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Abstract

Suppose that we wish to estimate a vector x ∈ Cn from a small number of noisy linear
measurements of the form y = Ax+z, where z represents measurement noise. When the vector
x is sparse, meaning that it has only s nonzeros with s ≪ n, one can obtain a significantly more
accurate estimate of x by adaptively selecting the rows ofA based on the previous measurements
provided that the signal-to-noise ratio (SNR) is sufficiently large. In this paper we consider
the case where we wish to realize the potential of adaptivity but where the rows of A are
subject to physical constraints. In particular, we examine the case where the rows of A are
constrained to belong to a finite set of allowable measurement vectors. We demonstrate both
the limitations and advantages of adaptive sensing in this constrained setting. We prove that
for certain measurement ensembles, the benefits offered by adaptive designs fall far short of the
improvements that are possible in the unconstrained adaptive setting. On the other hand, we
also provide both theoretical and empirical evidence that in some scenarios adaptivity does still
result in substantial improvements even in the constrained setting. To illustrate these potential
gains, we propose practical algorithms for constrained adaptive sensing by exploiting connections
to the theory of optimal experimental design and show that these algorithms exhibit promising
performance in some representative applications.

1 Introduction

Suppose that we wish to estimate a sparse vector from a small number of noisy linear measurements.
In the setting where the measurements are selected in advance (independently of the signal) we now
have a rich understanding of both practical algorithms and the theoretical limits on the performance
of these algorithms. A typical result from this literature states that for a suitable measurement
design, one can estimate a sparse vector with an accuracy that matches the minimax lower bound up
to a constant factor [6]. Such results have had a tremendous impact in a variety of practical settings.
In particular, they provide the mathematical foundation for “compressive sensing,” a paradigm for
efficient sampling that has inspired a range of new sensor designs over the last decade.
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A distinguishing feature of the standard compressive sensing paradigm is that the measurements
are nonadaptive, meaning that a fixed set of measurements are designed and acquired without
allowing for any possibility of adapting as the measurements begin to reveal the structure of the
signal. While this can be attractive in the sense that it enables simpler hardware design, in the
context of sparse estimation this also leads to some clear drawbacks. In particular, this would mean
that even once the acquired measurements show us that portions of the signal are very likely to be
zero, we may still expend significant effort in “measuring” these zeros! In such a case, by adaptively
choosing the measurements, dramatic improvements may be possible.

Inspired by this potential, recent investigations have shown that we can often acquire a sparse
(or compressible) signal via far fewer measurements or far more accurately if we choose them adap-
tively (e.g., see [12, 17, 18, 21]). This body of work, which will be discussed in greater detail in
Section 1.2, demonstrates that adaptive sensing indeed offers the potential for dramatic improve-
ments over nonadaptive sensing in many settings. However, the existing approaches to adaptive
sensing, which rely on being able to acquire arbitrary linear measurements, cannot be applied in
most real-world applications where the measurements must respect certain physical constraints. In
this paper, our focus is on constrained adaptive sensing, where our measurements are restricted to
be chosen from a particular set of allowable measurements. We will see that new algorithms are re-
quired and explore the theoretical limits within this more restrictive setting. Before describing the
constrained adaptive setting in more detail, we first provide a brief review of existing approaches
to nonadaptive and adaptive sensing of sparse signals.

1.1 Nonadaptive sensing

In the standard nonadaptive compressive sensing framework [5, 7, 13, 14], we acquire a signal x via
the linear measurements y = Ax+ z, where A is an m×n matrix representing the sensing system
and z represents measurement noise. The goal is to design A so that m is smaller than n by
exploiting the fact that x is sparse (or nearly sparse). Given a basis Ψ, we say that a signal x ∈ C

n

is s-sparse if it can be represented by a linear combination of just s elements from Ψ, i.e., we can
write x = Ψα, with ‖α‖0 ≤ s, where ‖α‖0 := |supp(α)| denotes the number of nonzeros in α. We
will typically be interested in the case where s ≪ n.

There is now a rich literature that describes a wide range of techniques for designing an ap-
propriate A and efficient algorithms for recovering x. In much of this literature, the matrix A is
chosen via randomized constructions that are known to satisfy certain desirable properties such
as the so-called restricted isometry property (RIP).1 Under the assumption that A satisfies the
RIP (or that AΨ satisfies the RIP in the case where Ψ 6= I), if each entry of z is independent
white Gaussian noise with variance σ2 then one can show that techniques based on ℓ1-minimization
produce an approximation x̂ satisfying

E‖x̂− x‖22 ≤ C
n log n

‖A‖2F
sσ2, (1)

where C > 1 is a fixed constant [13].
One can show that this result is essentially optimal in the sense that there is no alternative

method to choose A or perform the reconstruction that can do better than this (up to the precise

1See Section 2 for a more detailed discussion of the RIP and its implications in the context of adaptive sensing.
Note that the RIP is typically stated to require ‖Ax‖2 ≈ ‖x‖2 for all s-sparse x, which implies a fixed scaling for
the matrix A where ‖A‖2F ≈ n. To ease the comparison with results that arise in contexts with alternative scalings,
in the result stated in (1) we make no assumption on the scaling of A and merely require ‖Ax‖2 ≈ β‖x‖2 for some
β > 0.
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value of the constant C) [6]. In the event that the signal x is not exactly s-sparse, it is also possible
to extend these results by introducing an additional term in the error bound that measures the
error incurred by approximating x as s-sparse. See [13] and references therein for further details.

