Simple Classification using Binary Data

Deanna Needell Mathematics

UCLA

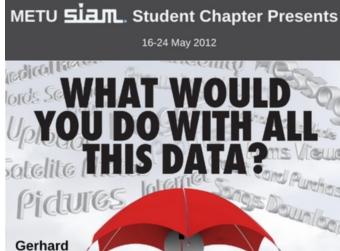
Thanks:

- NSF CAREER DMS#1348721
- NSF BIGDATA DMS#1740325
- MSRI NSF DMS#1440140
- Alfred P. Sloan Fdn

Joint work with

Rayan Saab (UCSD)

Tina Woolf (CGU)



Wilhelm Weber Estimation of Dynamics under Uncertainty

May 16, Wednesday, 11:40-12:30 *

Annette Hohenberger Fractals in Cognitive Science May 17, Thursday, 11:40-12:30 *

Özlem İlk Introduction to R and GGobi May 17, Thursday, 14:00-17:30 **

W Lab (M 202)

Institute of Applied Math, S 209 Department of Mathematics, Cor

Aybar Acar

MapReduce and Hadoop: Mining Big Data in the Cloud May 23, Wednesday, 14:00-16:30

Cem İyigün Introduction to Clustering May 23, Wednesday, 11:40-12:30 *

Fatma Yerlikaya-Ozkurt Modeling with MARS and CMARS

May 24, Thursday, 14:00-15:30 * For more info visit http://siam.metu.edu.t

MATHEMATICS AWARENESS MONTH

Systems to handle big data might be this generation's moon landing

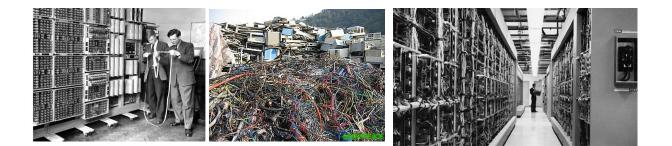
by Stacey Higginbotham 🎽 🛛 Apr. 1, 2012 - 9:00 PM PST

5 Comments

How can we handle all this data?

Option 1 : Build bigger computing systems

- We need the resources
- Fundamental limitations
- ✤ Wasteful (resources, energy, cost, ...)



How can we handle all this data?

3 MB of internet data transfer = boiling one cup of water

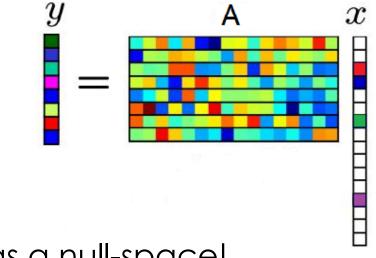
(https://www.katescomment.com/energy-of-downloads/)

How can we handle all this data? Option 2 : Design more efficient data analysis methods

"Of course, I don't even get out of bed for less than a petabyte"

Compressed sensing

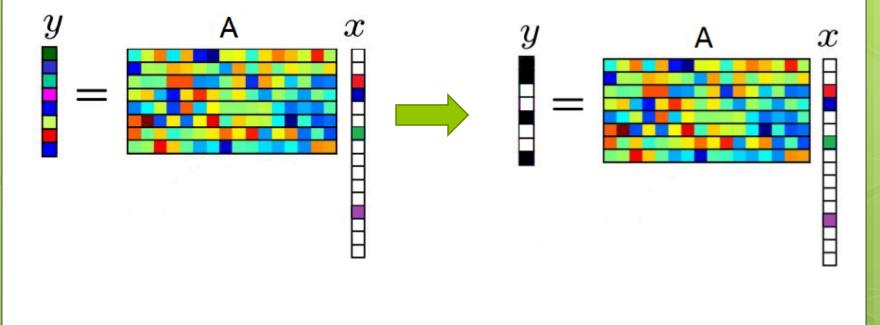
Need to solve highly underdetermined linear system



✤A has a null-space!

