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2 Joram Lindenstrauss

CHAPTER I. INTRODUCTION

The starting point of the extension theory for operators is the
classical Hahn-Banach theorem. This theorem may be formulated as follows.
Let X, Y and Z be Banach spaces with Z D Y. Let T be a
bounded linear operator with a one-dimensional range from Y into X.

Then there is a linear extension T of T from Z into X with
= nen.

There arises, naturally, the question whether similar results hold
for more general operators T. It is well known that the answer to this
question is, in general, negative. Not only that a norm preserving exten-
sion ? may fail to exist, but in general there does not exist even a
bounded extension. Those spaces X for which the statement above remains
valid if we drop the restriction that T has a one~dimensional range are
called ﬂyl spaces. More generally if a space X has one (and hence all)
of the three equivalent properties stated below it is called a 41- space
(x> 1, see Day [6, p. 94]).

(i) For every Banach space Z containing X there is a linear
projection P from Z onto X with || P||< .

(ii) For every Banach space 2 containing X and for every bound-
ed linear operator T from X to a Banach space Y there is a linear
extension T of T from Z to Y with II%ILS AT

(iii) For every bounded linear operatoé&from a Banach space Y to
X and for every Z DY there is a linear extension T of T from 2
to X with [[Tl< allTI.

The 491 spaces were characterized by Nachbin [37], Goodner [11]
and Kelley [25] who proved that X is a 40& space iff it is isometric
to the space C(K) of all the continuous functions on an extremally dis=-

connected compact Hausdorff space K with the sup norm. (Iff means, as
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Extension of compact operators 3

usual, if and only if. A topological space is called extremally discon-
nected if the closure of every open set is open.) The problem of the
characterization of the d’x spaces for A > 1 is still open. In parti-
cular it is not known whether every 461 space is isomorphic to a d‘&
spaee.

Our purpose in the present work is to study those Banach spaces X
which have extension properties which are "between"™ the Hahn-Banach exten-
sion property (which is shared by all Banach spaces) and the extension
properties (ii) and (iii) above which ensure the existence of an extension
for all operators (from, resp. into X), We are interested in particular
in extension properties for compact operators.

The discussion of the extension properties is divided into two parts.
In the first part, which consists of Chapters II and III, we are concerned
just with the question of the existence of a bounded or compact extension
for certain compact operators. The results we obtain are rather incom-
plete and our main reason for including them here is that they form the
framework in which we present the much more detailed theory of norm
preserving or almost norm preserving (cf. the explanation of this notion
below) extensions of compact operators. Chapters IV-VII are devoted to
various aspects of the theory of norm preserving extensions.

We outline now briefly the contents of the various chapters. At the
end of this chapter we give, besides the notations, also a list of the
known results concerning fgx spaces, In Chapter II we investigate the
relation between various extension properties for compact or weakly com=-
pact operators in which the extension ? of the given operator T is
assumed to satisfy the inequality II?ILS 2| T]] for a certain A which
is independent of T (cf. Theorem 2.1). It is observed next (Theorem 2.2)
that if all operators of a certain class can always be extended then there

n ~n
is a finite A such that the extension T can be chosen so that || T||<
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L Joram Lindenstrauss

Al T|| (the same A for all the operators T in the specific class). The
proofs in Chapter II use rather standard compactness and embedding argu-
ments. In Chapter III we introduce a class of spaces called aV; spaces,
These are Banach spaces which can be represented as the closure of the
union of a directed set {BT} of finite-dimensional subspaces where each
B, is ap)‘ space (A does not depend on ). It is shown (Theorem 3.3)
that these spaces have the extension properties treated in Chapter II.
Conversely it is shown in Theorem 3.4 (under a certain assumption on X
which is satisfied for example by every separable space with a basis) that
if a Banach space X has extension properties which are even weaker
(formally at least) than those considered in Chapter II then X is an
VW; space for some A. All C(K) spaces are v4; spaces for every

A> 1.

Following Nachbin's study of f%_ spaces [37] our main tool for in-
vestigating norm preserving extensions of compact operators is the use of
intersection properties of cells. In Chapter IV the relation between some
intersection properties are investigated. This chapter is combinatorial
in nature and does not depend on Chapters II and III. Our main interest
is in intersection properties which are important in the study of the ex-
tension of operators. However, a few theorems which may be of some inde-
pendent interest are stated in a form which is stronger than actually
needed in the subsequent chapters {(for example Theorems 4.1 and 4.7).

In Chapter V the connection between extension and intersection prop-
erties is studied. Again, most of the results of Chapter V are used in
Chapters VI and VII but some results, like the characterization of the
Banach spaces whose cells have the finite intersection property (Theorem
5.9), are stated only since they follow rather easily from the discussion
and are, perhaps, of some interest in themselves.

Chapters VI and VII contain the main results of the present work.
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Extension of compact operators 5

Chapter VI begins with a theorem (Theorem 6.1) which gives a long list of
properties of a Banach space X, each of which is equivalent to the as-
sumption that X* = Ll(ﬂ) for some measure g. This theorem extends some
previous results of Grothendieck [15]. In order to show the main direc-
tion of our discussion we state here some of the properties shown to be
equivalent to the assumption that x* = Ll’ The six properties of a
Banach space X which are stated here consist of three pairs. (al) and
(a2) are "from" extension properties, (bl) and (b2) are "into" exten-
sion properties and (cl) and (c2) are intersection properties. In
each pair the second property is (only formally of course) weaker than the
first,

(al) For every Banach space Y, every Z DX, and every compact
operator T from X to Y there is a compact norm preserving extension
T of T from Z to Y.

(a2) The same as (al) but with the further assumptions that
dim Y = 3 and dim Z/X = 1.

(bl) For any Banach spaces Z )Y, every € >0 and every com-
pact operator T from Y to X there is a compact extension T of T
from Z to X with II%]IS (1+e)|| Tl »

(bz) The same as (bl) but with the further assumptions that
dim Y = 3 and dim Z = 4,

(cl) Every collection of mutually intersecting cells in X, whose
set of centers is a compact subset of X, has a non empty intersection.

(02) Every collection of four mutually intersecting cells in X
(all having radius 1) has a non empty intersection.

Properties (bl) and (b2) ensure the existence of what we call
almost norm preserving extensions, In case the unit cell of X has at

least one extreme point it is possible to get somewhat stronger results by
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6 Joram Lindenstrauss

introducing a partial order in X and investigating order properties
which are equivalent to the usual decomposition property in partially
ordered vector spaces.

In view of the results mentioned above the discussion in Chapter VI
can be considered as the investigation of the properties of spaces X
whose conjugates are abstract L spaces in the sense of Kakutani [23],
Theorem 6.6 gives a characterization of C(K) spacesin terms of the equi-
valent properties appearing in Theorem 6.1l. A more general class of
spaces than C(K) spaces which satisfy x* = Ll(u) is considered next,
These spaces (called here G spaces) were introduced by Grothendieck,
The chapter ends with a proof of the fact that a Banach space which is a

P

The results of Chapters IV-VI solve some problems raised by Aronszajn and

1+¢ Space for every € >0 1is already a ﬂol space (Theorem 6.10).,
Panitchpakdi [2], Grothendieck [15], Grunbaum [17], Nachbin [37,38,39] and
Semadeni., 3everal examples and counterexamples are given to illustrate
the theorems and to show that some of the results are in a sense the best
possible,

The question which spaces X have properties (bl) or (bz) with
€ = 0 and related questions are the subject of Chapter VII. These ques=
tions turn out to be rather delicate and are closely related to the follow-
ing problem., Given Banach spaces Z )Y, when does there exist a mapping
W’ from Y* into Z* such that 'V is continuous (taking in Y* and Z*
the norm topologies) and such that for every y* G:Y* Yf(y*) is a norm
preserving extension of y* to Z., Theorem 7.3, Lemma 7.4 and the
corollaries to Theorems 7.5 and 7.6 are results concerning this question.
Another problem closely related to the existence of norm preserving exten-
sionsis the characterization of finite-dimensional spaces whose unit cells

are polyhedra (cf. Theorem 7.7 and the corollary to Theorem 7.5). The
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Extension of compact operators 7

extension theorems of Chapter VII deal not only with the extension of com-
pact operators but also with the extension of certain isometries (cf.
Theorems 7.5 and 7.8).

The problem of the lifting of compact operators, which is dual to
the extension problem, is not discussed here. 1In [33] we gave some re-
sults concerning liftings which are the duals to some of the results in
Chapters VI and VII. It turns out that the lifting problems are in many
respects simpler than the corresponding extension problems which are dis=
cussed here,

Many unsolved problems are stated throughout the paper,

The present Memoir is a revised version of technical notes no. 28,
31 and 32 (the Hebrew University, Jerusalem, 1962) entitled extension of
compact operators I, IT and III. These notes in turn were based on the
author's Ph,D., thesis prepared under the supervision of Professor A.
Dvoretzky and Dr. B, Griinbaum of the Hebrew University. I wish to express
my warm thanks to both for their valuable help and kind encouragement, I
also wish to express my warm thanks to Professor S. Kakutani of Yale
University for many helpful conversations concerning the subject of this
paper.

The main results of chaptersVI and VII were announced in [30] and
[31]. Papers [32], [33], [34] and [35] are essentially results and exam-
ples which complement some parts of the present paper. The results of
these papers are mentioned here in the proper context but only the results

of Section 2 of [33] are reproduced here (in Chapter V).

Notations. We consider only Banach spaces over the real field R
(R will denote also the one-dimensional space). The terminology and no-
tions, from general topology and the theory of Banach spaces, used here

are the standard ones. So is also the notation of special Banach spaces as
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8 Joram Lindenstrauss

Cos C, M =4, .t

@ P
p <o) and C(K), the Banach space of all bounded real-valued continuous

(1< p <o), Lp(u) (where g is a measure and 1<

functions on the topological space K with the sup norm, ,Z; is the
space of all n-tuples of real numbers x = (Xy,X5,...,X ) with I x|l =
(z xg)l/p if 1<p<o and =max x| if p=w. If s is a Banach
space of (finite or infinite) sequences of real numbers and Xi are
Banach spaces (whose number equals the number of the coordinates of the
points of s) then

(3,0X,@ «+@X @ -+ )
will denote the space of the sequences x = (xl’XZ"") with Xy G:Xi
and (|| xy[l, |l x5ll,***) €s. || x|| will be the norm of the latter sequence
in s. X@ Y will mean the direct sum of X and Y as a vector space
in which the exact norm is not yet specified. If we write that Z DY we
mean that Y is isometrically embedded in Z. If we consider X as a
subspace of X** we always assume that X is embedded canonically in X*ﬁ
The term operator will be used only for bounded linear operators. Let
Z DY be Banach spaces and let T be an operator defined on Z. The re-
striction of T to Y 1is .denoted by TIY. A similar notation will be
used for restrictions of functionals and more general mappings.

In a normed space X we denote by Sx(x ,r) the cell {x; x€& X,
llx=x5ll < r}. If there can arise no confusion as to the space in which we
take the cell we omit it from the notation and write simply S(x,,r). The
unit cell of X, SX(O,l), is denoted also by Sy. The signs ~,N,U
will be used to denote set theoretical operations while the signs + and
~ will be used for algebraic operations on sets in a vector space (thus
for example Sx(xo,r) =Xy + rSX). Co(A) denotes the convex hull of a
set A in a vector space and A denotes the closure of a set A in a

topological space.
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Extension of compact operators 9

In order to simplify the statement of the extension properties we
shall assume (unless stated otherwise) that X is a fixed space (whose
properties we investigate) while Z and Y are any Banach spaces satis-
fying the requirements (if any) imposed on them., T, TO’ ¥ etc, will de-
note operators. With this agreement the formulation of property (ii)
above will be, for example:

Every T from X to Y has an extension T from 2 (2 DOX) to
~
Y with [ T <M[Tl .

Let X be a Banach space., By dim X we understand the smallest
cardinality m such that X is the closed linear span of a set {xa}
consisting of m elements.

A Banach space X has the metric approximation property (M.A.P.)
if for every compact subset K of X and for every € >0 there is an
operator T with a finite-dimensional range from X into itself such
that || T||=1 and || Tx-x||< e for every x & K. This notion was in-
troduced by Grothendieck [13]. Grothendieck has shown that the common
Banach spaces have this property. It is an open question whether there
exists a Banach space which does not have the M.A.P.

Some further notions will be defined in the subsequent chapters.
The most important of them are: v4/x and S spaces (cf. the beginning
of Chapter III), the various intersection properties (cf, the beginning
of Chapter IV), G spaces (cf. Chapter VI before Lemma 6.7) and the no-
tion of a continuous norm preserving extension (C.N.P,E.) map (cf.

Chapter VII before Lemma 7.2).

Preliminaries. We shall list now some known results concerning ﬂpx
spaces. These results and those mentioned already in the beginning of
this chapter (i.e. the equivalence of (i), (ii) and (iii) and the charac-

terization of /Ol spaces) will be used freely in the sequel without

Licensed to Penn St Univ, University Park. Prepared on Wed Sep 4 10:25:26 EDT 2013 for download from IP 146.186.177.69.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



10 Joram Lindenstrauss

referring again to the literature.

Every Banach space can be embedded isometrically in a ﬁﬁa space
(e.ge. in the space of the bounded real-valued functions on a set of a
large enough cardinality). An immediate and well known consequence of

" this fact is

Lemma 1.1, Let T be an operator from a Banach space Y into a
Banach space X and let Z D Y. Then there is a Banach space V DX
with dim V/X < dim Z/Y such that T has a norm preserving extension %
from Z to V.

Let Z be a /&. space and let X be a subspace of Z on which
there is a projection with norm %, then X is a 417 space (cf.
Day [6, p. 94]). Let X be a ’?k space then X**  is also a ¢QK
space (for A =1 this is a consequence of the characterization of dpi
spaces. From this special case the general case follows immediately).
Every infinite-dimensional é¢; space has a subspace isomorphic to o
(Pelczynski [41, 42]). This result implies some earlier results of
Grothendieck [12], that no separable infinite-dimensional space is a /D
space (i.e. a éﬁa space for some finite A) and that there is no in=-
finite~dimensional weakly sequentially complete (and in particular no in-
finite~dimensional reflexive) 49 space.,

For every integer n there is a unique (up to isometry) n-
dimensional ﬂal space., This is the space 4?2 whose unit cell is the
n-dimensional cube. Every finite-dimensional space X 1is a /9 space.
It is easily proved that if dim X = n then X 1is a d£; space and
stronger results are also known (cf, Grinbaum [18]). The projection con-
stants of some finite-dimensional spaces X (i.e. the inf of the A
such that X is a éﬁk space) were computed by Griunbaum [18] and

Rutowitz[44]. In general the projection constant tends to infinity with
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Extension of compact operators 11

the dimension (cf. [29]).

The spaces of continuous functions which are /9 spaces were ine
vestigated recently by Amir [1] and Isbell and Semadeni [19]. The paper
of Nachbin [38] gives a recent survey of various extension problems and

contains an extensive bibliography.

CHAPTER II, GENERAL RESULTS

We begin this chapter by investigating the relation between the fol-

lowing eight properties

(1) X** isa ij space.
~n
(2) Every T from Y to X has an extension T from 2 (2 DY)

ok o~
to X with || T/I< Al Tl .

(3) Every compact T from Y to X has (for every > 0) a
o~ ~
compact extension T from Z (ZD7Y) to X with |[T|< (a+e)]l Tl
(4) Every compact T from Y to X has (for every & > 0) an
~n -~
extension T from Z (Z2DY, dimZ2/Y< o) to. X with || T||< (a+e)|lT]}

(5) Every T from X to a conjugate space Y has an extension
T from Z (ZDX) to Y with Ill'\l‘lllg Al T,

(6) Every compact T from X to Y has a compact extension T

~
from 2 (2DX) to Y with [ Tl|<allT]].
(7) Every weakly compact T from X to Y has a weakly compact
~N
extension T from 2 (Z2DX) to Y with | T|<allT].

(8) Every compact T from X into itself has (for every & > 0)
an extension T from Z (2D X, dimZ/X< o) to X with ||"\I‘JH$
(x+e) [ Tl

Properties (2), (3) and (4) are "into™ extension properties, (5),
(6) and (7) are "from" extension properties and (8) is concerned with the

extension of operators from X into itself.

Theorem 2.1. Let X be a Banach space. Then
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12 Joram Lindenstrauss
== = (1)<%=> (2) <= =7 (6) = (g) |
(3) (4) ==> (1)<==> (2) =>(5)§(7)%()

For spaces X having the M.A.P, also (8) ==> (3), i.e. all the proper-

ties (1) - (8) are equivalent.

Proof. (3) ==> (4) 1is clear. In order to show that (4) ==> (1)
we prove first that (4) ==> (9) where (9) is the following property

(9) The identity operator of X has an extension T from 2
(DX to X with || F|< .

Let Z D X, we define a partial order in the set of the pairs
(B,e) where B ranges over the finite-dimensional subspaces of Z and

1>e>0, by
(Bl,el) > (By,e,) <===> B, DBy, g< 5.

From (4) it follows that for every pair (B,e) there is an operator
iT(B,e) from B to X satisfying:

a. HT(B’E)HS_ A+ e,

b. The restriction of T(B,s) to BANX is the identity operator
of that subspace.

For every r Sx**(o,r) is compact Hausdorff in the W topology

hence, by Tychonoff's theorem, the same is true for

TT = TT sg#= (0, Izl (x+2)
2€Z

in the usual product topology. For t € J|] we shall denote its =z
"co-ordinate" (z © Z) by t(z). To every operator T(B e) (regarded as
’
an operator from B to ) we assign a point t(g ) in TT by
’
. ( ) _ T(B,e)z if ZEB
(B,e)'2 = .
’ 0 if z@&B.
Let t be a limit point of the net t(B e)* t has the following proper-
»

ties
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Extension of compact operators 13

(1) t(x) = x, (x€X).
(i) t(azl+6z2) = at(zl) + Bt(zz), (z1,22 € 23 a,B scalars).
(iii) Jlt(2) 1< Al 2]l (z € 2).
(i) follows from the fact that t(B,s)(X) = x for (B,e) & ([x],1) ([x]
denotes the subspace spanned by x). (ii) and (iii) follow similarly.

**  defined by Tz = t(z) has the required

The operator T from 2 to X
properties.

In the proof of (9) ==> (1) we shall use some well known facts
concerning the duality in Banach spaces. We shall first list these facts.

P
Let U D V be Banach space, let V' be the annihilator of V in U and

+ L ok
v+ v

K%
the annihilator of V* in U . is isometric to V . If T

is an operator from U into itself with TU (C V then T*VJ' = 0 and
T CVvV* If T isan operator from U into itself with TV =0
then T'U  C V" and T v *= 0. In particular if Q is a projection in
U with V =Q1(0) then Q* isa projection from U* onto VY Let
now WC VC U, then WJ"LC VJ"LC u** (the . 1is taken with respect to
U). For W we can take the 4. also with respect to V. The two possible
W** thus obtained are connected by the fact that in the natural isometry
from V** to V**, the subspace W' (the 4 with respect to U) is
mapped onto W (the o with respect to V).

We turn to the proof of (9) == (1). Let Z be a pl space con=-
taining X**, i.e. 2D x** D X. From (9) follows the existence of an
operator T from 2 into itself such that "fZCX**, ?lx is the iden~
/'\I"**Z** C X**"L and the re-
striction of T ' to X% is the identity. Dixmier [7] has remarked

ok *
that there is a projection Q with norm 1 from X onto X' . Q is

tity operator of X and ll‘f'llg . Hence

the restriction map - every functional on ** is mapped to its restric-

tion to X. Hence Q'l(O) = X" (the L here is taken with respect to

* * Aok
the inclusion X (CX *), and therefore Q is a projection of X
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14 Joram Lindenstrauss

onto X+ Using the isometry between xR and X***J' we get a pro-
jection P with norm 1 from o onto Xt (the 4 are now with
respect to the inclusion X C Z). It follows that P+ is a projection
with norm < A from z**  onto its subspace Xx*" and hence X isa
ﬂ’x space.

The implications (1) ==> (2) ==> (9) and (5) ==> (9) are clear.

Hence we have proved already that (1) <==> (2) and that (5) ==> (1).
We prove now that (9) (and hence (1)) implies (5).

Let Y be a conjugate space and let T be an operator from X
into Y. By (9) there is an operator T, with norm< A from Z into
X** whose restriction to X is the identity. There is a projection with
norm 1 (Q, say) from Y onto Y. T = QT**TO is an extension of T
from Z into Y with ||T|l< Al T|l.