1.2 Adaptive sensing

A defining feature of the approach described above is that it is completely nonadaptive. When
we consider the effect of noise, this nonadaptive approach might draw some severe skepticism. To
see why, note that in the nonadaptive scenario, most of the “sensing energy” is used to measure
the signal at locations where there is no information, i.e., where the signal vanishes. Specifically,
one consequence of using the randomized constructions for A typically considered in the literature,
or alternatively, any matrix satisfying the RIP, is that the available sensing energy (i.e., ‖A‖2F ) is
evenly distributed across all possible indices. This is natural since a priori we do not know where
the nonzeros may lie, however, since most of the coordinates xj are zero, it also means that the
vast majority of the sensing energy is seemingly wasted. In other words, by design, the sensing
vectors are approximately orthogonal to the signal, yielding a poor signal-to-noise ratio (SNR).

The idea behind adaptive sensing is that we should focus our sensing energy on locations where
the signal is nonzero in order to increase the SNR, or equivalently, not waste sensing energy. In
other words, one should try to learn as much as possible about the signal while acquiring it in
order to design more effective subsequent measurements. Roughly speaking, one would like to
(i) detect those entries which are nonzero or significant, (ii) progressively concentrate the sensing
vectors on those entries, and (iii) estimate the signal from such localized linear functionals. Such a
strategy is employed by the compressive binary search and compressive adaptive sense and search
strategies of [12] and [21]. These algorithms operate by examining successively smaller pieces of the
signal to accurately determine the location of signal energy. These techniques can yield dramatic
improvements in recovery accuracy.

To quantify the potential benefits of an adaptive scheme, suppose that we observe

yi = 〈ai,x〉+ zi (2)

where the zi are independent and identically distributed (i.i.d.) N (0, σ2) entries and the ai are
allowed to depend on previous observations (y1, · · · , yi−1), with the only constraint being that∑

i ‖ai‖22 = ‖A‖2F is fixed. Consider a simple procedure that uses half of the sensing energy in
a nonadaptive way to identify the support of an s-sparse vector x and then adapts to use the
remaining half of the sensing energy to estimate the values of the nonzeros. If such a scheme
identifies the correct support, then it is easy to show that this procedure will yield an estimate
satisfying

E‖x̂− x‖22 =
2s

‖A‖2F
sσ2. (3)

If we contrast this result to that in (1), which represents the best possible performance in the
nonadaptive setting, we see that this simple adaptive scheme can potentially improve upon the
nonadaptive scheme by a factor of roughly (n/s) log n, which represents a dramatic improvement
in the typical scenario where s ≪ n. Of course, this is predicated on the assumption that the first
stage of support identification succeeds, which is not always the case.

A fundamental question is thus: in practice, how much lower can the mean squared error (MSE)
be when we are allowed to sense the signal adaptively? The answer is a subtle one. In [1], it is
shown that for the worst-case s-sparse vector x, even the best possible adaptive scheme will satisfy

E‖x̂− x‖22 ≥ C
n

‖A‖2F
sσ2 (4)
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for a fixed constant C > 0. This lower bound improves upon the nonadaptive performance (1) by
only a factor of log n, coming far short of the improvement that (3) indicates might be possible.
Similar results are also obtained in [9]. What these results find is that the same vectors that
determine the worst-case performance in the nonadaptive setting are so difficult to estimate that it
is impossible to obtain a reliable estimate of their support, and so adaptive algorithms offer limited
room for improvement.

The result (4) does not say that adaptive sensing never helps. In fact, in practice it almost
always does help. For example, when some or most of the nonzero entries in x are only slightly
larger than the worst-case amplitude identified in [1], we can detect them sufficiently reliably to
enable the dramatic improvements predicted in (3). More concretely, provided that σ2 is not too
large relative to the nonzero entries of x, a well-designed adaptive scheme, where the ai are chosen
sequentially as in [12, 21], can achieve

E‖x̂− x‖22 ≤ C ′ s

‖A‖2F
sσ2 (5)

for a fixed constant C ′, which represents an enormous improvement when s ≪ n, and demonstrates
that the potential benefits suggested in (3) can be realized in certain regimes.

1.3 Constrained sensing

Up to this point, we have discussed results in which we essentially have complete freedom to design
both the adaptive and nonadaptive measurements in an optimal fashion (that is, up to a constraint
on ‖A‖F ). However, there are many applications where such freedom does not exist, and there are
significant constraints on the kind of measurements that we can actually acquire. Such constraints
arise in various hardware devices inspired by compressive sensing. For example, the single-pixel
camera [15] acquires samples of an image by computing inner products with binary patterns. In
this application we could still utilize adaptive measurements, but they must be binary. In other
applications, we may be restricted to obtaining point samples of the signal of interest. For example,
in standard sampling systems we are restricted to individually measuring each signal coefficient over
time or space. Finally, in tomography and magnetic resonance imaging (MRI), as well as other
medical imaging settings, we cannot acquire inner products with arbitrary linear functionals—we
are limited to Fourier measurements.

In all of these settings, the measurements are constrained ; we still have the flexibility to design
measurements adaptively, but we can only select measurements from a fixed ensemble of prede-
termined measurements. Thus, the constrained setting will typically preclude the use of any of
the adaptive sensing algorithms referenced above, and a new approach is required. Specifically, if
we let M ⊂ C

n denote the set of candidate measurement vectors, then the constrained adaptive
sensing problem becomes one of sequentially selecting the rows ai of our sensing matrix from the
set M. In this work, we assume the multiplicity of a particular measurement from M is allowed
to be greater than one; that is, repeated measurements are permitted. For the methods discussed
in this paper, we will restrict our attention to the case where M is a finite set. For a majority of
our discussion and examples, we will focus on the setting where |M| = n and M = {f1, f2, . . . , fn}
is the ensemble of discrete Fourier measurements.