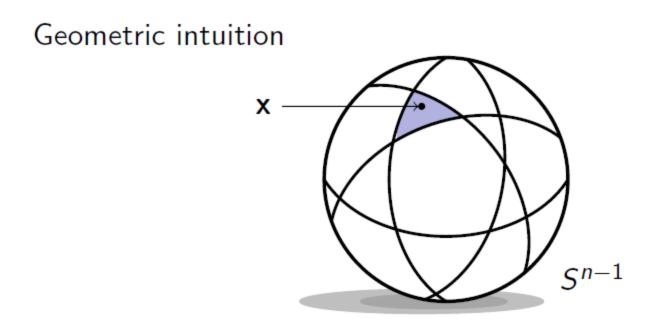
1-bit compressed sensing

Store only the first bit – the SIGN of each measurement



1-bit compressed sensing

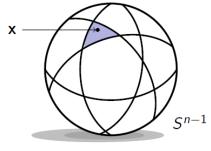
Store only the first bit – the SIGN of each measurement



1-bit compressed sensing

Store only the first bit – the SIGN of each measurement

Geometric intuition



• Remedy: Use "dithers" to estimate the norm of x $y_i = \operatorname{sign}(\langle \mathbf{a}_i, \mathbf{x} \rangle - \tau_i)$

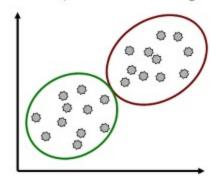
Moral:

- One-bit (binary) data is as efficient as it gets
- It may still contain enough "information" about the signal to perform inference tasks

Problem: classification

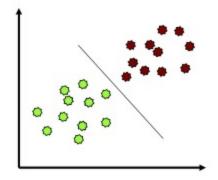
CLUSTERING

- Data is not labeled
- Group points that are "close" to each other
- Identify structure or patterns in data
- Unsupervised learning

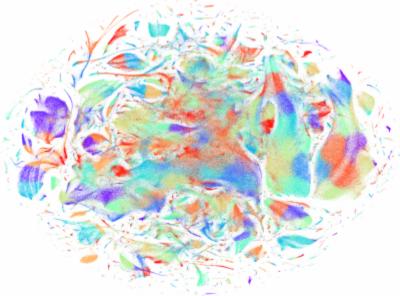


CLASSIFICATION

- Labeled data points
- Want a "rule" that assigns labels to new points
- Supervised learning



Problem: reality

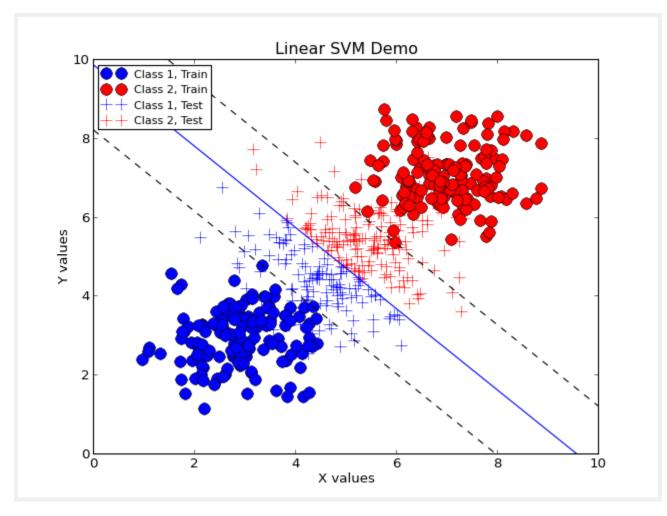


(c) WikiDoc (t-SNE)

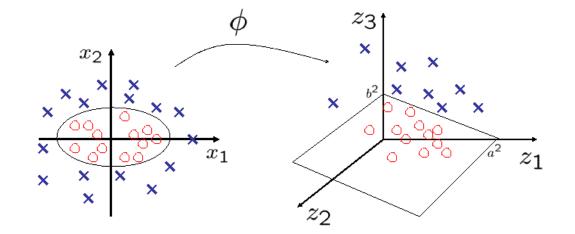
(d) WikiDoc (LargeVis)

(Tang etal. 2016)

