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Abstract

In partial answer to a question posed by Arnie Miller [5] and X. Caicedo
[2] we obtain sufficient conditions for an Lω1,ω theory to have an inde-
pendent axiomatization. As a consequence we obtain two corollaries: If
Vaught’s conjecture holds, then every Lω1,ω theory in a countable lan-
guage has an independent axiomatization; every intersection of a family
of Borel sets can be formed as the intersection of a family of independent
Borel sets.

1 Introduction

Definition 1. A set of sentences T ′ is called independent if for every
φ ∈ T ′, T ′ \ {φ} 2 φ.

A theory T is called independently axiomatizable, if there is a set T ′

which is independent and T and T ′ have exactly the same models.

Note that this definition applies to sets of sentences in both first-
order (Lω,ω) and infinitary (Lω1,ω) logic, granted that we have defined a
meaning for |=. The question is whether every theory has an independent
axiomatization. For first-order theories the answer is positive:

Theorem 2. (M.I. Reznikoff- [3]) All theories of any cardinality in Lω,ω,
are independently axiomatizable.

Definition 3. For a set of sentences T ⊂ Lω1,ω and a sentence σ ∈ Lω1,ω,
write

T |= σ,

if all the models of T satisfy σ.
Two sets of sentences in Lω1,ω are semantically equivalent if they have

exactly the same models.
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Using definition 1 and 3, it makes sense to ask whether a theory in
Lω1,ω is independently axiomatizable, i.e. when it is semantically equiv-
alent to an independent set. A partial result to this question is given
by

Theorem 4. (X. Caicedo- [2]) Any theory in Lω1,ω of cardinality no more
than ℵ1 is independently axiomatizable.

For cardinalities greater than ℵ1, Caicedo obtained partial results for a
weaker notion of countable independence, which requires that every count-
able subset of the set of sentences is independent.

Our main result (theorem 26) states that

Theorem 5. For a countable language L and for a theory T ⊂ Lω1,ω, if
the number of counterexamples to Vaught’s Conjecture contained in T is
small, then T is independently axiomatizable.

The meaning of a small number of counterexamples is made clear by
definition 21. Vaught’s conjecture states

Conjecture (Vaught) Every sentence σ ∈ Lω1,ω either has countable
many non-isomorphic countable models, or else it has continuum many.

Under the Continuum Hypothesis the conjecture is trivially true and
Morley proved that every counterexample to it will necessarily have ℵ1

many non-isomorphic countable models.
Using theorem 5 we then obtain two consequences:

Theorem 6. Assume Vaught’s Conjecture. Then for any countable L
and any theory T ⊂ Lω1,ω, T is independently axiomatizable.

Definition 7. We call a collection of Borel sets B = {Bi|i ∈ I} indepen-
dent if

T

B 6= ∅ and for every i ∈ I,

\

j 6=i

Bj \Bi 6= ∅.

Two collections B,B′ are equivalent, if

\

B =
\

B′.

Theorem 8. Let B be a collection of Borel sets. Then there an indepen-
dent collection of Borel sets B′ with

\

B =
\

B′.

2 Preliminary work

In all that follows we work with sentences in Lω1,ω. If a theory T doesn’t
have any models, it is axiomatizable by the sentence ∃x(x 6= x), while if it
only contains valid sentences, then it is axiomatizable by the empty set.
Thus, we can assume that all the theories we work with are consistent
and do not contain valid formulas.

Throughout this paper we assume that the language L we are working
with is countable. Then every theory T ⊂ Lω1,ω can have size up to the
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continuum. Under the Continuum Hypothesis and using theorem 4, every
theory is independently axiomatizable. So, it suffices to deal with the case
that the Continuum Hypothesis fails and we will take this as one of our
working assumptions.

Definition 9. Let φ a sentence. We say that the sentences {ψα|α ∈ I}
partition φ if:

• |= φ↔
W

α∈I ψα

• For all α, |= ψα →
V

β 6=α¬ψβ

What we are heading towards is to prove that under the assumption
of a perfect set of countable models, we get a partition into continuum
many sentences.

