1. A group G action on a set X is doubly transitive if it induces a transitive action on $S = \{(x, y) \in X \times X \mid x \neq y\}$ via $g(x, y) = (gx, gy)$. Let X be a doubly transitive G-set. Show that G_x is maximal for all $x \in X$: i.e., not properly contained in a proper subgroup of G.

2. Let X be a transitive G-set, and consider the set S of subsets B of X such that for every $g \in G$, either $B = gB$ or $B \cap gB = \emptyset$.
 a. Let $x \in X$. Show that the set of subgroups of G containing G_x is in one-to-one correspondence with the set \{ $B \in S \mid x \in B$ \}.
 b. Show that every G_x for $x \in X$ is maximal if and only if S consists of X and the singleton subsets of X.

3. Let G be a finite group with subgroups H and K, and let $x \in G$. Show that
 \[|HxK| = \frac{|H||K|}{|x^{-1}(Hx \cap K)|} \]

4. Show that the only proper subgroup of S_n of index less than n is A_n, unless $n = 4$.

5. Let P be a Sylow p-subgroup of a finite group G. Show that $N_G(N_G(P)) = N_G(P)$.

6. Show that there are no simple groups of order 90, 112, or 120.

7. Show that any simple group of order p^2qr where p, q, and r are primes, is isomorphic to A_5.