Background: SVM

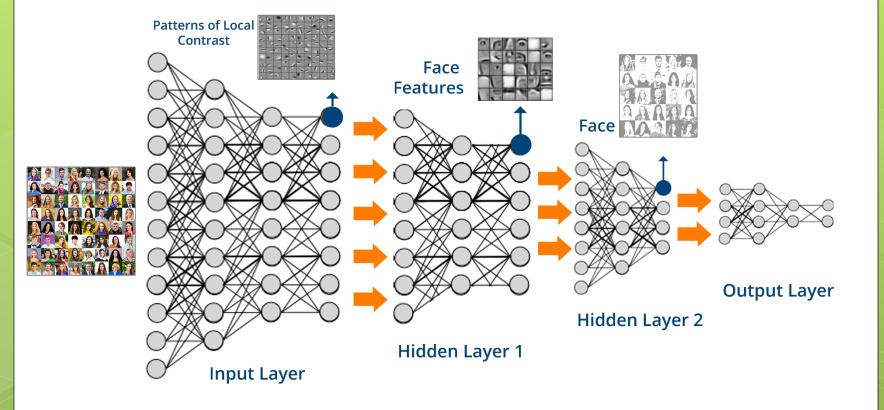


Background: SVM



 $\phi: (x_1, x_2) \longrightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ $\left(\frac{x_1}{a}\right)^2 + \left(\frac{x_2}{b}\right)^2 = 1 \longrightarrow \frac{z_1}{a^2} + \frac{z_3}{b^2} = 1$

Background: Deep Learning



Our goals

Design classification scheme that:

- Uses binary data
- Is simple and efficient
- Uses layers in an interpretable way

Notation

- ✤ X : nxp training data matrix (data in columns)
- ✤ A : mxn (random) matrix
- Q = sign(AX) : mxp binary training data
- ✤ G : # of classes
- ✤ b : p training labels (1-G)
- ✤ L : # of layers in our design

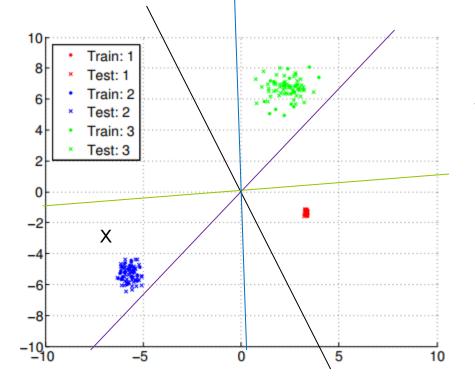
Main idea

Each row of A corresponds to a hyperplane

- Each binary measurement Q_{ij} indicates on which side of the ith hyperplane data point X_i lies
- If we gather enough of this info for all the training data, we can use it to predict the class label for a new test point x

Single layer

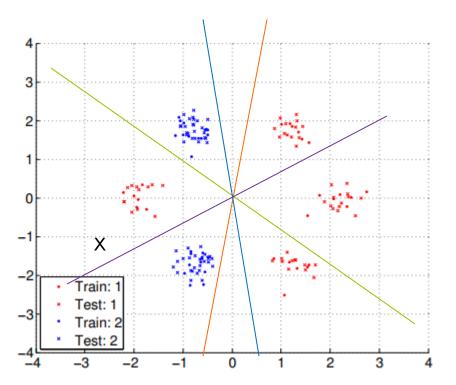
All the hyperplane information in Q is enough



For a new point x, simply compare its sign pattern with those of the training points and choose the label it matches the most often

Multiple layers

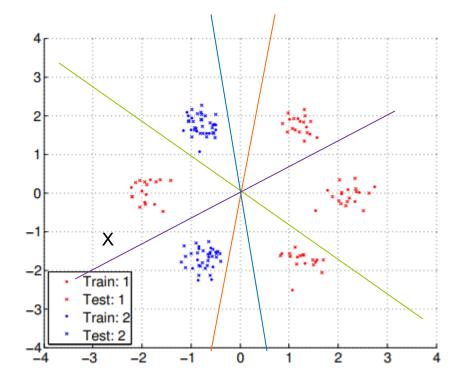
What about?



For ANY hyperplane, there are both red and blue on at least one side of it

Multiple layers

Now PAIRS of hyperplanes do the trick



For a new point x, simply compare its sign pattern for hyperplane PAIRS with those of the training points and choose the label it matches the most often

Multiple layers

What about higher dimensions?

- We continue this strategy to build layers, the 1th layer corresponding to 1-tuples of hyperplanes
- For simplicity (and computation), we consider m 1–tuples at each layer, selected randomly from all $\binom{m}{\ell}$ possible
- For a new test point x, we use the sign patterns across all layers for classification

How to integrate the info from all layers?