With this restriction on the measurements, Figure 1 illustrates the large potential difference
between a completely nonadaptive sensing scheme, where the measurements are selected uniformly
at random, and an “oracle” adaptive sensing scheme which uses a priori knowledge of the true
locations of the nonzeros in a signal to carefully adapt the choice of measurement vectors to minimize
the expected recovery error using the strategy outlined in Section 3. In both cases, the Compressive
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Figure 1: (Left) The median squared error versus the signal dimension n for nonadaptive recovery with
uniformly random selected measurements (red) and oracle adaptive recovery (black). (Right) The ratio
(green) of the nonadaptive median squared recovery error to the oracle adaptive median squared recovery
error versus the signal dimension n, with logn (solid magenta) and n/s (dashed magenta) included for
reference. In these simulations, the values on the support of α are distributed i.i.d. according to N (

√
n, 1),

and the number of measurements taken is always m = 0.6n (rounding when necessary). The measurement
noise z is distributed i.i.d. as N (0, σ2 = 10−4).

Sampling Matching Pursuit (CoSaMP) [22] algorithm is used for the signal recovery. The median2

squared error over 200 trials is displayed against the signal dimension n. Here, the signal is 10-
sparse with a Haar wavelet decomposition that is supported on a tree (that is, x = Ψα where Ψ

is the Haar wavelet basis, with α such that ‖α‖0 = 10 and the support is on a tree).
It is well-known that the Fourier and Haar wavelet transforms are not incoherent, which implies

that AΨ does not satisfy the RIP; hence, we would not expect blind nonadaptive sensing to do
well in this setting. However, Figure 1 does illustrate the large potential for improvement over
nonadaptive sensing. In this case, the adaptive algorithm can potentially improve the recovery
error over nonadaptive sensing by roughly a factor of n/s, which represents a substantial gain when
s ≪ n. While we will see below that there are also nonadaptive strategies to address the coherence
of Fourier and Haar which somewhat reduce the gap between adaptive and nonadaptive sensing
in this case, we believe that this clearly illustrates the potential for adaptive sensing, even in the
constrained setting.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2, we show a simple lower bound on
the adaptive performance of systems limited to Discrete Fourier Transform (DFT) measurements.
We then generalize this result to the larger class of measurements satisfying the RIP. In both cases,
the signal is assumed to be sparse in the canonical basis. In Section 3, we give a method for
measurement selection based on optimal experimental design. In Section 4, we provide simulations
in a more realistic setting and display numerical results when Fourier measurements are used and
the signal is assumed to be sparse in the Haar wavelet basis. We also present some analytical
justification using 1-sparse signals in this constrained adaptive setting. Finally, we conclude in

2Note that the median and mean curves exhibit the same overall behavior; however, we display the median error
across all trials rather than the mean error throughout because the median, being a more robust measure, resulted
in smoother curves with clearer trends between the methods.
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Section 5 with a brief discussion.

2 Lower bounds on adaptive performance

The main result of this section shows that adaptive sensing cannot offer substantial improvements
over the nonadaptive scheme when the measurements are restricted to certain specific classes of
ensembles and the signal is sparse in the canonical basis (i.e., Ψ = I). We first consider the Fourier
ensemble, where the sensing vectors are chosen from the rows of the DFT matrix F ∈ C

n×n, where
F has entries

fjk =
1√
n
exp(−2π

√
−1jk/n) (6)

for j, k = 0, 1, . . . , n − 1. In this constrained setting we have the following lower bound.

Theorem 1. Let x ∈ R
n be s-sparse and suppose that we observe m measurements of the form

yi = 〈ai,x〉 + zi where zi ∼ N (0, σ2) and the ai are chosen (potentially adaptively) by selecting
rows from the DFT matrix (6), where at least s unique measurements are chosen and duplicates
are otherwise permitted. Then for any estimate x̂ by any adaptive scheme, we have

E‖x̂− x‖22 ≥ n

m
sσ2. (7)

This shows that even using an optimal choice of sensing vectors, the recovery error is still
proportional to n

msσ2, which falls far short of the potential gains possible in the unconstrained
setting shown in (3). This result is intuitive given the incoherence of the DFT and canonical bases.
This is somewhat reminiscent of the main results of [1] and [9], which also show (in an unconstrained
setting) that for a certain range of worst-case SNRs, adaptive schemes do not result in a substantial
improvement. However, these arguments only apply for a narrow range of SNRs, and if the SNR
improves (by only a small constant factor), there is a dramatic transition and adaptivity yields
significant improvements [12, 21]. In contrast, Theorem 1 applies no matter how large the SNR,
and so in a sense is far more pessimistic.

Proof of Theorem 1. Let F′ be the m × n sensing matrix consisting of the m adaptively chosen
vectors from the rows of F, and let F′

Λ denote the m × s submatrix of F′ whose column indices
correspond to the indices of the support Λ of x. We first observe that for any s×m matrix B,

E‖Bz‖22 = E tr(Bzz∗B∗) = tr(BE[zz∗]B∗)

= tr(Bσ2IB∗) = σ2 tr(BB∗)

= σ2‖B‖2F .

