Appendix on Details of Inoue Surfaces

In the Kodaira classification of compact complex surfaces already discussed, a special position is
occupied by what are called the Class VI, surfaces. They are (minimal) surfaces with first Betti
number b;= 1.

These in turn are subdivided. First, there are surfaces with b,=0 also (along with b; =1) and
containing at least one curve. This class includes Hopf surfaces (obtained as quotients of two —
dimensional complex Euclidean space with the origin removed under the cyclic group generated
by multiplication by a complex number of absolute value not equal to 1) and some elliptic
surfaces. Kodaira proved that only those examples occur in this class.

Thus in the class Vllg , it remains only to consider the two classes:
1. second Betti number nonzero

and
2. second Betti number 0 and containing no curves.

(In both cases, the space of meromorphic functions consists of constants only, so algebraic
dimension is 0). Inoue constructed families of surfaces in case 2. He also showed that any
example in case 2 that admitted a line bundle L such that the space of holomorphic (1,0) forms
with values in L was nontrivial must belong to one of the families he constructed. Later
Bogomolov, and by a different and simpler argument Li, Yau , and Zheng showed that such a
line bundle always exists. Thus Inoue's families are the only examples of surfaces for case 2. The
basic method of Li, Yau, and Zheng is to note that if no such bundle L exists, then the
holomorphic tangent bundle of the surface is stable. Under that hypothesis, they then show that
the tangent bundle has a Hermitian Yang Mills connection and deduce from that the surface
admits a Kahler structure, contradicting that the first Betti number is 1.

Inoue's examples are quotients of HXC, the product of the upper half plane and the complex
numbers. The transformation groups by which the quotienting occurs are properly
discontinuous, fixed point-free groups of affine transformations. The exact descriptions of these
groups are given at the end of this appendix, extracted from Inoue's paper "On Surfaces of Class
Vil ", Inventiones Math. 24(1974) , 269-310).

Topologically, these surfaces are:

Type SM : a 3-torus bundle over a circle

Type S* : a bundle over a circle with fibre itself a bundle, namely a circle bundle over a 2-torus
Type S™ : aquotient of an S* by a Z; action, that is, some S* is unramified double cover of a
given S’

Note that these topological types are different from the Hopf surface situation, where,e.qg., the
well known complex structure on S°xS is obtained by regarding the surface as a fibration over
S? with a torus fibre (the famous "Hopf fibration" of S* over S*, producted with S*). A similar
idea was used in the construction of the well-known Calabi-Eckmann complex structures on the
product of any two odd-dimensional spheres, the product in that case being regarded as a
fibration over the product of two complex projective spaces, with a torus fibre.



Inoue’s description of the construction of his families of surfaces:

Surfaces S,
Let M=(m;)eSL(3,Z) be a unimodular matrix with eigen-values
o, B, f such that «> 1 and B+f. We choose a real eigen-vector (a,, a,, as)
and an eigen-vector (by, b,, b;) of M corresponding to o and B, respectively.
Clearly « is an irrational number and

(14) (ay,by), (@2, by), (a3, b3) are linearly independent over R,
)
(15) (@a;, fb)= Y mjla.b) for j=1,2,3.
w1

By IH we denote the upper half of the complex plane. Let G,, be the group
+  of analytic automorphisms of IH x € generated by
8o- (W., ZJ ~ (ﬂ w, ﬁz}y

gt wz)— (w+a,z+b) for i=1,2,3.

(16)

(14) and (15) imply that the action of G,, on H x € is properly discon-
tinuous and has no fixed points. We define S,, to be the quotient surface
H x €/G,,.

Surfaces S{!) .,

Let N =(n;)eSL(2,Z) be a unimodular matrix with two real eigen-
values «. | /o, 2> 1. We choose real cigenvectors (ay, ay) and (b, h,) of N
corresponding to o and 1/o, respectively, and we fix integers p. g, ¢ (r40)

and a complex number 1. We define (¢;,¢,) to be the solution of the
following equation:

bya,—bya
a7 (€1, ) =(c1. €2)- ‘N +(ey, &)+ ————(p, q)

wheree; =4 n; (n;,— 1) a; by+5 nio (0, — 1) ay by + nyy npy byay (i=1,2). Let
Gy') o.r:be the group of analytic automorphisms of IH x € generated by

8o (W, 2) > (xw, 2+ 1)
(18) gi: (w,z)—(wha,z+bwte) i=1,2

bya,—b
g5:(w,z)—> (w,z+»-—-l—ﬁ~rz—al)A

Let I" be the subgroup <g;,g,, 2> of G} . .- For each fixed y=Imw,
I' defines an automorphism group I', of R x € =~ IR* in an obvious manner.
Then g; commutes with every element of Gy} . ...2"'8:"'2 2,=¢5
and g, normalizes I". Moreover,

(19) the action of I', on R? is properly discontinuous and has no fixed
points.

This follows from the fact that (a,,b,) and (a,, b,) are lincarly inde-
pendent over RR. (17), (18) and (19) imply that the action of G§') , .. on
IH x € is properly discontinuous and has no fixed points. We define
St} 4.rie t0 be the quotient surface H x C/GL) , .- '



Surfaces S§ ) e
Let N=(n;)e GL(2, Z) be a 2 x 2 matrix with det N= —1 having two
real eigen-values @, — 1/ such that a> 1. We choose real eigen-vectors
(ay, a;) and (by, b,) of N corresponding to « and — 1/a, respectively, and
we fix integers p, g, r (r£0). We define (c,, c,) to be the solution of the

following equation:
b,a
(20) r—(c.,cz)=(c.,cz)'N+(e,,ez)+~—--J—'fp 9,

where e;=3n;,(n;;—1)a, by +3n;5(n;; —1)ay by +n;y 0, by @, (i=1,2). Let

G}, .- be the group of analytic automorphisms of IH x € generated by
go: (W, 2)—(@w, —2z),

(21) g: w,z2)>(w+a, z+b;wt+c) for i=1,2,

b a,—b, a, )

g3 (W:Z)ﬂ (W)Z_'_ r

Then the subgroup <g3, g, g2, g3 coincides with G4’ a0l OT CEF=
tain (p,, q,)elz of which index in G§_), , , equals 2. g, defines an involu-
tion of S, a.r; 0 ITee from fixed points. Thus the action of Gy}, ., on
HxC is properly discontinuous and has no fixed pomt& We define a
surface Sy ), o.r L0 be the quotient surface H x (E/GN S
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