* 1 : layer
* i : index from 1 to m
* Λ_{ℓ,i} : the set of 1 indices indicating which hyperplanes are selected in the ith 1-tuple
* t : a possible sign pattern of 1 +/- 1s
* g : a class index (from 1 to G)
* P_{g|t} : the # of training points from the gth class having sign pattern t from the hyperplanes in Λ_{ℓ,i}

✤ P_{g|t}: the # of training points from the gth class having sign pattern t from the hyperplanes in $\Lambda_{\ell,i}$

$$r(\ell, i, t, g) = \frac{P_{g|t}}{\sum_{j=1}^{G} P_{j|t}} \frac{\sum_{j=1}^{G} |P_{g|t} - P_{j|t}|}{\sum_{j=1}^{G} P_{j|t}}$$

✤ P_{g|t}: the # of training points from the gth class having sign pattern t from the hyperplanes in $\Lambda_{\ell,i}$

$$r(\ell, i, t, g) = \frac{P_{g|t}}{\sum_{j=1}^{G} P_{j|t}} \frac{\sum_{j=1}^{G} |P_{g|t} - P_{j|t}|}{\sum_{j=1}^{G} P_{j|t}}$$

fraction of training points in class g out of all points with pattern t

✤ P_{g|t}: the # of training points from the gth class having sign pattern t from the hyperplanes in $\Lambda_{\ell,i}$

$$r(\ell, i, t, g) = \frac{P_{g|t}}{\sum_{j=1}^{G} P_{j|t}} \frac{\sum_{j=1}^{G} |P_{g|t} - P_{j|t}|}{\sum_{j=1}^{G} P_{j|t}}$$

fraction of training points in class g out of all points with pattern t gives more weight to group g when its size is much different than others with same sign pattern

Our method: training

Algorithm 1 Training

input: binary training data Q, training labels b, number of classes G, number of layers L

for ℓ from 1 to L, i from 1 to m do select: Randomly select $\Lambda_{\ell,i} \subset [m]$, $|\Lambda_{\ell,i}| = \ell$ determine: Determine the $T_{\ell,i} \in \mathbb{N}$ unique column patterns in $Q^{\Lambda_{\ell,i}}$ for t from 1 to $T_{\ell,i}$, g from 1 to G do compute: Compute $r(\ell, i, t, g)$ by (1) end for end for

"For each layer, pick the 1-tuples and then compute all values of r(1,i,t,g)"

Our method: testing

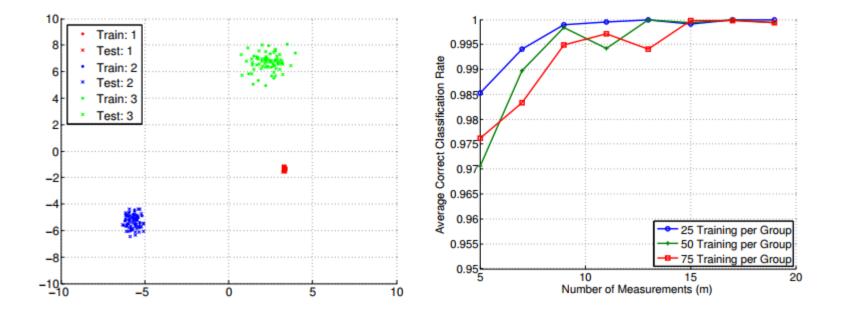
Algorithm 2 Classification

input: binary data q, number of classes G, number of layers L, learned parameters $r(\ell, i, t, g)$, $T_{\ell,i}$, and $\Lambda_{\ell,i}$ from Algorithm 1