Using the rows of F′ to acquire the measurements as in (2), we obtain y = F′x+ z = F′
ΛxΛ + z. It

is not difficult to show (e.g., see [6]) that the optimal approximation to x̂ has nonzero entries

x̂Λ = (F′
Λ)

†(F′x+ z) = (F′
Λ)

†(F′
ΛxΛ + z) = xΛ + (F′

Λ)
†z,

where (F′
Λ)

† denotes the Moore–Penrose pseudoinverse of F′
Λ and we have assumed F′

Λ to be
full rank (this requires at least s unique adaptively chosen measurements to comprise F′, but
duplicates are otherwise permitted). Thus, the optimal estimator yields an estimate with error
‖x̂− x‖2 = ‖(F′

Λ)
†z‖2. Using this fact and denoting by σi(B) the ith singular value of B, we have

E‖x̂− x‖22 ≥ E‖(F′
Λ)

†z‖22 = σ2‖(F′
Λ)

†‖2F

6



= σ2
s∑

i=1

σ2
i ((F

′
Λ)

†) = σ2
s∑

i=1

1

σ2
i (F

′
Λ)

≥ σ2 s2∑s
i=1 σ

2
i (F

′
Λ)

= σ2 s2

‖F′
Λ‖2F

(8)

where the second inequality follows from Jensen’s inequality. Since ‖F′
Λ‖2F = sm

n , this completes
the proof.

Our next result generalizes this type of lower bound to any ensemble whose submatrices satisfy
the RIP with high probability. This statement is significant because it suggests that in some
constrained situations, specifically many commonly studied in compressive sensing, there is little
benefit from adaptivity. Formally, let A be any n × n matrix with unit-norm rows such that a
(uniformly) random m× n submatrix Ã satisfies the RIP with probability 1− exp(−cn) with RIP
constant δ = 0.5, i.e.,

0.5
m

n
‖u‖22 ≤ ‖Ãu‖22 ≤ 1.5

m

n
‖u‖22, (9)

where u is 2s-sparse and we have normalized to account for the unit-norm row assumption. Theorem
2 makes rigorous the claim that selecting rows intelligently from such a matrix yields no substantial
improvement over a nonadaptive scheme.

Theorem 2. Let x ∈ R
n be s-sparse and suppose that we observe m measurements of the form

yi = 〈ai,x〉+zi where zi ∼ N (0, σ2) and the ai are chosen (potentially adaptively) by selecting rows
from a matrix A satisfying (9), where at least s unique measurements are chosen and duplicates
are otherwise permitted. Then for any estimate x̂ obtained from any adaptive scheme, we have

E‖x̂− x‖22 ≥
n

2m2
sσ2. (10)

In fact, one usually anticipates m to be on the order of s log n, in which case this bound becomes

E‖x̂− x‖22 ≥
sn

2ms log n
σ2 =

n

2m log n
σ2,

which is roughly a factor of s log2 n lower than the upper bound in (1). This result shows that the
recovery error with any adaptive measurements selected from some standard RIP ensemble again
falls short of the possible gains shown in (3).

Proof of Theorem 2. Let Ã be a randomly selected m × n submatrix of A. By assumption, with
probability at least 1 − exp(−cn) we have that Ã satisfies (9). By choosing x to be a standard
basis vector in (9), we observe that any column a(j) of Ã then satisfies

0.5
m

n
≤ ‖a(j)‖22 ≤ 1.5

m

n
.

Thus, any m× s submatrix of Ã can have squared Frobenius norm at most 1.5sm
n .

Let A′ be the m× n sensing matrix consisting of m adaptively chosen vectors from the rows of
A, with duplicates permitted. For the sake of a contradiction, suppose that there is some m × s
submatrix A′

Λ of A′, where Λ is some index set of cardinality s such that ‖A′
Λ‖2F > 2sm2

n . Then
at least one of the rows ai of A′

Λ must be such that ‖ai‖22 > 2sm
n . But this implies that any

m× n submatrix of A that contains row i will have an m× s submatrix whose squared Frobenius
norm exceeds 2sm

n . Since row i is selected with probability 1/n in a randomly selected m × n

7



submatrix Ã of A, and 1/n > exp(−cn) (where c is chosen appropriately in (9)), we have arrived
at a contradiction.

Therefore, it must be that all m× s matrices A′
Λ have squared Frobenius norm at most 2sm2

n .
By (8), and assuming at least s unique rows of A are chosen in the construction of A′

Λ, we thus
have that

E‖x̂− x‖22 ≥
s2

‖A′
Λ‖2F

σ2 ≥ s2n

2sm2
σ2 =

n

2m2
sσ2.

This completes the proof.

3 Adaptivity through optimal experimental design

Although there are some settings where constrained adaptive sensing does not offer substantial
improvement over the nonadaptive scheme, one can of course ask if there are other settings where
notable gains are still possible. In order to address this question, we consider the simplified con-
strained adaptive sensing problem where we assume the support Λ of the signal x, with respect to
the sparsity basis Ψ, is known, or some estimate of the support is provided. How would we choose
the measurements to best make use of this information, while still respecting that the measurements
are constrained to be from the measurement ensemble M?

