Compactness

David Jekel

February 2, 2017

There are two standard definitions of compactness, one using sequences and one using coverings by open sets. We shall prove that these two definitions are equivalent.

- We say that a metric space \((X, d)\) is **sequentially compact** if every sequence in \(X\) has a convergent subsequence. In other words, given a sequence \(\{x_n\} \subseteq X\), there exists a point \(x\) and a subsequence \(\{x_{n_k}\}\) such that \(x_{n_k} \to x\).

- We say that a metric space \((X, d)\) is **covering-compact** if every open cover of \(X\) has a finite subcover. In other words, if we have a collection \(\{U_\alpha\}_{\alpha \in I}\) of open sets such that \(X \subseteq \bigcup_{\alpha} U_\alpha\), then there exist finitely many open sets \(U_{\alpha_1}, \ldots, U_{\alpha_n}\) from our collection such that \(X \subseteq \bigcup_{j=1}^{n} U_{\alpha_j}\).

Theorem 1. Let \(X\) be a metric space. The following are equivalent:

a. \(X\) is sequentially compact.

b. \(X\) is covering-compact.

The overall outline of the proof will be (a) \(\implies\) (b) then (b) \(\implies\) (a).

Lemma 2. Suppose \(X\) is sequentially compact and \(r > 0\). Then \(X\) can be covered by finitely many balls of radius \(r\). In other words, there exist \(x_1, \ldots, x_n\) such that \(X \subseteq \bigcup_{j=1}^{n} B(x_j, r)\).

Proof. Choose \(r > 0\). Suppose for contradiction that \(X\) cannot be covered by finitely many balls of radius \(r\). We construct a sequence \(\{x_n\}\) inductively as follows: For the base case, we let \(x_1\) be some point in \(X\). For the inductive step, assume that \(x_1, \ldots, x_n\) have been defined. We have assumed that \(X\) cannot be covered by \(B(x_1, r), \ldots, B(x_n, r)\). Therefore, we can choose \(x_{n+1} \in X \setminus \bigcup_{j=1}^{n} B(x_j, r)\).

Then \(\{x_n\}\) cannot have a convergent subsequence. Indeed, suppose for contradiction that \(\{x_{nk}\}\) is a subsequence converging to \(x\). Then there exists a \(K\) such that

\[
k \geq K \implies d(x_{nk}, x) < r/2.
\]

If \(k' > k \geq K\), then we have

\[
d(x_{nk}, x_{nk'}) \leq d(x_{nk}, x) + d(x_{nk'}, x) < r.
\]
On the other hand, our sequence was chosen so that \(x_{n_k} \not\in X \setminus \bigcup_{j=1}^{n_k-1} B(x_j, r) \). Hence, \(x_{n_k} \not\in B(x_{n_k}, r) \), which means that \(d(x_{n_k}, x) \geq r \). Thus, we obtain the contradiction \(d(x_{n_k}, x) < r \) and \(d(x_{n_k}, x) \geq r \).

Lemma 3. Suppose \(X \) is sequentially compact, and suppose that \(\{U_\alpha\} \) is an open cover. Then there exists an \(\delta > 0 \) such that every ball of radius \(\delta \) is contained in some open set \(U_\alpha \) from the open cover.

Proof. We proceed by contradiction. Suppose that there such not exist such an \(\delta \). In particular, the claim fails for \(\delta = 1/n \). Hence, for each \(n \), there exists a ball \(B(x_n, 1/n) \) of radius \(1/n \) which is not contained in any \(U_\alpha \).

By sequential compactness, the sequence \(\{x_n\} \) has a subsequence \(\{x_{n_k}\} \) which converges to a point \(x \). The point \(x \) must be contained in a set \(U_\alpha \) from the open cover. Then because \(U_\alpha \) is open, there exists an \(r > 0 \) such that \(B(x, r) \subseteq U_\alpha \). Because \(x_{n_k} \rightarrow x \), we know that \(d(x_{n_k}, x) < r/2 \) for sufficiently large \(k \). Therefore, we can choose a large enough value of \(k \) that \(1/n_k < r/2 \) and \(d(x_{n_k}, x) < r/2 \).

