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• If we know thed × d matrixΦ and the
measurement vectorx, can we recover everyv?
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Problem Setup
• By simple linear algebra, we cannot recover

everyv in this setting. What ifv has few
non-zero coordinates?
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• It turns out that we can recover anysparsevector

v, even in the setting wherem ≪ d! This is
called Sparse Reconstruction.
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Problem Setup
• By simple linear algebra, we cannot recover

everyv in this setting. What ifv has few
non-zero coordinates?

• We say a vectorv is r-sparse if| supp(v)| ≤ r.
• It turns out that we can recover anysparsevector

v, even in the setting wherem ≪ d! This is
called Sparse Reconstruction.

• What kind of matrixΦ? How would we recover?
... Why do we care?
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Applications
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Applications
• Error Correction
• Medical Imaging
• Data Storage
• Single Pixel Camera (Rice Univ. CS Group)
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algorithm, so that:
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Important traits
• We thus want a matrixΦ along with a recovery

algorithm, so that:
1. Speed: The recovery of the signalv can be

donefast
2. Stability: If small errors are introduced, the

algorithm still produces a good approximation
to v.

3. Uniform Guarantees: We would like the
matrixΦ and the algorithm to be able to
recovereverysignalv.

• So, what kinds of matrices can we use, and how
do we recover the signalv?

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles – p.6/12



Requirements for Φ

• In theory, we need only thatΦ be one-to-one on
all r-sparse vectors. However, for practical
reasons we require thatΦ satisifies the Restricted
Isometry Condition:
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Requirements for Φ

• In theory, we need only thatΦ be one-to-one on
all r-sparse vectors. However, for practical
reasons we require thatΦ satisifies the Restricted
Isometry Condition:

• (1 − δ)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + δ)‖v‖2 for all
r-sparse vectorsv.

• Every set ofr columns is approximately an
orthonormal basis.

• Random matrices (Gaussian, Bernoulli, Random
Fourier) satisfy the RIC with high probability for
m ≈ r log d.
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How do we recover?
• Two major approaches:ℓ1-minimization and

Greedy Methods
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How do we recover?
• Two major approaches:ℓ1-minimization and

Greedy Methods
• ℓ1-minimization (Basis Pursuit):

v = argmin ‖z‖1, Φz = Φv = x

• Candès-Tao and Rudelson-Vershynin (2005)
showed that whenΦ satisfies the RIC, Basis
Pursuit recovers everyr-sparse vector (“uniform
guarantees”).

• Advantages: Uniform guarantees, Stable
• Disadvantage: No known strongly polynomial

time algorithm to solve a linear program.
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Greedy Approaches
• Greedy methods compute the support of the

signalv iteratively.
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Greedy Approaches
• Greedy methods compute the support of the

signalv iteratively.
• SinceΦ forms approximately an ONB, the

coordinates ofΦ∗Φv are locally good estimaters
of v.

• The greedy method Orthogonal Matching Pursuit
[Gilbert-Tropp, 2005] selects the largest
coefficient ofΦ∗Φv to be in the support, subtracts
off its contribution, and iterates.

• Advantage: Fast
• Disadvantages: Not known to be stable, provides

non-uniform guarantees (works for eachfixed
signal with high probability)
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Bridging the Gap
• There existed this gap between the approaches.

We bridged the gap with Regularized Orthogonal
Matching Pursuit (ROMP) [N-Vershynin 2007].
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Bridging the Gap
• There existed this gap between the approaches.

We bridged the gap with Regularized Orthogonal
Matching Pursuit (ROMP) [N-Vershynin 2007].

• Computes the support iteratively: Selects
multiple coordinates ofΦ∗Φv that have
comparable magnitudes (are “regularized”) at
each iteration.

• Advantages: Fast, Stable, Uniform Guarantees
• Is it perfect?
• Not quite: Requires a slightly stronger condition

on the RIC than Basis Pursuit.
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Finding Perfection
• We overcome this disadvantage with

Compressive Sampling Matching Pursuit
(CoSaMP) (N-Tropp, 2008).
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Finding Perfection
• We overcome this disadvantage with

Compressive Sampling Matching Pursuit
(CoSaMP) (N-Tropp, 2008).

• Computes the signal iteratively: Selects the
largestO(r) coordinates ofΦ∗Φv, estimates the
signal using this support, and prunes the signal to
ber-sparse. Then repeats.

• Advantages: Fast, Stable, Uniform Guarantees,
no stronger condition needed on RIC
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For more information
• dneedell@math.ucdavis.edu

• www.math.ucdavis.edu/~dneedell

• N and Tropp, “CoSaMP: Iterative signal recovery from

incomplete and inaccurate samples,” submitted

• N and Vershynin, “Stable signal recovery from incomplete

and inaccurate samples,” submitted

• N and Vershynin, “Uniform Uncertainty Principle and

signal recovery via Regularized Orthogonal Matching

Pursuit,” Found. Comput. Math., to appear.
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