If M is a countable model and ~a ∈ M, define the α-type of ~a in M
inductively:

φ~a,M0 :=
^

{ψ(~x)|ψ is an atomic formula or negation of atomic,M |= ψ(~a)},

φ~a,Mα+1 := φ~a,Mα
^

{∃~yφ~a⌢
~b,M

α (~x, ~y)|~b ∈ M} ∧
^

n

∀y0 . . . yn
_

{φ~a⌢
~b,M

α (~x, ~y)|~b ∈ M},

φ~a,Mλ :=
^

α<λ

φ~a,Mα , for λ limit.

The α-types of M are defined to be all sentences of the form φ~a,Mα , for
any ~a ∈ M, and if σ is a sentence, the α-types of σ are all sentences of
the form φ~a,Mα with M |= σ and ~a ∈ M.

If M is a countable model, then it realizes only countably many types
and there is an ordinal δ < ω1 such that for all ~a,~b ∈ M,

φ~a,Mδ 6= φ
~b,M
δ ⇔ ∃γ < ω1(φ

~a,M
γ 6= φ

~b,M
γ ).

The least such ordinal δ we call the Scott height of M and write α(M).

Then φ∅,M
α(M)+2 is called the Scott sentence of M.

Definition 10. For a Lω1,ω-sentence φ and α < ω1, let

Ψα(φ) := {φ~a,Mα |~a ∈ M,M |= φ},

the α-types of φ. Define also

Φα(φ) := {φ∅,M
α |M |= φ}.

Now, observe that if α = γ + 1, some γ, then we can identity every
φ~a,Mγ+1 with the set

{φ~a⌢
~b,M

γ |~b ∈ M}.

This enables us to consider Ψγ+1(φ) and Φγ+1(φ) as subsets of Xα(φ) :=
2Ψγ(φ). In the special case that Ψγ(φ) is countable, Xα(φ) becomes a
standard Borel space and we will prove (lemma 13) that in this case
Ψγ+1(φ) and Φγ+1(φ) are Σ1

1 subsets.
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Similarly, for α limit, we can identify φ~a,Mα with the set

{φ~a,Mγ |γ < α}.

Then Ψα(φ) and Φα(φ) become subsets of Xα(φ) := 2
S

γ<α Ψγ(φ). Again,
in the case that for all γ < α, Ψγ(φ) is countable, Xα(φ) becomes a
standard Borel space and Ψα(φ) and Φα(φ) are Σ1

1 subsets.
The same can be said for φ~a,M0 . We can identify it with

{φ(x)|φ atomic,M |= φ(~a)},

in which case Ψ0(φ) and Φ0(φ) become subsets of X0(φ) := 2A, with A
being the set of all atomic, or negation of atomic sentences. Since we
assumed that the language we work with is countable, A is countable and
X0(φ) is a standard Borel space with Ψ0(φ) and Φ0(φ) Σ1

1 subsets.

Definition 11. Let L be a countable language and let Mod(L) be the
set of all countable L-structures with underlying set N. We equip Mod(L)
with the topology generated by taking as basic open sets all sets of the form

{M ∈Mod(L) : M |= ϕ(n1, ...nm)}

for ϕ(~x) a quantifier free formula and n1, ..., nm ∈ N.

It is easily shown that Mod(L) is a Polish space. For more on this one
can consult [4].

Definition 12. For a sentence σ let Mod(σ) be the set of all models in
Mod(L) that satisfy σ.

This becomes a standard Borel space space by the Borel structure it
inherits from Mod(L) (cf. [4] too).

Lemma 13. Let φ be a Lω1,ω-sentence, α < ω1, Ψα(φ), Φα(φ) and Xα(φ)
as defined above. Assume that for all γ < α, Ψγ(φ) is countable. Then

1. the function Mod(φ) × ω<ω → Xα(φ), with

(M,~a) 7→ φ~a,Mα

is Borel and

2. Ψα(φ) and Φα(φ) are Σ1

1 sets.

Proof. Recall that under the countability assumption for the Ψγ ’s, Xα(φ)
becomes a standard Borel space with Ψα(φ) and Φα(φ) seen as subsets of
it. Therefore, the statement of the theorem makes sense.

Now, by induction on β ≤ α, it follows easily from the definition that
the function (M,~a) 7→ φ~a,Mβ is Borel. In particular, the same is true for

(M,~a) 7→ φ~a,Mα .
Using this function we can write

ψ ∈ Ψα iff ∃M∃~a ∈ M(M |= φ ∧ ψ = φ~a,Mα ),

and similarly
ψ ∈ Φα iff ∃M(M |= φ ∧ ψ = φ∅,M

α ).

