Assignment 2

- 1. Show that $\ell^{\infty} = \ell^{\infty}(\mathbb{N})$ and $L^{\infty}([0,1],\lambda)$ are not separable Banach spaces. Hint: for the first space consider $\|\mathbf{1}_S \mathbf{1}_T\|_{\infty}$ for subsets $S, T \subseteq \mathbb{N}$. For the second show that there is an isometric linear mapping of the first into the second.
- 2. a) Use the Gram-Schmidt orthogonalization procedure on the vectors $1, x, x^2$ in $L^2([-1, 1], \mathcal{B}, \lambda)$ (the resulting functions e_0, e_1, e_2 are the first three "normalized Legendre polynomials").
- b) Use othonormality to find the coefficients a_k in the expansion $x^2 = a_0e_0 + a_0e_1 + a_2e_2$.
 - c) Calculate $||x||_2$ directly and then by using the expansion in (b).
- 3. Suppose that e_n $(n \in \mathbb{N})$ is an orthonormal basis in a Hilbert space H. Show that there exist an $x \in H$ such that the corresponding expansion $x = \sum c_n e_n$ is not absolutely convergent.
- 4. a) Suppose that $f \in L^2_{\mathbb{R}}([-\pi,\pi],\lambda/2\pi)$ and $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum b_n \sin nx$ is its $(L^2$ -convergent) Fourier series. Derive the usual formulae for a_n and b_n . Note: you can use the fact that we know $e_n(x) = e^{inx}$ is an orthonormal basis for $L^2_{\mathbb{C}}([-\pi,\pi],\lambda/2\pi)$.
- b) What can you say about the coefficients a_n if f(-x) = f(x) (i.e., f is even) or if f(-x) = -f(x) (i.e., f is odd)?
 - 5. a) Find the complex Fourier series (i.e., $\sum c_n e^{inx}$) for f(x) = x.
 - b) Use a) to evaluate $\sum \frac{1}{n^2}$.
 - c) Calculate $\sum \frac{1}{n^4}$ by considering the indefinite integral $\int f(x)dx$.