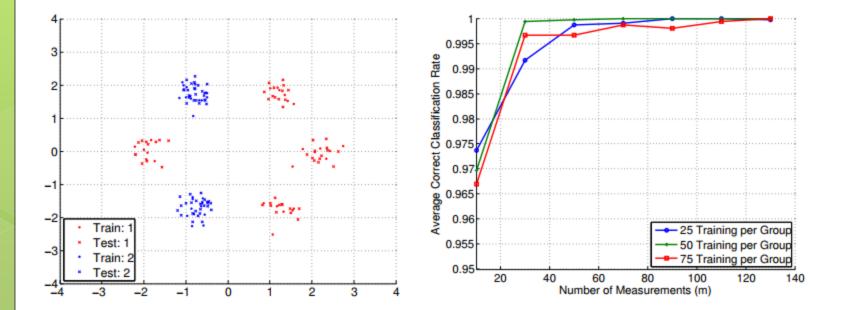
initialize: $\tilde{r}(g) = 0$ for g = 1, ..., G. for ℓ from 1 to L, i from 1 to m do identify: Identify the pattern $t^* \in [T_{\ell,i}]$ to which $q^{\Lambda_{\ell,i}}$ corresponds for g from 1 to G do update: $\tilde{r}(g) = \tilde{r}(g) + r(\ell, i, t^*, g)$ end for end for scale: Set $\tilde{r}(g) = \frac{\tilde{r}(g)}{Lm}$ for g = 1, ..., Gclassify: $\hat{b}_x = \operatorname{argmax}_{g \in \{1,...,G\}} \tilde{r}(g)$

 "For a new point x with sign pattern t*, compute the sum of all r(1,i,t*,g) for each class g and then assign the label g which has the largest sum."

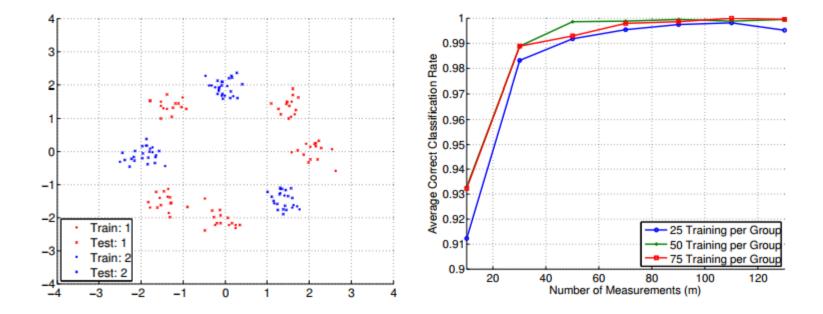
Results (L=1)

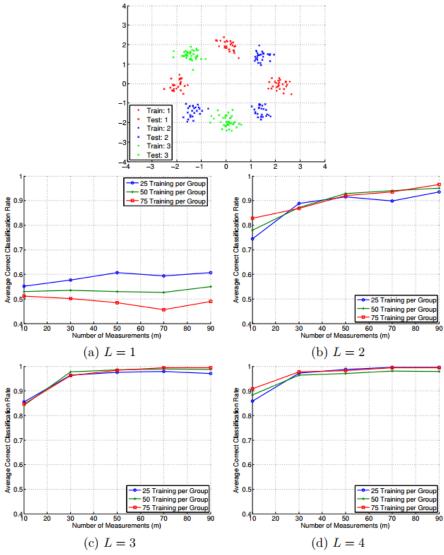


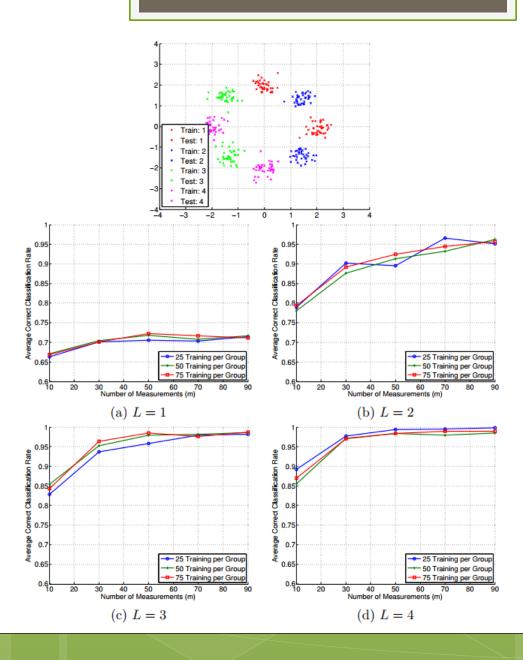
Results (L=4)



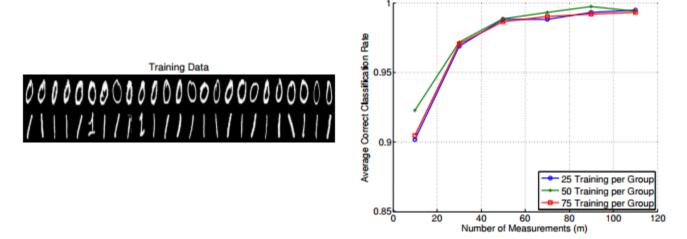
Results (L=5)