Let {ai}mi=1 denote a sequence of length m with elements ai ∈ M corresponding to the mea-
surements of M that are chosen.3 Then, denote by A′ the m × n matrix (recall M ⊂ C

n) whose
ith row is ai. If Λ = supp(x), then it can be shown by following the arguments in the proof of
Theorem 1 that the optimal MSE satisfies

E‖x̂− x‖22 = ‖(A′ΨΛ)
†‖2Fσ2 = tr

(
((A′ΨΛ)

∗A′ΨΛ)
−1
)
σ2, (11)

where σ2 is the variance of the noise term as in (2), ΨΛ is the submatrix of Ψ restricted to the
columns indexed by Λ, and A′ΨΛ is assumed to have full (column) rank. Our goal is to find a
length-m measurement sequence {ai}mi=1 that minimizes (11), which is equivalent to solving

{âi}mi=1 = argmin
{{ai}mi=1

| ai∈M}
tr
(
((A′ΨΛ)

∗A′ΨΛ)
−1
)
, (12)

where A′ = A′({ai}mi=1) is constructed as described above. However, the optimization problem (12)
that we would ideally like to solve is a computationally demanding discrete optimization problem;
hence, we instead consider the relaxation

Ŝ = argmin
diagonal matrices S�0

tr
(
((AΨΛ)

∗SAΨΛ)
−1
)

subject to tr(S) ≤ E , (13)

where A is the |M| × n matrix containing all possible measurement vectors from M and the con-
straint tr(S) ≤ E ensures that the resulting “weighted” sensing matrix

√
SA satisfies the “sensing

energy” constraint ‖
√
SA‖2F ≤ E when the rows of A are normalized. Note that this is equivalent

to the continuous design for the A-optimality criterion studied in the optimal experimental design
literature [24].

Fortunately, (13) is a convex problem [4] and can be efficiently solved by a number of methods.
Whereas the problem in (12) would tell us which measurements and how many of each to use from

3We use a sequence of elements from {1, . . . , |M|} rather than: 1) a subset to emphasize that the m measurements
from M need not be distinct, and 2) a multiset because there is a significance to the order in which the measurements
are selected in adaptive sensing.
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M, (13) instead tells us, through the diagonal matrix Ŝ of weights, “how much” of each measure-
ment to use. If we use the sensing energy model, the way to use Ŝ from (13) is straightforward:

the sensing matrix is simply
√

ŜA From the relation

tr
(
((AΨΛ)

∗ŜAΨΛ)
−1
)
=

m

E tr

[
n∑

i=1

mŝii
E (AΨΛ)

∗
i (AΨΛ)i

]−1

, (14)

where (AΨΛ)i denotes the ith row of AΨΛ and ŝii denotes the ith element on the diagonal of Ŝ,
it is clear that if q is an integer, setting mŝii/E = q is equivalent to repeating the corresponding
measurement q times.

If, on the other hand, we use the measurement model where we must choose m unweighted
measurements from M, the practical use of Ŝ from (13) is less obvious. We experimented with
several different approaches to using the weights in Ŝ, and the following method empirically seemed
to produce the best results. In this work, we use a simple (though likely sub-optimal) sampling
scheme to obtain a discrete design. Specifically, we set E = m and draw exactly m measurements,
with replacement, according to the probability mass function

pi =
ŝii
m

. (15)

We guarantee that the resulting matrix A′ is at least rank s by rejecting any construction for which
this constraint is not satisfied. These m measurements then form the rows of the sensing matrix
A′.

4 Case study: Fourier measurements of Wavelet sparse signals

The results of Section 2 demonstrate that adaptive sensing cannot offer substantial improvements
over nonadaptive sensing for certain classes of measurement ensembles when the signal is sparse in
the canonical basis. We next explore the case when Ψ is instead a wavelet basis and we acquire
Fourier measurements (this is indeed the setting of Figure 1, which suggests dramatic potential im-
provements from constrained adaptive sensing). This setting serves as a somewhat idealized model
for a number of applications in tomography and other medical imaging since physical limitations
would entail that we can only acquire Fourier measurements, and natural images are generally
sparse with respect to wavelet bases [11]. In this setting we might receive one Fourier measurement
at a time, and from those, we can (potentially in real time) request the next Fourier coefficient to
be measured.

For the remainder of this discussion we will assume the sparsity basis Ψ is the Haar wavelet
basis. We will denote the n × n discrete Haar wavelet transform by H, with entries hjk for j, k =
0, 1, . . . , n− 1 and n is assumed to be some power of 2. When j = 0, we have

h0k =
1√
n
. (16)

For indices j > 0, we write j = 2p + q − 1, where p and q are nonnegative integers, and define

hjk =
1√
n





2p/2 (q−1)n
2p ≤ k < (q−0.5)n

2p

−2p/2 (q−0.5)n
2p ≤ k < qn

2p

0 otherwise.

(17)

9



Since, however, the Haar wavelet basis H is a sparsifying transformation, for a signal (or image) x
we have that Hx = α, with ‖α‖0 ≤ s. This means x = H∗

α, where H∗ denotes the adjoint of H,
for which H∗ = H−1 since H is unitary.

With this notation in hand and recalling that F is the n× n DFT, (11) becomes

E‖x̂− x‖22 = ‖(F′H∗
Λ)

†‖2Fσ2, (18)

where F′ is the m×n sensing matrix consisting of the m adaptively chosen vectors from F and H∗
Λ

is the n×s submatrix of H∗ restricted to the columns indexed by Λ = supp(α) = supp(Hx). Thus,
we see that the optimal MSE depends on the correlations of the Fourier and Haar basis elements.
We now present a suite of numerical simulations in this setting that employ the relaxation (13)
followed by the sampling scheme described in Section 3 to select a sequence of m measurement
vectors from F. We then follow with a short analysis for the simple case of 1-sparse signals.

4.1 Simulations

Here we present a practical implementation of adaptive sensing obtained via the relaxation (13)
which we then compare with the results of traditional nonadaptive sensing. To implement (13),
we use the Templates for First-Order Conic Solvers (TFOCS) software package [2, 3]. We set M
to be the ensemble of n measurements from the n × n DFT matrix F. For all of the numerical
experiments, x is a 10-sparse signal in the Haar wavelet basis (i.e., Ψ = H⋆) with the values on
the support of α distributed i.i.d as N (

√
n, 1) and the measurement noise z is distributed as i.i.d.