The proofs of (9) ==> (6) and (9) ==> (7) are similar to that of
(9) ==> (5). We do not need here the existence of a projection from ™
onto Y since for weakly compact T (and in particular for compact T)
T** already maps X into the canonical image of Y in Y (see (s,
pp. 482-483]). The implications (6) ==> (8) and (7) ==> (8) are im-
mediate. Actually, each of (6) and (7) implies a stronger extension prop=-
erty for operators from X into itself (e.g. (8) with £=0). (8) was
stated in a weak version since already this version implies property (3)
for spaces having the M.A.P,

Let us now assume that X has the M,A.P. and satisfies (8). Let
Z DY be Banach spaces, let T be a compact operator from Y into X
and let € > 0. An easy and well known consequence of the assumption that
X has the M.A,P. is that there exists an operator TO with a finite-
dimensional range (B, say) from X into itself such that ||T0||= 1 and
IITOT-T!LS €. Let U be any Banach space satisfying Z2DJUDY and
dim U/Y < w. By Lemma 1.1 there exist a Banach space VD X and an
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Extension of compact operators 15

extension Tl of T from U into V such that lITlll’ I Tl and
dim V/X = dim U/Y. By (8) there exists an extension $O of T, from V
into X with II%O|L§ A+ oE. %U = TO¥OT1 is an operator from U into B
such that || 'TIUIY - T||< 2¢ and ll"fUH_<_ (x+e) || T]l. Since dim B< o we
obtain by using a compactness argument similar to that used in the proof
of (4) ==> (9) that there is an operator T from Z into B satisfy-
ing ‘|$!Y - T|I< 2¢ and II%IIS,(X+5)|ITII. We have thus shown that X
satisfies

(10) For every compact T from Y into X (and every e > 0)
there is a compact T from Z (ZDY) into X such that Ilﬁlbg
(A+€) || T|| and ||“T‘IY - T|I< .

To conclude the proof of the theorem we show that (10) ==> (3)
(here we shall not use the assumption that X has the M.A.P.). Let
ZDY, >0, and a compact T from Y into X be given. By (10)
there exists a sequence {?;}2=1 of compact operators from Z into X
satisfying

1T, < Geedlizll, 11 F

and for n=2,3,°°°

1|y = T||< /2

~ ~n o ~
[ PSSR DNTR 3¢ R AP S |

~ ~

I8y == (Tt ® )l e/2®

. ~ n-1
For n> 2 we have in particular that llTnlls_(x+1)e/2 and hence the
[+ ]
series T ﬁn converges in the norm topology to a compact operator %
n=1

~
satisfying TIY =T and

NI TN+ §2 (1)e/2"L < (are) [ T]1 + (As1)e .
n=

Hence X has property (3) and this concludes the proof of the theorem.

Remark. For A =1 some of the equivalencies of Theorem 2.1 were
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16 Joram Lindenstrauss

obtained by Grothendieck [13, 15] using his theory of tensor products.
For that case (i.e. A=1) the theorem can be strengthened considerably.

We shall discuss this case in detail in Chapter VI.

Corollary 1. Let X be a Banach space satisfying (1) and let Y
be a direct summand of a conjugate space. Then every operator T from X

into Y has an extension T from 2 (ZDX) into VY.

Proof. Let Y be a complemented subspace of U = v, By (5) T
can be extended to an operator %b from Z into U, T = P?b, where P

is a projection from U onto Y, has the required properties.

Remark. A Banach space Y 1is a direct summand of a conjugate space
if and only if it is a direct summand of Y**. Indeed, let U = vV be a

space containing Y and let P be a projection from U onto Y. Then,

canonica
onically U** 5 Y** -
BRI
Let Q be a projection with norm 1 from U** onto U. Then PQIY**
is a projection from Y** onto Y and llPQlY**ILg I Pl .

Corollary 2. Suppose that X**jj Z DX and that z** is a /Ok
space. Then also X** isa /?k space.

Proof. We proceed as in the proof of (9) ==> (1). Let P be a
projection with norm 1 from b Gl onto XLJZ Since X****,D z-+ D)
X*L, PIZLL is a projection from a /i- space on a space isometric to
.

Corollary 3. Let X have property (1) and let B be a finite-
dimensional subspace of X on which there is a projection with norm ne.
Then B is a JD space.

Ay
Proof. Use (6) with B =Y, T a projection from X onto B and

Z a /{ space containing X.
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Extension of compact operators 17

Corollary 4. Let X have property (1) and let K be the closure
*
(in the w* topology) of the extreme points of the unit cell of X .
Then any weakly compact T from X to Y can be represented as
Tx =f <x,x% du(x*)

K
where 4 1is a measure on K with values in Y and <x,x¥ = x*¥(x). The

image under T of a W convergent sequence is convergent in the norm
topology. If Y =X (i.e. if T maps X into itself) then 7 is com=
pact.

Proof. K 1is compact Hausdorff and the mapping x —> {x,x*¥> is an
isometry of X into C(K). By (7) T can be extended to C(K). The
corollary follows now from known results about weakly compact operators

defined on C(K) spaces (see [8, Chapter 6, Section 7]).

In the extension properties listed before Theorem 2.1 it was always
required that the norm of the extension ¥ could be estimated by an in-
equality of the form ]I%}IS_WIITII. However it is easily seen that in
some cases the mere existence of an extension implies the possibility of

such an estimation.

Theorem 2.2.(a) Let X be a Banach space such that every compact
T from Y to X has a compact extension from Z (2 DY) to X. Then
there is a constant % so that for every such Y, Z and T there is a
compact extension T with II%ILS QIITH .

(b) Let X be a Banach space such that every compact T from X
to Y has a compact extension from Z (2 D X) to Y. Then there exists
a constant % so that for every such Y, Z and T there is a compact ex-

n ~
tension T with || T||< »zHTII-

Proof. (a) Suppose no such » exists. Then for every n there

are spaces Zn :)Yn and a compact operator Tn from Y  to X with
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18 Joram Lindenstrauss

IITn|I= 1 such that any compact extension ‘%;

satisfies ||$;|I2 n3. Let Y = (Yi:)--- ()Yn @ -¢), and let T be
0

of Tn’ from Zn to X

the compact operator from Y to X defined by

© Tn‘yn
T(Yls"';yn;"') = nzl -;2— .
Let T be a compact extension of T from (Zl ®-- @ 2, @ .- )co to
X. The restriction of n°T to z, (i.e. to the sequences

(O,...,O,zn,o,...)) is an extension of T, . This contradicts our assump-

tion (for n> || T|).

(b) It is enough to prove that if Z is a (fixed) é%_ space con=-
taining X, then there is an ) such that every compact T from X to
Y has a compact extension T from Z to Y with ||$]L$ ﬂ||T||- Keep-

ing this in mind the proof proceeds now in the same manner as in part (a).

Remark. (a) and (b) here correspond, respectively, to the exten-
sion properties (3) and (6). Similar results corresponding to the exten-
sion properties (2), (5) and (7) can be proved in the same manner. Ob-
viously no similar results can be obtained for (4) and (8).

As remarked in the beginning of the introduction the "from" exten-
sion property for the class of all operators (property (ii) there) is
equivalent to the "into" extension property (property (iii) there). We
shall now investigate how far this symmetry between "from" and "into" ex-
tension properties carries over to the case of compact or weakly compact
operators.

For spaces X having the M.A.P. it was shown in Theorem 2.1 that
a "from" extension property for compact operators (property (6)) is equi-
valent to the "into" extension property (3). The formulation of these
properties is, however, not completely symmetric. While in the "from"

~
extension property the extension T satisfies NTH< Al TI the
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Extension of compact operators 19

"into" property only assures the existence, for every given € > 0, of a
T with II%WLE (A€) || Tll. In Chapter VII it will be shown that (6) does
not imply (3) with e = O even if dim 2/X < o.

For weakly compact operators the symmetry breaks down completely.
Ever if X is a JiA space it does not have an "into" property corres-
ponding to the "from" property (7) for weakly compact operators. The
reason for this phenomenon lies in the special properties of weakly com-
pact operators appearing in Corollary 4 to Theorem 2.1.

Let T be the formal identity operator from ./; to ¢g, 1i.e. T
maps the sequence (X;,X5,...) in 4, to the same sequence in cg.
‘/; is reflexive and hence T 1is weakly compact. Let Z be any space
containing J; such that 2°% isa & space (e.g. Z = C(0,1)) and
let X be any space containing ) (in particular X can be any infi-
nite-dimensional C(K) space). T does not have a weakly compact exten-
sion from Z to X since the sequence {Tei}?sl does not converge in
the norm topology while {ei}?=l is w convergent to O ({ei}?=l
denotes the natural basis of .[E). Moreover, if X 1is not a /9 space
(but still X** may be a & space) it is possible that T will not
have even a bounded extension. This is the case for example if Z =m
and X = cos since any operator from m to a separable space is neces-
sarily weakly compact (Grothendieck [12]).

We conjecture that only finite-dimensional spaces X have the
following extension property:

Every weakly compact operator from Y to X has a weakly compact
extension from Z (Z DY) to X.

From (4) ==> (1) of Theorem 2.1 and the proor of Theorem 2.2(a)
it follows immediately that if X has this extension property then X**
is a ﬂQ space. Further, as we have seen above, such an X cannot

contain a subspace isomorphic to cg (the same remark shows that X has
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20 Joram Lindenstrauss

no infinite-dimensional reflexive subspace). Hence our conjecture will be
proved if it can be shown that every infinite-dimensional space X whose
second conjugate is a JD space has a subspace isomorphic to cqe.

We pass now to the problem of extending compact operators between
general spaces, when we allow the enlargement of the range space. The
question is the following: suppose that the operator T appearing in the
statement of Lemma 1.1 is compact [weakly compact], can T be chosen to
be also compact [weakly compact]? For the case of weakly compact T the
answer is negative even if we discard any restriction on II?H. This
follows from the preceding discussion. In Chapter VII we shall see that
for compact T the answer is also in general negative if we require that
1Tl = || TIL If however we allow even an arbitrarily small increase of

the norm the situation is different.

Theorem 2.3. Let T be a compact operator from a Banach space Y
into a Banach space X. Then there exists a Banach space VD X such
that

(i) V/X 4is separable

(ii) For every € > 0 and every Z DY there is a compact exten-

~N o~
sion T of T from Z to V with |[[T{l< || T||l+ €.

Proof. It is convenient (though not necessary) to use some results
which will be proved in the next chapter. Let U be a 491 space con-
taining X. The subspace §T§3 of X is separable, hence (Lemma 3.2)
there exists a separable VVE space Uy with T(Y) CUyCU. The sub-
space V of U spanned by X and U0 has the required property

(Theorem 3.3).

CHAPTER III. THE ‘/V; SPACES

We begin with the definition of the v&; spaces.

Definition. A Banach space X is called an A/

5 Space if there
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Extension of compact operators 21

exists a set [B1J of finite-dimensional subspaces of X, directed by

inclusion, such that X = %JBT' and such that every ET

A Banach space is called an N space if it is an V¢; space for some A\.

is a /Qx space.

The simplest example of an infinite-dimensional ¢¢§ space is the

space cg. Indeed let {ei}?,l be the natural basis of this space and

n
let B, be the subspace spanned by {e;}j.;. Then clearly B C B,

co = L}Bn and every B 1is a /91 space. The spaces C(K) with K a
n

totally disconnected compact Hausdorff space, are also simple examples of

v71 spaces. In particular every 55; space is an v4; space.

Before beginning to investigate the properties of v4< spaces it

should be remarked that an ‘/V;\ space X = LgB,r is not fully determined

by the spaces BQ_—- it also depends on the nature of the embedding of BT
1

in B,l.,2 (for T;=< T,). For example, both cy and €(0,1) can be

represented as UBn where B ., DB, and B, is the (unique up to
n

isometry) n~-dimensional ,pa space. That ¢y has such a representation
was shown above; we shall prove that this holds also for C(0,1). Let
[fi ?=1 be the Schauder basis [6, p. 69] of C(0,1). For every
f € C(0,1) the sum of the first n terms of the expansion of f with
respect to {fi}?=1 (P (f), say) is a function whose graph is a polygon
with vertices belonging to the graph of f. Hence || Pn(f)llg_llfll, and
thus Pn is a projection with norm 1 from C(0,1) onto the subspace
B, spanned by {fi}?=1‘ By Corollary 3 to Theorem 2.1 B is a 461
space. From this the above assertion concerning C(0,1) follows.

An ‘/V; space is defined as the closure of a union of épx spaces.
In the following lemma it is shown that we can dispense with the closure
provided A 1is replaced by A\ + € with € > O.

Lemma 3.1. Let X be an ~/7; space and let x' > A. Then there

exists a set {Bt;} of finite-dimensional subspaces of X, directed by
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22 Joram Lindenstrauss

inclusion, so that X = UBTv and that every B’t' is a /X' space.

Proof. The statement of the lemma is clearly equivalent to the
following: every finite set {xi}ril=1 of points of X 1is contained in a
finite-dimensional 00)\' space. Without loss of generality we may assume
that the {xi}'i‘=1 are linearly independent. Hence there is a constant M

n
such that for every choice of [V, }i=1’ 1}2 Vil <M E Yix Il . Let

€ > 0., Since X is an '/V; space there exists a f1n1te-d1mensional sub-
space B of X which is a 49)‘ space and which contains points {yl j=1
satisfying || yi-xillg e (i=1,...,n). If € 1is sufficiently small the
{yi};l,l will also be linearly independent. Denote the subspace spanned
by the {yi}’ilﬂ by C and let P be a projection from X onto C with
with Pz

Il Pll< n. We now choose points |z, j" 0 (j=1,...,m) such

='l
that the {yi};',l and {zj}?ﬂ foimJtogether a basis of B. Thus every
b & B admits a unique representation of the form
m
RS K 1’51 Pavs -

n
By the choice of the zj we have that Pb = T Biyi. By our assumption
i=1

on the ¥y
n n n n
12 Bavy - Z Byxgllice = Iyl <emll s pyxll.
Hence, if eM< 1,

n
I = Byvs - iz Byx, ll< oo I >: Byy, 1< £8E Nl vl
1’

and therefore

m n
(1 - 28 vl | AR Byx; l1< (1 + £238) [l vl .

Thus if € 1is sufficiently small B will be "almost" isometric to

the subspace B of X spanned by and {xi}1=l (M and n

251541
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Extension of compact operators 23

depend only on {xi}?ﬂ while B and B depend also on €). In parti-

~
cular € may be chosen so small that B will be a va space.

Remark. Lemma 3.1 does not hold with A = x'. As a counter example

we take the space C(0,1). We already know that it is an JVi space.

Let B be a finite-dimensional subspace of C(0,1) whose unit cell is
not a polyhedron. Since the unit cell of a finite-dimensional fl space
is a polyhedron such a space cannot contain B as a subspace. Hence
C(0,1) cannot be represented as the union of a set of ﬂgl spaces
directed by inclusion. In this connection we would like tc remark that in
Chapter VII it will be shown that every finite-dimensional subspace of an
'/V‘l space X (and even of a space which is an ‘/Vl‘+e space for every
e > 0) whose unit cell is a polyhedron is contained in a finite-
dimensional 1 Subspace of X. In particular, every /‘/1‘ space all
whose finite-dimensional subspaces have a polyhedron as their unit cell

(for example cy) can be represented as a union of a directed set of

finite-dimensional pl spaces (for details see Theorem 7.9).

Lemma 3.2. (a) Let X be an :/V; space and Y a separable sub=-
space of X. Then there exists a separable -/V): space Z with Y (C ZCX

(b) Let X be a Banach space such that for every separable sube-
space Y of X there exists an /V‘ space Z with YCZ(CX. Then X
is an N space. If for every such Y there existsa 2 (with YC 2
C X) which is an cA;: space (A does not depend on Y) then X is an

-/V{' space for every x' g

Proof. (a) Let X = yB't where the B’t form a set, directea by
inclusion, of subspaces of X which are ﬁ)‘ spaces. Let {yi}?,l be a
dense sequence in Y. For every i let {xf].1 :,1 be a sequence such that
Il x?—yill —> 0 as n—> o and xril (= ugB'l' (i.e. for every i and n

there is a 'tril with x;l © B ). Since the B,_ are directed by
(£ T
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24 Joram Lindenstrauss

inclusion there exists a sequence Th such that

By D ) B,r{nUB,c

n+l  i,m<n+l n

(Bti = Bt% ). The subspace 2 = \g BT has the required properties.

n
(b) Suppose that X is not an N space. Then for every n

there is a finite-dimensional subspace Bn of X such that no finite-
dimensional subspace of X containing Bn is a é£; space. By Lemma 3.1
E{ Bn is not contained in an A" space and this contradicts our assump=
tion. The second part of assertion (b) also follows immediately from
Lemma 3.1,

Lemma 3.2 shows that some problems concerning v4/1spaces can be re-
duced to the separable case. In this respect u/ﬁﬂ spaces differ from /7
spaces, which are either finite-dimensional or non-~separable,

We show now that the V¢i spaces have the extension properties
which were listed in the beginning of Chapter II. By Theorem 2.1 it is
sufficient to show that the ¢/7: spaces have property (3). This is done
in

Theorem 3.3. Let X be an (/¢§ space., Then for every 2 DY,
every & >0, and every compact T from Y into X there is a compact

o ~
extension T of T from Z into X with || T| < (r+e)|l T| .

Proof. By the proof of Theorem 2.1 it is enough to show that every
JV; space has property (10) (this property was defined at the end of the
proof of Theorem 2.1). Let Z DY, an €& >0 and a compact T # 0 from
Y into X be given., Let K = T(SY) and let 3 > 0. By the compactness

n
of T there exists a finite set {x,}?.. in X such that KC S (%;,0
11121 25x

By Lemma 3.1 there is a finite-dimensional subspace B of X such that

[xi}g=1 CB and B is a A+p Space. Let P be a projection from X
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Extension of compact operators 25

onto B with | P|| < A+3. For every yeY with || y]|< 1 there is an
x &€ B with | Ty-x|| < 3. Hence

Il PTy=Ty|l < [l PTy-Px|| + || x-Ty|| < 3(A+1+3) .

Sinee B is a /%&8 space there is an extension T of PT from 2

into B satisfying
1% < (A+8) |1 PTI < (A8) ([ T + (A+1+5)3) .

o~
Thus if 3§ is small enough we get that || T|| < (A+e)|| T|| and
Il "i“l yv-Tll £ &, and this concludes the proof,
We pass to the question of the validity of the converse of Theorem

3+.3. We shall first introduce the following notion.

Definition. Let » be a scalar 2> 1. A Banach space X has the
i projection approximation property (vz - P.A.P,) if X =D;§,t. where
[B,t,} is a set, directed by inclusion, of finite-dimensional subspaces of
X such that for every 7 there existsa projection P,r from X onto B’t’
with || P'rl <%

Examples, Evidently every JV'X space has the A - P.A.P. As well
known, every separable Banach space with a basis has the vl - P.,A.P, for
some Yl' The Lp(p.) spaces (1 < p<w, g an arbitrary measure) have
the 1 - P,A.P. This follows from the fact that for every decomposition
of the measure space L) into n disjoint sets {ﬂi ;’,1 there is a pro=-
jection with norm 1 from Lp(u) onto the subspace spanned by the char-

acteristic functions of the _Q. (for p < ® only of those ﬂi with

i
F(Qi) < o). We do not know whether there exists a space which does not
have the vl-P.A.P. for any .

Let X have the n- P.A.P. and let X = %B't‘ be the representation
of X ensured by this property. Suppose ** is a ﬁ space. Then it

follows immediately (see Corollary 3 to Theorem 2.1.) that every B‘l’ is a
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26 Joram Lindenstrauss

ﬁk space and hence X is an JV):? space., In the next theorem we shall
show that for spaces having the *7- P.A.P, much weaker extension proper-
ties than those listed before Theorem 2.1 or those appearing in Theorem
2,2 imply that X 1is an n/V‘space.

Theorem 3.4. Let X be a Banach space which has the - P.A.P,
for some \? but which is not an mspace. Then

(a) There exists a compact operator T from X into itself which
does not have even a bounded extension from some Z (containing X) to
.

(b) There exists a compact operator T from X into a separable
reflexive space Y which does not have even a bounded extension from some
Z (containing X) to Y.

As Z one may take in (a) and (b) any space containing X such

that Z** is a ép space.

RS-

Proof, (a) Let X = g% Er

the n - P.A.P., and let F,. be a projection from X onto B’L‘

Il Pll £%e For every T, X =7\>JT B, and hence, since X is not an N
0

be the representation of X ensured by

with

space, there exists a sequence ’t:n with ’t’n+1>-’t'n and A

Tn

w, (P(Y) denotes the projection constant of the space Y, that is

= P(By ) —>
n

inf {A; Y isa px spacel) .
We shall choose now, inductively, a sequence of integers n, and
two sequences of positive numbers @y and By satisfying (among other

requirements),

(301) ﬁi > (li + ai“'l + eee + aj, 1 5 i s j .
We take first n; = 1, a = 1 and By = 2. Suppose we have al-
ready chosen a;, By and ny for i <k so that (3.1) is satisfied for

1 < j £k. The operator
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Extension of compact operators 27

Q = ay P + eee 4+ a P
k 1T k7T
! Pk

maps X into its subspace BT and hence has only a finite number of
n
k

eigenvalues. We choose Br+1 >0 so that Qk + al (I is the identity
operator of X) has an inverse for 0 < a < Bre1e We next choose .4

>0 so that (3.1) holds for i< j<k+l, i.e. Tyl must satisfy the

inequality

0 <op,q <min (B, By - hléi @y, 0<icgk).
Let
(3.2) Vil = sup (Q, + aD)™dy| .

