1. Valuations

Definition 1.1. A valuation on a field K is a function $|·| : K \to \mathbb{R}$ satisfying

1. $|x| \geq 0$, and $|x| = 0$ if and only if $x = 0$
2. $|xy| = |x||y|$
3. $|x + y| \leq |x| + |y|$

((3') $|x + y| \leq \max(|x|, |y|)$)

If $|·|$ satisfies (3'), then it is called nonarchimedean. Otherwise, it is called archimedean.

Proposition 1.2. Let $|·|$ be a valuation on a field K. The followings are equivalent:

1. $|·|$ is nonarchimedean.
2. If $|\alpha| \leq 1$ for some $\alpha \in K$, then $|\alpha + 1| \leq 1$.
3. The set $\{|n| \mid n \in \mathbb{Z}\}$ is bounded.

Proof. Note that $|1||1| = |1|$ gives $|1| = 1$ because $|1| \neq 0$. Similarly, we have $|-1| = 1$.

(1) \Rightarrow (2) If $|·|$ is nonarchimedean and $|\alpha| \leq 1$, then $|\alpha + 1| \leq \max(|\alpha|, |1|) = 1$.

(2) \Rightarrow (3) For $n \geq 0$, we use induction on n to get $|n| = |(n - 1) + 1| \leq 1$. For $n < 0$, we have $|n| = |-n|-1 = |-n| \leq 1$.

(3) \Rightarrow (1) Suppose $|n| \leq N$ for all $n \in \mathbb{Z}$. Then for $x, y \in K$ and $r \in \mathbb{Z}_{\geq 0}$,

$$|x + y|^r = |(x + y)^r| = \left| \sum_{i=0}^{r} \binom{r}{i} x^i y^{r-i} \right|$$

$$\leq \sum_{i=0}^{r} |\binom{r}{i}| |x|^i |y|^{r-i}$$

$$\leq (r + 1)N \max(|x|^r, |y|^r)$$
because \((r_i) \in \mathbb{Z}\) and \(|x|^i|y|^{r_i-i} \leq \max(|x|^r, |y|^r)\) for all \(0 \leq i \leq r\). Thus we have
\[|x + y| \leq (r + 1)^{1/r} N^{1/r} \max(|x|, |y|)\]

Letting \(r \to \infty\) shows that \(|\cdot|\) is nonarchimedean. \(\square\)

Example 1.3.
1. There is a trivial valuation on any field \(K\) defined by \(|x| = 1\) for \(x \neq 0\) and \(|0| = 0\).
2. If \(K\) is a finite field of order \(q^e\), then there is only trivial valuation on \(K\). This is because for each \(0 \neq x \in K\) we have \(x^{q^e-1} = 1\) and \(|x|^{q^e-1} = 1\). But \(|x| \in \mathbb{R}_{\geq 0}\), thus \(|x| = 1\).
3. If \(\text{char } K > 0\), then all valuations on \(K\) is nonarchimedean by 1.2(3).
4. We have an archimedean valuation \(|\cdot|_\infty : \mathbb{C} \to \mathbb{R}_{\geq 0}\) with \(|z|_\infty = |z|\) (usual complex absolute value).
5. For a prime number \(p\), we have \(|\cdot|_p : \mathbb{Q} \to \mathbb{R}_{\geq 0}\) defined by \(|a|_p = \frac{1}{p^n}\) for \(a = p^mb^n \in \mathbb{Q}\) where \(b, c, m \in \mathbb{Z}\) and \((p, bc) = 1\). \(|\cdot|_p\) is a well-defined nonarchimedean valuation.
6. If we have an embedding \(\sigma : K \to \mathbb{C}\), then we can define the valuation \(|\cdot|_\sigma : K \to \mathbb{R}_{\geq 0}\) by \(|a|_\sigma = |\sigma(a)|_\infty\).

Remark 1.4. Any valuation \(|\cdot|\) gives a metric on \(K\) (thus a metric topology) by \(d_{|\cdot|}(x, y) = |x-y|\).

Definition 1.5. Two valuations \(|\cdot|_1, |\cdot|_2 : K \to \mathbb{R}\) are equivalent if \(|\cdot|_1 = |\cdot|_2^s\) for some \(s > 0\). (This means that they define the same topology on \(K\).)

Lemma 1.6. Suppose two nontrivial valuations \(|\cdot|_1\) and \(|\cdot|_2\) on \(K\) are not equivalent. Then there is \(x \in K\) such that \(|x|_1 < 1\) and \(|x|_2 \geq 1\).

Proof. Suppose that there is no such \(x \in K\) (i.e., \(|x|_1 < 1\) implies \(|x|_2 < 1\)). Choose \(y \in K\) with \(|y|_1 > 1\). (Such \(y\) always exists because \(|\cdot|_1\) is nontrivial thus there is some element \(z \neq 0\) having \(|z|_1 > 1\) or \(|z|_1 < 1\). In the latter case, we can take \(y = \frac{1}{z}\).) For \(x \in K\), choose \(\alpha \in \mathbb{R}\) satisfying \(|x|_1 = |y|^\alpha_1\). We can also take an increasing sequence of rational numbers \(\frac{m_i}{n_i} \in \mathbb{Q}\) converging to \(\alpha\). Now we have
\[|x|_1 = |y|^\alpha_1 > \left|\frac{m_i}{n_i}\right|\]
for all \(i\). \(\frac{m_i}{n_i} \geq 1\) implies \(\frac{m_i}{n_i} \geq 1\) for all \(i\) by assumption. This gives us \(|x|_2 > \left|\frac{m_i}{n_i}\right|\) for all \(i\), thus \(|x|_2 \geq |y|^\alpha_2\). On the other hand, by taking a decreasing sequence of rational numbers converging to \(\alpha\), we can get \(|x|_2 \leq |y|^\alpha_2\). Thus we get \(|x|_2 = |y|^\alpha_2\). This shows that
\[s = \frac{\log |x|_1}{\log |x|_2} = \frac{\log |y|_1}{\log |y|_2} > 0\]
is a constant for all \(x \in K\), thus \(|x|_1 = |x|_2^\alpha\). But this means \(|\cdot|_1\) and \(|\cdot|_2\) are equivalent. \(\square\)

Theorem 1.7 (Weak Approximation Theorem). Let \(|\cdot|_1, |\cdot|_2, \cdots, |\cdot|_n\) be non-equivalent non-trivial valuations on \(K\), and \(a_1, \cdots, a_n \in K\). For any \(\epsilon > 0\), there is \(x \in K\) such that \(|x-a_i|_i < \epsilon\) for all \(i\).