N (0, 10−4). Unless otherwise stated, the signal is of dimension n = 1024. We consider signals
whose support is chosen uniformly at random, and also those whose support obeys a tree structure.
Briefly, in the latter case the support is organized on a binary tree, plus an extra node at the top.
The first scaling (or lowest frequency) coefficient has just one child; the second and further wavelet
coefficients have two children each (see [10, 16] for similar wavelet-tree constructions). An s-sparse
support is filled by choosing the first scaling location, and then in each of the s−1 remaining rounds,
choosing one node randomly among the unfilled nodes which currently have a chosen parent.

Nonadaptive sensing. Due to the lack of incoherence between the DFT and Haar bases, it has
been observed (and recently theoretically shown [19, 20]) that so-called Variable-Density Sampling
(VDS) is often preferable to standard uniform random selection of Fourier measurements. In VDS4,
sampling can be concentrated on the lower frequencies, producing superior recovery results. We
test recovery using either ℓ1-minimization [8, 25, 26] or the greedy pursuit CoSaMP [22].

Adaptive sensing. In the more realistic setting, we employ a simple strategy which uses m/2
nonadaptive measurements (using either VDS or uniform sampling) to construct an estimate of
Λ. This is done by executing either ℓ1-minimization (followed by thresholding) or CoSaMP. We
then solve the relaxation (13) using this estimated support, and the remaining m/2 measurements
are selected adaptively using the distribution given by (15). To recover the signal, either ℓ1-
minimization or CoSaMP is again used to obtain an updated estimate Λ̂ using all m measurements.
The final signal coefficient estimate is calculated as α̂Λ̂ = (F′H∗

Λ̂
)†y, where y is the m-dimensional

vector of measurements, F′ is the m × n vector of Fourier measurements selected, and H∗
Λ̂
is the

n × 10 submatrix of H∗ restricted to the columns indexed by Λ̂. One could alternatively use the
signal estimate returned directly from the recovery algorithm, which we have observed to perform
similarly to (or only slightly worse than) our implemented method.

Oracle adaptive sensing. For sake of comparison, we also consider the case where the true
support Λ of the signal is known a priori, and the measurements are selected as in the adaptive

4Following the experiments in [20], we also do not apply any preconditioning to the sensing matrix.
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Figure 2: The median squared error versus the number of measurements m when the nonzero locations of
α are selected on a sparse tree (top) or uniformly at random (bottom). The nonadaptive (red) and adaptive
(blue) recovery is shown when either VDS or uniform sampling is used for the nonadaptive measurements,
and CoSaMP (left) or ℓ1-minimization (right) is used; the oracle adaptive (black) recovery is also included
for comparison.

sensing case using this Λ. Recovery is then performed simply by applying the pseudoinverse:
α̂Λ = (F′H∗

Λ)
†y.

Figure 2 compares recovery results over 1000 trials for nonadaptive, adaptive, and oracle adap-
tive sensing versus the number of measurements m. We see that when the signal is supported on
a tree, uniform sampling performs poorly for both nonadaptive and adaptive sensing, as might be
expected. The performance of the uniform sampling methods can be understood via the empirical
observation that in this case we require roughly 500 measurements before we can reliably estimate
the support. When using the CoSaMP algorithm, the sudden improvement at m ≈ 500 for uniform
nonadaptive and at m ≈ 1000 for uniform adaptive (which uses m ≈ 500 measurements for support
identification) corresponds to the threshold where more than half of the trials resulted in a correct
support recovery. In contrast, sampling with VDS offers dramatic improvements for both nonadap-
tive and adaptive sensing with either reconstruction algorithm, with adaptive sensing performing
almost as well as the oracle. In this case, VDS is already capturing much of the potential improve-
ment offered by adaptivity because the energy of the signal is heavily biased towards the lower
frequencies, although adaptivity still results in somewhat improved performance. In contrast to
the tree-sparse case, when the signal support is selected randomly, uniform nonadaptive sampling
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Figure 3: The ratio (green) of the nonadaptive median squared recovery error to the adaptive median
squared recovery error versus the signal dimension n when the support locations of α are selected on a
sparse tree (left) or uniformly at random (right). The ratio is shown when either VDS or uniform sampling
is used for the nonadaptive measurements, and CoSaMP (solid line) or ℓ1-minimization (dashed line) is used.
The curves for logn (solid magenta) and n/s (dashed magenta) are included for comparison.

actually performs better than VDS, whereas adaptive sensing performs similarly regardless of the
type of nonadaptive measurements taken. Thus if one is not sure of the signal structure in general,
adaptive sensing can offer improvements in either case. This flexibility represents one of the main
advantages of adaptive sensing.

The results of our second simulation are shown in Figure 3, where we compare the ratio of
nonadaptive to adaptive sensing recovery over 200 trials against the dimension n of the signal x;
the number of measurements used is always m = 0.6n. We note that since the norms of α and
z both scale with n, the SNR remains roughly the same for all signal dimensions n. We observe
similar results as Figure 2, demonstrating the behavior holds as a function of dimension.