This proves the lemma.
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If Ψα(φ) is as in the above lemma, then by the perfect set theorem for
Σ1

1 sets, it is either countable or has size continuum. If it is countable,
then we can apply the lemma once more and we can keep doing that until
we either run out of countable ordinals, or until we find an uncountable
Ψα′(φ), some α′ > α.

Lemma 14. For all α < ω1, the set

{(M,N ,~a,~b) ∈Mod(L)2 × (ω<ω)2|φ~a,Mα = φ
~b,N
α }

is Borel.
In particular, for φ ∈ Lω1,ω and γ < ω1, the set

{M ∈Mod(φ)|α(M) < γ}

is also Borel.

Proof. For the first part, by induction on α:

α = 0 : Then φ~a,M0 = φ
~b,N
0 if and only if for every atomic, or negation

of atomic, formula φ,

M |= φ(~a) ⇔ N |= φ(~b).

α+ 1 : Then φ~a,Mα+1 = φ
~b,N
α+1 if and only if

∀~c ∈ M∃~d ∈ N (φ~a⌢~c,Mα = φ
~b⌢~d,N
α )

and
∀~d ∈ N∃~c ∈ M(φ~a⌢~c,Mα = φ

~b⌢~d,N
α ).

α limit: Then φ~a,Mα = φ
~b,N
α if and only if

∀β < α(φ~a,Mβ = φ
~b,N
β ).

By inductive hypothesis, all these conditions are Borel and therefore
our set is Borel.

Now, by the definition of the Scott height, α(M) < γ if and only if

_

α<γ

∀~a ∀~b (φ~a,Mα = φ
~b,M
α ⇒ φ~a,Mα+1 = φ

~b,M
α+1).

By the first part, this condition is Borel.

Lemma 15. If a Lω1,ω-sentence φ has continuum many non-isomorphic
countable models, then there are countable ordinals α < β, with Xα(φ) a
standard Borel space, a perfect set P and continuous functions t : P →
Xα(φ), M : P →Mod(φ) such that:

• for all x 6= y ∈ P , t(x), t(y) are distinct types in Xα(φ),

• for all x ∈ P , M(x) is a countable model of φ that realizes t(x) and
has Scott height < β.

Moreover, by restricting P to a perfect subset P1, we can assume that for
x 6= y ∈ P1, M(x) 2 t(y).
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Proof. Let α < ω1 be the least ordinal with Φα(φ) uncountable. Then
Φγ(φ), γ < α, are all countable and applying lemma 13, we conclude that
Xα(φ) is a standard Borel space and Φα(φ) is Σ1

1. Consider an ordinal
β > α large enough so that the set

{φ∅,M
α ∈ Φα(φ)|α(M) < β}

is still uncountable. By lemma 14 this is again Σ1

1. Consequently, it
embeds a perfect set.

So, let P a perfect set with

t : P → {φ∅,M
α ∈ Φα(φ)|α(M) < β} ⊂ Xα(φ)

a continuous embedding. Then every t(x), x ∈ P , has the form φ∅,M
α , for

some M with α(M) < β.
Consider the set

{(x,M) ∈ P ×Mod(φ)|M |= t(x), Scott height(M)< β}.

This is not empty and by lemma 14 and since t is continuous, it is Borel.
By Jankov- von Neumann Uniformization theorem (cf. [1]), we get a
function x 7→M(x) that is Baire measurable and for all x ∈ P , (x,M(x))
is in the above set. Restricting the domain to a comeager set C ⊂ P we
can further assume that x 7→M(x) is continuous on C.

Let
R0 := {(x, y) ∈ C2|M(x) 2 t(y)}.

Since t is 1-1 and M(x) can satisfy only countably many α-types, R0 is
comeager in C2. By theorem 19.1 of [1], we can find a Cantor set C1 ⊂ C
such that

(C1)
2 ⊂ R0,

or that for all x, y ∈ C1,

x 6= y ⇒ (x, y) ∈ R0 ⇒ M(x) 2 t(y),

which proves the lemma.

Observe here that for x 6= y ∈ P1, M(x) |= t(x), while M(y) 2 t(x),
which implies that M(x) ≇ M(y).