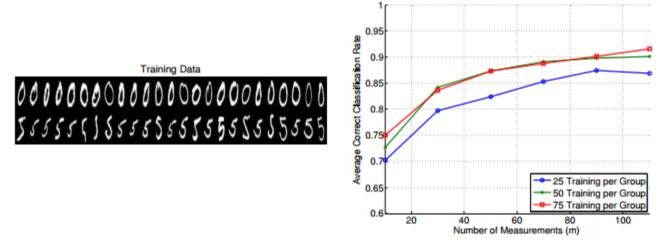


Results (L=1)



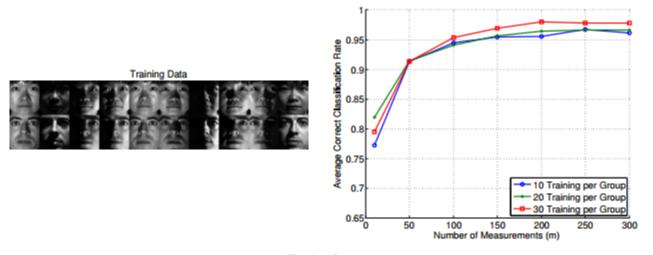
Testing Data

Results (L=4)



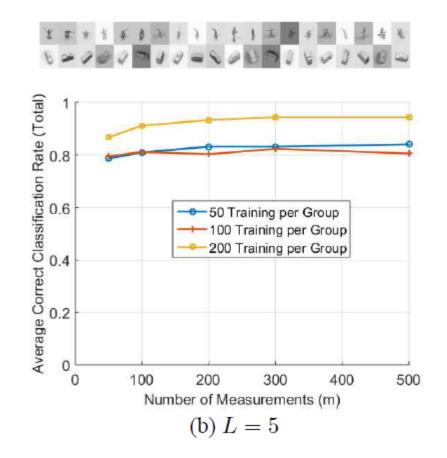
Testing Data

Results (L=5)

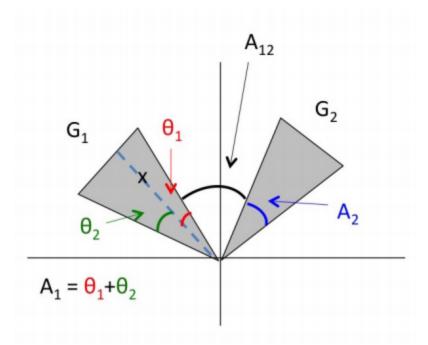


Testing Data

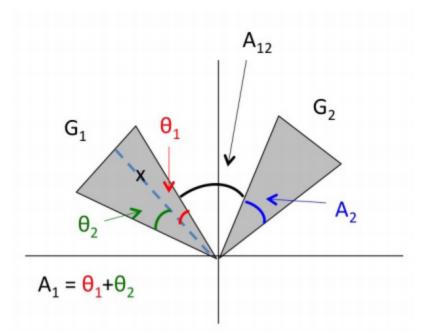
Results (L=5)



Theory

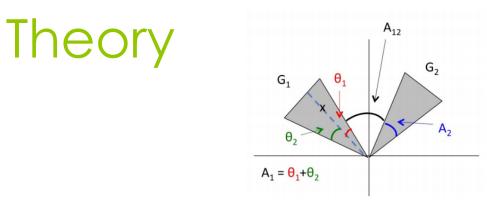


Theory



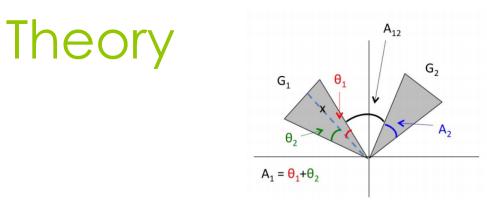
A_{g|t}: the angle of class g with sign pattern t for the ith 1– tuple in layer 1

$$r(\ell, i, t, g) = \frac{A_{g|t}}{\sum_{j=1}^{G} A_{j|t}} \frac{\sum_{j=1}^{G} |A_{g|t} - A_{j|t}|}{\sum_{j=1}^{G} A_{j|t}}$$



