Hi91, Lemma 6.4], we have 

X*((eaa(x) (" ' J ) s " 1 ) ^ ) = X ( a c a ' c ) , 

r ^ o a ^ ) (" ' J ) e " 1 ) ^ ) ) = |(aV)<°°>|FA, 

^ ( ( e a a ^ ) ^ ) ^ ) = |a^^/(z)|FA J J | j(£aa(x)a , 2:a)|~
2, 

aG//(c) 

6((eaa(x) (^ ^) g"1)0*0) = 0 ( aVt ) if a'c = 1, 

0((eaa(a;)it;)oo) = 1, 

where a(x) = (J f )• Then the Fourier coefficient 6(£, ix, s) at £ G F of F(x, s) given 
by 

• / F A 

F(a(x)u, s)ep(—£)x)dx, 
IFA/F 

we get from [Hi91, Lemma 6.6] that for u = x ( § 5 ) ^ with a^ = ac = 1 and 
x G Z# (A(°°)) 

C G a ^ r V 1 if 6 ( f , u , s ) ^ 0 , 

where D is the absolute different of F / Q and a = at. Then we see from [Hi91, 
(6.11)] 

b(£,u,s) = iV F / Q (C)- 1 | I> F r 1 /2 x e- 1 (a ( o o ) )x(a ; )^ F / Q (o) 8 - 1 

77(e:ra(t;00)u;)seF(-£t;00)du00 

• VJ fl^^WiVF/Qln)-2' X) M(n/b)7VF/Q(b), 

where a ~ b means that the two ideals belong to the same ideal class. As seen 
in [Hi91, 6.12b], from its definition combined with the above formula, the Fourier 

/ , 
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coefficient at £ for E*(u, x, 0\ $) is given by 

X9-1{a^)NF/Q{a)a-lLc{2a,x~102)-1 f r ? ( £ a ( v 0 0 ) U ; ) s e F ( - ^ 0 0 ) ^ c o 

[ X ^ a C b X" 1^(b)iVF / Q(b) 1- 2 s if ^ 0, 

\ L c ( 2 s - l , x - 1 e 2 ) if ^ = 0. 

Following [Hi94, Appendix], we get for a complex place a 

2" 1 fr]{ea{va)awa)
seF{-iv<T)dvCT = |yCT|2sC(2/,£;2s,0) 

./c 

= r (27r) 2 s r (2S ) - 1 t /C T | e | 2 s - 1^-i(47r |^ | ) if ^ 0, 

j ^ s - l ) - 1 ^ - 2 8 if € = 0. 

For real cr, we get from [Hi91, 6.9b] 

/ 77(ea(vCJ)CTu;CT)seF(-^0.)^CT 

= f Tr-r(s)-1 ICI5"1 exp(-27r|^f)^(47r|^|; s, s) if £ / 0, 

\ 7 r r ( s ) - 2 r (2s - l ) (4y f f )
1 - f l if £ = 0, 

where u;(t;s,s) is the hyper-geometric function defined in [Hi91, Section 6]. By 
this computation, we know that the Eisenstein series has meromorphic continuation 
to the whole complex s-plane. Moreover the non-constant term of E(x, x> id, s) is 
an entire function of 5, and hence the residue is constant. The constant term is 
given by 

X(a^)NF/Q(ay-\n4'-sr(S)-
2T(2s - 1))^ • (rr(2S - l ) - 1 )^ |y | ^T s L c (2 S - 1,X). 

This shows 

(RES1) Res s = i£(x ,x , id , s ) 

_ / 0 i f x ^ i d , 

- \NF/Q{C)-W)^$Z*fcW if X = id, 

where cj) is the Euler function: (fi(C) — # ( r / C ) x , R^ is the regulator of F and 
w(F) is the number of roots of unity in F. 

We now show that the Eisenstein series £(x ,x ;s ;C) — £(x,Xi^s) gives a 
section of the sheaf L((0, 0), x _ 1 ; C) over YO,F(C)- The identity 

c d ) = ^ ( S l ) = 7 ( o l) ^€ B ( A ) C / 0 ( C M R ) + 

for t = (g ^) implies that 

7 
y x 
o 

^ J G B(A)U0(C)rlH(R)+ = BiA^UoiQr1 

Thus (c,d) is the second row of a matrix in $(a) = H(Q) D tU0{C)t-1H(R) + . 
This shows that we can choose the 7 modulo txB(Q)+ inside <J)(a). Note that 

$(fl) n t x £ ( Q ) + - $^ } . Then for w - (g *) 

7^t = 7 o o ^ t - 1 7 ( o o ) t <= 7ooW;tcTo(C). 
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This shows that, for z — w(zo) which is the image of ( Q \) in £), 

rj^wt) = |a|FAy1 07 ( for 1 = ^ c r J and X*(7 f Q ^)t) = xc(d). 

Thus we get 

s(t(y
0

 xXxs,c\ = \a\'Fh J2 xc(7)yalo7 = H^ (a )W-

This shows the claim. 
Out of (RES1), we compute the residue of £. We shall make use of the following 

identity: 

Y,E*(x;x<p) = NFm{C)2^\DF\l'2Y, £ U<p)-\a)£(ax,X) 
¥ <£ a£ClF 

= ATF/Q(C)2-^| JDF |1/2 J2 x(ar1'Zt<p(a-1)£(ax,x<p) 
a<EClF <P 

= h(F)NF/Q(C)2-r>\DF\1/2£(x,X), 

where ip runs over all characters of the class group ClF of F. We know from the 
above residue formula that 

(RES2) Ress=1Lc(2s,X-1)E*(x;x) 

= 8xMNFm{Crx<t>{C) 

I I if v = i 
where fix;id 

1 if x = id, 

0 otherwise. 
In the principal text, we have used the residue formula when \ — UJ~2 f° r 

uo chosen so that a = ^pipped under the notation of Section 2.4. In this case, 
C = N'. Since the Euler product for LC(2S,LU2) converges at s = 1, we note that 
Lc(2,uj2) ^ 0. This shows that if \ = ^~ 2 = 0 / V F ) 2 , 

(RES3) Res s = 1 |a | s
F A£^(^) 

2[F:Q]-l^[F:Q]p 
= (F,N,(2)-1NF/Q(N,)-2<P(Nf) 

w(F)\DF\ 
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