Proof. **Step 1** : For \(0 \neq z \in K\),
\[\lim_{m \to \infty} \frac{z^m}{1 + z^m} = \begin{cases} 1 & \text{if } |z| > 1 \\ 0 & \text{if } |z| < 1 \end{cases}\]
If \(|z| > 1\), then
\[\left|\frac{z^m}{1 + z^m} - 1\right| = \frac{1}{|1 + z^m|} \leq \frac{1}{|z|^m - 1} \to 0\]
If $|z| < 1$, then
\[\left| \frac{z^m}{1 + z^m} \right| = \frac{1}{1 + \frac{1}{z^m}} \leq \frac{1}{|1/z^m - 1|} \to 0 \]
as $m \to \infty$.

Step 2: There is $z \in K$ satisfying $|z| > 1$ and $|z|_j < 1$ for $j = 2, \ldots, n$.

We use induction on n. Suppose $n = 2$. There are $\alpha, \beta \in K$ such that $|\alpha|_1 < 1, |\alpha|_2 \geq 1$ and $|\beta|_1 \geq 1, |\beta|_2 < 1$ by the previous lemma. Take $z = \frac{\beta}{\alpha}$.

Suppose we have $z \in K$ satisfying $|z| > 1$ and $|z|_j < 1$ for $j = 2, \ldots, n - 1$. Choose $y \in K$ such that $|y|_1 > 1, |y|_n < 1$. If $|z|_n \leq 1$, then for large m, we have
\[|z^m y|_1 > 1, |z^m y|_j < 1 \text{ for } j = 2, \ldots, n \]

If $|z|_n > 1$, then for large m,
\[\left| \frac{z^m y}{1 + z^m} \right|_1 > 1, \left| \frac{z^m y}{1 + z^m} \right|_j < 1 \text{ for } j = 2, \ldots, n \]

by Step 1.

Step 3: proof of theorem

We can choose $y_i \in K$ satisfying $|y_i|_i > 1$ and $|y_i|_j < 1$ for $j \neq i$ by Step 2. Let $M = \max_{i,j} |a_i|_j$ and choose integers $m_i \in \mathbb{Z}$ such that
\[\left| \frac{y_i^{m_i}}{1 + y_i^{m_i}} - 1 \right|_i < \frac{\epsilon}{nM} \quad \text{and} \quad \left| \frac{y_i^{m_i}}{1 + y_i^{m_i}} \right|_j < \frac{\epsilon}{nM} \text{ for } j \neq i \]

for all i (by Step 1). Let $x = \sum_{i=1}^n \frac{a_i y_i^{m_i}}{1 + y_i^{m_i}}$, then
\[|x - a_i|_i \leq |a_i|_i \left| \frac{y_i^{m_i}}{1 + y_i^{m_i}} - 1 \right|_i + \sum_{j \neq i} |a_j|_i \left| \frac{y_j^{m_j}}{1 + y_j^{m_j}} \right|_i < \epsilon \]

\[\square \]

Theorem 1.8 (Ostrowski). Every nontrivial valuation on \mathbb{Q} is equivalent to $|\cdot|_p$ for some prime p or $|\cdot|_{\infty}$.

2. Counting irreducible polynomials over finite fields

Theorem 2.1. For any prime p and $n \in \mathbb{N}$, there is a unique (up to isomorphism) finite field of order p^n, and that is the splitting field of $t^n - x \in \mathbb{F}_p[t]$ over \mathbb{F}_p.

Theorem 2.2. Let F be a finite field of order p^n. Then $F \cong \mathbb{F}_p[t]/(f)$ for some irreducible polynomial $f(t) \in \mathbb{F}_p[t]$ of degree n.

Proof. Note that F^\times is cyclic. Let $F^\times = \langle \gamma \rangle$ and define the map
\[\phi : \mathbb{F}_p[t] \to F, \quad g(t) \mapsto g(\gamma) \]

ϕ is surjective because $F = \langle \gamma \rangle \cup \{0\}$. Now $F \cong \mathbb{F}_p[t]/\ker \phi$, and $\ker \phi = (f(t))$ for some irreducible polynomial f because $\ker \phi$ is maximal and $\mathbb{F}_p[t]$ is a PID. \[\square \]
Theorem 2.7. Let F be a field.

For the polynomials of degree 2, only $x^2 + x + 1$ is irreducible, and others are not because $x^2 = x \cdot x, x^2 + 1 = (x + 1)^2$ and $x^2 + x = x(x + 1)$.

Theorem 2.5. In $\mathbb{F}_p[t]$, we have $t^{p^n} - t = \prod_{d|n} \prod_{\substack{\deg f = d \\ f \in \mathbb{F}_p[t]}} f$

Proof. Let F be the splitting field of $t^{p^n} - t \in \mathbb{F}_p[t]$. Note that \mathbb{F}_p is perfect (every irreducible polynomial over \mathbb{F}_p is separable.) Suppose first $g \in \mathbb{F}_p[t]$ is an irreducible factor of $t^{p^n} - t$. Let α be a root of g, then we have

$$
\deg g = [\mathbb{F}_p(\alpha) : \mathbb{F}_p] = [F : \mathbb{F}_p] = n
$$

Thus g divides the right-hand side, and so does $t^{p^n} - t$ because $t^{p^n} - t$ is separable.

Conversely, let $h \in \mathbb{F}_p[t]$ be an irreducible, monic polynomial with degree $d | n$. Let β be a root of h. Because $[\mathbb{F}_p(\beta) : \mathbb{F}_p] = d$, $\mathbb{F}_p(\beta)$ has order p^d, thus we have $\beta^{p^d} = \beta$. Since $d | n$, we have $\beta^{p^n} = (((\beta^{p^d})^{p^d})^{p^d})^{p^d} = \beta$. This shows that every root of h is a root of $t^{p^n} - t$, i.e., $h | t^{p^n} - t$ because h is separable.