% 4158Byy )

That 1&+1 < o follows from the choice of Brs1® Finally we choose

n..q SO that
(3.3) Mo TRBr )2k .
k+1 k+1
In order to simplify the notation we put
A=A B B P P
k T °* k T, ? k M
T M T
®

Let T = iEl asP;. The series converges absolutely since || Py|l <%, o4

@

>0 and 21 ay <B = 2., Hence T is a compact operator from X into
i:

itself, Suppose there exists a bounded extension T of T from Z to

™ (ZDOX and ** is a ﬁi space). P;* is a projection from X**
~

onto Bi and hence ¥i = Pz*T maps Z into Bi (i=1,2,...). Since

Bk+l C:Bi for i > k+1 we have

~n
Tied|B,, = (@aPr *ooot ofy * (agey *o0n Mg s

k+1
or

~
T =
k+1|B,,, (Q + skI)lBk+l.

where 8k T @yt Ry tree satisfies Teey < Sk < Bral (see (3.1)).
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28 Joram Lindenstrauss

Let S = (Q + 8,71 By (3.2) (ISl S ¥pyq. Since (Q8 I)xEB,,
~

if and only if x €Bk+1 it follows that Ska+1 is a projection from 2

onto B, 4. I Sk"lYk+1|| < ’zYk+1“"\I"|| and therefore (Corollary 3 to

Theorem 2.1) P(B,,;) < An¥y, |||l and this contradicts (3.3) for k >

I EI .

(b) From the assumptions on X it follows that there exists a
sequence {Bn}:ﬂ of finite-dimensional subspaces of X such that P(Bn)
2 n? and such that there exists a projection P, with norm <V from
X onto B, (n=1,2,...). The operator T from X into (BI@BZQ"’)[Z
defined by

Tx = (Pyx,P,x/2,...,P x/n,00. )

has the required properties. We omit the easy details.

We end this chapter with some remarks and open problems concerning
A spaces., First some words on the relation between a and &~ spaces.
By Theorems 2.1 and 3.3 an N space is a f space if and only if it is
complemented in a conjugate space. It is easily seen that if Y is a
complemented subspace of an N space and if Y has the n - P.A.,P, for
some VI then also Y is an A~ space. Actually, by using an argument
similar to that used in the proof of Lemma 3.2 it can be seen that for the
validity of the statement in the preceding sentence, it is enough to as-
sume that every separable subspace of Y has the n - P.A.P. for some N
(which may depend on the subspace)., In particular every r space which
has the n - P.A.P. for some )? (or all whose separable subspaces have
the »~- P.A.P.) is an A space.

The question of a suitable functional representation of A spaces
remains open and seems to be difficult., In the beginning of the chapter
we remarked that some C(K) spaces are /1/1‘ spaces. It is easy to show

that every C(K) space is an '/VZ;AE space for every € > 0 (we do not
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Extension of compact operators 29

know whether every C(K) space is an v@; space). Indeed, let {fi}g,l
CC(K) and an € >0 be given, Then there is a partition of the unity

{?3}?81 such that the distance of each f; from the subspace (B, say)

spanned by the {?3}?31 is less than €. (By a partition of the unity we

'3.‘,1 CC(K) such that ¥; >0, [[¢4ll=1 for

every j and T ?B(R) =1 for every k.) B 1is isometric to 4(2 and
J

mean here a finite set {?3}

hence it is a ﬂi space., Combining these remarks with the proof of

Lemma 3.1 we get immediately that C(K) is an v4£ space for every A> 1,
Hence a Banach space which is isomorphic to a C(K) space is an vynspac&
We do not know whether conversely, every v%ﬂ space is isomorphic to a
C(XK) space. From Theorems 2,1 and 3.3 and from known results concerning
49 spaces it follows that the common Banach spaces which are not isomor-
phic to C(K) spaces are also not A spaces.

The question whether a Banach space is isomorphic to a C(K) space
if (and only if) it is an v4/’space seems to be of interest not only from
the point of view of the extension properties which we study here. An
affirmative answer to this question would contribute much to the knowledge
of the structure of C(K) spaces. There are some easily established
facts concerning ~/4/\spaces for which it seems to be an open question
whether they hold also for spaces isomorphic to C(K) spaces. One such
fact is Lemma 3.2 part (b), another is the following result, Let X DY
be Banach spaces such that Y and X/Y are N spaces, Then also X
is an A" space., (Indeed, it can be shown by first proving a similar
result for éﬂ) spaces and then using Lemma 3.1 that if Y is an v4§?
space and if X/Y is an v4; space then X 1is an c/eg space for every

P> A+ n+ xq.)
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30 Joram Lindenstrauss
CHAPTER IV, INTERSECTION PROPERTIES OF CELLS

In this chapter we shall first discuss the relation between certain
intersection properties of cells and then some other geometrical proper-
ties, which are closely related with a certain intersection property, will

be investigated. The results obtained in the present chapter will

be used in Chapters V, VI and VII for the study of problems concerning ex-
tension of operators. However, in the present chapter extension proper-
ties are not considered at all.

We define now the main intersection properties which will concern us
in this chapter.

A normed space X has the n, k intersection property (n,k.I.P.),
where n and k are integers with n> k > 2, if for every collection
of n cells in X such that any k of them have a non void intersection,
there is a point common to all the n cells.

A normed space X has the finite k intersection property
(F.k.I.P.) 4if it has the n,k.I.P. for every n > k.

A normed space X has the restricted n,k intersection property
(R.n,k.I.P.), where n> k> 2, if for every collection of n cells in
X with a common radius such that any k of them have a non void inter-
section, there is a point common to all the n cells.

Similarly we define the R.F.k.I.P.

The definitions of the intersection properties remain meaningful for
general metric spaces. However we shall study here these properties only
in normed (linear) spaces.

We begin with a theorem showing that for Banach spaces the n,k.I.P
already implies the F.k.I.P if n dis sufficiently large.

Theorem 4.1. Let n and k be integers such that k > 2 and

n> hk <=5 +\/; + 8(15-1)2

(4.1)
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Extension of compact operators 31

Then, for Banach spaces, the n,k,I.P implies the F.k.I.P,

Proof, It is clearly enough to show that for a Banach space X and

for n satisfying (4.1) the n,k.I.P. implies the (n+l), k.I.P., Let

{Si}EZ% be n+l cells in X such that any k of them intersect. Let

x be an arbitrary point in X and denote
k-1
°" 1gil<12<??3-c<ik_l<_n+1 ilx, :}Ql Sij )
(d(x,X) denotes the distance of the point x from the set K). Let ¢
be a positive number. From the definition of © it follows that if we
add the cell S = S(x,6+c) +to the given n+l cells we shall still have a
collection of cells in which any k intersect. Consider the set A =
{1,2,¢..,n+1}. Let £)  denote the set of all the subsets @ of A con-
sisting of n-1 numbers. The number of elements of .(1 is n{n+1)/2.
For every «a EQ there is a Y © X such that
v, € () 8,0s .
iga
Let

= 2 .
VIR S

Since Vo = S for every a the same is true for y 1i.e.

(4.2) ly -xllce+e.

Let now {ij}gzi be k-1 integers satisfying 1< i;< iy °°°
kel
& i < n+l., We shall estimate d(y, (| S; ). The number of the «
k-1 = =1 1j

}k'l Ca is equal to {n-k+2){n-k+1)/2. Hence, since

such that {i 3=1

J
k-1

N Si is convex, we have
=1 73
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32 Joram Lindenstrauss

k-1
2
v, O 5% ) <m0 ﬂ 54

k-1
2
= ol ° E o dlyy, Ql s; )
ap {lj}j"l J J
2 k=1
< Toelin > (d(x, Ql Sij) + || Ya-x”)
aZ {lj}ng
< n‘.2 - ntl)n _ (n-k+2) (n-k+l) )(2p4¢) = (0 + %) f(n,k)

where f(n,k) = 2((2k-2)n-k?+3k-2)/n(n+1). For n satisfying (4.1) it is
easily seen that f(n,k) < 1., Hence if c¢ satisfies f(n,k) € c< 1 and
if € 1is taken small enough we have

k-1
(4.3) cé > max dly, N S; ) .
=1 ~j

Kiiye e <iy _<n+l

From (4.2) and (4.3) it follows that there exists a sequence z,

(with Zg = x) satisfying

m
Il 34 - zm||<_ 2cMe
m k-1
co> max d(z N S;) .
Kiiy e <, _<n+l j=1 j

The sequence z, isa Cauchy sequence and since X is complete it

" converges to a point 2z. d(z, (\ Si ) = 0 for every {i }k—l i.e.

j= j:l ’
n+l
zE N S and this concludes the proof of the theorem.

i=1

Remark. For k=2 we obtain that 4,2.I.P=> F,2,I.P. As we shall
see later the 3,2.I.P. 1is a weaker property and does not imply the
F.2.I.P. Hence for k=2 Theorem 4.1 gives the best possible n. We do
not know whether this is the case also for k > 3. For the special case
k=2 and X finite-dimensional the result of Theorem 4.1 was obtained,
by different methods, by Hanner [20]. In Chapter VI we shall give an al-

ternative proof for the case k=2 which is valid also for non complete
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Extension of compact operators 33

normed spaces (assuming, however, that the unit cell has at least one
extreme point). The case k=2 of Theorem 4.1 solves problem 1 in the
paper of Aronszajn and Panitchpakdi [2].

From now on our interest will be focused on the n,k.I.P. with k=2

i.e. on the 3,2.I.P. and the 4,2.1I.P,

Lemma 4.2. Suppose the Banach space X has (for some integer n > 3
the following property:

Every collection of n cells {S(xi, ri)};,lﬂl in X, such that
every two of them intersect, has for every &> 0O a point x = X X
satisfying

| x - xills ry+e , 1=1,2,...,n.

Then X has the n,2.I.P.

Proof. Let {S(xi, ri)}?,l be a collection of n cells in X
such that every two of them intersect (i.e. [/ x; - xj||g vyt for
every i and j). We have to prove that there is a point common to all
the n cells. Let &> 0, and let x be a point satisfying | x - xill
<r;+e, 1i=12,...,n. The cell S(x, €) intersects any of the n

given cells. Hence, for every i, 1< i< n, and every § > O, there
is a point vy, = y;(s) satisfying

Hy; - xlice*e; lly;-xsllcry+s, 1743.

Let

1 n

y=%5° T y; .
n i=1 i

Then ||y - x||[< e+ & and

1
- < = - + - .
Iy lel_ 7 (iL‘j lyy Xy I+ 1l V5 xJII )

4

<3 (n-)(rgre) + llyy = xll+ llx - x5ll) € ry+ s+ 2c/n.

Since n> 3 we obtain for §< e/6 that
(bot) Iy =xllg2e s ly-xgllery+5e/6, j=1,...n.
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34 Joram Lindenstrauss

From {4.4) it follows that there exists a sequence z, (with 25 = x)
satisfying
2y = 2l 2@ 5 Nz - x5l< vy + (D%, 5=1,....n .

n
Let z = 1lim z_, then z € (7] S{x,, r.) and this concludes the proof
m~->w m j=1 J J

of the lemma.

Remark. Aronszajn and Panitchpakdi [2] proved (Theorem 4 of section
3 in their paper) that for general complete metric spaces the property ap-
pearing in the formulation of the lemma implies the (n-1), 2.I.P. They
raised the problem (problem 4 in their paper) whether it also implies the
n, 2.I.P. Lemma 4.2. solves this problem for Banach spaces.

The following corollary is an immediate consequence of Lemma 4.2.

Corollary. Let X be a normed space having the n, 2.I.P. (for
some n > 3). Then the completion of X also has the n, 2.I.P.

It should be remarked that the converse statement is false. 1In
Chapter VI we shall give an example of a normed space which does not have
the 4,2,I.P., while its completion has this property.

Lemma 4.2. will be used in the next two theorems.

Theorem 4.3. Let X be a Banach space. Then for every n> 3 the
R.n,2,.I.P implies the n,2.I.P.

Proof. Suppose X has the R.n,2.I.P. Let {S(xi,ri)}g=l be a
collection of n cells in X such that every two of them intersect.
From Lemma 4.2 it follows that it is enough to show that for every > 0
there is a point x € X satisfying |/ x - xi|L§ ry+e for every i. Sup=
pose that there is an £ > 0 for which no such x exists and let r be
a number satisfying r > ry (1< 1< n). We shall construct n cells
S(y;,r) in X such that

Sly;,) D Slxy,ry) , 1=1,.00,n
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Extension of compact operators 35

and

n
(4.5) N Sly;, r) = ¢ .
i=1

This will contradict our assumption that X has the R.n,2.I.P.
The ¥y will be chosen inductively. Suppose that we have already

chosen y; for i< j (< n) such that

(4.6) Sly;, r) D S(xg, ry) , i< j

and

(4.7) L sy, 00 A s ) =g

4.7 N » T » + = .
AT i@rl A T

We shall choose yj+1 (j may also be equal to O, we adhere to the
usual convention that an empty intersection is the whole space).
Let

j n
K = S(y;, )N S(x,, r. +¢) .
AL igz A

K 1is a closed convex set whose intersection with the cell S(xj+l, rj+1+s)
is empty. Hence there exists a functional f Efx* such that || f|[<
l/(rJ.+1 + &) and such that for every x & K we have f(x - xj+1) > 1.
Let z € X be a point satisfying || z|[=1 and f(z) < - |||+ s,
where & 1is a positive number which will be fixed below. We claim that
if & 1is small enough and if we set Vo1 = Xjep ¥ (r - rj+1)z then
(4.6) and (4.7) With j replaced in both by j + 1) will be satisfied.

Let xES(xj+l, rjﬂ) then,
3=yl x = w1+ 7= rpp <
and hence S(yj+1, r) D S(xj+1, rj+1). Let now x:E'S(yj*l, r), then
rll £112 £0x = y449) = £x = x549) = (r = ryyy)f(2)

or
£lx = xgp) Srll£ll+ (v = ryg) (=l £ll+8) <
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36 Joram Lindenstrauss

Li

<
I‘j+1+€

+ 6(1‘ - rj+1) .

Thus if & 4is small enough, f(x - xj+1) < 1 for every
xE S(yj+1’ r) and hence K(]S(yj+l, r) = @#, which is (4.7) for j + 1.
Substituting j = n in (4.7) we obtain (4.5) and this concludes the

proof of the theorem.

Remark. Theorem 4.3 was proved by Hanner [20] for finite-
dimensional spaces. The basic idea of our proof is taken from the proof
of Hanner. The difference between the infinite-dimensional case and the
finite-~dimensional one (i.e. the case treated by Hanner) is that for
finite-dimensional spaces stronger separation theorems for convex sets are
available. This fact necessitated the use of Lemma 4.2 in the proof given
here (for finite-dimensional spaces Lemma 4.2 follows, of course, immedia-

tely from the local compactness).

Theorem 4.4. Let X ©be a Banach space.
(a) If X has the F.2.I.P. then for every separable subspace Y

of X there exists a separable space Z having the F.2.I.P. with
YCZCX.
(b) If for every 3-dimensional subspace Y of X there exists a

space Z having the F.2,I.,P., with YCZ(CX, then X has the F.2.LP,

Proof. (a) Let {y% T=7 be a dense sequence in Y. Let _(11 be
the set of all the collections of a finite number of cells with rational
radii and with centers taken from the set {yi}?=l , such that any two
cells in a collection intersect. .(11 is denumerable. For every collec-
tion a in Ql we choose a point x, € X belonging to the intersection
of all the cells in a. Let Y, be the subspace of X spanned by Y
and the points x , «a Ef()l. Y, 4is separable. Proceeding similarly

we obtain an increasing sequence Ym of separable subspaces of X and a
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Extension of compact operators 37

dense sequence {y?}?,l in Y such that for every collection of a finite
number of mutually intersecting cells with rational radii and with centers

taken from the sequence {y?}?,l there is a point in Y ,, common to all

the cells in the collection. Let Z = \J Ym. Z is separable and
m

YCZ(CX. We shall show that Z has the F.2.I.P. Let {S(zi, ri)}?_l
be n mutually intersecting cells in Z and let € > 0. There exists an
m and jl,...,jn such that

m

]lyji - zills_s/z sy 1=1,2,...,n.

Let {Ri};=1 be rational numbers satisfying

e/2< R, -r;<e, i=1,2,...,n.

Any two of the n cells S(y? , Ri) intersect and hence there is a point
i

zE€ Y ,; CZ common to all these cells. In particular |z - zi||<_

r, + % € for every i. The desired result follows by using Lemma 4.2.
(b) From Theorem 4.1 it follows that it is enough to prove that for

every four cells in X such that any two of them intersect there is a

point common to all the cells. This property is invariant with respect to

translations, hence we can assume that the center of one of the four cells

is the origin. The assertion is now immediate.

Remark. It is clear that a result similar to Theorem 4.4 holds also
for the 3,2.I.P. (for this property we can even replace 3 by 2 in (b))
It is likely that also Theorem 4.4 (b) itself holds when 3 is replaced
by 2. We shall prove in chapter VI that this is indeed the case if we
assume that the unit cell of X has at least one extreme point.

The next result shows that the F.2.I.P. implies a (formally) strong-
er intersection property in which the set of centers of the cells is as-
sumed to be compact instead of finite. In the proof of the theorem we

shall use some methods which were also used by Aronszajn and Panitchpakdi

Licensed to Penn St Univ, University Park. Prepared on Wed Sep 4 10:25:26 EDT 2013 for download from IP 146.186.177.69.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



38 Joram Lindenstrauss

in [2].

Theorem 4.5. Let X be a Banach space having the F.2.I.P., Let
{S(xa’ra)}aeA be a collection of cells in X such that any two of them
intersect and such that the set of the centers {xa}aeA is conditionally

compact. Then

QA S(xal Pa) f ¢ *

Proof. Since a compact set is separable there exists a sequence

{aj}?gl C A such that

(g I = Biglaen -

We define inductively a sequence of numbers Rj by
R, =sup (||x, =x||-r)
1 aex oy o a

R = max (qu ; = x ll=ry 3 |l x

“j - x“k”— Rk' 1< k< j)y 32,3000

Since r, + rg 2 Il x, - xBH for every a,B € A it follows immedi-

ately that Rj <r

o, for every j. If for some j R.< 0 then x €&
3 i= *

J
{\S(xa, ra) and there is nothing to prove. Thus we can assume that Rj >
a

O for every j. The Rj are such that if we replace the cells

S(xaj, raj) in the given collection {S(xa, r&)}aeA by the cells
S(xa., Rj) we shall still have a collection of mutually intersecting

cells, but if we now replace any S(x, , Rj) by a cell S(x, , R) with
J J

R< Rj the collection will no longer have this property. We can there-
fore assume without loss of generality that Rj =T, for every j and

hence that for every j and € there is a Bs j E A with
»

r, +r < llx, - |+ €.

% Be,; w57 Be, 3

Let now € be a positive number. From the compactness of {xﬁiaeA
it follows that there is an n = n(e) such that
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Extension of compact operators 39

n
{x, den CI}zé S(xaj, ) .

X has the F.2.I.P, hence there is a point y @ X satisfying

Ny = x, llI€ry, , 1< 3<n.
3 3

Let a @ A and let |[[x, =~ x,|/< e. We have

o,
J
r +r. > |l x -x |l
Be,s @7 " TBe,y @
lexB --xa'H-:-:Zra.+r"3 - 2¢,

€,J J J £,J

i.e. r 2r - 2 g, Hence for every a & A
3
Ny = 1€ My = xg 1+ %, = x,lI€ £y * 3¢ .
J J
Before proceeding in the proof we remark that y may be chosen so
that it belongs not only to (K S(xa , Ty ) but also to any given finite
i=1 j j
number of cells which intersect each other and all the cells in the given
collection.
Let €y be a sequence of positive numbers tending to O and let
n, = n(sk) be the integer corresponding to €y in the above argument.

Let

el
CENARC N

The cell o] = S(zl, 351) intersects any cell of the given collection.
We continue inductively and choose a sequence 2z satisfying
Dy k=1
zkE N S(xa.' ru.)n n crj
j=1 J J J=1
where oy = S(zJ., 3ej). In particular Ilzk - zhlls 3, for h>k and
hence the sequence Z, converges to a point z € X. Letting k tend to

o in |z, - x |I< 3¢ + r, (¢ €A) we obtain

z & QA S(xy,, 1) ,
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40 Joram Lindenstrauss

and this concludes the proof of the theorem.

