1. Show that every non-empty Σ^1_1 set contains an x with $\omega_1^{ck(x)} = \omega_1^{ck}$. (Recall: $\omega_1^{ck(x)}$ is the sup of the ordinals “recursive in x” – i.e. isomorphic to some well ordering recursive in x).

2. Show that if $\delta < \omega_1^{ck}$ is an infinite ordinal, then there is a recursive well ordering isomorphic to δ. (Warning! This is NOT a tautology. We defined ω_1^{ck} to be the supremum of such ordinals. This exercise is asking you to show that the class of order types realisable as a recursive well ordering of ω has no gaps.)

3. Let X_{low} be the set of $x \in 2^\omega$ which are low ($\omega_1^{ck(x)} = \omega_1^{ck}$). Equip this with the topology generated by the Σ^1_1 sets.

Show this space is Polish.