Definition For $x \in 2^\omega$, let $\varepsilon_x = \{(n,m) : x(2^n3^m) = 1\}$. Let $M_x = (\omega; \varepsilon_x)$. Let ZFC^* denote the first one billion axioms of ZFC. A model $M = (M; E)$ of ZFC^* is said to be an ω-model if its version of ω is genuinely isomorphic to true ω—which is to say, for every $a \in M$ with $M \models a$ “is a natural number”, we have some $k \in \omega$ such that

$$M \models \exists b (b \text{is the empty set and } S(S^{\text{times}} ...(b)) = a).$$

Q1 (i) Show that the set of pairs $(x, a) \in \omega^\omega \times \omega$ such that $x \in 2^\omega$ and

$$M_x \models ZFC^* \land “a \text{ is an ordinal}”$$

is a Δ^1_1 subset of $\omega^\omega \times \omega$.

(This basically follows from our observing that truth is Δ^1_1 in class, and please don’t trouble yourself with trying to repeat that entire proof. Really, I want you to think about this just enough to convince yourself it is true, and write down just enough to convince me that you have indeed convinced yourself. We will need these and similar calculations in the proofs remaining, and I am disinclined to go through them all carefully in class.)

Definition For $M_x \models ZFC^*$, we let Ord^{M_x} denote the set of $a \in \omega$ with

$$M_x \models “a \text{ is an ordinal}”. $$

Let LO denote the set of $x \in 2^\omega$ such that ε_x is a linear ordering of ω.

(ii) Show that the set of $x \in 2^\omega$ such that M_x is an ω-model of ZFC^* is a Δ^1_1 subset of ω^ω.

(iii) Show that the set of $(x, y) \in 2^\omega \times 2^\omega$ such that $y \in LO$, $x \models ZFC^*$, and

$$(\omega; \varepsilon_y) \cong (\text{Ord}^{M_x}; \varepsilon_x)$$

is Σ^1_1 as a subset of $\omega^\omega \times \omega^\omega$.

Q2 (i) Show that the set of $(x, y) \in 2^\omega \times 2^\omega$ such that $x, y \in LO$ and $(\omega; \varepsilon_y)$ is isomorphic to an initial segment of $(\omega; \varepsilon_x)$ is Σ^1_1.

(ii) Show that the set of $(x, y) \in 2^\omega \times 2^\omega$ such that $x, y \in LO$ and ε_x is a well order and ε_y is isomorphic to an initial segment of $(\omega; \varepsilon_x)$ is Π^1_1.

Q2(i), (ii) shows that comparison of lengths is relatively Δ^1_1 on the well orderings. This is a short, but very important, calculation. For instance, it is implicit in say the proof from Moschovakis’ Descriptive Set Theory that Π^1_1 has the prewellordering property.