Remarks. The theorem and its proof are valid in general complete
metric spaces.

The requirement imposed in Theorem 4.5 on the set of the centers
cannot, in general, be weakened. It is clear (from the result of Nachbin
[37] cited after Lemma 5.3) that if all the centers belong to a subspace
of X which is a fﬂA space (e.g. a one-dimensional space) then

r}.S(xa, r,) # @ without any further assumption on the centers. However
a€

(see [32] and also Chapter VII) even if all the centers belong to a two-

dimensional subspace of X, (N S(xy, r,) may be empty (we assume of
a€A

course that X has the F,2,I.P. and that any two cells in the collec-
tion intersect). This shows that in the theorem compactness cannot be re-
placed by finite-dimensionality. Neither can it be replaced by weak com=-
pactness. For example let {en}§=l be the usual basis of the space o
i, ¢g has the F.2.I.P., the sequence e, con-

2

o]
verges weakly to O, Snfﬁsm # @ for every n and m but N\ S =4,
n=1

Spaces having the 4,2.I.P, will be studied in detail in Chapter VI.

and let S, = S(e,,

It will be shown there, in particular,that a Banach space X has the
4,2.1.,P, if and only if x* is (isometric to) an L,(u) space for some
measure g. Our purpose now is to study some properties of spaces having
the 3,2.1.P. In [20] Hanner gave a geometrical characterization of the
unit cells of finite-dimensional spaces having the 3,2.I.P. The methods
of Hanner do not seem to apply to the infinite-dimensional case, and thus
our methods are different from those he uses.

We first give some methods for obtaining spaces having the 3,2.I.P.

Theorem 4.6. Let {xn}$=l be a sequence of Banach spaces having

the 32,2,I.P., then
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Extension of compact operators 41
(a) (@K@ ),
(b)) (X, @X,@ - )y
() (1, @K@ e+ g,

all have the 3,2.I.P.

6]

Proof. (a) Let x* = (xi, x%,...) be three sequences with x;(E )
and 'ngll 752 0. Let r’ be three positive numbers satisfying
|IX§ - xglhs rl o+ pd (i, 3=1,2,3; n=1,2,...). Since X has the
3,2.I.P for every n, there exists an x € X with || xxl1 - xnllf_ ri,
i =1,2,3. Let ny be an integer such that n> n, implies leilbs

min (rl, r2, r3) for every i, and put

x = (xq, x2,...,xno, 0, 0,...) .
Then || x = xin; ri for every i and this proves that the space (a)
has the 3,2.I.P, The proof for (b) is similar and even simpler,

We turn to the space (c). Let three mutually intersecting cells be
given. We can assume without loss of generality that (at least) two pairs
of the cells have no interior points in common (otherwise we replace the
cells by cells with smaller radii). Furthermore we may assume that the
cell which belongs to both pairs has the origin as center. Denote the
centers of the other two cells by x and y and the radii of the cells

by ri, i =1,2,3. We have

1 2

[ )
x = (%9, xp,...)5 [ x|l = El Mx ll=r" + 1%,

n=
1,3

»

y = (v, 7preee)s Nyl = n‘gl hy,ll =

fx=yll= = lix, =yl + 2.
n=1

It follows that there are A 21 (n =1,2,...) such that

®
2 .
R A R W LAY EX N FA D
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42 Joram Lindenstrauss

Put
Fxp I+ Wyl = 2l xy = ypll
an 2 ’
hx = Wyl + apllx = vy ll
Bn = 2 »
PR EA R AN ENEA
n 2 4
For every n we have
a, B, Y2 0,
Wxpll= ey + 8., Ny ll=a, +¥,, Ilx, -y, I<B, +7, -
Since Xn has the 3,2.I.P. there is a Z, Gan satisfying
logli< ey, Nz, -xll< By, Nz, -y <Y, .
Let z = (24, z,,...) , then
°° (e r®) ¢+ (PP e rd) - (PPl .2
lzl< = o = =r
—n= n 2 *
Similarly

2

[+ ] ®
Iz - xlI< L Pa=r, Iz -yll< ElYn=r3.
n= n=

and this concludes the proof of the theorem.

Remarks. (i) The theorem holds also if we take only a finite num-
ber of summands or, on the other hand, a non-countable number of them.
(i1) If the X have the 4,2.I.P. (or any other inter-
section property defined in this chapter) the same is true for the
direct sums (a) and (b). This is not, however, the case for (c). For
example if Xn is, for every n, the one-dimensional space the direct

sum (c) will be the space ./3 which does not have the 4,2.I.P.

Corollary 1. Every Ll(u) space, and more generally every Ll(u,X)
space (i.e. the space consisting of all X-valued Bochner integrable

functions with the usual norm) with X having the 3,2.I.P., has the
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3,2.1.P.

Proof. It is enough to prove that a dense subspace of Ll(u, X)
has the 3,2.I.P. (Corollary to Lemma 4.2). We shall prove this for the
subspace consisting of the simple functions (= finite sums of functions
of the form x¢ with x& X and ¢ a characteristic function of a set

with finite measure). Let fl,f2 and f, be three simple functions.

3
Then there is a subspace of Ll(u, X) which contains the fi and which

is isometric to (X@X@® --- @X)jn for some finite n. The desired
1
result follows now from Theorem 4.6 (c).

Corollary 2. Let X be a Banach space having the n,2.I.P. (n3> 3),
and let K be a compact Hausdorff topological space. Then the Banach
space C(K, X) consisting of all the continuous functions from K to X

(with the usual norm) has the n,2,I.P,

Proof. Let {?i}’ilal be continuous real valued functions on K

n
satisfying ¢, 2 O, HCPi(I =1 (i=1,2,...,n) and _}31 <f’i(k) =1
l=

(k @ K). Let B be the subspace of C(K, X) consisting of functions of
the form T, x;9; with x; € X. Then Bis isometric to (X@ --- ®1x),,
o]

and hence has the n,2.I.P, For every finite set {fi}?=l in C(K, X)
and every € > O there is a subspace B of the type described above

such that the distance of each of the fi from B is less than e. This
proves the corollary (use Lemma 4.2).

We shall now characterize spaces having an intersection property
which is weaker than the 3,2.I.P. This characterization shows the con-
nection between intersection properties and order properties and it will
be the starting point for the discussion in Chapter VI of the decomposi-
tion property (in partially ordered vector spaces). In Chapter VI we shall

consider also non complete normed spaces and therefore we shall not assume
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here that the space is complete.

Theorem 4.7. Let X be a normed space, then statements (1) - (6)
are equivalent and imply (7).

(1) Let {Si}g=l be three mutually intersecting cells in X such
that S,;/\S, 1is a single point e. Then e € S5

(2) The same as (1) for three cells with a common radius.

(3) Let e be an extreme point of Sy and let a partial order be
defined in X by x> 0<= x =le +u), 220, [lull€ 1. Then |x||
L1<EH ~e< x< e.

(4) Let e be an extreme point of SX’ Then X 1is isometric to a
subspace of some C(K) (K compact Hausdorff), in such a manner that e
corresponds to the function identically equal to 1.

(5) Let e be an extreme point of Sy and X an extreme point
of the unit cell of X'. Then |x(e)| = 1.

(6) Let e be an extreme point of Sy and let x &€ X with Ix]
= 1. Then at least one of the two segments joining x with e and -e
is contained in the boundary of SX'

(7) Let e # e, be two extreme points of Sy. Then |le; - e, ll
= 2,

Proof. (1) => (2) 1is clear. We shall show first that (2) => (3).

It is clear that the order defined in (3) is compatible with the
linear structure of X. Since e is an extreme point of Sy x> 0 and
x< O imply that x = 0. That ||x[|€ 1 implies ~e< x< e is also
obvious (for all these remarks we do not use the fact that X satisfies
(2)). We assume now that X satisfies (2) and that x &€ X satisfies

-e< x< e, i.e.

(4.8)  x= -2 (e + y) +e, x-= Aple + uy) - e

with A ,A, 2 0 and llu.ll, [lu,|l€ 1. Since for every A,u> 0 and u
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Extension of compact operators 45

with || ull <1 we have

Meru) = (hn)(e + Mgy | Aphe <

we may replace xl and Ay in (4.8) by any larger number, Hence without
loss of generality we may assume that kl = xz > 2 (we denote the common

value of the Xi by A). Consider the cells

81 = S(x+(A=1)e,A=1), S, = S(x=(A-1)e,A-1)
33 = S(- m X, A=1l) .

Clearly all three cells have a common radius. All points of S, are 2 x
while all those of S, are < x. Since x belongs to both we have that

Sl/\32 consists of the single point x. -u; G:Sl(\SB. Indeed,

fuy + x+ (A=1)e]l = || =(A=1)uy]| <A-1
luy = (=2)x)/ x| [S1+r=2=Xx=1.

Similarly u, G:SZK\S By (2) it follows that x E:SB' That is

3.
fxll+x=2=|x+ ((=2)x)/[Ix]| | S»-1.

Hence || x|l <1 and this concludes the proof of (2) => (3). The proof of
(3) = (1): Let Sy, S,, S3 and e be as in (1). We have to show that
e E:SB° Without loss of generality we may assume that S1 =S¢y = 5(0,1),
and hence S, = S((1+\)e,A) with some A > 0. e 1is an extreme point of
S;. Indeed, suppose that there is a u #0 with | etu] = 1. Since
(1#r)e = (e+nu) = A(e-nu/A) it follows that e +yu e sNs, if |»?| <
min(1,A) and this contradicts our assumptions. Let > be the (partial)
order defined in X as in (3) corresponding to the extreme point e, and
let S5 = S(x,n). 5;N S5 # ¢ implies that x < (l+w)e. szf\s3 ¢
implies that x > (1#A)e - (A+y)e. Hence -ye < x-e <ye i.e. || x-ef <y
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46 Joram Lindenstrauss

or e E[SB.

(3) = (4). Let X be ordered as in (3). Then if xnzo and
x, —> Xy also X; >0. Indeed, let 2k > sgp Il x,ll 5 then all the x/
belong to the cell S(ke,k) = {x; 0 < x< 2ke}, and therefore also Xy
belongs to this cell., 1In view of this remark (3) => (4) is exactly a
representation theorem of Kadison {[21], Theorem 2.1).

(4) => (5) follows from the Hahn Banach theorem and the well known
fact that ény extreme point x* of the unit cell of C(K)* has the form
x*(£) =% £(k) (kK €K, fEC(K)).

(5) = (6). From the Krein-Milman theorem it follows that there
exists an extreme point x* of the unit cell of Vel satisfying x*(x) =1,
Since x*(e) =9 with [8] =1 we have x*(Xx + (1-A)B8e) = 1 for every
M. Hence the segment joining x with ©6e 1is contained in the boundary
of Sye

(6) => (3). As in the proof of (2)=>(3) we have only to prove
that -e < x<e => || x||< 1. Suppose that |/ x|[>1 and put y =
x/ll x|]| « By (6) we may assume that the segment joining y with e be-
longs to the boundary of SX (otherwise replace e by =-e). Hence the
intersection of SX with the segment joining x with e is the point e
alone and this contradicts the assumption that x < e.

(5) == (7). By the Krein-Milman theorem there is an extreme point
x* of the unit cell of X* satisfying x*(el) # x*(ez). Since Ix*(el)l

= Ix*(ez)l =1 we have Ix*(el'ez)| =2 and hence || ey-e,]f = 2.

Remarks. (i) Many of the implications proved here are not essen=
tially new, Nachbin [37] proved that (1) => (3) and our proof here of
(2) => (3) is a modification of the argument used by Nachbin. As men-
tioned already in the proof, the implication (3) => (4) (and some relat-

ed results) appear in Kadison [21]. A result closely related to the
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equivalence of (3) and (5) was proved by Fullerton ([9], Theorem 4.1).
Concerning this theorem of Fullerton we remark that one step of its proof
is not justified, since it is not true that a maximal convex subset of the
boundary of the unit cell of a conjugate space is w' closed, We do not
know whether the theorem itself is true.

(ii) Our result that the 3,2,I.P implies property (5) of Theorem
4,7 reduces, in the finite-dimensional case, to the following result of
Hanner [20]:

Let X be an n-dimensional space having the 3,2.I.P., then 35y is
affinely equivalent to the convex hull of some of the vertices of an n=
dimensional cube,

Indeed (we follow the reasoning of Hanner), let {xz}2=1 be n
linearly independent extreme points of Syxs It follows from (5) that the
extreme points of Sy are vertices of the parallelepiped |x§(x)| <1,
i=1,.00,n.

(iii) The properties appearing in Theorem 4.7 are strictly weaker
than the 3,2.I.P., even if we restrict ourselves to spaces X in which
the unit cells have enough extreme points. Hanner [20, Remark 3.6] gave
an example of a 5-dimensional space which does not have the 3,2.I.P., though
it satisfies (5) of Theorem 4.7.

We conclude this chapter with a result concerning the connection bf'
tween the 3,2,I.P. and the notion of CL spaces. This latter notion was
introduced by Fullerton [9] and its definition is as follows:

A Banach space X 1is called a CL space if for every maximal cone
vex subset F of the boundary of the unit cell SX of X, Sx = Co(FU=-F),

It is clear that this notion is closely connected with statement (5)
of Theorem 4,7. Fullerton ([9] Theorem 4.,1.) proved that every CL space

has property (3) of Theorem 4.7. For finite-dimensional spaces the
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48 Joram Lindenstrauss

converse also holds. In particular a finite-dimensional space having the
3,2.I.P is a CL space. Hanner has shown that if a finite-dimensional
space X has the 3,2,I.P the same is true for X*. Hence if X 1is a
finite-dimensional space having the 3,2,I,P both X and ¥ are CL
spaces, We prove now a result which reduces in the finite-dimensional

case to the latter statement,

Theorem 4.8. Let X = Y° be a Banach space having the 3,2.I.P.
‘Then

(a) for every maximal convex subset F of the boundary of Sxs
Sy = E;TFI;:F) (the closure in the w topology).

(b) For every maximal convex subset F of the boundary of Sy,
SY = 53(§IT:33 (the closure in the norm topology).

Proof. (a) is a consequence of the Krein-Milman Theorem and
(1) => (5) of Theorem 4.7.

(b) Let F be a maximal convex subset of the boundary of

Sy. From the separation theorems for convex sets it follows that there is

an x & X satisfying x(y) = || x| =1 for every y & F. Let Xq X
satisfy || xll =1, || x= x|l =2 <2, and suppose that there is a
Yo €Y with x4(yy) = IIYOH = 1, Consider the following three cells

S(XO,)\/z), S(X,X/Z), S(O,l—h/Z) .

Clearly any two of them intersect and hence there is a point u & X com=

mon to all the three, 1i.e.
A A A
Null<1=-%, llu=xl<sz, Illu-xll<s3.
We have
1=x5(y9) = (xg = u)(yg) + ulyg) < Il xg=ull+ [lull<1,

and hence u(yy) = || u|| . Similarly, from x(y) =1 = || y|| it follows
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Extension of compact operators 49

that u(y) = || u]l . Hence Yo and F are included in the convex set of
all the y€ Y satisfying || y|l=1 and u(y) = ||u|]| + From the maxi=
mality of F we infer that Yo & F. We have thus proved that

I xll = 1l yoll = %(yg) =1, |l x=xll <2 =>y,EF.

———— ~
Let us denote Co(FU-F) (the norm closure) by S, Clearly S CSY’
~
We have to show that also SY (CS. Suppose this were false., By the sepa-
ration theorems it would follow that there exists a u & X with |[uf/=1

and

a = sup |uly)] <1.
YES

We show first that this u satisfies |Ju - x|| = 2. We use the
theorem of Bishop and Phelps [4] stating that in a conjugate space ¥
those functionals which attain their supremum on SY are dense in the
norm topology. Suppose that || u = x|| < 2. From the theorem of Bishop

and Phelps we infer that there exist X & X and Yo & Y satisfying

XO(Y()) = || xOH =”}'0“ =1, Il X = u|| < 11-('1' » Il X5 = x|| < 2.

As we have shown above Yo & F and hence

lea . lta
1= < < + - < + = R
%0(%) S sup %(y) < sup u(y) + llxp - ullSw+ 8 = 58

This is a contradiction and thus |ju-x|| = 2. There is an x ex* sat-
isfying 2 = x(u = x) = I x*ll lu-x|], i.e. || x*ll = x*(u) = -x*(x).
For every A > 0 we have therefore A+l = || Au - x|| (=x*(}\u - x)). We
have thus shown that the equation || Av = x|| = A+1 holds for every A

and v satisfying || v]| =1, sgp |v(y)] <1 and A >0. In particular,
y&F

|l w=x|| =[] w|]|] + || x|| for every w in the open cone ||w/||w| - uf] <

l - a.

By using again the theorem of Bishop and Phelps it follows that
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50 Joram Lindenstrauss

there exist Xy & X and Yo CY satisfying

lygl =1, (x=x)(y5) = Il x = xgll = Il xll + fI %1l ,

Il x5 = ull < l%ﬁ .

In particular x(yy) = || x|/ = 1 and hence (by the maximality of F)
Yo & F, We have

2+
=2 < | xyll = Ixa(yg)] € sup |x4(y)]
3 0 o'Yo s 1o

1+2a
sup [u(y)]| + |lu = x4l £
JEF *o 3

IN

and this is the desired contradiction.

CHAPTER V. THE CONNECTION BETWEEN
INTERSECTION AND EXTENSION PROPERTIES

The connection between intersection and extension properties is
based on the following, well known, three lemmas (cf, for example [37],

[2] and [17]).

Lemma 5.1. Let Y DX be Banach spaces and assume that there is a
projection with norm 1 from Y onto X. Let {SY(xa’ra)} be a collec-

tion of cells in Y whose centers belong to X. Then

nsy(xa,ra) f ¢ => ﬂsx(xanra) f ¢ .
a a
Proof. Obvious.

Corollary. Let Y DX be Banach spaces such that there is a projec=
tion with norm 1 from Y onto X. If Y has the n,k.I.P. (or the

R.n,k.I.P.) for some n > k then the same is true for X,

Lemma 5.2. Let T Dbe an operator from a Banach space X into a

Banach space Y. Let Z DX be a Banach space with dim Z/X =1 and let
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z& Z~rvX, Then T has a norm preserving extension to an operator from

Z into Y if and only if CQX SY(Tx,llTIIH z=-x|| ) # ¢.
x

o~
Proof. If T 1is a norm preserving extension of T then || Tz=Tx||
< It Tl |l z=x|| for every x & X. Conversely if |[| u=Tx|| < [| T|| || z=x]|

o~
for every x& X then T(x+Az) = Tx + Au 1is a norm preserving extension

of T. Indeed, for A # O we have
I Tx + 2]} = |A] |} T(x/A)+ul|
SIM T =/ + 2zl = I T x + Az] .

Lemma 5.3. Let X be a Banach space and let {SX( xa,ra)} be a
collection of mutually intersecting cells in it. Then there is a Banach

space Z DX with dim 2/X =1 such that (") S,(x,,r,) # ¢ .
a

Proof. The original proof of Nachbin [37] was rather long. We give
here two simple proofs. The second, which has the advantage that it shows

what S, is, is due to Grinbaum [17].

First proof. It is obvious that for every index set I every col=-
lection of mutually intersecting cells in m(I) (= the Banach space of
all bounded real-valued functions on I with the sup norm) has a non
empty intersection, Embed X isometrically in some m(I). Then there is
a z e m(I) such that || z-xalls r, for every a. The subspace Z of
m(I) spanned by X and 2z has the required properties. (If 2z & X then

we can take as Z any Banach space satisfying dim Z/X = 1,)

Second proof. If inf r, = O then it follows easily from the com=
a

pleteness of X that f\ Sx(xa,ra) # @, and hence any Z DX with
a

dim Z/X = 1 will have the required property. Assume now that inf T, > 0.
a

In the vector space X@® R let K be the set consisting of all the points

of the form z = (xa/ra,l/ra). Let S; be the closed convex hull of
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SxUKU(-K) (in Z we take the product topology of the norm topology in

X and the usual topology in R). It is easily checked that Szf\X = SI

and hence if we introduce in Z a norm whose unit cell is SZ this norm

will coincide on X with the given norm there (X is identified with the

subspace of Z consisting of the points (x,0)). (0,-1) € (M) Sy (x,,7y)
a

and hence Z has the required property.

Before passing to our applications of the preceding lemmas we would
like to mention some elegant (though straightforward) applications of them
which appear in the literature. One consequence of Lemmas 5.1, 5.2 and
5.3 is the result of Nachbin [37] that a Banach space is a 6ﬁ3 space if
and only if every collection of mutually intersecting cells in X has a
common point. Another consequence of Lemmas 5.1 and 5.2 (together with
Helly's theorem in the plane and Kakutani's well known characterization of
a Hilbert space) is the following observation, due to Comfort and Gordon
[5]:

A Banach space is isometric to a Hilbert space if and only if for
every collection of three cells {S(x.