Since both sides are monic, we have the desired equality. \square

Now we explain how we can count the number of irreducible polynomials in $\mathbb{F}_p[t]$ of a given degree n. We will use the following theorem of Möbius.

Theorem 2.6 (Möbius Inversion). Let $f, g : \mathbb{N} \to \mathbb{C}$ and $g(n) = \sum_{d|n} f(d)$. Then we have

$$
f(n) = \sum_{d|n} \mu(d) g \left(\frac{n}{d} \right)
$$

where

$$
\mu(n) = \begin{cases}
(-1)^r & \text{if } n = p_1 p_2 \cdots p_r, \text{ where } p_i's \text{ are distinct primes} \\
1 & \text{if } n = 1 \\
0 & \text{otherwise}
\end{cases}
$$

Theorem 2.7. Let $N_{p,n}$ be the number of irreducible monic polynomials of degree n over \mathbb{F}_p. Then

$$
N_{p,n} = \frac{1}{n} \sum_{d|n} \mu(d)p^{\frac{n}{d}}
$$

Proof. We count the degree of both sides in 2.5

$$
p^n = \sum_{d|n} \sum_{\substack{\deg f = d \\ f \in \mathbb{F}_p[t]}} \deg f = \sum_{d|n} dN_{p,d}
$$

Now we apply the Möbius inversion to $f(n) = nN_{p,n}$ and $g(n) = p^n$.

Example 2.8. Let $n = q$ be a prime. Then,

$$
N_{p,q} = \frac{1}{q} \sum_{d|q} \mu(d)p^{\frac{q}{d}} = \frac{p^q - p}{q}
$$

Note that $p^q \equiv p (\text{mod } q)$. 4
3. Chevalley-Waring Theorem

In this section, we let F be a finite field of order q with characteristic p.

Lemma 3.1. Let $m \in \mathbb{N}$, then,

$$\sum_{x \in F} x^m = \begin{cases} -1 & \text{if } q - 1 \mid m \\ 0 & \text{otherwise} \end{cases}$$

Proof. If $q - 1 \mid m$, then $x^m = 1$ for all $x \in F^\times$. Thus, $\sum x^m = q - 1 = -1$. Suppose $q - 1 \nmid m$. Choose a generator of $y \in F^\times$, then $y^m \neq 1$. We have

$$\left(\sum_{x \in F} x^m \right) \left(1 - y^m \right) = \sum_{x \in F} x^m - \sum_{x \in F} (xy)^m = 0$$

Therefore, $\sum x^m = 0$. \square

Lemma 3.2. Let $f \in F[t_1, t_2, \ldots, t_n]$ and suppose $\deg f < n(q - 1)$. Then $\sum_{x \in F^n} f(x) = 0$.

Proof. It is enough to show this for each monomials $t_1^{u_1} t_2^{u_2} \cdots t_n^{u_n} \in F[t_1, \ldots, t_n]$ with $\sum u_i < n(q - 1)$. We have

$$\sum_{(x_1, \ldots, x_n) \in F^n} x_1^{u_1} \cdots x_n^{u_n} = \prod_{i=1}^{n} \sum_{x_i \in F} x_i^{u_i} = 0$$

by Lemma 3.1 and the fact that $u_i < q - 1$ for some i. \square

Theorem 3.3 (Chevalley-Waring). For $i = 1, 2, \ldots, r$, let $f_i \in F[t_1, \ldots, t_n]$ be polynomials satisfying $\sum_i \deg f_i < n$. Let

$$S = \{ x = (x_1, \ldots, x_n) \in F^n \mid f_i(x) = 0 \text{ for all } i \}$$

be the set of common zeros of f_i’s. Then, $|S| \equiv 0 \pmod{p}$.

Proof. Define

$$g(t_1, \ldots, t_n) = \prod_{i=1}^{r} (1 - f_i(t_1, \ldots, t_n)^{q-1})$$

Since

$$1 - f_i(x_1, \ldots, x_n)^{q-1} = \begin{cases} 1 & \text{if } f_i(x_1, \ldots, x_n) = 0 \\ 0 & \text{if } f_i(x_1, \ldots, x_n) \neq 0 \end{cases}$$

for $(x_1, \ldots, x_n) \in F^n$, we have

$$g(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } (x_1, \ldots, x_n) \in S \\ 0 & \text{if } (x_1, \ldots, x_n) \notin S \end{cases}$$

Note that $\deg g = (q - 1) \sum_i \deg f_i < n(q - 1)$. By Lemma 3.2,

$$|S| \equiv \sum_{x \in F^n} g(x) \equiv 0 \pmod{p}$$

\square

Definition 3.4. A field F is called quasi-algebraically closed if every nonconstant homogeneous polynomial $f \in F[t_1, \ldots, t_n]$ has a nontrivial zero (i.e., not equal to $(0,0,\cdots,0)$) when $n > \deg f$.

5
Corollary 3.5. Finite fields are quasi-algebraically closed.

Proof. By Chevalley-Waring, p divides the number of zeros of every homogeneous polynomial $f \in F[t_1, \cdots, t_n]$ with $\deg f < n$. Since we already have a trivial zero, f has a nontrivial zero in F^n. □

4. POLYNOMIAL FUNCTIONS

Let R be a ring and $\text{Func}(R, R) = \{ f : R \to R \mid f \text{ is a function}\}$ (we don’t assume any property of f) be the ring of functions from R to R. The ring structure of $\text{Func}(R, R)$ is given pointwise: $(f + g)(a) = f(a) + g(a)$, $(fg)(a) = f(a)g(a)$. We consider the map

$$\Phi = \Phi_R : R[t] \to \text{Func}(R, R)$$

$$f(t) \mapsto (\Phi(f) : a \mapsto f(a))$$

Definition 4.1. A function $f \in \text{Func}(R, R)$ is called a polynomial function if $f \in \text{Im} \Phi$.