4.2 Analysis of the 1-sparse case

We now provide some analytical justification explaining why adaptive sensing can achieve a lower
MSE than nonadaptive sensing for the Haar wavelet basis with Fourier measurements, but show
that the largest gains are realized for a small fraction of the possible signal support sets. We
consider the simple case when s = 1 and the support is eventually known (either by oracle or by
utilizing some method for estimation, as in the above experiments), and use this toy problem as
motivational justification for the general setting. If we denote the s singular values of F′H∗

Λ by
σ1 ≥ σ2 ≥ · · · ≥ σs > 0, then in general we want to minimize

‖(F′H∗
Λ)

†‖2F =

s∑

i=1

1

σ2
i

. (19)

When s = 1, (19) becomes ‖(F′H∗
Λ)

†‖2F = 1
σ2
1

. However, minimizing this quantity is the same as

maximizing ‖F′H∗
Λ‖2F = σ2

1. It is easy to see that ‖F′H∗
Λ‖2F is maximized when a measurement of

F that is most correlated with H∗
Λ is chosen for every measurement in F′. That is, if such a row

can be identified, the best way to sense 1-sparse signals adaptively once the support is known is
to simply repeat that measurement until the number of allotted measurements has been reached.
Note that F′H∗

Λ is m× 1 in this case, and is still full rank when selecting the measurements in this
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way; thus, the theory leading to (18) still holds. In this setting, we can determine explicitly what
the MSE looks like, and provide bounds on the MSE that depend on the support location of the
1-sparse signal. The result is provided in Theorem 3.

Theorem 3. Denote by x = H∗
α the signal of interest, and suppose x becomes 1-sparse after

applying the Haar wavelet transformation H (that is, Hx = α and ‖α‖0 = 1), and let supp(α) = Λ.
Suppose after m

2 nonadaptive Fourier measurements, the support Λ is correctly identified. For the
remaining m

2 Fourier measurements, we measure repeatedly with a particular measurement from
the n×n DFT F defined in (6); denote this measurement by fj, where j ∈ {0, 1, . . . , n− 1} is some
row index. Then, our observations are of the form

yi = 〈fj,H∗
ΛαΛ〉+ zi, (20)

for i = m
2 + 1, . . . ,m, where the noise zi are i.i.d. N(0, σ2). Then the MSE is given by

E‖x̂− x‖22 =
2/m

|
〈
fj ,H

∗
Λ

〉
|2σ

2, (21)

and is bounded by
2σ2

m
≤ E‖x̂− x‖22 ≤

nσ2

m
, (22)

where the expectation is taken with respect to z.

The upper bound on E‖x̂ − x‖22 in Theorem 3 is precisely the lower bound from Theorem 1
when s = 1. This means that there is indeed some room for improvement with adaptive sensing
when the sparsity basis is the Haar wavelet transform rather than the canonical basis.

Note that in standard compressive sensing when we rely on the RIP, the DFT matrix F is
normalized by 1√

m
rather than 1√

n
. If we make this normalization, the bound in (22) becomes

2σ2

n
≤ E‖x̂− x‖22 ≤ σ2.

Including pre-conditioning and other scalings of course yields an analogous bound.
The proof of Theorem 3 relies on three lemmas that provide bounds for the term | 〈fj ,H∗

Λ〉 |
appearing in the MSE in (21). Specifically, one term of interest is

min
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj ,H∗
Λ〉 |. (23)

The maximization over j corresponds to selecting the best DFT measurement fj, and the mini-
mization accounts for the worst case signal (i.e., the worst case support Λ). On the other hand, we
also want to obtain a value that represents the best case signal so we are also interested in

max
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj ,H∗
Λ〉 |. (24)

Before proving Theorem 3, let us set some notation. The Haar wavelet transform matrix
H, defined in (16) and (17) consists of blocks of consecutive rows with the same nonzero entry
magnitudes. Let 1 ≤ a ≤ log2 n denote the block of H, where a = 1 corresponds to the n

2 rows
indexed by j = n

2 , . . . , n−1 (i.e., the “bottom” half of H), a = 2 corresponds to the n
4 rows indexed

by j = n
2 − n

4 , . . . ,
n
2 − 1, and so on. Similarly, for H∗, instead of blocks of rows, we have blocks of

columns; the block corresponding to a = log2 n represents the lowest frequency wavelets, and the
block corresponding to a = 1 represents the highest frequency wavelets.
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Proof of Theorem 3. This proof requires the following three lemmas. Lemmas 1 and 2 are used to
prove Lemma 3, and Lemma 3 is used to complete the proof of Theorem 3. The lemmas can be
derived using elementary trigonometric bounds, and we omit the proofs here.

Lemma 1. Fix j ∈ Z where 1 ≤ j ≤ n−1 and let a = 1, . . . , log2 n. Choose k ∈ Z, 0 ≤ k ≤ n− 2a

2 .
Then

∣∣∣∣∣∣∣

k+ 2
a

2
−1∑

q=k

e−2πijq/n

∣∣∣∣∣∣∣
=

√√√√1− cos(2
aπj
n )

1− cos(2πjn )
. (25)

Lemma 2. Let fj, j ∈ {0, . . . , n − 1}, be row j from the n × n DFT and let H∗
Λ be the inverse

discrete Haar wavelet transform restricted to the column indexed by Λ. Let a = 1, . . . , log2 n denote
the block of H∗ and let Λ ∈ {1, 2, . . . , n− 1}, |Λ| = 1, be a column in the set corresponding to block
a. Then,

| 〈fj,H∗
Λ〉 | =

1√
n2a−1

1− cos(2
aπj
n )√

1− cos(2πjn )
, (26)

where j = 1, . . . , n− 1. When j = 0,

| 〈f0,H∗
Λ〉 | =

{
1 Λ = 0

0 Λ ∈ {1, . . . , n− 1}.

When Λ = {0},

| 〈fj,H∗
0〉 | =

{
1 j = 0

0 j = 1, 2, . . . , n− 1.