For this value of \(k \), we have \(B(x_{n_k}, 1/n_k) \subseteq B(x, r) \). Indeed, if \(y \in B(x_{n_k}, 1/n_k) \), then we have

\[
d(y, x) \leq d(y, x_{n_k}) + d(x_{n_k}, x) < \frac{1}{n_k} + \frac{r}{2} < \frac{r}{2} + \frac{r}{2} = r,
\]

hence \(y \in B(x, r) \). Therefore, we have

\[
B(x_{n_k}, 1/n_k) \subseteq B(x, r) \subseteq U_\alpha.
\]

This is a contradiction because we assumed that \(B(x_{n_k}, 1/n_k) \) is not contained in any \(U_\alpha \).

Lemma 4 (a \(\Rightarrow \) b). If \(X \) is sequentially compact, then \(X \) is covering-compact.

Proof. Suppose that \(X \) is sequentially compact, and suppose that \(\{U_\alpha\} \) is an open covering of \(X \). By Lemma 3, there exists a \(\delta > 0 \) such that every ball of radius \(\delta \) is contained in one of the \(U_\alpha \)'s. By Lemma 2, \(X \) can be covered by finitely many balls \(B(x_1, \delta), \ldots, B(x_n, \delta) \). By our choice of \(\delta \), we have \(B(x_j, \delta) \subseteq U_{\alpha_j} \) for some index \(\alpha_j \). This implies that

\[
X \subseteq \bigcup_{j=1}^n B(x_j, \delta) \subseteq \bigcup_{j=1}^n U_{\alpha_j}.
\]

Therefore, \(\{U_{\alpha_j}\}_{j=1}^n \) is the desired finite subcover.

Lemma 5. Let \(\{x_n\} \) be a sequence and let \(x \in X \). Suppose that for every \(r > 0 \), \(B(x, r) \) contains infinitely many terms of the sequence. Then there is a subsequence \(\{x_{n_k}\} \) which converges to \(x \).

Remark: The phrases “infinitely many terms” and “finitely many terms” should be interpreted as follows: If \(m \neq n \), then \(x_m \) and \(x_n \) are considered distinct “terms” even if \(x_m = x_n \).
Proof. We construct the sequence inductively. Because \(B(x, 1) \) contains infinitely many terms of the sequence, we may choose \(n_1 \) such that \(x_{n_1} \in B(x, 1) \). Assume that \(n_k \) has been chosen. Then because \(B(x, 1/(k + 1)) \) contains infinitely many terms of the sequence, we may choose \(n_{k+1} > n_k \) such that \(x_{n_{k+1}} \in B(x, 1/(k+1)) \). Our subsequence \(\{x_{n_k}\} \) has been chosen so that \(d(x_{n_k}, x) < 1/k \). This implies that \(x_{n_k} \to x \).

Lemma 6 (b \(\implies \) a). If \(X \) is covering-compact, then \(X \) is sequentially compact.

Proof. Assume that \(X \) is covering-compact. Suppose for the sake of contradiction that \(\{x_n\} \) is a sequence with no convergent subsequence. By the previous lemma, there cannot exist an \(x \) such that for every \(r > 0 \), \(B(x, r) \) contains infinitely many terms of the sequence. Therefore, it must be the case that for every \(x \) there exists an \(r_x > 0 \) such that \(B(x, r_x) \) contains only finitely many terms of the sequence.

The collection of balls \(\{B(x, r_x)\} \) is an open cover of \(X \) because every point \(x \in X \) is contained in the ball \(B(x, r_x) \). Therefore, there is a finite subcover \(\{B(x_j, r_{x_j})\}_{j=1}^n \). Now we have a contradiction: \(X \) is covered by finitely many balls and each ball contains finitely many terms of the sequence, which means that the sequence has only finitely many terms! This is absurd because a sequence has infinitely many terms by definition. \(\square \)