Lemma 16. The set A0 := {M|∃x ∈ P1(M ∼= M(x))} is Borel.

Proof. We need first that the set A1 := {(x,M)|M ∼= M(x), x ∈ P1} is
Borel. Since for all x ∈ P1 the Scott height of M(x) is < β,

M ∼= M(x) iff M |= φ
∅,M(x)
β+1

iff φ∅,M
β+1 = φ

∅,M(x)
β+1 .

This last condition is Borel by lemma 14.
By the observation that for x 6= y ∈ P1, M(x) ≇ M(y), we can also

conclude that if (x1,M), (x2,M) are both in P1, then x1 = x2. By the
Lusin-Novikov theorem, the projection of A1 (on the second component)
is also Borel and this is exactly what we have to prove.
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Corollary 17. There is a sentence φ+ ∈ Lω1,ω such that for every count-
able model M,

M |= φ+ ⇔ M ∈ A0.

Proof. A0 is obviously invariant under isomorphisms and by the previous
lemma is Borel. Therefore, there exists a Lω1,ω sentence φ+ as in the
statement.

Lemma 18. If N is a model of φ+, countable or uncountable, and it
satisfies one of the α-types {t(x)|x ∈ P1}, then it actually satisfies the
Scott sentence s(x) of M(x).

Proof. Recall here that a countable model can satisfy only one of the
α-types {t(x)|x ∈ P1}.

If N is countable and satisfies φ+, then it belongs to A0, i.e. it is
isomorphic to one of the M(x), x ∈ P1. If N |= t(x), then M(x) ∼= N and
obviously N |= s(x).

Therefore, assume that N is uncountable with N |= t(x), some x ∈ P1.
Let s(x) be the Scott sentence of M(x) and F the fragment generated by
φ+, t(x) and s(x). Let N0 be a countable model with

N0 ≺F N .

Then N0 |= φ+ and N0 |= t(x). As in the countable case, N0 |= s(x),
which implies that N |= s(x).

Using all these lemmas we are ready to prove

Theorem 19. If φ has 2ℵ0 many non-isomorphic countable models, then
there exists a partition of φ into continuum many sentences.

Proof. Assume that P1, α, x 7→ t(x), x 7→M(x) and φ+ are as above.

Claim 1. It suffices to find a Lω1,ω-sentence φ∗ that expresses the fact
that our model satisfies one of the α-types {t(x)|x ∈ P1}.

Proof. (of claim) First we need that every model of φ+ is also a model
of φ∗. Arguing as before let N |= φ+, F be the fragment generated by
both φ+ and φ∗, and N0 ≺F N a countable model. Then, there exists
x ∈ P1 with N0

∼= M(x) and N0 |= t(x). By definition, N0 |= φ∗ which
also implies that N |= φ∗.

Combining this with the previous lemma, we conclude that every
countable or uncountable model of φ+ will satisfy one of the Scott sen-
tences {s(x)|x ∈ P1}. Therefore,

{φ ∧ ¬φ+} ∪ {s(x)|x ∈ P1, s(x) is the Scott sentence of M(x)}

gives a partition of φ into continuum many sentences.

Towards constructing φ∗, let S :=
S

γ<α Ψγ(φ). By assumption on α,

S is countable and for all x ∈ P1, t(x) ∈ Xα(φ) ⊂ 2S .
For all u ∈ 2<ω we can construct Su finite subsets of S such that

1. for every u, Su⌢0 is always incompatible with Su⌢1,
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2. Su ⊂ Sw when u ⊂ w,

3. for every û ∈ 2ω,
S

n∈N
Sû↾n is an element of {t(x)|x ∈ P1} and every

t(x) in this set can be written as
S

n∈N
Sû↾n, for some û ∈ 2ω.

Consider the sentence:

φ∗ := ∃a
^

n∈ω

_

u∈2n

^

ψ∈Su

ψ(a).

It is obvious that every model of φ∗ will satisfy one of the α-types t(x),
x ∈ P1.

3 Main Result

We work as before with a countable L. Throughout this section we will
not distinguish between a model M and its isomorphism class [M]S∞

.
So, when we say that a sentence has countably many countable models,
we actually mean countably many non-isomorphic countable models.