Example 4.2. Φ is not surjective in general. Let $R = \mathbb{R}$ and consider $\exp \in \text{Func}(\mathbb{R}, \mathbb{R})$ where $\exp(a) = e^a$. For any polynomial $f(t) \in \mathbb{R}[t]$, we have $\lim_{t \to \infty} \frac{e^t}{f(t)} = \infty$, thus $\exp \notin \text{Im} \Phi$.

Example 4.3. Φ is not injective in general. Let $R = \mathbb{Z}/p\mathbb{Z}$, then we have $x^p = x$ for all $x \in \mathbb{Z}/p\mathbb{Z}$. Therefore, $\Phi(t^p) = \Phi(t)$.

Example 4.4. Φ is in general not a ring homomorphism. Suppose that R is not commutative, and $ab \neq ba$ for $a, b \in R$. Consider $f(t) = t$, $g(t) = a \in R[t]$. Then, we have $(\Phi(f)(\Phi(g))(b) = (\Phi(f)(b))(\Phi(g)(b)) = ab \neq ab = \Phi(fg)(b)$.

If R is an infinite domain or a finite field, then we can say something more about the function Φ.

Theorem 4.5. If R is an infinite domain, then Φ is injective.

Proof. Suppose $f(t), g(t) \in R[t]$ and $\Phi(f) = \Phi(g)$. This means we have $(f - g)(a) = 0$ for all $a \in R$. If $f(t) - g(t) \neq 0$, then $f - g$ can have at most $\deg(f - g)$ distinct roots. Since R is infinite, we have $f(t) = g(t)$.

Theorem 4.6. Let $R = \mathbb{F}_q$ be the finite field of order q, then we have $\ker \Phi = (t^q - t)$ and Φ is surjective. Therefore, we have $\mathbb{F}_q[t]/(t^q - t) \cong \text{Func}(\mathbb{F}_q, \mathbb{F}_q)$.

Proof. Note that $|\mathbb{F}_q^\times|$ is a multiplicative group of order $q - 1$. Thus for any $a \in \mathbb{F}_q^\times$, we have $a^{q-1} = 1$. This means $t^q - t \in \mathbb{F}_q[t]$ has all the elements of \mathbb{F}_q as its roots, so $(t^q - t) \subseteq \ker \Phi$. Suppose $g(t) \in \ker \Phi$. By euclidean algorithm, there are $q(t), r(t) \in \mathbb{F}_q[t]$ such that $g(t) = (t^q - t)q(t) + r(t)$ and $r = 0$ or $\deg r < \deg(t^q - t) = q$. Since $g(a) = 0 = a^q - a$ for all $a \in \mathbb{F}_q$, we get $r(a) = 0$ for all $a \in \mathbb{F}_q$ by evaluating $t = a$ to the above equation. If $r \neq 0$, then r can only have $\deg r < q$ distinct roots in \mathbb{F}_q. Thus we have $r = 0$ and $g \in (t^q - t)$.

By the first isomorphism theorem, we have

$$\mathbb{F}_q[t]/(t^q - t) \cong \text{Im} \Phi \subseteq \text{Func}(\mathbb{F}_q, \mathbb{F}_q)$$

Now we can compare two sides by counting the number of elements. Note that for any $f(t) \in \mathbb{F}_q[t]$, we can find $r(t) \in \mathbb{F}_q[t]$ such that $f(t) = r(t)$ in $\mathbb{F}_q[t]/(t^q - t)$ and $\deg r < q$ by euclidean
algorithm. Also any $r_1(t) \neq r_2(t) \in \mathbb{F}_q[t]$ with deg $r_1 < q$ and deg $r_2 < q$, we have $\overline{r_1(t)} \neq \overline{r_2(t)}$ in $\mathbb{F}_q[t]/(t^q-t)$ because the difference $r_1 - r_2$ has degree less than q, thus cannot be in (t^q-t).

$$|\mathbb{F}_q[t]/(t^q-t)| = \# \text{ of polynomials of degree less than } q \text{ over } \mathbb{F}_q$$

$$= |\{a_0 + a_1t + \cdots + a_{q-1}t^{q-1} \mid a_i \in \mathbb{F}_q\}| = q^q$$

On the other hand, we have

$$|\mathbb{F}_q[t]/(t^q-t)| = |\text{Im } \Phi| \leq |\text{Func}(\mathbb{F}_q, \mathbb{F}_q)| = q^q = |\mathbb{F}_q[t]/(t^q-t)|$$

This shows the surjectivity of Φ. □

Corollary 4.7. Any function $f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ is a polynomial function.

The above corollary is interesting, but doesn’t tell you which polynomial determines the function f. There’s a useful formula to find a polynomial defining a function f.

Let F be a field (not necessarily finite) and consider the pairs $(x_0, y_0), (x_1, y_1), \ldots, (x_k, y_k) \in F \times F$ where $x_i \neq x_j$ if $i \neq j$. Then we can find a polynomial $L(t) \in F[t]$ such that $L(x_i) = y_i$ for all $i = 0, \ldots, k$ with deg $L \leq k$. We first define

$$l_i(t) = \prod_{j \neq i} \frac{t - x_j}{x_i - x_j} \in F[t]$$

Note that the denominator is not zero by assumption. Then we get

$$l_i(x_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Now we define $L(t) = \sum_{i=0}^{k} y_i l_i(t)$, then $L(x_i) = y_i$ is satisfied for all i. This is called Lagrange interpolation.

Example 4.8. Consider $k + 1$ points on the xy-plane whose x-coordinates are distinct. Then there exists a polynomial in $\mathbb{R}[t]$ with degree at most k whose graph passes through those $k + 1$ points.

Example 4.9. Consider the function $f : \mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/5\mathbb{Z}$ defined by $f(0) = 3, f(1) = 0, f(2) = 1, f(3) = 1, f(4) = 0$. We apply the method above to find a polynomial in $L_f(t) \in \mathbb{Z}/5\mathbb{Z}[t]$ defining f. Firstly, we have

$$l_0(t) = \frac{(t-1)(t-2)(t-3)(t-4)}{(0-1)(0-2)(0-3)(0-4)} = -t^4 + 1$$

Similarly, we can get $l_2(t) = -(t^3-t)(t+2)$ and $l_3(t) = -(t^3-t)(t-2)$. Therefore,

$$L_f(t) = 3l_0(t) + l_2(t) + l_3(t) = 2t^2 + 3$$

We can easily check that we have indeed $L_f(a) = f(a)$ for all $a \in \mathbb{Z}/5\mathbb{Z}$.