Theorem 1. Let the classes G_1 and G_2 be two cones in \mathbb{R}^2 defined by angular measures A_1 and A_2 , respectively, and suppose regions of the same angular measure have the same density of training points. Suppose $A_1 = A_2$, $\theta_1 = \theta_2$, and $A_{12} + A_1 + A_2 \leq \pi$. Then, the probability that a data point $x \in G_1$ gets classified in class G_1 by Algorithms 1 and 2 using a single layer and a measurement matrix $A \in \mathbb{R}^{m \times 2}$ with independent standard Gaussian entries is bounded as follows,

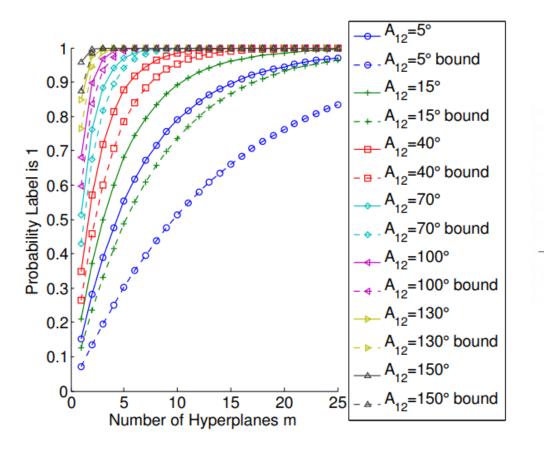
$$\mathbb{P}[\widehat{b}_{x} = 1] \geq 1 - \sum_{j=0}^{m} \sum_{k_{1,\theta_{1}}=0}^{m} \sum_{k_{1,\theta_{2}}=0}^{m} \sum_{k_{2}=0}^{m} \sum_{k=0}^{m} \binom{m}{j, k_{1,\theta_{1}}, k_{1,\theta_{2}}, k_{2}, k} \left(\frac{A_{12}}{\pi}\right)^{j} \left(\frac{A_{1}}{2\pi}\right)^{k_{1,\theta_{1}}+k_{1,\theta_{2}}} \times \left(\frac{A_{1}}{\pi}\right)^{k_{2}} \left(\frac{\pi - 2A_{1} - A_{12}}{\pi}\right)^{k}.$$
(3)

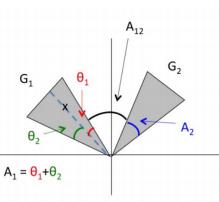


Theorem 1. Let the classes G_1 and G_2 be two cones in \mathbb{R}^2 defined by angular measures A_1 and A_2 , respectively, and suppose regions of the same angular measure have the same density of training points. Suppose $A_1 = A_2$, $\theta_1 = \theta_2$, and $A_{12} + A_1 + A_2 \leq \pi$. Then, the probability that a data point $x \in G_1$ gets classified in class G_1 by Algorithms 1 and 2 using a single layer and a measurement matrix $A \in \mathbb{R}^{m \times 2}$ with independent standard Gaussian entries is bounded as follows,

$$\mathbb{P}[\widehat{b}_{x} = 1] \geq 1 - \sum_{j=0}^{m} \sum_{k_{1,\theta_{1}}=0}^{m} \sum_{k_{1,\theta_{2}}=0}^{m} \sum_{k_{2}=0}^{m} \sum_{k=0}^{m} \binom{m}{j, k_{1,\theta_{1}}, k_{1,\theta_{2}}, k_{2}, k} \left(\frac{A_{12}}{\pi}\right)^{j} \left(\frac{A_{1}}{2\pi}\right)^{k_{1,\theta_{1}}+k_{1,\theta_{2}}} \times \left(\frac{A_{1}}{\pi}\right)^{k_{2}} \left(\frac{\pi - 2A_{1} - A_{12}}{\pi}\right)^{k}.$$
(3)

Theory





Take-away

Simple classification from binary data
 Efficient storage of the data
 Efficient and simple algorithm
 Theoretical analysis possible
 Already competes with state of the art

Future work

- Dithers to allow for more complicated geometries?
- Theoretical analysis of the discrete case?

o deanna@math.ucla.edu

o math.ucla.edu/~deanna

- "Simple Classification using Binary Data"
 - Needell, Saab, Woolf