1

(% S(x;,ry) # @ also (2\ S(x;,r;)NL # @ where L is the plane deter-
i=1 i=1

mined by the X4 (In case the x4 lie on a line the condition is satis-

’ri)}g=1 in X for which

fied in every Banach space X and for every plane L containing the xi).
The importance of the connection between intersection and extension
properties goes far beyond the possibility of just getting elegant charac-
terizations like those described above. This connection can be applied to
establish relations between certain extension properties by proving the
corresponding results for intersection properties and conversely. We hope
the results proved here and in the next chapters will illustrate this
point. Another use of the connection between extension and intersection

properties is in obtaining a functional representation for Banach spaces
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Extension of compact operators 53

having certain extension properties. Nachbin, for example, obtained the
functional representation of Jpl spaces X as C(K) spaces with
extremally disconnected K by using his result that in such X every col-
lection of mutually intersecting cells has a common point. (He assumed
that Sy has at least one extreme point and applied (1) => (3) of
Theorem 4.7.) In the next chapter we shall give further applications of
this kind to the connection between extension and intersection properties.

Unfortunately, the method of using intersection properties for study-
ing extension properties applies here only to the study of immediate ex-
tensions, that is to extending operators defined on a space Y to opera-
tors defined on Z where 22 Y and dim 2/Y = 1. It is possible to use
some more complicated intersection properties for studying nonimmediate
extensions., However, generalizations of this kind seem to contribute only
little to the problem discussed here. (Such generalizations are useful
for considering some extension problems concerning non linear mappings,
and we shall discuss these generalizations elsewhere.) In some problems
the possibility of finding always an immediate extension implies easily
the possibility of extending operators defined on Y to operators defined
on 2D Y without any restriction on Z/Y. This is the case, for example,
in the proof of the Hahn-Banach theorem or in the results of Nachbin and
Comfort and Gordon mentioned above. In general the passage from exten=-
sions to 2 with dim Z/Y = 1 to extensions to an arbitrary Z DY is
not easy if at all possible. In [34] we give some results and counter-
examples concerning this question. Most of the unsolved problems mention-
ed in this chapter are nothing but the question whether it is possible to
discard the requirement dim Z/Y = 1 in the statement of certain exten-
sion properties without changing the properties themselves.

We now give some applications of Lemmas 5.1, 5.2 and 5.3 to the

characterization of certain "into" extension properties.
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Theorem 5.4. Let X be a Banach space. The following three state-
ments are equivalent.

(a) X has the F.2.I.P,

(b) Every compact operator T from Y to X has (for every & > 0)
and extension T from Z(ZDY with dim Z2/Y = 1) to X with [|Tll<
(+e) I Tl

(c) Every operator T from Y to X with a range of dimension
< 3 has (for every e > 0) an extension § from Z(ZDY with
dim Z/T = 1) to X with [[T|l< (1+e) [ T]].

Proof. (a) => (b). Let T (with ||T||=1), ¥, Z and € be given,
and let zE€ Z ~Y with ||z||= 1. In order to show the existence of an
o L4
extension T of T from Z into X with || T||< 1 + & we have to show

the existence of a point u E X satisfying
(5.1) | u=Ty||< (1+e) || z=y]| for every yE Y

(cf. the proof of Lemma 5.2). Let M be a positive number and consider
the collection of cells {SX(TY’IIY-ZID}IIYIPS M+ Any two of these cells

intersect since

NTy=Tyo IS I y=yoll€ y=2ll + [l yp-2ll .
By the compactness of T and Theorem 4.5 there exists a point uM(E X
satisfying

| Ty-uyll< Il y=2z|l, for every y €Y with ||yll< M.

Taking in particular y = O we obtain that |[luyll< [l zll=1. Let yE€¥Y
be a point with |[|y||> M. Then

Il Ty=uyll < (I Tyll+ lluyll< llyll+ 1
and

ly =zl 2 lyll=lzll=llyll-1,

hence
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Iy-ull o lyllen o men
ly - =1l = Jiyll-2 = m-2

Therefore, for large enough M the point uy will satisfy (5.1) and this
shows that (a) = (b).

(b) = (c) 1is clear.

(c) = (a). It is enough to show that if X satisfies (c) then
for every collection of four mutually intersecting cells {S(xi,ri)}g_l
in X and for every € > O there is a point x & X satisfying
l]x—xilkg ri(1+s) for every i (cf. Theorem 4.1 and Lemma 4.2). Without
loss of generality we may assume that x = 0O (otherwise we translate the
cells) and hence there is a 3-dimensional subspace B of X containing
{xi}g-l‘ By Lemma 5.3 there exists a space C DB with dim C/B = 1 and
a point z € C satisfying || z-xi||<_ ri, i=1,2,3,4. Let T be an
operator from C into X whose restriction to B 1is the identity and
for which H”Fllf_ 1+e. x = Tz satisfies (1< i< 4)

~
Il x'xi” = || T(z“xi) 1< (1+€) || Z—Xi”<_ (1+€)ri
as required.

Remarks. In Chapter VII we shall show that (a) does not imply (b)
or even (c) with € = 0 (cf. also [32]). The use of Theorem 4.5 in the
proof of (a) => (b) can be avoided by slightly modifying the argument
given here.

The proof of the following two results is similar to (and even

simpler than) the proof of Theorem 5.4.

Corollary 1. Let X be a Banach space. The following two state-
ments are equivalent
(d) For every finite collection of mutually intersecting cells

{S(xi,ri)} in X whose centers form a 2-dimensional subspace of X, and
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56 Joram Lindenstrauss

for every € > O, f) S(x;,ry+e) # g,
i

(e) Every operator T from Y into X with a 2-dimensional range
~n
has, for every € > 0, an extension T from 2 (ZDY with dim 2/Y=1)
~n
into X with ||T|I< (1+e) | T]] .

Remark. We conjecture that (d) and (e) are also equivalent to state-
ments (a), (b) and (¢) in Theorem 5.4. In Chapter VI we shall prove that
this is indeed the case if we assume that SX has at least one extreme

point.

Corollary 2. Let X be a Banach space and let 7% be a (finite
or infinite) cardina]l number. The following two statements are equivalent.

(i) Every collection of mutually intersecting cells in X whose
centers span a subspace of dimension < 7 has a non empty intersection.

(ii) Every operator T from Y (with Y of dimension <7z)
into X has a norm preserving extension from Z (Z DY, dim 2/Y =1)

into X.

Remark. In the next chapter we shall show that spaces having the
F.2.I.P. also have the property obtained from statement (b) of Theorem 5.4
(and hence also from statement (c)) if we discard any requirement on 2/Y.
Concerning the properties appearing in Corollary 2 it is not hard to see
that if we assume the generalized continuum hypothesis then property (ii)
(for an infinite cardinal »{ ) implies the property obtained from it by
discarding any requirement on Z/Y (cf. [32]). For finite 722 we were
able to show that the same is true in some special cases,for instance for

C(K) spaces (cf. Chapter VII and [32]).

Theorem 5.5. Let X be a Banach space. The following three state-
ments are equivalent

(i) X has the F.2.I.P,
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Extension of compact operators 57

(ii) Every operator (not necessarily compact) T from Y into X
has an extension T from Z (ZD7Y with dim Z/Y = 1 and the unit cell
S; of 2 1is the convex hull of Sy and a finite set of points

~
(£ z;11.y) dnto X with [|T[= [Tl

(iii) Every operator T from Y into X with a range of dimen-

sion < 3 has an extension T from 2 (ZD7Y with dim Z/Y =1 and
: n
Sy = Co(SyU {* 2,14.1)) into X with [IT|l= |IT|.

Proof. (i) => (ii). Let Z, Yand T with ||T||=1 be given,
and let z& 2~ Y. Then 2z; = \y% + y;, i=1l,...,n, where y; €Y and
the Ay are scalars. We may assume without loss of generality that "i

(d
# 0 for every i. ||T|| will be equal to 1 if lﬁﬁ”ﬁ 1 for every
1, d.e. if u =Tz is chosen so that |lu + Ty, /A 1€ 1/ 1.
I T}'i/Ki - TYJ/)\j” < ” Yi/"i - YJ/)tj”
= llzg/ny =23/ 00 € 1/ 1+ 2 I,
and since X has the F.2,I.P. such a choice of u 1is possible.

(ii) = (iii) 1is clear and (iii) = (i) follows as in Theorem 5.4
if we use the second proof of Lemma 5.3.

For the 3,2.I.P. we obtain similarly

Corollary. A Banach space X has the 3,2.I.P. if and only if for
every ZDY with dimZ/Y =1 and S, = Co(SYU{ﬁ zi}gﬂl)’ every
operator from Y to X has a norm preserving extension from Z into X.

Remark. If ZDY and Sy = Co(SyVU{% 2,15.)) then it is easily
seen that there is a projection of norm1l from Z onto Y. Hence for
every Banach space X and every operator from Y into X there is a
norm preserving extension from Z to X,

We pass now to "from" extension properties. We shall use the fol-

lowing result of Klee [26].
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58 Joram Lindenstrauss

Lemma 5.6. Let X be a Banach space and let {Ci}?:% be convex
n+l

open sets in X such that [ Ci o ¢. Then there is a closed subspace
i=]

V of X with dim X/V< n so that no translate of V meets all the C,.

Corollary. Let {Sx(xi,ri)]?sl be n cells in X such that
n
{11 Sglx;,ry+e) = § for some € > 0. Then there is a quotient space Y

I

of X with dim Y< n-1 such that () Sy(Tx;,r;) = @ where T denotes
i=]

the quotient map from X onto Y.

Proof, Let V be a closed subspace of X with dim X/V< n-1
such that no translate of V meets all the cells Sx(xi,ri+s/2)’ i=
1,2,...,n (apply the lemma to corresponding open cells with slightly
bigger radii). Let Y = X/V and let T be the quotient map. Then for
every x& X and positive r and 5

TSy (x,r) C Sy(Tx,r) C TSy(x,r+s) .
By the choice of V {S& TSy(x;,r;+e/2) = § and hence {f{ Sy(Tx,,ry)
=g .

Theorem 5.7. Let X be a Banach space and let n > 3. The follow-
ing statements are equivalent

(i) X has the n,2.1.P.

(ii) Every operator from X to Y (with Y having a dimension
< n-1) has a norm preserving extension T from 2z (ZDX with

dim Z/X = 1) into Y.

Proof. (i) = (ii). Let Y, Z and T be given with ||T|/ =1 and
let 2€ Z ~ X, By Lemma 5.2 we have only to show that
f\x Sy(Tx, [|x~z|[ )} # §. By Helly's theorem it is enough to show that,
x€

n
for every {xi}?=1 in X, {:& Sy(Txyll z=x;||) is not empty. But since

X has the n,2,I.P, and the cells Sx(xi,llxi-z||) are mutually
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Extension of compact operators 59

n
intersecting we get that (N Sy(x,,|lx;-z||) # #. This concludes the
i=1

proof.
(ii) => (i) follows from Lemma 4.2, Lemma 5.3 and the corollary to
Lemma 5.6, We omit the details (cf. [33]).

Remark. In the next chapter we shall show that for n > 4 we can
discard in (ii) the requirement that dim Z/X = 1 and still get a proper—
ty which is equivalent to (i). In [33] we have proved that the most im-
portant class of spaces which have the 3,2.I.P. but not the 4,2.I.P, that
is the L,(#) spaces, have the property obtained from (ii) (for n = 3)

by discarding any requirement on Z/X.

Lemma 5.8. Let X be a Banach space and let [Sx(xi,ri)}g_l be a
finite number of cells in X. Then

{2} Syx* (x4, 14) FP <= (%1 Sy(x;,r;+e) # § for every &> O.
= l=

Proof. If {f& Sy(x;,r;*e) # § for every e> O then clearly
{f& Syxx(xg,r;+e) # @ for every €> 0 and hence by the w* compactness
of cells in X'° also {S& Syrx(xg,14) # §. Conversely, suppose that for
some € > 0 {E& Sx(xi,ri+e) = #. Then by the corollary to Lemma 5.6
there is a finite-dimensional quotient space Y of X such that
{ﬁ& Sy(Tx;,r;) = @ where T is the quotient map from X onto Y., Sup=-

pose there is an x** which belongs to all the cells Sx**(xi,ri), i=
1,...,n. Then I'T**X** - TinLS r; for every i and this is a contra-

n
diction. Hence N\ Sx**(xi,ri) = ¢ and this establishes the lemma.
i=1

Corollary. Let X' = have the n,2.I.P. for some n3> 3. Then
also X has the n,2,I.P.
We say that the cells in a Banach space X have the finite

intersection property if for every collection {S;} ., of cellsin X
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60 Joram Lindenstrauss

n
such that (\\ S, # § for every finite subset {ai}?gl of A also
i=1 i

N s, # 9.
a€A ¢ 2

Theorem 5.9. Let X be a Banach space. The cells in X have the

A

finite intersection property if and only if for every Y with X *‘D YD

X and dim Y/X < 1 there is a projection of norm 1 from Y onto X,

Proof. Let {Sx(xa,ra)}ae A be a collection of cells in X such
that any finite subcollection has a non void intersection. Then clearly

l:?A Sy#*(xy,r,) # #. Let x** be a point in this intersection and let

Y be the subspace of X spanned by X and x*%*, Suppose that there

is a projection P of norm 1 from Y onto X then Px** belongs to

all the cells Sy(x,,r,). Conversely, suppose that the cells of X have
the finite intersection property and let XC Y C x** with dim Y/X = 1,
Let x¥* € Y ~ X, By Lemma 5.2 it is enough to show that [\ Sx(x,

|| x*%=x||) # #. By Lemma 5.8 we have, for every &> O angezﬁery finite

n
set {xi}?-l in X, that {:& Sy(x;, | x**-x, || +e) # #. Hence,since the

cells in X have the finite intersection property,
N, Sxlx, Il xxx=x||) = N Sg(x, || xxx-x|| +¢) # ¢
xex X’ O L& xtx

and this concludes the proof of the theorem.

Remarks. 1. It is well known that if X = L,(#) there is always
a projection of norm 1 from x** onto X. Since the unit cell of
Ll(O,l) has no extreme points we thus get an example of a Banach space
whose cells have the finite intersection property though they have no
extreme points. This solves a problem of Nachbin ([39],cf. also [38
problem 1]).

2. We do not know whether for every Banach space X whose cells
have the finite intersection property there is a projection of norm 1

%%k
from X onto X.
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Extension of compact operators 61

To end this chapter we would like to give an example which shows
that the corollary to Lemma 5.6 as well as Lemma 5.8 do not hold if & is
allowed to be O. This example shows also the role of Lemma 4.2 in the
discussions in this chapter and in the preceding one.

Example. There is a Banach space Z and three cells in it such

3 3

that fX.SZ(zi,ri+e) # @ for every e>0 but [\ Sz(z;,r;) = §.
i= i=1
Proof. Introduce in Y = R@ m the following norm

vl = max (Inl, sup Ixy] + (3 (x/m?)1/?)
n n=1

where y = (A,x) with AER and x = (xl,xz,... ) Em. Let Z be the

subspace of Y consisting of all the vectors (A,x) such that 1lim x,
n>w

and 1lim x5 ., exist and satisfy
n-=>>w

22 = 3 lim x - 1lim x .
n-=>wo 2ntl n o 2n

Take z; = (0,0) and 2z, = (0,x) where x = (1,0,0,... ). These points
belong to Z, satisfy Ilzl-z2Il= 2 and as easily seen 1z = (z1+22)/2
is the only point in Z for which |lzo-le = |l 2g=2z,1l = 1. However, if
u, = (1/2,xn/2) where x_ = (1,0,0,...,0,1,1,... ) (in the places from
2 to n we have O otherwise 1) then |[lu -z;|/|—>1 and | u -2l

—> 1 as n —>w. Let k; be an even integer such that
38+ (£ 1AAY2 < 916,
K>k

and put z, = (1/2,v) where v = (1/2,0,0,...,0,3/8,1/8,3/8,... ) (the
first coordinate is 1/2, the coordinates from 2 to ky are O and
the rest are alternately 3/8 and 1/8). Then 25 €z, IlzB-unJL< 7/16
for n> ky while 1 23-z0|| = 1/2. Hence

S(zy,1)N5(2,,1)N 8(24,7/16) = ¢

while for every € > O
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62 Joram Lindenstrauss

S(z,1+e)N\8(z,,1+e)N S(z3,7/16) £,

(Actually even S(zl,l+s)/\S(z2,1)/\S(z3,7/16) ¢ .)

CHAPTER VI, THE EXTENSION
THEOREM FOR A = 1 AND ITS APPLICATIONS

We begin this chapter with the statement of a theorem which is, in a
sense, the central result of this paper. This theorem is in part the
special case A =1 of Theorem 2.1, However the information available in
this case is much more precise and complete than in the general case which
was treated in Chapter II. Theorem 6.1 summarizes many results which ~ere
proved in the preceding chapters but it contains also some new assertions
which will be proved here. The equivalences (1) <==> (2) <==> (3) <==> (5)
are due to Grothendieck [14,15]. We recall the convention made in the
introduction that in the statement of the extension properties Y and Z
are arbitrary Banach spaces satisfying the requirements (if any) imposed

on them.

Theorem 6.1. Let X be a Banach space. The following statements
are equivalent.

(1) ¥ is a 591 space.

(2) x* is an Ll(u) space (for some measure u).

(3) Every compact operator T from Y to X has (for every & >0)
a compact extension T from 2 (Z2D7Y) to X with ||'¥H<_ (1+e) || TI] -

(4) Every operator T from Y (dim Y< 3) to X has (for every
> 0) an extension T from Z (2DY and dim Z/Y = 1) to X with
1%1< ea) il Tl

(5) Every operator T from Y to X has an extension T from
~N
Z (ZDY) to X with ||T|=|TI.
~
(6) Every operator T from Y to X has an extension T from
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Extension of compact operators 63

Z (ZDY) to X with Il?” = || T|| provided that S, is the convex hull
of SY and a finite set of points.
(7) Every operator T from X to a conjugate space Y has an ex~
tension T from Z (ZDX) to Y with ||T|= /T .
(8) Every compact operator T from X to Y has a compact exten-
sion T from Z (ZDX) to Y with ||T|= |7l .
(9) Every weakly compact operator T from X to Y has a weakly
compact extension T from 2 (ZDX) to Y with || T|l=|IT| .
(10) Every operator T from X to Y (dim Y< 3) has an exten-
sion T from Z (2DX and dimZ/X =1) to Y with || T|l= || T] .
(11) X has the M.A.P. and every compact operator T from X into
itself has an extension T from Z (2D X with dim Z/X = 1) to X
with || Ff = [IT]l.
(12) X has the R.4,2.I.P.
(13) Every collection of mutually intersecting cells {S(xa,ra)} in
X such that the set of centers ({x,} is conditionally (norm) compact,
has a non empty intersection.
If S; has at least one extreme point the following statements are
also equivalent to the preceding ones.
(14) X 1is isometric to a subspace X; of some C(K) (K compact
Hausdorff) having the following properties:
(a) lK' the function identically equal to 1 on K, belongs to
Xl.
(b) The decomposition property. f,g,h&X,, f,g,h> 0 and
f + g> h ==> there are fo,gOEXl such that £ £f,2 0, g2g,20
and fo + gy = h.
(15) Every collection of four mutually intersecting cells
{S(xi,ri)]gal in X such that the {xilggl span a 2-dimensional sub-

space of X has a non empty intersection.
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64 Joram Lindenstrauss

(16) Every operator T from Y (dim Y = 2) to X has (for every
€ > 0) an extension T from 2 (ZOY and dim Z = 3) to X with
~
II'TH < (2+e) ] TIf «

Proof. The equivalence of (1) = (13) (except (2)) follows from
Theorems 2.1, 4.1, 4.3, 4.5, 5.4, 5.5, 5.7 and the following remarks.

(i) By Theorem 5.4 (13) implies (3) for spaces 2 with dim Z2/Y=1
and hence for Z with dim Z/Y < o. Therefore by (4) => (1) of Theorem
2.1 we get here the implication (13) => (1).

(ii) It is easily seen that (6) is equivalent to the property ob-
tained from it by adding the requirement that dim Z/Y = 1. Hence by
Theorem 5.5 property (6) is equivalent to the F.2.I.P.