A more general thing also holds, and the proof is similar (count the number of elements!).

Theorem 4.10. Define $\Phi_n : \mathbb{F}_q[t_1, \ldots, t_n] \to \text{Func}(\mathbb{F}_q^n, \mathbb{F}_q)$ similarly. Then Φ_n is surjective and ker $\Phi_n = (t_1^q - t_1, t_2^q - t_2, \ldots, t_n^q - t_n)$. Thus we have

$$\mathbb{F}_q[t_1, t_2, \ldots, t_n]/(t_1^q - t_1, t_2^q - t_2, \ldots, t_n^q - t_n) \cong \text{Func}(\mathbb{F}_q^n, \mathbb{F}_q)$$
5. Inverse Galois Problem for S_p

We can show that every finite group occurs as a Galois group of some finite Galois extension. Let G be a finite group, then we can consider G as a subgroup of S_n for $n = |G|$. Let F be a field. We define an action of $\sigma \in S_n$ on $F(t_1, \ldots, t_n)$ by

$$\sigma \cdot f(t_1, \ldots, t_n) = f(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$$

for $f, g \in F[t_1, \ldots, t_n]$. Let $e_1 = \sum_i t_i, e_2 = \sum_{i,j} t_it_j, \ldots, e_n = t_1 \cdots t_n$ be the elementary polynomials in $F[t_1, \ldots, t_n]$, then $e_i \in F(t_1, \ldots, t_n)^{S_n}$ for all i. (We can actually show that $F(e_1, \ldots, e_n) = F(t_1, \ldots, t_n)^{S_n}$.) Note that we have

$$\text{Gal}(F(t_1, \ldots, t_n)/F(t_1, \ldots, t_n)^{S_n}) = S_n$$

and

$$\text{Gal}(F(t_1, \ldots, t_n)/F(t_1, \ldots, t_n)^G) = G$$

by the following theorem.

Theorem 5.1. Let F be a field and G be a finite subgroup of $\text{Aut}(F)$. Then, F is Galois over F^G and $G = \text{Gal}(F/F^G)$. Here F^G means the set of fixed points in F by G.

Proof. See [2, 48.15].

The following problem is a famous open problem in field theory.

Problem (Inverse Galois Problem). For any finite group G, is there a field extension E of \mathbb{Q} satisfying $\text{Gal}(E/\mathbb{Q}) = G$?

In this section, we will show that the problem is true for S_p where p is a prime.

Lemma 5.2. $S_n = \langle (12), (12 \cdots n) \rangle$ for all $n \geq 3$.

Theorem 5.3. Let p be a prime and $f \in \mathbb{Q}[t]$ be an irreducible polynomial of degree p. Suppose that f has exactly two nonreal roots in \mathbb{C}. Then, $G_f \cong S_p$.

Proof. We can consider G_f as a subgroup of S_p. Choose a root $\alpha \in \mathbb{C}$ of f, then $p = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [G_f]$. Thus, we have a p-cycle in G. Since f has a pair of complex roots, the complex conjugation is an automorphism of the splitting field of f. Therefore, G contains a transposition. Let $\sigma = (ab) \in G$ and $\tau \in G$ be a p-cycle. There is an integer k such that $\sigma^k = (ab \cdots) \in G$. We may assume $\sigma = (12)$ and $\tau = (12 \cdots p)$, thus $G_f = S_p$.

Theorem 5.4. Let p be a prime. Then there exists an irreducible polynomial $f \in \mathbb{Z}[t]$ of degree p which has exactly two nonreal roots.

Proof. Let $g(t) = (t - p)(t - 2p) \cdots (t - (p - 2)p)(t^2 + p) \in \mathbb{Z}[t]$ be a polynomial of degree p. Note that the graph of g intersects the x-axis $p - 2$ times at $(p, 0), (2p, 0), \ldots, ((p - 2)p, 0)$. Let m be the minimum of the absolute values of negative local minimums of g. We can find another prime q satisfying $-m < -\frac{p}{q} < 0$. Then, the graph of g still intersects the line $y = -\frac{p}{q}$ at $p - 2$ points. (Draw the graph of g and check this!) Now we define

$$f(t) = qg(t) + p = q \left(f(t) - \left(-\frac{p}{q} \right) \right)$$

$$= q(t - p)(t - 2p) \cdots (t - (p - 2)p)(t^2 + p) + p$$

$$= a_p t^p + \cdots + a_0$$

8
for some $a_l \in \mathbb{Z}$. Note that $\deg f = p$ and f has exactly two nonreal roots by the observation above. Also we have $p \nmid q = a_p$, $p \mid a_i$ for $i = 0, 1, 2, \ldots, p - 1$, and $p^2 \nmid a_0$. By Eisenstein’s criterion, f is irreducible over \mathbb{Z}, thus irreducible over \mathbb{Q}.

\section{6. Artin-Schreier Theorem}

We have $[\mathbb{C} : \mathbb{R}] = [\overline{\mathbb{Q}} : \mathbb{Q} \cap \mathbb{R}] = 2$ and $\mathbb{C}, \overline{\mathbb{Q}}$ are algebraically closed. In this section, we will show that if a field F is not algebraically closed and $[\overline{F} : F]$ is finite, then F must look like the cases explained above.

