1. Consider the functor \(F : \text{Ab} \to \text{Ab} \) defined by \(F(A) = A \oplus \mathbb{Z} \) and \(F(f) = f \oplus \text{id}_\mathbb{Z} \) for \(f : A \to B \). Determine whether or not this functor is faithful and whether or not it is full.

2. Let \(\mathcal{C} \) be a category, and define a skeleton of \(\mathcal{C} \) to be a full subcategory which contains a unique representative of the isomorphism class of each object. Show that
 a. If \(\mathcal{S} \) is a skeleton of \(\mathcal{C} \), then the inclusion functor \(\mathcal{S} \to \mathcal{C} \) is an equivalence of categories.
 b. Two categories \(\mathcal{C} \) and \(\mathcal{D} \) with skeletons \(\mathcal{S} \) and \(\mathcal{T} \), respectively, are equivalent if and only if \(\mathcal{S} \) and \(\mathcal{T} \) are isomorphic.

3. Prove that \(\text{Set} \) is not equivalent to its opposite category.

4. Let \(n \geq 2 \).
 a. Find the sequential limit in \(\text{Ab} \) of the diagram
 \[
 \cdots \to \mathbb{Z} \overset{n}{\to} \mathbb{Z} \overset{n}{\to} \mathbb{Z} \overset{n}{\to} \mathbb{Z}.
 \]
 b. Repeat part a with \(\mathbb{Z} \) replaced by \(\mathbb{Q} \).

5. Show that
 \[
 (A_1 \times A_2) \times A_3 \cong \prod_{i=1}^{3} A_i
 \]
 for \(A_1, A_2, A_3 \) objects in any category \(\mathcal{C} \) that admits finite products.

6. What are the initial and terminal objects in the category \(\text{Rings} \) of rings (with unit)? Prove that your answer is correct.

7. Let
 \[
 \begin{array}{ccc}
 A & \xrightarrow{p_1} & B_1 \\
 p_2 \downarrow & & \downarrow f_1 \\
 B_2 & \xrightarrow{f_2} & C
 \end{array}
 \]
 be a pullback diagram in a category \(\mathcal{C} \) (in the sense that \(A \cong B_1 \times_{\mathcal{C}} B_2 \)). Prove or provide a counterexample to each of the following:
 a. If \(f_1 \) is a monomorphism, then so is \(p_2 \).
 b. If \(f_1 \) is an epimorphism, then so is \(p_2 \).
8. An equalizer \(\text{eq}(f, g) \) of morphisms \(f, g: A \to B \) in a category \(C \) is a limit of the diagram

\[
A \xrightarrow{f} B.
\]

Suppose that \(C \) has equalizers of every pair of morphisms. Let \(F: C \to D \) be a functor such that \(F \) preserves equalizers (i.e., if \(\iota: \text{eq}(f, g) \to A \) is the morphism given by definition of a limit, which is to say that \(\iota \) equalizes \(f \) and \(g \), then \(F(\iota) \) is the morphism that equalizes \(F(f) \) and \(F(g) \)) and which is such that if \(F(f) \) is an isomorphism, then \(f \) is. Show that \(F \) is faithful.