(i41) (11) => (12). Let ({S(xy,r;)}j.; be a finite collection of
mutually intersecting cells in X and let € > 0. By the M.A.P. there
is a compact T from X into itself such that || T|| =1 and ||Txi-xi"
< € for every i. By Lemma 5.3 there is a space Z DX with dim Z/X =1
and a point z €Z such that |[fz-x,||<r;, i=1,...,n . Let T bea
norm preserving extension of T from Z into X. ll%z—xin Sr; + e for
every i and (12) follows now by Lemma 4.2. It should be remarked that
unlike the cases treated in (i) and (ii) it does not seem to be immediate
that (11) implies that X has a similar property for all Z with
dim 2/X < .

(iv) A Banach space X which has the F.2.I.P. also has the M.,A.P.
Indeed, let B be a finite-dimensional subspace of X and let € > O,

By approximating B by a space B1 whose unit cell is a polyhedron and
embedding Bl in an ,f: space for some n it follows that there is a
finite-dimensional space U DB which is a 6£;+e space, By Theorem 5.4
the identity operator from B into X has an extension TO from U

into X with || Ty]] <1+ e. Since U isa &

1+¢ Space there is an
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Extension of compact operators 65

operator T1 from X into U such that T is the identity and

1|B
IITIIIS 1+ e, The operator T = T T, from lX into itself satisfies

|| Tl < (1+€)? and its restriction to B is the identity. Hence X has
the M¢A.P., It follows now (use Theorem 5.7) that also (10) implies the
M.A.P. Since clearly (8) => (10) and (9) => (10) it follows from
Theorem 2.1 that any one of the properties (1) - (10) implies the M.A.P,

The equivalence of (1) and (2) (in which the non obvious implica-
tion is (1) => (2)) was proved by Grothendieck [15].

We turn now to spaces X for which Sy has at least one extreme
point, and show that for such X (14) is equivalent to (1) - (13). It is
easy to prove that (14)=> (12). We prefer, however, to prove that (14) 2
(2) and thus to obtain a new proof to the equivalence of (1) and (2)
(valid of coursé only for spaces X in which Sy has an extreme point).

Let X, satisfy (a) and (b) of (14). We order X; by
x* >0 <==> x*(f) >0 forevery f2>0 in Xl.

Clearly X' >0 iff x'(1) = || x'|| . F. Riesz [43] has shown that (b)
implies that in the order defined above Xz is a lattice (cf. also
Kadison [21, Lemma 5.1] or Day [6, p. 98] and the references there). It is
imnediate that x*,y" >0 ==> || ¥y [ = [ |+ | ¥ (= x"(1p) + ¥
and that x*/\y* =0 (A is the lattice operation) implies || x*+y*ll=
Il x*-y*H. Hence X; is an L space in the terminology of Kakutani [23],
(14) ==> (2) follows now from the representation theorem of Kakutani [23].
We prove now that (12) ==> (14). From (2) ==> (4) of Theorem 4.7
it follows that X is isometric to a subspace Xl of some C(K) satis=-
fying (a) of (14). We shall show that if X; has the R.4,3.I.P. (and in
particular if it has the R.4,2,I.P,) then it also has the decomposition
property, Let f,g,heX; f,g,h >0 and f+g > h, Without loss of
generality we may assume that || f||], |l g]l , || hl]| < 1. Consider the four
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66 Joram Lindenstrauss
cells

8y = 8(1,,1) , 8, = 8(£-1;,1) ,

33 = 5(h=1;,1) , 8, = S(1g+h-g,1) .

Every three of them intersect. Indeed O G:Slf\82(\S (0 G:Sl is clear,

0 &S, follows from 0 < f <1, O G:S3 follows frzm 0<h<1ly) and
similarly h G:Slf\SBI\Sh, h~g G:Szf\SBIWSh and f 6231(‘32{\34‘ Hence
by the R.4,3.I.P. there is an £ G:Slf\Szf\SB(\Sh. Put gy = h=-f,. We
have f5 €Sy ==>f520, f5ES, => 121, f5E€5; =>g; >0, fH €
Sk =>g2g and this proves (b) of (14).

It should be mentioned that as K 1in (14) we may take the W clo=
sure of the positive extreme points of SX*' (X 4is ordered by taking any
extreme point e of SX and letting x >0 <==> x = A(e+u), A >0 and
Il ull < 1. x* is ordered as in the proof of (14) ==> (2),) The mapping
of X into C(K) is then the canonical one x(k) = k(x), k&K, xe&X
(cf. Kadison [21, Theorem 5.2]), It is possible, and will be convenient
sometimes, to take as K the set of positive extreme points itself (this
K, however, will not in general be compact).

The equivalence of (15) and (16) with (1) - (14), under the
assumption that Sy has an extreme point, will be shown later on in this
chapter (cf. Lemma 6.5).

We give some corollaries of Theorem 6.1,

Corollary 1. Let X be an u4; space for every A > 1., Then X
satisfies (1) = (13) of Theorem 6.1,

Proof. Use Theorem 3.3.

We do not know whether the converse of Corollary 1 is true. At the
end of Chapter III we showed that every C(K) space is an ~/¢: space for
every A > 1., A similar argument (however technically more complicated)

can be used to show that certain other special classes of spaces which
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satisfy (1) - (13) (for example C4 (K) spaces, cf. Day [6,p. 89] for
their definition) are ¢7; spaces for every A > 1, In this connection

see also Corollary 3 to Theorem 7.9.

Corollary 2. Let X satisfy (1) = (13) of Theorem 6.1 and let
Y be a separable subspace of X, Then there is a separable subspace 2

of X containing Y which satisfies (1) - (13).
Proof. Use Theorem 4.4.

Corollary 3. Let X be a conjugate space satisfying (1) - (16) of
Theorem 6,1. Then X is a }%‘ space.

Proof, There exists a projection with norm 1 from ** onto X
(Dixmier [7]). Or, alternatively, the fact that every collection of
mutually intersecting cells in X has a common point follows from the

F.2,I.P. and the w compactness of the cells,

Corollary 4. Let X be a conjugate CL space (in the sense of
Fullerton [9],cf. also the discussion preceding Theorem 4.8). Then X is
a C(K) space <==>X has the R.4,3.I.P.

Proof, ==> is clear. <== follows from Corollary 3, from the
proof of (12) ==> (14) in Theorem 6.1 and from the fact that CL spaces
have the properties appearing in Theorem 4,7.

Another property characterizing C(K) spaces among the conjugate

CL spaces was given by Fullerton [9].

Corollary 5. Let X satisfy (1) = (13) of Theorem 6.1 and let F
be a maximal convex subset of the boundary of SX‘ Then Sy 1is the {nom)

closed convex hull of FuU =-F,

Proof. Use Theorem 4.8(b) and Corollary 1 to Theorem 4.6.

We shall now study some questions related to the decomposition
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property (property (14) (b) of Theorem 6,.1).

Lemma 6.2. Let X be a linear space of functions on a set K.

X has the decomposition property iff it satisfies

(*) For every n + m functions in X [fi}?=l’ {gj]?=1’ such
that fi < g5 » i=11,.00,m, j=1,00e,m there is an ?;EZX satisfying

fi <h< gj s i =leeeyny j=1,00.,m .

Proof. We observe first that the decomposition property is equiva=

lent to (¥) for m = n = 2, Indeed, put f, =0, f,=h-g, gl = f,
g, = h; then the requirements of (*y on {fi}§=l’ {gj}§=1 are satise
fied iff f,g,h >0 and f+g >h. The fact that (%) with n=m =2
implies that (+) holds for every n and m follows easily by induction
(first on m for n =2 and thenon n for a fixed m).

This simple lemma enables us to give a new proof to the fact that

the R.4,2,I.P, implies the F,2.I.P.

Theorem 6.3. Let X be a normed space whose unit cell has at least
one extreme point. X has the F,2,I,P, if it has the following two
properties:

(1) The R.4,3.I.P,

(ii) Let Isi]2=1 be a collection of 3 mutually intersecting
cells in X with a common radius and such that Slf\S2 is a single point
e. Then e E[S3.

Proof, From Theorem 4.7 and the proof of Theorem 6.1 ((12) ==>
(14)) 4t follows that X is (isometric to) a subspace of some C(K) con-
taining the function 1K and satisfying (+) of Lemma 6.2. Let

{S(xi,ri)};_l=1 be n mutually intersecting cells in X. Put fi % -

ryly, g = x3 +ryly ,i=1,...,n. Then f; < g5 » i,j=1l,...,n and

hence by (+) there is an % €& X such that fi 5"1"1,5 g;
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Extension of compact operators 69

(i.e. || B - x;|| < ry) for every i,

From the proof of Theorem 6.3 it follows that a (not necessarily
closed) subspace of C(K) containing 1K has the F,2,I.,P., iff it has
the decomposition property., We shall now prove that for closed subspaces
the decomposition property is equivalent to its special case where f + g
= 1ge

Lemma 6.4, Let X Dbe a closed subspace of some C(K) containing
the function 1K’ Then X has the F,2,I.P., iff it has the following
property
**y f,g,h €X, f,g,h >0, 1y =f+ g>h ==> there are
fy,8y € X satisfying 0 <fy <f, 0<gy<8g fy+g =h.

Proof. By extending the argument of Riesz [43] we shall prove that
(++) implies that * isa lattice in its natural order. Then (as in
the proof of (14) ==> (2) in Theorem 6,1) it will follows that X© is an
L space and this will conclude the proof of the lemma.

Let x E[X*. For every f & X, f >0, we define

x*+(f) =  sup x*(h) .
oghst

It is clear that

(6.1) ey = *He) , v 30, £30,
(6.2) FHe) « M) <M ), fe20.
We intend to show that (6.2) is actually an equality, i.e. that
(6.3) He) + Mg = MHe e g, rexo.

If £+g=1 thenby (') every h<f+ g is of the form
fo* 8y With 0 < fy < f and 0 < gy < g, andhence in this case (6.3)
is clear, In order to show that (6.3) holds for every positive f and g
we may assume (by (6.1)) that f,g < 1ge

We have
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70 Joram Lindenstrauss
SHe) R -0 = Sy,
x*g) + X1y - g) = X1,
Herg) + 21y - - ) = a7y
These equalities, (6.2) and the inequality
LHL - )+ XM - 8) < X H2.1 - £ - g)

imply (6.3). From (6.3) it follows that x+

can be extended to a con=
tinuous linear functional on X by defining x*+(f) = x*+(fl) - x*+(f2),
where f = fl - f, and fl,f2 > 0. It is now clear that X* becomes a
lattice if we define X'V y* = y* + (x*..y* )"‘,

Every algebra of functions (with the usual pointwise multiplication)
which contains lK satisfies (++). Indeed, if f + g = 1K >h >0 then
fo = fh and g = gh have the required properties. We remark that the
same is true if the multiplication in the algebra is not the usual (point—
wise) one, provided it is distributive and satisfies lK.f = f.lK = f and
£f>0, g2>20==>fg>0. (Commtativity and associativity are not re=-
quired; these are exactly the same requirements as those appearing in
Kadison [21, Section 31]) We shall now give an example of an algebra of
continuous functions containing 1K which does not have the decomposition
property. If we take in this algebra the sup norm we obtain an example
of a normed space which does not have the F,2,I.P. though it satisfies
(++) and its completion has the F.2.I.P, (it follows, in particular,

that Lemma 6.4 does not hold for non closed subspaces X).

Example. Let rl(x) and sl(x) be two continuous functions on
[O,%] such that x,rl(x),sl(x) are algebraically independent and
rl(x) <xZ sl(x) (0 £x< %), rl(%) = Sl(%) = % . Similarly let
r2(x) and sz(x) be two continuous functions on [%,1] such that
x,rz(x), sz(x) are algebraically independent and rz(x) <x< sz(x)
(% <x<1), rz(%) = 52(%) = % . We define four continuous functions on
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Extension of compact operators 71

[0,1] as follows:

ri(x) 0<x< i x 0<x< 1
£(x) =31 - £(x) = = -
1 1 <1’ 2 lex<1 ’
x ESx_ ro(x) 3="3
ﬁu) O<x<l b'e O<xsl
(x)= - -2 g(x)= - 2 .
& 1 , 2 1
X 5<xs1 sp(x) 5<x21

Let A be the subalgebra of C(0,1) generated by 1[0 1] fi, f5, 81
L
gpe The function x does not belong to A. Indeed, suppose that

i i J J
x=x 200 1 £(x) % gy(0) 7t gy(x) 72

1,15,01,3;

=

For 0<x< 5 we obtain

i J i+j
= 1 1 2°Y2
0=x=-232 ail’iz’jl’jz rl(x) sl(x) X .

Since x, ry and s, are algebraically independent the homogeneous part

of degree 1 is 0 i.e.

x = 81,0,0,0 ry(x) + 80,0,1,0 sy(x) + (ao,l,o,o * ao,o,o,l)x

=0, + a 1., Similarly by tak=

0,0,0,1 =
= 0 and this is a contra=

=
°r 23 0,0,0  20,0,1,0 30,1,0,0

ing % < x<1 we obtain 35,1,0,0 - 20,0,0,1
diction. We have shown that x @& A, But x = max(f;,f,) = min(g;,8,) and
hence A does not have the decomposition property (Lemma 6.2).

We are now ready to prove that each of the properties (15) and (16)
of Theorem 6,1 is equivalent to (1) = (13) if Sx has at least one
extreme point. By Corollary 1 to Theorem 5.4 it is enough to prove the

following

Lemma 6.5. Let X be a Banach space such that Sy has at least
one extreme point and such that X has the following property
(15)O For every collection of four mutually intersecting cells

{S(xi,ri)}g=l in X, such that the {xi}§=1 span a 2-dimensional
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72 Joram Lindenstrauss

subspace of X, and for every e >0 {fa S(x;,r;+€) Fd.

Then x* is an Ll(p) space.

Proof. (15)o implies the 3,2,I.P. (cf. Lemma 4.2) and hence by
Theorem 4,7 X is isometric to a subspace of some C(K) containing lK'
We take in X the order induced on it by C(K) and define for every <
in x* and every £ >0 in X

(6.4) <He) = 1im sup x(h) .
€ =>0 05h§f+eJK

It is clear that the limit always exists. If f > 3+1p for some
8>0 then f < freely < (1+z2/3)f and it follows that x*41f) =

sup x*(h). It is easily seen that (6.1) and (6.2) hold and that
oghss

(6.5) lim X H(freg) = X H(£)

f,g >20.
€ =>0

As in the proof of Lemma 6.4 the present lemma will be proved once

(6.3) is established. We prove first the following special case of (6.3)

(6.6) FHLee) + M) - MHaeer), o<rg .

Let h satisfy 0 < h< 1K + 2f and consider the following four cells
S(1,,1) , S(£-14,1) ,

S(h=21;,2) , S(h=f,1) .

It is easily checked that these cells are mutually intersecting., If we
translate all the centers of the cells by =l we get the four points O,
f;2°1K, h—3~1K and h—f—lK = (h'3'1K) - (f-2-1K), which lie in a 2=
dimensional subspace of X, Hence by (15)O there is for every € >0 an
element u in X such that

€
Illx'uell.<.1+€’ “lK'f"'us“Sl"e’

“ 2'1K‘h+ue“ S 2+ ¢ » “ h-ue-f“ ..<. 1+ e ’
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Extension of compact operators 73

and thus

—erlp<u < f+oeelp, -e*lpy €< h-u < f + (1+e)'1K .
Hence

x*+(f+25'lK) + x*+(f+(1+23)'1K)
* * *
> x*(u€+s'lK) + x (h=u_+e-1g) = x (h) + 2ex (1) .

Since &> 0 was arbitrary and h had only to satisfy 0< h< 1p + 2f
we get by (6.5) that
’

x*+(1K+f) + xH(g) > x*+(1K+2f)

and this together with (6.2) prove (6.6). By (6.6) we have for every inte-
ger n>0 and 0< £< 1y

X H1ern) = (272 2e a2 ) 4 M)
and hence, by (6.5),
(6.7) ) = ) + e 0< fe ] .

Let now g X with 0< g< 1y, let x*€Xx* and let n>1 be
an integer. We take an h & X such that 0< h< 1y and
(6.8) 1) - <)< 1/m? .
Consider the four cells

S((2n2-1)‘lK, 2n°-1) , S(-n+1g+g,n) ,

S(-n*1g+(n+1)h, n) , S((n-1) -1y + 2—:—% g+h, n) .
It is easily checked that the cells are mutually intersecting and that if
we translate the centers by —(2n2-»1)'lK we get four points which lie in a

2-dimensional subspace of X, Hence by (15)0 we get that for every e > 0

there is an element u_ 1in X satisfying

-e'lKg u€<_ g+ele,
-e*ly < (n+l)h-u_< nh - %I% g + (1+e) *1p € (n+l+e) -1y - 2:% g .
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Hence
* * *
ex (1x) + x (u)) < x +Tg + 2e1y)
and

(n+1)x (h) - x*(us) + ex*(IK) g_xf41h+l+2€)‘lK - %E% g) .

It follows from these inequalities, (6.7) and (6.8) that

nx*+TlK) + x*+1(1+2€)’1K - g:l g)

= XH((n+192e) ‘1 - Bd ) 2 (ne1)x"(h) - X Hgr2ee1y) + 2x(e01y)
> (n+1)x*+11K)- x*+(g+25-1K) - (n+1)/n2 - 25||x*|!.
Hence

x*+T(1+2e)‘lK - gf% g) + x*+(g+25'1K)

> xH1) - (1) /m? - 2¢(1 %%

Letting € —> 0 and n —> ®o we obtain that x*+(1K-g) + x*+(g) >
x*+(1K) and from this (6.3) follows (cf. Lemma 6.4). This concludes the
proof of Lemma 6.5 and thus of Theorem 6.1.

Before we leave the discussion of the decomposition property we would
like to give some examples of (4in general not closed) subspaces of C(K)
which have the decomposition property. Every subspace of C(K) which is a
lattice in the usual order for functions (but not necessarily a sublattice
of C(K)) has the decomposition property (such spaces were considered by
Geba and Semadeni [10]). Another category of examples (cf. [43]) are the
spaces of continuous rational functions on [0,1], real analytic functions
on [0,1], and functions having derivatives up to order n everywhere in
[0,1] (for some integer n). For all these spaces the decomposition prop-

erty is established by taking (given f,g,h >0, f+g > h) ,

%) £(x) +g(x) #0 f-&‘-{—?é—’(‘-}{) £(x) +g(x) #0

fr(x) = , (x) =
0¥ 0 £(x)=g(x)=0 * S0 0 £(x) =g (x) =0
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We omit the straightforward verification that if f,g and h have n
derivatives the same is true for fo and g+ Less immediate is the fact

that also the space of all the polynomials (with the norm || f]| = max [£()])
X1

has the F.2.I,P. (the proof of this fact was shown to us by M. Perles).
Let f; and g; , i = 1,2 be four polynomials satisfying f,(x) g_gj(x),
i,j=1,2 , 0< x< 1. Excluding the trivial case where at least two of

the polynomials coincide, there is only a finite (perhaps empty) set of

points x in [0,1] for which max fi(x) = min g;(x). We denote this
i=1, i=1,2

set by {xp};=1 and assume for the moment that it does not contain O or

1. Let x, be one such point then
(6.9) fi(xp) = gj(xp)
for some i and j. Since gj - fi has a minimum at the point x = xp
there is an integer m such that
v)
£y

(V) (2m) (2m)
1 (xp)r v < 2m: fi m (xp) < gj m (xp) .

(xp) = g

i
may be more than one pair of i and j for which (6.9) is satisfied. The

We call this m the order of contact of the pair (f.,gj) at Xge There

maximal of the (at most four) orders of contact thus assigned to X, will

be denoted by My Let r(x) be a polynomial which satisfies for every p

and for every pair (fi’gj) whose order of contact at x5 is m,

V) (xp) = fi(v)(xp) = gj(v)(xp) , ¥V < 2mp
and
(2m_) (2m (2m_)

)
g P (x,) < r P (x,) < gy P’ o(x) .

f P

Let s(x) be the non negative polynomial

n 2m
s(x) = TT (x=-x) P.
p=1 P

Put now F,(x) = (f;(x) - r(x))/s(x), Gi(x) = (g;(x) - r(x))/s(x),
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76 Joram Lindenstrauss

i= 1,2, The F; or G; need not be finite at x = xp(ls p< n). How-

ever, the following facts are evident
(1) Fi(x) < Gy(x) , 4,5=1,2 , xFfx, , (1< p<n).

(11) Fi(xp) (1< p< n) is either ~» or finite and negative
(Fi(x ) is defined by 1im F,(x)). Gi(x ) 1is either +» or finite and
P X=X |3
positive. p
(ii1) For every p at least one of the Fi(xp) and one of the

Gi(xp) is finite.

Hence, F(x) = max(Fl(x), Fz(x)) and G(x) = min(Gl(x),G (x)) are
finite and continuous functions which satisfy G(x) > F(x) for every x
in [0,1]. By the Weierstrass approximation theorem there is a polynomial
H(x) for which G(x) > H(x) > F(x), 0< x< 1. The polynomial h(x) =
H(x)s(x) + r(x) satisfies f,(x) € hi(x) < g;(x), 1=1,2, 0<x< 1.