\begin{lemma}
Let F be a field of characteristic l and $a \in F$. Suppose $a \notin F^l$. Then, $t^{lm} - a \in F[t]$ is irreducible for all $m \geq 1$.
\end{lemma}

\begin{proof}
Note that if $\beta^{lm} = a$ for some $\beta \in \overline{F}$, then $t^{lm} - a = (t - \beta)^{lm}$. Suppose $t^{lm} - a = f(t)g(t)$ for $f, g \in F[t] \setminus F$, then $f(t) = (t - \beta)^{lr} = (t^{r} - \beta^{r})^{sl} \in F[t]$ for $(s, l) = 1$ and $r < m$. This shows that $s\beta^{r} \in F$, thus $\beta^{r} \in F$. Therefore, $a = (\beta^{r})^{m-r} \in F^l$.
\end{proof}

\begin{lemma}
Let F be a field where -1 is not a square and suppose every element in $F(i)$ is a square in $F(i)$ for $i^2 = -1, i \in \overline{F}$. Then, we have $\text{char } F = 0$ and a sum of squares is also a square in F.
\end{lemma}

\begin{proof}
Let $a, b \in F$. There are $c, d \in F$ satisfying $a + bi = (c + di)^2$ by assumption. Thus, we have $a^2 + b^2 = (c^2 + d^2)^2$. By induction, any finite sum of squares in $F(i)$ is also a square in $F(i)$. If $\text{char } F \neq 0$, then -1 is a sum of squares 1^2, thus a contradiction.
\end{proof}

\begin{lemma}
Let K, F be fields. The following are equivalent:

(1) $\text{char } F = p > 0$ and K/F is a cyclic extension with $[K : F] = p$.

(2) K is a splitting field of an irreducible polynomial $t^p - t - a \in F[t]$ for some $a \in F$.
\end{lemma}

\begin{proof}
(1) \Rightarrow (2) Suppose $\text{Gal}(F/K) = \langle \sigma \rangle$. Note that $\text{Tr}_{K/F}(1_F) = p \cdot 1_F = 0$. Thus, there is $v \in K$ satisfying $1_F = v - \sigma(v)$. Let $u = -v$, then $\sigma(u) = u + 1 \neq u$. Therefore $u \notin F$. Let $a = u^p - u$, then $\sigma(a) = \sigma(u^p - u) = (u + 1)^p - (u + 1) = u^p - u = a$

This shows $a \in F$ and K is the splitting field of $t^p - t - a$.

(2) \Rightarrow (1) $\text{Gal}(F/K) = \langle \sigma \rangle$ where $\sigma(a) = a + 1$ for $a \in K$.
\end{proof}

\begin{lemma}
Let K/F be a field extension with $[K : F] = p$. Suppose $\zeta_p \in F$. Then, there is an element $\gamma \in K$ such that $K = F(\gamma)$ and $\gamma^p \in F$.
\end{lemma}

\begin{proof}
Let $\text{Gal}(K/F) = \langle \sigma \rangle$. Since $N_{K/F}(\zeta_p) = \zeta_p^p = 1$, there is $u \in K$ such that $\zeta_p = \frac{u}{\sigma(u)}$ by Hilbert theorem 90. Let $\gamma = u^{-1}$, then $\sigma(\gamma) = \zeta_p \gamma$, and $\sigma(\gamma^p) = \gamma^p \in F$.
\end{proof}

\begin{theorem}[Artin-Schreier]
Let K/F be a field extension and $K = \overline{K}$, $1 < [K : F] < \infty$. Then,

(1) $\text{char } F = 0$ and $K = F(i)$ for some $i \in K$ satisfying $i^2 = -1$

(2) for $a \in F^\times$, exactly one of a or $-a$ is a square in F

(3) any finite sum of nonzero squares in F is a nonzero square in F.
\end{theorem}

\begin{proof}
(1) We first show that K/F is Galois. Since K is algebraically closed, K/F is normal. If $\text{char } F = 0$, then we’re done since then K/F is separable. Suppose $\text{char } F = l$ for some prime l. If $F \neq F^l$, then choose $a \in F \setminus F^l$. By Lemma \ref{6.1}, we will have irreducible polynomials in $F[t]$
of arbitrarily large degree, but this contradicts that \(K = \overline{K} \) and \([K : F]\) is finite. Therefore \(F = F' \) and \(K/F \) is separable, thus Galois.

Now we show that \([K : F] = 2\). If \([K : F] > 2\), then we will have either \(4 \mid [K : F] \) or \(p \mid [K : F] \) for some odd prime \(p \). Let \(H \) be a subgroup of \(G \) of order 4 or \(p \) (which exists by Sylow’s theorem) and \(E = K^H \).

(Case 1) \([K : E] = p\) and \(\text{char}(E) = p\).

Let \(\text{Gal}(K/E) = \langle \sigma \rangle \). By 6.3, \(K = E(\alpha) \) where \(\alpha \) is a root of the irreducible polynomial \(t^p - t - a \in E[t] \). Because \(K \) is algebraically closed, we can find \(b \in K \) satisfying \(b^p - b = aa^{p-1} \).

We can write \(b = b_0 + b_1\alpha + \cdots + b_{p-1}\alpha^{p-1} \) for some \(b_i \in E \) because \(\{1, \alpha, \cdots, \alpha^{p-1}\} \) is an \(E \)-basis of \(K \). Now we have \(b^p - b = ((b_{p-1})^p - b_{p-1})\alpha^{p-1} + \) (lower degree terms of \(\alpha \)) since \(\alpha^p = \alpha + a \). Note that \(b_{p-1} \) satisfies \((b_{p-1})^p - b_{p-1} = a \) by comparing the coefficients of \(\alpha^{p-1} \).

This shows that \(t^p - t - a \in E[t] \) is not irreducible. Therefore, this case does not happen.

(Case 2) \([K : E] = p\) and \(\text{char}(E) = l \neq p\).

Let \(\text{Gal}(K/E) = \langle \sigma \rangle \). We have \(\zeta_p \in K \) where \(\zeta_p \) is a \(p \)-th root of unity. Since \([E(\zeta_p) : E] \mid [K : E] = p \) and \([E(\zeta_p) : E] = \text{deg}\text{irr}(\zeta_p, E) \leq p - 1 \), we have \(\zeta_p \in E \). Thus by 6.4, \(K = E(\gamma) \) for some \(\gamma^p \in E \). Choose \(\beta \in K \) such that \(\beta^p = \gamma \), then \(\beta^{p^2} \in E \). Since \(\left(\frac{\sigma(\beta)}{\beta} \right)^{p^2} = \left(\frac{\sigma(\gamma)}{\gamma} \right)^{p^2} = 1 \), we have \(\sigma(\beta) = \omega\beta \) where \(\omega \) is a \(p^2 \)-th root of unity. Note that \(\omega^p \) is a \(p \)-th root of unity, thus in \(E \).