Definition 20. For a theory T = {φα|α < 2ℵ0} define

T0 := {φ ∈ T |¬φ has countable many countable models},

T1 := {φ ∈ T |¬φ has ℵ1 many countable models},

T2 := {φ ∈ T |¬φ has 2ℵ0 many countable models},

and

X0(T ) := {M|M |= ¬φ, some φ ∈ T0, M countable}

X1(T ) := {M|M |= ¬φ, some φ ∈ T1, M countable}

X2(T ) := {M|M |= ¬φ, some φ ∈ T2, M countable}

X(T ) := X0(T ) ∪X1(T ) ∪X2(T ).

Note that the sets T0, T1 and T2 are disjoint, while the setsX0(T ),X1(T )
and X2(T ) may not be disjoint. Also, all sentences in T1 provide coun-
terexamples to Vaught’s Conjecture.

Definition 21. In case that |X(T )| ≥ |T1|, we say that T1 is small.

Smallness assumption for T1 will be crucial for our main result (the-
orem 26). Now, if |X(T )| = ℵ0, then T1 = T2 = ∅ and if {Mn|n ∈ ω}
enumerate the models in X0 and {φn|n ∈ ω} enumerate their Scott sen-
tences, then it is easily seen that

T ⇔
^

¬φn.

So, we can assume that |X(T )| is uncountable.
We will split the proof in various cases given by corresponding lemmas.

Lemma 22. If X2(T ) 6= ∅, then T is independently axiomatizable.
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Proof. In this case there is a sentence, say φ0, such that ¬φ0 has contin-
uum many non-isomorphic countable models.

By theorem 19 we know that there are sentences {ψα|0 < α < 2ℵ0}
that partition ¬φ0. Define a new theory1

T ′ = {φα|0 < α < 2ℵ0} by

φα : (¬φ0 ⇒ ¬ψα) ∧ (φ0 ⇒ φα).

Claim 2. T and T ′ are semantically equivalent.
If we assume T , then for every φα the second part of its conjunction

is trivially true, while the first part is true since its antecedent is false.
Now, assume T ′. If φ0 holds, then for every φα the second part of

its conjunction implies φα. Therefore, T holds. On the other hand, if φ0

fails, then the conjunction of all the φα’s implies

^

α

¬ψα.

But by the way the ψα’s were defined,

|= ¬φ0 ⇔
_

α

ψα.

Combining these two we get φ0. Contradiction. Therefore, φ0 can not
fail.

Claim 3. T ′ is independent.
Let α < 2ℵ0 and assume that there is a model Mα with Mα |= ψα.

By the assumption that the ψα’s partition ¬φ0, we get that Mα |= ¬φ0

and for all other β 6= α, Mα |= ¬ψβ . Therefore,

Mα |=
^

β 6=α

φβ ∧ ¬φα.

This means that T ′ \ {φα} 2 φα, or that T ′ is independent.

Lemma 23. If X2(T ) = ∅ and |X0(T ) \X1(T )| = |X(T )| ≥ |T1|, then T
is independently axiomatizable.

Proof. Before we start we need a lemma that essentially is due to Reznikoff
(cf. [3]) and also appears in [2]. We include the proof for completeness.

Lemma 24. Let C,D be disjoint sets of sentences with |D| ≤ |C|. If
every φ ∈ C is not implied by other sentences of C ∪ D, then C ∪ D is
equivalent to an independent theory.

Proof. Let f : D → C be a 1-1 function. Then the set

(C \ f(D)) ∪ {φ ∧ f(φ)|φ ∈ D}

is independent and semantically equivalent to C ∪D.

1Note here that both ψα and φα are defined for α > 0.
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Now, assume that |X(T )| = κ ≥ ω1.
By the previous lemma it suffices to find a theory T ′

0 such that

• T ′
0 ∪ T1 is equivalent to T0 ∪ T1,

• |T ′
0| = κ ≥ |T1| and

• Every sentence in T ′
0 is not implied by other sentences in T ′

0 ∪ T1.

Let T0 = {φα|α < 2ℵ0} and for every α, let {M(α)
n |n ∈ N} and {φ(α)

n |n ∈
N} be an enumeration of the (countably many) countable models of ¬φα
and their Scott sentences respectively. Define

φα =
^

{¬φ(α)
n |M(α)

n /∈ X1(T ), φ(α)
n 6= φ(β)

m , β < α,m ∈ N},

i.e. we get the conjunction of all the Scott sentences that neither did
they appear at a previous step nor their countable model is in X1(T ). If
the conjunction is empty we ignore it. By assumption |X0(T ) \X1(T )| =
|X(T )| = κ and there have to be κ many φα’s that are not empty. Let
T ′

0 = {φα|α < κ}.

