1 Consider a morphism of schemes \(f : X \to Y \). Prove that the following conditions are equivalent:

(a) \(f \) is locally of finite type.

(b) For every affine open \(U \subset Y \), \(f^{-1}(U) \) has an open covering by affine opens \((V_i) \) such that \(\mathcal{O}_X(V_i) \) is a finitely generated \(\mathcal{O}_Y(U) \)-algebra for all \(i \).

(c) For every affine open \(U \subset Y \) and every affine open \(V \subset f^{-1}(U) \), \(\mathcal{O}_X(V) \) is a finitely generated \(\mathcal{O}_Y(U) \)-algebra.

2 Let \(f : X \to Y \) be an immersion. Show that \(f \) can be factored as \(f = j \circ i \), where \(j \) is an open immersion, and \(i \) is a closed immersion.

Remark. It is not true in general that \(f \) also factors as \(f = i \circ j \) where \(i \) is a closed immersion, and \(j \) an open immersion. (Although this is true under mild assumptions.) Here is an example which you might want to think about (no need to hand it in).

Let \(k \) be a field and \(X = \mathbb{A}^\infty_k = \text{Spec}(k[x_1, x_2, \ldots]) \). Let \(j : U = \bigcup_{n \in \mathbb{N}} D(x_n) \to X \) be the open immersion. On \(D(x_n) \) consider the closed immersion \(Z_n \to D(x_n) \) defined by the ideal \(\langle x_n^1, x_n^2, \ldots, x_n^n - 1, x_{n+1}, x_{n+2}, \ldots \rangle \subset k[x_1, x_2, \ldots][1/x_n] \).

It is easy to see that these glue to a closed immersion \(i : Z \to U \). Hence we get an immersion \(f = j \circ i \). Why is there no factorization of \(f \) as an open immersion followed by a closed immersion? (Hint: use the description of closed subschemes of an affine scheme given in class.)

3 Let \(R \) be a ring and \(p \in \mathbb{N} \) a prime number. \(R \) is said to be of characteristic \(p \) if \(p \cdot 1_R = 0 \) in \(R \). A scheme \(X \) is said to be of characteristic \(p \) if for every open \(U \subset X \), \(\mathcal{O}_X(U) \) is of characteristic \(p \).

(a) Prove that the following conditions are equivalent:

i. \(X \) is of characteristic \(p \).

ii. For every \(x \in X \), \(\mathcal{O}_{X,x} \) is of characteristic \(p \).

iii. \(\mathcal{O}_X(X) \) is of characteristic \(p \).

iv. There exists a morphism of schemes \(X \to \text{Spec}(\mathbb{F}_p) \), where the latter denotes the finite field with \(p \) elements.

(b) Let \(X \) be a scheme of characteristic \(p \). Prove that there is a unique morphism of schemes \(F_p : X \to X \) such that

- \(F_p \) is the identity on the underlying topological space.
- For any open \(U \subset X \), \(F_p \) acts on \(\mathcal{O}_X(U) \) by \(r \mapsto r^p \).

\(F_p \) is called the absolute Frobenius.

(c) Let \(\overline{\mathbb{F}}_p \) be an algebraic closure of \(\mathbb{F}_p \). For a finite type \(\mathbb{F}_p \)-scheme \(X \), define a canonical morphism

\[X(\mathbb{F}_p^e) \to X(\overline{\mathbb{F}}_p)^{F_p^e} \]

where the right hand side denotes the subset of morphisms \(f : \text{Spec}(\overline{\mathbb{F}}_p) \to X \) such that \(f = F_p \circ \cdots \circ F_p \circ f \) (\(F_p \) is composed \(e \) times). Prove that the map is bijective.