We can see that \(\omega^p \neq 1 \) because otherwise we have \(\sigma(\gamma) = \sigma(\beta^p) = \omega^p\beta^p = \gamma \). Therefore, \(\omega^p \) is a primitive \(p \)-th root of unity. Since \(\omega^p = \sigma(\omega^p) = \sigma(\omega)^p \), we have \(\sigma(\omega) = \omega(\omega^p)^k \) for some \(1 \leq k \leq p - 1 \). Now,

\[
\beta = \sigma^p(\beta) = \omega\sigma(\omega) \cdots \sigma^{p-1}(\omega)\beta = \omega^{1+(1+pk)+\cdots+(1+pk)^{p-1}}\beta
\]

shows that

\[
\sum_{i=0}^{p-1} (1 + pk)^i \equiv \sum_{i=0}^{p-1} (1 + ipk) \equiv 0 \pmod{p^2}
\]

This is equivalent to \(1 + \frac{p(p-1)}{2}k \equiv 0 \pmod{p} \), but this cannot happen when \(p \) is odd. The only possible case is \(p = 2 \) and \(k \) is odd.

(Case 3) \([K : E] = 4\).

Choose \(E' \) between \(K \) and \(E \) satisfying \([K : E'] = 2\). Note that the arguments in Case 1, 2 can be applied to the case \(p = 2 \). Therefore \(\omega \) is a 4-th root of unity, and \(\sigma(\omega) = \omega^{1+2k} = \omega^3 \neq \omega \) because \(k = 1 \). By the argument in Case 2, \(\omega^2 \) is a primitive 2-th root of unity, i.e., \(\omega^2 = -1 \), and \(K = E'[\omega] \). On the other hand, we have \([K : E(\omega)] = 2\) because \(\omega \) is a root of \(t^2 + 1 \in E[t] \).

By the same argument, \(K \) should be generated by a 4-th root of unity from \(E(\omega) \), but \(E(\omega) \) already have all of them, which is a contradiction.

By considering Case 1-3, we conclude that there is an element \(i \in K \) satisfying \([K : F] = 2\), \(K = F(i) \), \(i^2 = -1 \) and \(\text{char}(F) \neq 2 \). By 6.2, we have \(\text{char}(F) = 0 \).

(2) Suppose \(a \) and \(-a \) are not squares, then \(K = F(\sqrt{a}) = F(\sqrt{-a}) \). Write \(\sqrt{-a} = c_1 + c_2\sqrt{a} \) for \(c_1, c_2 \in F \). By squaring both sides, we get \(-a = c_1^2 + ac_2^2 + 2c_1c_2\sqrt{a} \). This means \(c_1c_2 = 0 \), and thus \(c_1 = 0 \). Hence \(-1 = c_2^2 \) is a square in \(F \), which is a contradiction. The similar argument works when both \(a \) and \(-a \) are squares.
(3) By 6.2 again, we know that any finite sum of nonzero squares in F is also a square in F. Suppose $\sum b_i^2 = 0$, $b_i \neq 0$ in F. This gives $-1 = \sum_{i>1} \left(\frac{b_i}{b_1}\right)^2$, thus a contradiction. \hfill \Box

Example 6.6. Suppose $\sigma \in \Gal(\overline{Q}/Q)$ has finite order. Let $G = \langle \sigma \rangle$, then $G = \Gal(\overline{Q}/\overline{Q}^G)$ is finite. By Artin-Schreier, we have $|G| = 2$ and σ has order 2. In fact,
$$\Gal(\overline{Q}/Q)_{tor} = \{g\sigma^{-1} \mid g \in \Gal(\overline{Q}/Q)\}$$
where c is the complex conjugation.

7. Infinite Galois Theory

Let K/F be a finite Galois extension of fields. Then by the fundamental theorem of Galois theory, we have the following one-to-one correspondence:
$$\begin{align*}
\{F \leq E \leq K, \text{ intermediate fields}\} & \overset{1-1}\longleftrightarrow \{H \leq \Gal(K/F), \text{ subgroups}\} \\
E & \mapsto \Gal(K/E) \\
K^H & \leftrightarrow H
\end{align*}$$

However, this may fail in an infinite Galois extension.

Consider the infinite Galois extension \overline{F}_p/F_p and let $G = \Gal(\overline{F}_p/F_p)$. Consider the Frobenius map $\phi \in G$ defined by $\phi(x) = x^p$ for $x \in \overline{F}_p$. We have $\langle \phi \rangle \leq G$ and $\overline{F}_p^\phi = F_p^{\phi} = F_p$. We will show that $\langle \phi \rangle \not\leq G$, thus the correspondence in finite extension case fails.

For each $n \in \mathbb{N}$, write $n = \tilde{n}p^{v_p(n)}$ where $(p, \tilde{n}) = 1$. We can find $x_n, y_n \in \mathbb{N}$ such that $1 = \tilde{n}x_n + p^{v_p(n)}y_n$. Define $a_n = \tilde{n}x_n$. Let $m \mid n$, then $a_n - a_m = \tilde{n}x_n - \tilde{m}x_m \equiv 0 \pmod{\tilde{m}}$ because $\tilde{n} \mid \tilde{m}$. Similarly, we can show that $p^{v_p(n)} \mid a_n - a_m$, thus $a_n \equiv a_m \pmod{m}$. Let $\psi_n = \phi^{a_n}|_{\overline{F}_p} \in \Gal(\overline{F}_p/F_p) = \langle \phi \rangle|_{\overline{F}_p}$, then $\psi_n|_{\overline{F}_p} = \phi^{a_n}|_{\overline{F}_p} = \phi^{a_m}|_{\overline{F}_p} = \psi_m$. Therefore, $\psi \in \Gal(\overline{F}_p/F_p)$ defined by $\psi|_{\overline{F}_p} = \psi_n$ for each n is well-defined because $\overline{F}_p = \bigcup_n \overline{F}_{pn}$.