Claim 4. T ′
0 ∪ T1 is equivalent to T0 ∪ T1.

First observe that
¬φα ⇔

_

n

φ(α)
n ,

or that
φα ⇔

^

n

¬φ(α)
n .

Thus, φα ⇒ φα, or that

T0 ∪ T1 |= T ′
0 ∪ T1.

Conversely, let M |= T ′
0 ∪ T1. We need to prove that M |= T0, which is

equivalent to
M |= φα, for all α,

or that
M |=

^

n

¬φ(α)
n , for all α,

or
M |= ¬φ(α)

n , for all α and n.

Hence, assume that M |= φ
(α)
n , for some α and n. Since M |= T ′

0, the

only case that this can happen is if M(α)
n ∈ X1(T ). If M is not countable,

we can pass to a countable elementary submodel (over an appropriate frag-

ment), say M0 ≺ M. Then M0
∼= M(α)

n and, therefore, there is φ ∈ T1

with M0 |= ¬φ. If the fragment was chosen to include φ, we also get that
M |= ¬φ, contradicting the fact that M |= T1.

Claim 5. Every sentence in T ′
0 is not implied by other sentences in T ′

0∪T1.
Fix α and assume that φα is not empty, with, say ¬φ(α)

n , being one
sentence in the conjunction. Since M(α)

n |= φ
(α)
n , it cannot satisfy any

other Scott sentence and since ¬φ(α)
n doesn’t appear in any other φβ, we

conclude that
M(α)

n |= ¬φα ∧
^

β 6=α

φβ.
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So, M(α)
n |= T ′

0 \ {φα}. But also, for every φ ∈ T1, M(α)
n |= φ, because

otherwise it would be M
(α)
n ∈ X1 and this would prevent ¬φ

(α)
n from being

in the conjunction of φα. Contradiction.
Putting everything together we get that

M(α)
n |= T ′

0 ∪ T1 \ {φα},

witnessing that T ′
0 ∪ T1 \ {φα} 2 φα.

This establishes the claim and finishes the proof.

Lemma 25. If X2 = ∅ and |X(T )| ≥ |T1|, then T is independently
axiomatizable.

Proof. If |X(T )| = κ and |X1(T )| < κ, then the assumptions of lemma
23 are satisfied and T is independently axiomatizable. So, assume that
X1(T ) = {Mα|α < κ} with κ ≥ ω1 and T1 = {ψα|α < λ} with λ ≤ κ.

We will find another theory T ⋆, equivalent to T and for which

|X0(T
⋆) \X1(T

⋆)| = |X(T ⋆)| = |X(T )| ≥ |T1| = |T ⋆1 |.

Again, by lemma 23 we are done.
We know that the only case that a sentence φ can be in T1 is if for all

countable α, both Φα(¬φ) and Ψα(¬φ) are countable. For every α < ω1

define new sets Cα(¬φ) and Sα(¬φ):
φ∅,M
α ∈ Cα(¬φ) if and only if φ∅,M

α ∈ Φα(¬φ) and there are only
countably many countable models of φ that satisfy φ∅,M

α , and
σ ∈ Sα(¬φ) if and only if there exists a countable model M that

satisfies some φ∅,M
α ∈ Cα(¬φ) and σ is its Scott sentence.

Both Cα(¬φ) and Sα(¬φ) are countable for all α, since Φα(¬φ) is
countable.

We will distinguish three cases:
Case I: κ > ω1 and cf(κ) 6= ω1.
Since

κ = |X1(T )| ≤ |T1|ℵ1 = λ · ℵ1

and
κ > ω1,

it must be that κ = λ. Since cf(κ) 6= ω1, there exists an ordinal γ < ω1

and κ non-isomorphic countable models in X1 of Scott height less than γ.
Define inductively a new theory, considering the sentence ¬ψα at stage

α < λ. Choose β larger than γ and replace ψα by

ψ(0)
α :=

^

{¬σ|σ ∈ Sβ(¬ψα)}

and
ψ(1)
α := ψα ∨

_

{σ|σ ∈ Sβ(¬ψα)}.