Lemma 3. Let fj , j ∈ {0, . . . , n − 1}, be a row from the n × n DFT matrix F and let H∗
Λ

be the inverse discrete Haar wavelet transform restricted to the column indexed by Λ. Let Λ ∈
{0, 1, . . . , n − 1} so that |Λ| = 1. Then

min
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj,H∗
Λ〉 | =

√
2

n
(27)

and
max

Λ∈{0,...,n−1}
max

j∈{0,...,n−1}
| 〈fj,H∗

Λ〉 | = 1. (28)

Since |Λ| = 1, αΛ is just a scalar, so that the measurements (20) can be written as

yi = 〈fj,H∗
Λ〉αΛ + zi. (29)

This can be concisely written as

y = AαΛ + z, (30)

where A is the m/2-dimensional column vector with each entry equal to 〈fj ,H∗
Λ〉. To estimate αΛ,

we apply A† to y. In this case, A† is an m/2-dimensional row vector, with each entry equal to
2

m〈fj ,H∗

Λ〉 . Therefore,
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α̂Λ = A†y = A†(AαΛ + z)

=
[

2
m〈fj ,H∗

Λ〉 · · · 2
m〈fj ,H∗

Λ〉
]





〈fj ,H∗

Λ〉
...

〈fj ,H∗
Λ〉


αΛ + z




=
2

m

m/2∑

i=1

(
αΛ +

zi〈
fj,H∗

Λ

〉
)

= αΛ +
2

m

m/2∑

i=1

zi〈
fj,H∗

Λ

〉 .

Using this, and since
∑m/2

i=1 zi ∼ N (0, m2 σ
2), we find

E‖x̂− x‖22 = E‖H∗(α̂−α)‖22
= E‖α̂−α‖22 = E|α̂Λ −αΛ|2

= E

∣∣∣∣∣∣
αΛ −


αΛ +

2

m

m/2∑

i=1

zi〈
fj,H

∗
Λ

〉



∣∣∣∣∣∣

2

= E

∣∣∣∣∣∣
2

m

m/2∑

i=1

zi〈
fj,H

∗
Λ

〉

∣∣∣∣∣∣

2

=

(
2/m

|
〈
fj,H

∗
Λ

〉
|

)2

E

∣∣∣∣∣∣

m/2∑

i=1

zi

∣∣∣∣∣∣

2

=

(
2/m

|
〈
fj,H∗

Λ

〉
|

)2
m

2
σ2 =

2/m

|
〈
fj,H∗

Λ

〉
|2σ

2. (31)

Applying the bounds from Lemma 3 to (31), we arrive at

2σ2

m
≤ E‖x̂− x‖22 ≤ 2nσ2

m
,

as desired.

Theorem 3 shows that the performance of adaptive sensing, in terms of the MSE, depends on
the support location of 1-sparse signals. The best adaptive recovery is possible when the support is
located in the first entry of the signal while the worst recovery occurs when the support is located
anywhere on the bottom half of the signal. This of course matches the intuition based on the
correlations in these two bases.

In light of the discrepancy between (27) and (28), one wishes to know in some sense, what frac-
tion of signals allow for recovery more like one versus the other. Figure 4 shows how maxj∈{0,...,n−1} | 〈fj,H∗

Λ〉 |
varies by maximizing maxj∈{0,...,n−1} | 〈fj ,H∗

Λ〉 | over Λ while successively removing blocks from H∗.
Using our notation for blocks, the blocks of H∗ are removed in the following (top-down) order:
log2(n), log2(n) − 1, . . . , 1. Then, we plot the value of maxj∈{0,...,n−1} | 〈fj ,H∗

Λ〉 | for the remaining
submatrix of H∗. Hence, we see that the MSE is higher for signals supported on higher wavelet fre-
quencies, and the upper bound of (22) is achieved by exactly half of the possible signal support sets,
whereas the lower bound of (22) is achieved by exactly one of the possible signal supports sets (i.e.,
Λ = {0}). Fortunately, the support of natural images tends to be concentrated on lower-frequency
wavelet coefficients [23].
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Figure 4: The value of maxj∈{0,...,n−1} | 〈fj,H∗
Λ〉 | is displayed against the (log of the) signal dimen-

sion n = 2p. The solid magenta curve shows the optimization when minimizing over all possible
supports Λ ∈ {0, . . . , n − 1}, given by (27). The solid red curve shows the opposite optimization
when maximizing over all possible supports Λ ∈ {0, . . . , n − 1}, given by (28). The remaining
dashed curves show the optimization when maximizing over all supports Λ except those in the
blocks indicated.

5 Discussion

Adaptive sensing has tremendous potential to improve the accuracy of sparse recovery in a variety of
settings. However, in many practical applications one does not have the freedom to choose arbitrary
measurement vectors, but instead must choose from a specified pool of measurements. One example
of particular interest is the setting where measurements must be taken from the Fourier ensemble,
as is the case in many medical imaging applications. In this paper we established fundamental
limitations on the improvements offered by adaptivity in this setting for certain sparsity bases. On
the other hand, we argued that for other sparsity bases (such as the Haar wavelet basis) the role
of adaptivity in the constrained setting is much less straightforward. We developed a sampling
scheme which uses a simple optimization procedure to select measurements adapted to the signal
support. This scheme results in significant improvements once an accurate estimate of the support
is obtained, which in practice can be achieved by first dedicating a portion of the measurements
to support estimation. Though this approach is not necessarily provably optimal, it nonetheless
demonstrates the potential of adaptive sensing in the constrained setting. We believe future work
in this area can further the understanding of both the limitations of this approach as well as the
potential benefits.
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