Suppose that $\psi = \phi^{a}$ for some $a \in \mathbb{Z}$, then $\phi^{a_n}|_{\overline{F}_p} = \psi_n = \psi|_{\overline{F}_p} = \phi^{a}|_{\overline{F}_p}$. Therefore we get $a_n \equiv a \pmod{n}$ for all $n \in \mathbb{N}$. In particular, we have $a \equiv a_{p^k} \equiv x_{p^k} \equiv 1 \pmod{p^k}$ for all k, thus $a = 1$. However, for a different prime $q \neq p$, $a_q = qx_q \equiv 1 \pmod{q}$. This shows $\psi \not\in \langle \phi \rangle$.

(We can check that $\Gal(\overline{F}_p/F_p) = \langle \phi \rangle$ topologically though.)

We will show that a slightly modified version of the fundamental theorem holds for infinite Galois extensions. We need to define a topology on $\Gal(K/F)$ to state the correspondence.

Definition 7.1. Let K/F be a (possibly infinite) Galois extension of fields. We define a Krull topology (profinite topology) on $G = \Gal(K/F)$ so that for all $\sigma \in G$ and E/F finite Galois, $\{\sigma \Gal(G/E)\}$ is a basis of neighborhoods. Note that this gives a discrete topology on G if K/F is finite.

Remark 7.2. The above definition of Krull topology gives a well-defined topology, and G becomes a compact, Hausdorff, totally disconnected (the only connected components are one-point sets) topological group with respect to the Krull topology.

Remark 7.3. Let G be a topological group. Note that for any $g \in G$, the map $\lambda_g : G \to G$ defined by $\lambda_g(h) = gh$ is a homeomorphism. If $H \leq G$ is an open subgroup, then all the cosets of H are open, thus H is also closed. If $H \leq G$ is a closed subgroup, and $(G : H) < \infty$, then H is also open because it is a complement of finite union of closed cosets.
Theorem 7.4 (Fundamental theorem of infinite Galois theory). Let K/F be a (possibly infinite) Galois extension of fields. Then we have the following one-to-one correspondence:

$$
\{ F \leq E \leq K, \text{ intermediate fields} \} \overset{1-1}{\longleftrightarrow} \{ H \leq \text{Gal}(K/F), \text{ closed subgroups} \}
$$

$$
E \mapsto \text{Gal}(K/E)
$$

$$
K^H \leftrightarrow H
$$

Note that the above gives a one-to-one correspondence between finite extensions of F and open subgroups (thus of finite index) of $\text{Gal}(K/F)$.

Proof. If E/F is finite, then $\text{Gal}(K/E)$ is a basis element of the Krull topology, thus is open. Also it is closed as discussed in the previous remark. For an arbitrary K/E, write $E = \bigcup_i E_i$ with E_i/F finite, then

$$
\text{Gal}(K/E) = \bigcap_i \text{Gal}(K/E_i) \subseteq \text{Gal}(K/F)
$$

is closed. This shows that the correspondence $E \mapsto \text{Gal}(K/E)$ is well-defined.

Since $K^{\text{Gal}(K/F)} = E$, this map $E \mapsto \text{Gal}(K/E)$ is injective.

Now we will show that this map is surjective. Consider a subgroup H of $G = \text{Gal}(K/F)$. Clearly, we have $H \leq \text{Gal}(K/K^H)$. Choose $\sigma \in \text{Gal}(K/K^H)$ and a neighborhood of σ, which is of the form $\sigma \text{Gal}(K/E) \subseteq \text{Gal}(K/K^H)$ with E/K^H finite. Define $r : H \rightarrow \text{Gal}(E/K^H)$ by $r(\rho) = \rho|_E$. r is surjective by the fundamental theorem of finite Galois theory for E/K^H because $E^{r(H)} = K^H = E^{\text{Gal}(E/K^H)}$ gives $r(H) = \text{Gal}(E/K^H)$. Choose $\tau \in H$ such that $r(\tau) = \tau|_E = \sigma|_E$, then $\tau \in H \cap \sigma \text{Gal}(K/E)$. This shows that H is dense in $\text{Gal}(K/K^H)$.

Therefore, for a closed subgroup $H \leq G$, we have $\text{Gal}(K/K^H) = \overline{H} = H$.

The last statement is easy to check. \square

Definition 7.5. A profinite group G is a compact, Hausdorff topological group with a basis of neighborhoods of $1 \in G$ consisting of normal subgroups.

Proposition 7.6. Let G be a group. Then the followings are equivalent.

1. G is profinite
2. $G \cong \varprojlim_N G/N$
 \[N \leq G \text{ open} \]
3. G is an inverse limit of finite groups with discrete topology.

Example 7.7. A Galois group $G = \text{Gal}(K/F)$ is a profinite group. Since a subgroup $N \leq G$ is open if and only if $N = \text{Gal}(K/E)$ for some E/F finite Galois, we have

$$
\text{Gal}(K/F) = \varprojlim_{N \leq G \text{ open}} G/N = \varprojlim_{E/F \text{ finite Galois}} \text{Gal}(K/F)/\text{Gal}(K/E) = \varprojlim_{E/F \text{ finite Galois}} \text{Gal}(E/F)
$$

Example 7.8. Note that $\mathbb{F}_p = \bigcup_n \mathbb{F}_{p^n}$. Therefore, we have

$$
\text{Gal}(\mathbb{F}_p/\mathbb{F}_p) = \varprojlim_n \text{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) = \varprojlim_n \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}}
$$

Example 7.9. Let \mathbb{Q}^{ab} be the maximal abelian extension (the composite of all abelian extensions) of \mathbb{Q}. By Kronecker-Weber theorem, we have $\mathbb{Q}^{ab} = \bigcup_n \mathbb{Q}(\mu_n)$. Therefore, we have

$$
\text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) = \varprojlim_n \text{Gal}(\mathbb{Q}(\mu_n)/\mathbb{Q}) = \varprojlim_n (\mathbb{Z}/n\mathbb{Z})^\times = \hat{\mathbb{Z}}^\times
$$
References