Suppose now that xp = 0 for some p (the case xp =1 is similar).
We cannot claim in this case that gj - fi has a zero of an even order at
x = 0, But since xv is non negative in [0,1] for every V, we may
take as a factor in s(x) (corresponding to X, = 0) also x"' with an
uneven V. With this slight modification the proof proceeds as in the case
treated above.

The C(K) spaces have properties (1) - (13) of Theorem 6.1. In
fact these properties "almost" characterize C(K) spaces. We have

Theorem 6.6. A Banach space X is isometric to a C(K) space
(K compact Hausdorff) iff it has the following properties:

(1) X has one (and hence all) of the properties (1) - (13) of
Theorem 1.1.
or (ig) X 4s an ‘/V; space for every A > 1.

(i1) Sy has at least one extreme point.

(111) The set of extreme points of Syx is W' closed.
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Extension of compact operators 77

Proof. That a C(K) space satisfies (i), (ii) and (iii) is well
known, and that it satisfies (i;) was proved in Chapter III. We only
have to prove the converse, (ij) ==> (i) by Corollary 1 to Theorem 6.1.
From (i) and (ii) it follows that X satisfies (14) of Theorem 6.1 (we
identify X with Xl). As remarked at the end of the proof of Theorem
6.1 we may assume that K is the w* closure of the set of positive ex-
treme points of SX*' The set of positive extreme points of SX* is the
intersection of the set of extreme points with the W' closed hyperplane
x*(lK) = 1, Hence, by (iii), every point of K is an extreme point of
Sx*. Kadison (21, the proof of Theorem 4.1] has shown that if X 1is a
separating subspace of C(K) containing 1y and if the functional <
corresponding to a point k € K FPk(f) = f(k)), 1is an extreme point of
Sy* then for every h & C(K)

(6.10)  sup {f(k); £< h, £ € X} = h(k) = inf {g(k); g > h, g € X} .

Hence in our case (6.10) holds for every k & K.
Let hE C(K) and let € > 0. For every k € K there are functions

fk, -0 & X satisfying
f,<h<g, £k +e>hk>glk -c.

Put G = {p € K; £ (p) + €> h(p) > g, (p) = e}. G is an open set which
contains k. By the compactness of K there are {ki}?_l such that K =

n ~
U G, . By Lemma 6.2 there is an h © X which satisfies
i=1 i

£, <h<
<h<eg ,
ky ky

i=1,2,...,n.
~
It is clear from the construction that ||h - h||< 2e. Hence X is
dense in C(K) and since it is complete it coincides with C(K).
No one of the properties (i), (ii) and (iii) is implied by the other
two. Clearly (ii) and (iii) do not imply (i). The subspace of C(0,1)

consisting of all the functions for which f£(0) + f(1) = O satisfies (i).
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78 Joram Lindenstrauss

(By using the Schauder basis of €(0,1) as in chapter III it can be even

proved that it is an «4/3 space.) This space satisfies also (iii), since

the set of extreme points of the unit cell of its conjugate (with the w*
topology) is homeomorphic to the circle, but it does not satisfy (ii).
Let X be the space of all the sequences x = (x;,x,,...) for

which lim x; = (x1 + x2)/2, with || x|| = max Ixil. X satisfies (ii)
i

(the sequence (1,1,...) is an extreme point of Sy), but not (iii) since

the functionals ?i (?i(x) = X
and converge in the W topology to the functional F?l +‘?2)/2 which is
not extremal. We shall show that X is an V¢§ space (and hence it

satisfies (i)). X has the following basis

ey = (1,0,%,%,... )

(0,1,5,2,... )

(0,0,1,0,... )

o
[}

and in general for j 2> 3

ey (o0,0,0,...,0,1,0...)
(all the coordinates are zero except the j=th which is 1). Let Bk

the subspace of X spanned by {ej}grl’ In B, we take the following

basis
ei =e - %eB - = %ek = (1,0,0,...,0 % %,... )
e; =e, = %eB - e - %ek = (0,1,0,...,0 % % ces )
e}=ej 3< j< k.

k
For every {xj}jal we have

k
” jz )‘j J“" max (I)\l l)\zin""l)\kl) I _2_ “ 12?2( h\j' .

Thus B, is a 5;1 space and hence X = &,& B, is an v4ﬂ space.
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Extension of compact operators 79

This example solves a problem raised by Nachbin [37], [38]. The same
problem was mentioned also by Aronszajn and Panitchpakdi [2] in connection
with their characterization of C(K) spaces having the following inter-
section property: Let 71 be a cardinal number. A normed space X has
the #2.2.1.P., if for every collection of 77 mutually intersecting cells in
X there is a point common to all the cells. We remark that for every
cardinal number . there is a Banach space X which has the #2.I.P.
and whose unit cell has an extreme point but which does not satisfy (iii)
of Theorem 6.6. Indeed, let L be a set of cardinality 2’»1 and let 6.)1
and &), be two elements of . The space of all the bounded functions on

f(ul)+fu1)

€1 satisfying flw) = —2—2— except for a set of & whose cardi-

nality is < 7, with the sup norm, has the properties described above.

Grothendieck [15] conjectured that a Banach space X satisfies (1)
in Theorem 6.1 iff X is isometric to a subspace of some C(K) consisting

of all the functions satisfying a set Q of conditions of the form

2 2
(6.11) f(ki) = A F k), Kl k, €K, A, a scalar, aC(].

o’
We shall call a Banach space which admits such a functional representation
a G space. Every M space in the sense of Kakutani [22] and every
Ca-(K) space (cf. Day [6, p. 89]) is a G space.

Lemma 6.7. Let X be a subspace of C(K) consisting of all the
functions satisfying a set of conditions of the form (6.11). Then

(6.12) (£} CX => g = max £ + min £, € X.

(the max and min are the usual pointwise ones).

Proof. Clearly g & C(K). We have to show that if all the fi
satisfy (6.11) the same is true for g. Suppose first that A, > 0, and
2y . 2 1 . 1
let fio(ka) mix £, (k). By (6.11) also fio(ka) m?x f,(k,) and hence
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also max fi satisfies (6.11). The same holds for min fi and hence for
i i

2 2 2
g. Suppose now that A < O and let fio(ka) = mix fi(ka)’ fil(ka) =
min £, (k%). By (6.11) f, (k&) = max £,(k}) and f, (k}) = min £, (k1)
PR A AR A i e PR ig @ PR A
and hence also in this case g satisfies (6.11).

Lemma 6.8, Let X be a subspace of C(K) such that 1k €X and

{£ in £; € X.

3 ==
i}i=1 CX == mix £+ mi

Then X is a sublattice of C(K).

Proof. Let f E X and put

g = max (1, -1, f) + min (1, - 1, f).
g & X and we have
1 it f(k) 21
£(k) - g(k) =q{£(k) if [f(k)]< 1
-1 if  f(k) € -1 .

In particular, if f > O then min(lK, f) € X. By translating and multi-
plying by a scalar we infer that for every f & X also min {0, f) €X

and hence X 1is a sublattice of C(K).

Theorem 6.9. Let X be a G space. Then
(a) X satisfies (1) = (13) of Theorem 6.1.
(b} If Sy has an extreme point then X 1is isometric to a C(K)

space.

Proof. We assume, as we may, that X 1is a subspace of some C(K)
consisting of all the functions which satisfy (6.11) (and not only iso-
metric to such a subspace).

(a} We show that X satisfies (12) of Theorem 6.1. Let
{S(fi, l)}g_'=1 be four mutually intersecting cells in X, 1i.e. llfi-ijL§
2, 1i,j = 1,2,3,4. We have fi - S.fj + 1y for every i and j and hence
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1 + m?n £ = m§nuK L) 2 fy -1 i=1,2,3,4.
-lg + m§x fj = majlx(-lKﬂ‘j) 2 £y - 1 i=1,2,3,4.

Adding, we obtain

g = (max fj + m§n fJ.)/Z 2 f -1 i =1,2,3,4.
J
Similarly g< fi + 1 for every i and thus

ge A S(fy, 1) .
i=1

(b) We first extend the functions of X to functions on KU=- K
(the disjoint union of K and a set <K homeomorphic to K by the map-
ping kX —> - k), by defining f(-k) = -f(k), k € K. These are also con-
ditions of the form (6.11). Hence X is (isometric to) a subspace of
C(KU=- K) satisfying (6.12), and further every extreme point of Syx is
of the form ‘Pp, pEKU-K (‘-fp(f) = f(p)). Let e be an‘extreme point
of Sy and order X by the relation x> 0<==>x = (e +u), 220,
[lull< 1. From part (a) and Theorem 6.1 (see the remark at the end of its
proof) it follows that X is isometric to a subspace X of C(Ko) con-
taining lKo, where Ko is the set of positive extreme points of SX*
and the mapping from X onto X 1is the canonical one 'J‘c"(ko) = ko(x),
kg (= KO. Since as remarked above every kg = KO can be identified with
(at least) one point of KU~ K it follows that also ¥ satisfies (6.12).
Thus by Lemma 6.8 X is a sublattice of C(Ko) and hence an M space
with a unit. By a representation theorem of Kakutani [22] (Day [6, p.

103]), X is isometric to C(Kl) for some compact Hausdorff Kl.

Corollary. The sequence space defined after the proof of Theorem
6.6 is not a G space though it satisfies (1) - (13) of Theorem 6.1.

This disproves the conjecture of Grothendieck [15] mentioned above.

We shall now apply Theorem 6.1 to prove that a Banach space which is
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82 Joram Lindenstrauss

a /91+€ space for every € > O 1is already a 55; space. Actually
we shall prove a somewhat stronger assertion. For the statement of this
assertion we need the following notion which was introduced by Grinbaum
[17] (in a slightly different notation).

A Banach space X is called an E, space (A2 1) if for every

collection of mutually intersecting cells {s(x

a
Q s(xa’xra) f ¢ hd

,ra)} in X we have

By Lemmas 5.2 and 5.3 it follows easily that X is an Ex space iff
for every 2 DX with dim Z2/X =1 there is a projection P from Z on-
to X with [ Pll< n (cf. [17]). It is clear therefore that every dp;

space is an EX space. The converse assertion holds only for A = 1.

Theorem 6,10, A Banach space X which is an El+€ space for every

e> 0 1is already an E; space (i.e. a 491 space).

Proof. Let X be an E,,  space for every € > O. As remarked by
Grunbaum [17], it follows from Theorem 4 in Section 3 of Aronszajn and
Panitchpakdi [2] that every collection of mutually intersecting cells in
X with uniformly bounded radii has a non empty intersection. Inspecting
the proof given by Aronszjan and Panitchpakdi [2] to the fact that the unit
cell of a éza space has an extreme point we see that they used only the
fact that épl spaces have the intersection property stated in the pre-
vious sentence. Hence Sx has an extreme point. Since it is clear that
X has the F.2.I.P we infer from Theorem 6.1 that X is (isometric to)
a subspace of some C(K) which contains‘ 1g. We show now that in its
natural order (induced by C(K)) X 1is a lattice (not necessarily a sub=-
lattice of C(K)). Let f,, f, € X, we have to show that there is a
g & X satisfying

(6.13) g>f),eg>f,, and h2f;,h>f,, h€X=>h2¢g.

l’
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Without loss of generality we may assume that ||f1H , 1£5ll€ 1. We re-
mark first that if P is a projection from a subspace Y of C(X), con-

taining X, onto X with ||P|] < 1 + & then

yEY, y20=>Py2 -ellyllly .
Indeéed,
0 == - < = P - < + =al>
y20=> Il - rrplier = [Py - E)lle1l+e

=> - Bl €1+ e=>Pyz-ellyll- 1 .

Let F = max(fl, f,) €C(K). If FEX then g =F satisfies (6.13).
Otherwise let Y be the subspace of C(K) spanned by F and X, and let

1> e>0. Since X is an E space there is a projection P_ from

1l+e €

Y onto X with ||Pe||_<_ l1+e. Put g_=PF. We have
(1) llell< 2
(1) 2e-1p +g > F
(i11) h€X, h2F => h + e(|[h|[+ 1)}t > g, .

Indeed, [IF[[S_max(l[fl||,Illel)'s 1 and (i) follows.

F>f, and hence P_(F - f;) > -€||F - f1||-1K or g, 2 f; - 2e1l;. Simi-

1
larly g, > f, - 2e*1ly and (1i) follows. (iii) holds since h -F > 0

implies h - g 2> -e]lh = FIPIK.

Let now e, be the sequence 1/n(n+3), and put gy = gen + 2e 1y,
We have
(1) g, €X (2) llegyllc 3
1
(3) g, 2F () h€X, h2F, ||hf|[€< n==>h+z1>g .

Taking in (4) h = g we obtain g + %'ll( > g, (n>3). Similarly
gy * %'1K 2 g, (m>3) and hence ’lgn - gll< max(%, %) for every

n, m> 3. The function g = 1lim g  satisfies (6.13).
n-=->w

We have thus proved that X 4s a lattice. It follows that it is
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8L Joram Lindenstrauss

isometric to a C(Kl) space for some compact Hausdorff K; (see e.g.
Kadison [21, Theorem 4.1]). Amir [1] has proved that if a C(K) space

space for some A< 2 then it is already a P space. This

is an E 1

A
concludes the proof of the theorem.

Theorem 6.10 solves a problem raised by Griunbaum [17] and Semadeni.
Grinbaum [17] gave an example of a space which is an E2+€ space for
every £ > 0 but not an E, space. Isbell and Semadeni [19] gave an

example of a dé

+¢ Space for every &> O which is not a 6¢; space.

In [35] we gave an example of two Banach spaces Z DX with dim 2/X = 2
such that there is no projection of norm 1 from Z onto X but for

every € > 0 there is a projection of norm € 1 + e from Z onto X and
for every Y with Z DY DX such that dim Y/X = 1 there is a projec-
tion of norm 1 from Y onto X, (Simpler examples of this type can be
given by using the methods of Section 2 of [34]).

CHAPTER VII. NORM PRESERVING EXTENSIONS

In this chapter we shall treat the following question (as well as
some variants of it): Given a compact operator T from a Banach space Y
to a Banach space X which has properties (1) -~ (13) of Theorem 6.1}
under what conditions is it possible to extend T in a norm preserving
manner to an operator T from Z(ZDY) to X? We shall consider es~
pecially the case where X is a G space., For such X :t is convenient
to use the explicit form of the general bounded (or compact) operator hav-

ing X as range space.
Lemma 7.1. Let X be a closed subspace of C(K) consisting of all
the functions satisfying a set .K). of conditions
2 2 . .
(7.1 £kh) = 003), Kk, K2 € K5, real; « € L.

Let T be a bounded operator from a Banach space Y into X. Then there
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Extension of compact operators 85

is a continuous function F from K to Y* (with the w* topology)

such that
(7.2) Ty(k) = F(k)y kcK, ye¥y,
(7.3) HTil= sup [IF(K)],
ke K
and
(7.4) F(kcll) = xaF(ki) ki, kiG K, %, real, «a cl.

Conversely, to every continuous function F from K into Y* (with
the W topology) which satisfies (7.4) there corresponds by (7.2) a
bounded operator T from Y into X, and (7.3) holds. T is compact
[weakly compact] iff the corresponding F is continuous with the norm

[resp. w] topology in Y*.

Proof. The Lemma is an immediate consequence of the similar and
well known result for operators which map into C(X) spaces {cf. Dunford-
Schwartz [8] pp. 490-491).

The extension problem for operators into G spaces reduces thus to
the following: Let Z DY be Banach spaces and let K be a compact
Hausdorff space. Let F be a continuous function from X to Y™ (with
one of its three standard topologies) which satisfies (7.4). Does there
exist a continuous function F from K to z¥ which satisfies (7.4) and
for which ,F\‘(k) v = F(k) for every k € K? If we are interested in norm

A

preserving extensions we have to add the requirement that sup || F(k){| =
k€ K
sup [ F(k) |l .
ke K
The fact that a G space satisfies (3) of Theorem 6.1 (and hence

(1) = (13), see also Theorem 6.9) can now be proved directly by using the
following result of Bartle and Graves [3] (cf. also Michael [36]):

Let U U, be Banach spaces and let V be the quotient space

U/UO with the usual norm. Let <% be the canonical map from U onte V.
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86 Joram Lindenstrauss

Then for every € > O there is a continuous function YQ from V into
U satisfying
(1) ¢V¥.(v) =v, vEV
(i1) IH’E(V)Hﬁ (1+e) || v]| , vVEV
(ii1) Ve()\v) = x'f’e(v) , A\ scalar and vE V.
In generzl (if Uy 1is not complemented in U) TP; will not be additive.
Let now Z DY be Banach spaces. The restriction map ¢ from z¥
onto Y  is the canonical map from z* onto its quotient space Y*., Let
F be a norm continuous function from K to Y* corresponding to a com-
pact operator T from Y into the G space X. Let ¥, be a function
from Y* to Z*, corresponding to a given € > O and to the restriction
map P, whose existence is ensured by the theorem of Bartle-Graves. The
function ? = Y;F from K to z* corresponds to a compact extension ?F
of T from Z to X for which ||T[l< (1+e) ] T]|.
In view of the importance of continuous norm preserving extension of
functionals for our discussion we find it convenient to use the following
terminology. Let Z DY be Banach spaces. A map ¥ from Y to z*

is called a continuous norm preserving extension (C.N.P.E.) map if it is

continuous (taking in Y* and Z* the norm topologies) and satisfies

(7.5 Wy =y ana VGO YN, yTex.

If ZD Y are Banach spaces and if each functional on Y has a
unique norm preserving extension to Z we say that Y is a U subspace
of Z (this is the terminology of Phelps [40]).

With these notations we state now an easy consequence of Lemma 7.1

concerning the existence of norm preserving extensioms of operators.

Lemma 7.2 (a) Let Z D Y be Banach spaces such that there is a
C.N.P.E, map from Y to Z*. Then every compact operator from Y to

a G space X has a compact norm preserving extension from Z to X,
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Extension of compact operators 87

(b) Let Y be a U subspace of a Banach space Z. If every com-
pact operator from Y to the space of convergent sequences c¢ has a com-
pact norm preserving extension from Z to ¢ then there exists a C,N.P.E,

map from ¥ to Z*.

Proof. (a) Use Lemma 7.1 and the fact that if '#r is a C.N.P.E,

o d
map then the map Y defined by

ILEN (W ) (R *
~ _ -
¥ - Vi) =¥ ) 12 v Ao
0 if y =0
o % * * *

is also a C.N.P.E. map and satisfies V(ry ) =2V¥(y ), y €Y and 2
real.

(b) We have to prove that if V¥ is the (uniquely determined) map
which satisfies (7.5) and if ||yp-y [|—> 0 then [[V(y}) -V(y*) (> o.
This is obvious if y* = 0, and hence we may assume that ||Y§||‘ 1 for

every n. The operator T from Y to c¢ defined by
*« <
Ty = (y1(y), yo(v), «ei ), vyey

~
is compact and of norm 1. Let T be a norm preserving compact extension

of T from Z to c. Then

~ * *
Tz = (zl(z), z,(z), ... ), z2E 2
* * *« * %
where Ilznlhg_l, Znly = Yn for every n and Ilzn—z || —> 0 for some

z" GfZ*. Hence z: ='¢Qy§) and z° ='w1y*) and this concludes the proof

of the lemma.

Remark. It is easy to construct examples of spaces Z D Y such
that Y is a U subspace of Z and such that the uniquely determined
map ¥ which satisfies (7.5) is not continuous (in the norm topologies
of Z¥ and Y¥). Take for example Z = C(0,1) and Y the 2-dimensional
subspace of Z spanned by the functions fl(x) =x and f,(x) = X% (we
omit the simple details). If z* is locally uniformly convex
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88 Joram Lindenstrauss

(cf. Day [6, p. 113] for this and related properties) then for every sub-
space Y of Z there is a C.N.P.E. map from Y  into 2°. Indeed, Y
is a U subspace of Z and if 'yr is the (uniquely determined) map satis-
fying (7.5) then ][yi - y*||—+> 0 == || yi + y*||—€> 2|]y*H and hence
Hvr(yi) +'V1y*)}|—4> 2H\V(y*)||= 2]|y*|l and therefore by our assumption on
2", 1Y) - V™ (1= o.

We next give examples of Banach spaces X such that for every Z DX
there is a C,N.P.E. map from x* into Z*.

Theorem 7.3. (a). Let X satisfy (1) - (13) of Theorem 6.1. Then
for every Z DX there is a C.N.P,E, map from ¥ to 2z¥.

(b) Let X be a finite-dimensional Banach space whose unit cell is
a polyhedron. Then for every Z D X there is a C.N.P.E, map from X to
z*,

(c) Let {Xn}§=1 be a sequence of Banach spaces such that for
every n and every Z D) Xn there is a C.N,P,E. map from Xi to Z*.
Then for every Z DX = (XI@XZ @ - )CO there is a C.N,P.E. map from x*
to Z°.