It is not hard to see that ψα is equivalent to the conjunction of ψ
(0)
α and

ψ
(1)
α . Also, observe that ¬ψ(0)

α has countably many countable models and
all the countable models of ¬ψα of Scott height less than γ satisfy it.

11



Repeating this for λ many steps we will get eventually a theory T ⋆

such that X0(T
⋆) will contain all countable models that are in X1(T )

that have Scott height < γ. By the assumption on γ,

|X0(T
⋆) \X1(T

⋆)| = κ.

Case II: κ > ω1 and cf(κ) = ω1.
As before κ = λ, but the difference now is that we may not have an

ordinal γ as before. Instead, assume that there are cardinals {µi|i < ω1}
and countable ordinals {αi|i < ω1} such that

• for all i < j, ω1 < µi < µj ,

• supi µi = κ,

• for i = 0, α0 = 0,

• for all i < j, αi < αj , and

• for j limit ordinal, supi<j αi = αj , and

• for all i < ω1, the number of countable models in X1(T ) that have
Scott height α with αi ≤ α < αi+1 is equal to µi.

This also yields a partition T1 =
S

i<ω1
T

(i)
1 such that for all i

• for all ψ ∈ T
(i)
1 , ¬ψ has a countable model of Scott height α, αi ≤

α < αi+1 and

• |{M|M |= ¬ψ, some ψ ∈ T
(i)
1 , M countable and αi ≤ α(M) <

αi+1}| = µi.

As before we define a new theory inductively: At stage α, if ψα ∈ T
(i)
1 ,

choose β ≥ αi+1 and replace ψα by

ψ(0)
α :=

^

{¬σ|σ ∈ Sβ(¬ψα)}

and
ψ(1)
α := ψα ∨

_

{σ|σ ∈ Sβ(¬ψα)}.

It is not hard to see that ψα is equivalent to the conjunction of ψ
(0)
α and

ψ
(1)
α . Also, ¬ψ(0)

α has countably many countable models, while ¬ψ(1)
α has

ℵ1 many countable models, and all the countable models of ¬ψα of Scott
height < αi+1 ≤ β satisfy ¬ψ(0)

α .
Eventually, after λ many steps we will get a theory T ⋆ such that

X0(T
⋆)\X1(T

⋆) contains at least µi many countable models M ∈ X1(T )
that have Scott height αi ≤ α(M) < αi+1. By the assumptions on the
µi’s,

|X0(T
⋆) \X1(T

⋆)| = κ.

Case III: κ ≤ ω1.
Then λ ≤ ω1 and we can use Caicedo’s theorem (in [2]) that every set

with ≤ ω1 sentences in Lω1,ω is independently axiomatizable.

Theorem 26. If |X(T )| ≥ |T1|, then T is independently axiomatizable.

Proof. If X2 6= ∅, then use lemma 22. If it is empty, then use the previous
lemma.

12



Corollary 27. If the Vaught Conjecture holds, then every T ⊂ Lω1,ω is
independently axiomatizable.

Proof. The Vaught Conjecture gives us that T1 = ∅. Then use the previ-
ous theorem.

Corollary 28. If |X(T )| = 2ℵ0 , then T is independently axiomatizable.

Proof. Then |X(T )| ≥ |T1| and we can again apply theorem 26.

4 Reformulations and open questions

In this section we reformulate the previous theorems as statements about
Borel sets and give some open problems.

Recall that a collection of Borel sets B = {Bi|i ∈ I} is independent if
T

B 6= ∅ and for every i ∈ I ,
T

j 6=iBj \ Bi 6= ∅, and that two collections

B,B′ are equivalent if
T

B =
T

B′.

Theorem 29. Every collection of Borel sets B = {Bi|i ∈ 2ℵ0} with
T

B 6= ∅ admits an equivalent independent collection.

Proof. The proof closely resembles the proofs of lemma 23 and lemma 22.
We have two cases:

Case I: There is an i0 ∈ I , such that ∁Bi0 , the complement of Bi0 , is
uncountable.

Then we can partition ∁Bi0 into continuum many sets
S

x∈∁Bi0

{x}.

Call these sets {Cj |j 6= i0, j < 2ℵ0}. Define now a new collection of Borel
sets B′ = {B′

j |j 6= i0, j < 2ℵ0} by

B′
j := (Bi0 ∨ ∁Cj) ∧ (∁Bi0 ∨Bj).

Claim 6. B and B′ are equivalent.
Let x ∈

T

B, or that x ∈ Bi, all i < 2ℵ0 . It follows from the definition
of B′

j that x ∈ B′
j, all j, or that x ∈

T

B′.
So, assume that x ∈

T

B′. If x ∈ Bi0 , then the second conjunct
will imply that x ∈ Bj , for all j 6= i0. Therefore, x ∈

T

B. If on the
other hand, x /∈ Bi0 , then the first conjunct will imply that x ∈ ∁Cj, all
j 6= i0, j < 2N}. But the Cj’s partition ∁Bi0 , which means that x ∈ Bi0 .
Contradiction. So, this case can’t happen.

Claim 7. B′ is independent.
Let x ∈ Cj. By the properties of the Cj’s, we get that x ∈ ∁Bi0 and

x /∈ Cj′ , for j′ 6= j. Therefore, x /∈ B′
j , while x ∈ B′

j′ , j
′ 6= j, which

implies that
\

j′ 6=j

B′
j′ \ B

′
j 6= ∅.

Case II: For all i ∈ I , ∁Bi, the complement of Bi, is countable.
Construct a new collection B′ = {B′

j |j < 2ℵ0} with

B′
j = Bj

[

i<j

∁Bi.
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If the set is equal to the whole space, we ignore it and proceed to the
next one. Observe here that the the complement of B′

j is a subset of the
complement of Bj , which is countable by assumption. Therefore, it is
Borel.

Claim 8. B and B′ are equivalent.
It is immediate that B′

j ⊃ Bj , which means that
T

j B
′
j ⊃

T

j Bj . So,

let x ∈
T

j B
′
j . By induction on j we can prove that x ∈ Bj. Assume

that x ∈
T

i<j Bi. Then x /∈
S

i<j ∁Bi. Since, x ∈ B′
j , this implies that

x ∈ Bj. Consequently, x ∈
T

j Bj .

Claim 9. B′ is independent.
Fix j < 2ℵ0 and assume that B′

j is not equal to the whole space. Say
y ∈ ∁B′

j witnesses this. Then, y ∈ ∁Bj and by definition y ∈ B′
i, for all

i > j.
Similarly, y /∈ B′

j implies that x /∈
S

i<j ∁Bi, which means that x ∈
T

i<j Bi. Then, x ∈ B′
i, for all i < j, and overall, y ∈

S

i6=j B
′
i \ B

′
j.

In either case, we constructed an independent collection of Borel sets
B′ with is equivalent to B.

It would be interesting if we could derive theorem 26 from theorem 29.
This would eliminate the extra assumptions of theorem 26.

Definition 30. Let T |=g φ mean that in all generic extensions every
model of T is also a model of φ.

This is a stronger notion than T |= φ and is related to T ⊢Lω1,ω φ,
but we will not define ⊢Lω1,ω here. We can prove

Theorem 31. If T |=g φ, then there are countably many sentences
φ0, φ1, . . . ∈ T such that

^

n

φn |=g φ.

We now ask whether we can replace |= by |=g in theorem 26. The
problem is that T and T ′ may not be semantically equivalent in a generic
extension. This is an open question we did not consider.

We can also reformulate this problem using the language of Boolean
Algebras. We know that the Lω1,ω- sentences form a σ-complete Boolean
Algebra with φ ≤ ψ if and only if φ→ ψ. Using theorem 31 we can prove
that the σ-filter generated by a theory T is equal to

T ′ = {ψ|T |=g ψ}.

Definition 32. A set A of sentences is called σ-filter independent, if for
all φ, φ is not in the σ-filter generated by A \ {φ}.

The problem is given a set of sentences A to find another set A′ such
that

• A and A′ generate the same σ-filter and

• A′ is σ-filter independent.
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We can also extend the question to finding conditions under which a
Boolean Algebra satisfies the above statement. As far as we know this
problem is open.

Another extension would be to prove that any Lω1,ω theory is inde-
pendently axiomatizable, without assuming countability of the language.
Our techniques here rely heavily on this assumption.
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