Proof. (a) For every Banach space X the canonical embedding of
x* in X is a C.N,P.E. map from x* to (X**)*. Another observation
we need is that if Z D Y are Banach spaces and if there is a projection
P of norm 1 from Z onto Y then '¥7y*) = P*(y*) is a C.N.P.E. map
from Y° to 2°. Hence if X is a pl space and if zDX*Ox
then by the preceding remarks there is a C.N.P.E. map from x* to Z*.

Hok
Let now W be an arbitrary Banach space containing X. Let Y = (W®X -52
1

and let V be the subspace of Y consisting of all the vectors of the
form (x,-x), xE€ X. Let Z be the quotient space Y/V and denote by
T the quotient map from Y to Z. The restrictions of T to the sub-

spaces (W,0) and (O,X**) of Y are isometries and T(x,0) = T(0,x),
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Extension of compact operators 89

x € X. Hence (with obvious identifications) 2 D X**, ZDOW and X7NW
*
= X. As remarked above there is a C.N.,P.,E., map from x* to Z . Apply-

ing the restriction map from z* to w* we get a C.N.P.E, map from x*
to W',

(b) Let {x?]?nl be the extreme points of Syx. There exist con-
tinuous real-valued functions xi(x*), 1< i< n, defined on Syx such

that
= n
x = I
i=

N * %
lki(x)xi, x EX 3

n * < .
o (x) =15 a(x) 20, 1< i< n.
i=1

This is an assertion on convex polyhedra which is easily proved by induc-
tion on the dimension (cf. also [24]). Let zi (1< i< n) be norm pre-

3
serving extensions of x; to Z. Then

%, I % * * *
« "Il = 2(x /=]l 2 if x #0
Vi(x*) = j=1 1 1
0 if x =0
is a C.N.,P,E. map from x* to Z*.
(c) Observe that if Y DX , n=1,2,... , then by the assumptions
of part (c) there is a C.N.P.E. map from ¥ to Y° where Y =
ek sk
(Y1®Y2 ®--- )CO' If all the Y  are Pl spaces then also Y is a JJ_.L
space. The proof of (c) is now concluded by using the same argument as
at the end of the proof of part (a).
The question of the existence of C.N.P.E. maps is dual to the ques-

tion of the existence of continuous best approximations. We have

Lemma 7.4. Let Z DY be Banach spaces. There is.a C.N,P,E, map

from Y* to Z* iff there exists a norm continuous function < from Z*
to YT (the annihilator of Y in Z*) satisfying
: * * %
2" -¢(z)]l = min, |[z" - u ||.
u*€Y
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Proof. Let < be a mapping of z* into itself and let V be a
mapping from ¥ into 2¥ so that

Pl) =2 -y .

It is easily checked that if this relation holds “(z°) is a nearest point
to 2" in Y* iff '\}’(z*IY) is a norm preserving extension of Z*IY to
Z. Hence if a C.N.P.E map\U' exists the formula above gives a suitable <.
The converi‘e follows similarly by using the fact that a norm continuous

" ~
function ¥ from Y to Z* such that ‘l’(y*)ly = y* always exists (by

the theorem of Bartle and Graves). Hence

Viy") =Wy —e@yY)) , yer

is a C.N,P.E. map from Y to 2z¥ if % 1is a norm continuous nearest

point map into .

We return now to the study of norm preserving extension of operators.
Our next result is obviously related to the characterization of Fl
spaces.

Theorem 7.5. Let X be a Banach space and let K be the w clo-
sure of the extreme points of SX*’ The following statements are equiva-
lent.

(1) X is extremally disconnected.

(2) For every YD X there is an operator T with || T||=1 from
Y into C(K) such that Tx(k) = k(x), k& kK, xEX.

(3) The same as (2) but only for YD X with dim Y/X =1,

Proof. (1) ==> (2) follows from the fact that if (1) holds C(K)
is a Wl space' and hence from every Y D X there is a norm preserving
extension of the canonical embedding of X in C(K) (x(k) = k(x), xE€X,
k€ K). (2) == (3) 1is also obvious. We show that (3) ==> (1). Let G
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Extension of compact operators 91

be an open subset of K for which GN(-G) = g. Let g be the W closed
convex hull of K ~ G and let E be those points of G which are extreme
points of SX*‘ Since K~ G is w' compact it follows from a theorem of
Milman (cf. Day [6, p. 80]) that every point of § which is an extreme
point of Syx belongs to K ~ G. Hence

(7.6) SNE=¢.

Since GN(-G) = @ it follows that
(7.7) Sy« = © (5U(9)) .

In X ®R 1let So be the symmetric (with respect to the origin) convex
hull of [(x*,l); x € g}. So 1is compact, taking in x* ® R the product
of the W topology in x* with the usual topology of R. By (7.7)
Ilxll=  sup  (x'(x) + r-0) x€X.
(x*,\)€S,

It follows that there is a Banach space Y DX with dim Y/X =1
such that the mapping (x*,x) —> x* from X @R (with Sy as unit
cell) onto x* is exactly the restriction map from ¥ onto X*. Let
x € E , then by (7.6) the only point of the form (x*,x) which belongs
to S, is the point .(x*,—l). In other words (x*,-l) is the unique
norm preserving extension of x to Y. Similarly (x*, 1) 1is the
unique norm preserving extension of x to Y if x* € -E. Hence, since
by (3) and Lemma 7.1 there is a mapping F from K to Y continuous
in the W' topology of Y and satisfying [IF(k)[l< 1, F(k |y =k,

k © K, it follows that E N (-E) = # (closures are taken in K, that
is in the W topology which is used as the topology of K). Since

G =E we get that GN(-G) = @. Taking in particular G to be a
maximal open subset for which GN(-G) = § holds we get that K =

GU -G where GN-G = #. In order to show that (1) holds we have to prove
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that G is extremally disconnected. Let G, and G, be disjoint open
subsets of G. Put Gy = Gl\i(-Gz). Then GyN(-G,) = # and hence by
what we have proved above 56/\(:56) = @, It follows that aif\a; = g

and this concludes the proof of the theorem.

Corollary. Let. X be a finite-dimensional Banach space. The follow=
ing statements are equivalent

(1) Sx 1is a polyhedron.

(2) For every Z DX there is a C.N.P,E. map from ¥ into 2%,

(3) For every Z DX with dim Z/X = 1 there is a C.N.P.E, map

* *
from X into Z .

Proof. (1) ==> (2) is assertion (b) of Theorem 7.3. (2) == (3)
is obvious. We show that (3) ==> (1). Let X be a finite-dimensional
space which satisfies (3). By Lemma 7.2 (a) X has also property (3) of
Theorem 7.5. The w closure of the extreme points of Syx 1is compact
metric (this is true for every separable X) and extremally disconnected
by Theorem 7.5 (1). Hence Syx has only a finite number of extreme points

and therefore Sy 1is a polyhedron,

We next use the same idea as in the proof of Theorem 7.5 to prove a
similar result for compact operators. For finite~dimensional spaces X
Theorem 7.6 will give the same information as Theorem 7.5. This is the
case also with some theorems we are going to prove later on (Theorems 7.8
and 7.9). All these results reduce in the finite-dimensional case to an
assertion which is essentially the implication (3) ==> (1) (or (2) ==>
(1)) of the Corollary to Theorem 7.5. However in the infinite-dimensional
case each of the theorems gives some information which cannot be deduced

from the other theorems.

Theorem 7.6. Let X be a Banach space and assume that the extreme

points of SX* are not isolated in the norm topology of X*. Then there
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exist a compact operator T from X to c¢ and a Banach space Y DX

with dim Y/X = 1 such that T has no norm preserving extension from Y

to c.
Proof. Let {x):l}‘::l be a sequence of extreme points of Syx such
b3
that || x:-u || —=> 0 for some e xt. we may assume that u F Jg’:

for every n and every choice of signs. We choose now inductively a sub=-
sequence {ni ‘;=1 of the integers, elements x5 © X and positive numbers
Ay as follows. We take n; =1 and choose Xy and A so that

sk
|u (xl) | < A, and le(xl) > A\q. We next choose n, > n;, so that

lx:;z(xl) | < A;. The set
3 3
Co ({* u*}U{x s x*||§_ 1, |x (xl)l > xl})

. * * . *
is w compact and does not contain xn2 (since X, is an extreme point
2

of SX*) . Hence by the separation theorem there is an x, € X and a Ay >
% *
0 so that xnz(xz) >, |u'(xy)|< A, and

* * * *
SN x5 Ix (x) [ 2 M IN {x75 [ (x) [ 28,1 = 4
We continue in a similar manner and get that

*
xni(xi) >N i=1,2,...
and
Spr NV x5 I (x) | 2 0N Ixs X (x) I 22l =8, 143,
Put

§aspe A Ix' xly) 2 051 N x5 (x4 € Apgag]
X*i=1 x 3 x (X4) 2 Ny Y X 3 X (Xp5479) € “Npy4qf ¢

With this choice of S (7.7) holds. We continue as in the proof of

Theorem 7.5. In X @R we introduce a norm whose unit cell is the sym-
o *

metric convex hull of {(x ,1)3 x € S}. Then X' @R =Y  where Y DX,

dim Y¥/X = 1 and the map (x",0) —> x* 1is exactly the restriction map

Licensed to Penn St Univ, University Park. Prepared on Wed Sep 4 10:25:26 EDT 2013 for download from IP 146.186.177.69.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



[*7A Joram Lindenstrauss

from Y* to X*. Since

* a0 o~
b, J5ay OV (S) = 8
i
3k
and the X, are extreme points of SX* we get that (x: ,1) is the
2i
unique norm preserving extension of xz to Y, i=1,2,... . Similarly
2i
*
(xn ,=1) is the unique norm preserving extension of x: to Y,
2i+1 2i+1

i=1,2,... + It follows (use Lemma 7.1) that the compact operator T from
X to c defined by Tx = (xz(x),x;(x),... ) does not have a norm pre-

serving extension from Y to c.

Corollary. If a Banach space X has the property that for every
Z )X there is a C,N.P,E, map from x* to Z* then the extreme points
of Syx are isolated (in the norm topology of x%).

For our next result on the extension of operators we need first a
characterization of finite-dimensional spaces whose unit cell is a poly-

hedron.

Theorem 7.7. Let X be a Banach space. X is finite-dimensional
and its unit cell is a polyhedron iff there does not exist a sequence

{x;15=7 in X such that for every choice of signs
(7.8) xg £ xgllg xgll* lxgli-1,  143.

Proof. If X is finite-dimensional and Sy has n faces then
clearly any set of vectors {xi} for which (7.8) holds has at most n
elements. This proves the "only if" part of the theorem. To prove the
other part assume first that X is finite-dimensional and its unit cell
is not a polyhedron. X has a 2-dimensional subspace whose unit cell is
not a polyhedron (cf. Klee [27]), and hence we may assume that dim X = 2,
It is easily seen that there is a sequence {yi}?-l in X such that

lyy=yll => 0 for some yE€ X, |ly;ll=1 for every i and
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Extension of compact operators 95

le*||= !x*(yi)| =1 implies js;g Ix*(yj)l < 1. Hence there exist &; >0
1

such that the sets
Sx*f\{x s Ix (y)|>1 - } i=1,2
’ i — 61 , ’ '...

are mutually disjoint. Put x; = y,;/s6;, 1< i< o. For every choice of
. * . .
signs, every x € Sy* and every i ¥ j

X (xg2x) € 1/ + 1/6g = 1= lIxgll+ lIxgll-1 .

Hence these {xi}?=l satisfy (7.8) .

Let now X be an infinite-dimensional Banach space. If X has a
finite-dimensional subspace whose unit cell is not a polyhedron the exis-
tence of a sequence satisfying (7.8) follows from what we have already
proved. Hence it remains to prove that if X is infinite-dimensional and
if the unit cells of all its finite-dimensional subspaces are polyhedra then
there is a sequence {xi}?_1 in X which satisfies (7.8). We have not
found, however, a simple argument which applies to this special class of
spaces X. We give therefore a (rather complicated) proof which holds for
every infinite-dimensional Banach space X.

From the well known theorem of Borsuk on antipodal mappings of
spheres it follows that if B is an (n+l)-dimensional Banach space and
if {ui}g,l are n points in B then there is a u € B such that || uf|
=1 and Ilu-uil|= Il u+ui|| for every i. Hence in the infinite-
dimensional space X we can choose inductively a sequence {yi}?-l such

that llyill- 1 for every i and
(7.9 |l 91Y1+92Y2+ see +ekyk-yk+l =1 9171"'62}'2"'- oo +ekyk+yk+1 Il

for every k and every choice of 91, allowing each ei to take one of
the three values O, +1 and -1. Having chosen such a sequence [yi}?_l

we have to consider separately two cases
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96 Joram Lindenstrauss

{i) There is an increasing sequence {in}z,l of integers and a

sequence {sn}ial of signs such that

Ilelyil+€2y12+ cee 4 akyikllz k - 1/2, k =1,2... .

(ii) There are no such sequences {in} and {en}.
Suppose that (i) holds and let {in} and f{e } be suitable se-

quences. Put

X, = E,Y: tE, Y, + *c + ¢ - € s k=1,2,... o«
Kk 1Y11 2%, kyik k+1Y1k+l , 2%

By (7.9) and (i) IkaI[Z k + 1/2 for every k. Hence for h> k

h

K
Ix+x, ll= 12 £ e.y; + T e.y: = g ,7 I
h* %k RS L TN PG L P S L

< 2k + (h=k=1) + 1< |l ll+ lIxll-1.

Similarly
| x =%, 1< h=k+2 < x|l + gl - 1.

This concludes the proof if (i) holds.
We assume now that (ii) holds. In this case there are 1, < i, ...
< i

s With i; =1 and m> 1, and signs {sj}?=l such that

| ey; + eyy; + et ey, |[>m-1/2
1 il 2 12 m im

and such that for every i > im and every sign €

” €174 + €Y + oo 4 Envi + EYi“S. (m+1l) - 1/2 .
1 2 m
Put n,
ny =m, 2 = E €y, s 61 llzlll- n; + 1/2 .
J=1 J
Clearly 1/2 2> 07 > 0. By the assumption that (ii) holds it follows that
there are inl+1 < in1+2 < ... < in2 , with .’Lnl+1 = inl+ 1 and ny 2

n; + 1, and signs snl+1,...,en2 such that
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and such that for every i > in and every sign €
2

n2
I = ey; *+ey,ll€n,=n, +1=-67/2.
jng+1 SR i 2" M 1
Put
z Il 2z, 1l /
Z, = z €.y 6, = z -n, +n, +065/2.
27 jeng Py %2 2 2Tt a9

Continuing in this manner we get sequences {ij}, {aj}, {nk}, {zk} and
{Gi(} such that for every k> 1

(7.10) ij< 1J+1’ €5 is either +1 or -1
M
(7.11) z, = J”nkfl+1 Ejyij
(7.12) Iz ll=n =n_; -6_1/2 + 6y
(7.13) /226 1226,>0
(7.14) I zk+eyi|| < -n - o'l'(_l/Z +1, i>4 , e= Y,

Let now k< h. By (7.10), (7.11) and (7.14)
a2 zplls ey + 1= 04 9/2) + (g =y - 1)

Hence by (7.12) and (7.13)

2tz ll< 2 I+ 2yl - 6/ -

Finally, put x, = 22k/o"k. Then for k< h
+

% * =< 2llzyll (g™t - g0 + 2]l % 5,1l 672

< 2l ll (7 ™l + 20l g Il + |12y ll - 6 /2) 672

= =l + I xll-1.

Hence the sequence [xk};’_l satisfies (7.8) and this concludes the proof
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98 Joram Lindenstrauss

of the theorem.

Remarks. In general the sequence {x;}7.; which satisfies (7.8)
cannot be chosen to be bounded. This is clearly the case if X 1is finite-
dimensional (even if Sy 1is not a polyhedron). There are also infinite-
dimensional spaces X in which there is no bounded sequence which satis-
fies (7.8). X = 41 is such a space (the verification of this fact is
quite simple but somewhat long and therefore we omit it). It is easily
seen that in an infinite-dimensional uniformly convex space there is always
a bounded sequence for which (7.8) holds. If a bounded sequence satisfying
(7.8) exists in a Banach space X then clearly lei bt lehs
A xg ]+ |lxj||) for i # j and some A< 1. This observation can be

used for proving a stronger version of Theorem 7.8 for such spaces X,

Theorem 7.8. Let Z D X be Banach spaces and assume that Syx is
w* sequentially compact. If for every Y D X with dim Y/X = 1 there is
an operator with norm 1 from Y into Z whose restriction to X is the

identity then X 1is finite-dimensional and its unit cell is a polyhedron.

Proof. The assumptions in the statement of the theorem imply that
every collection of mutually intersecting cells in Z whose centers be-
long to X has a non empty intersection (use Lemma 5.3). If X is not a
finite-dimensional space with SX a polyhedron there exists, by Theorem
7.7, a sequence {xi}?=l in X for which (7.8) holds. We may assume that
Il x;ll21 for every i. Let e = (eq,e5,... ) be a sequence of signs and

consider the sequence of cells

Sy(esxy, llxill- 1/2) i=1,2,....
By (7.8) they are mutually intersecting and hence there is a zE(E Z such
that

(7.15) Iz = esx 1< x5 11= /2, & = (gq,e9,e00 ), 1 =1,2,00.
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Extension of compact operators 99

Let zz €7* satisfy zz(xi) = || xi“ and || z?” = 1 for every i. By
* -+ * -

(7.15) z;(z,.) 2 1/2 if €y 1 and z4(z.) < -1/2 if & 1. It

follows that the z: cannot have a w convergent subsequence and this

. *
contradicts our assumption on Z .

Remarks. The assumption that ¥ is w sequentially compact is
satisfied, in particular, if Z is separable or reflexive or a direct sum
of such spaces. If we drop the assumption that Z* is w* sequentially
compact Theorem 7.8 will no longer hold —- take for example the case in
which Z is an infinite dimensional ﬂ%} space and X any subspace of
Z. It should be remarked perhaps that if Z DX are such that every col=-
lection of mutually intersecting cells in Z whose centers belong to X
has a non empty intersection it does not follow that there is a éﬁa space
Zo with X (CZy CZ. Take for example Z = (m® Y)I‘% where Y isa sep=
arable non reflexive subspace of m (denote the embedding map from Y in=-
to m by T). Let X be the subspace of Z consisting of the points
(Ty, v/3), y €Y. Every space Z, satisfying X(CZy CZ has Y asa
quotient space and hence Z0 cannot be a /9 space, However it is easily
seen that any collection of cells in Z whose centers belong to X has a
non empty intersection (cf. [34, Section 2]).

Our next three theorems give characterizations of some classes of
spaces which have properties (3) or (4) of Theorem 6.1 (or related proper-
ties) with € = 0. Another theorem of this kind in which the C(K) spaces
are treated is given in [32],

Theorem 7.9. Let X be a Banach space which satisfies (1) = (13)
of Theorem 6.1, and let Y be a finite-dimensional Banach space.

(a) If SY is a polyhedron then for every Z DY every operator
from Y to X has a compact norm preserving extension from Z to X,

(b) If Y is a subspace of X and if Sy 1is not a polyhedron then
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100 Joram Lindenstrauss

the identity operator from Y to X does not have a compact norm pre-

serving extension from X into itself,

Proof, (a) Since SY is a polyhedron we may consider Y as a sub-
space of —f: for some n. Let T be an operator from Y into X. Since
X has property (6) of Theorem 6.1 there is a norm preserving extension To
of T from .[2 into X. _/: is a dﬁi space and hence the identity
operator from Y into .ég has an extension T1 from Z to ,[: with
Il Tyl = 1. The operator T = T,T, has the desired properties.

(b) Suppose there is a compact operator %' from X into itself
with norm 1 whose restriction to Y is the identity. By the ergodic
theorem (Dunford-Schwartz [8, p. 711]) the sequence (I + T+ Tuoes %n»h
converges to a projection P from X onto the subspace YO of X con=
sisting of all the points x for which Tx = x. lPll=1 and Y, is
finite~dimensional. Hence Yo is a 4%. space (Corollary 3 to Theorem
2.1). Since Yy oY Sy isa polyhedron and this contradicts our

assumptions,

Corollary 1. Let X satisfy (1) = (13) of Theorem 6.1, and let ¥
be a finite-dimensional subspace of X such that Sy 1is not a polyhedron.
Let also Z DX, Then the identity operator from Y to X does not have

a compact norm preserving extension from X into Z,.

Proof. Suppose there exists such an extension and denote it by ?.
Let V be a éﬁi space such that V) Z DX, By property (8) of Theorem
6.1 there is a norm preserving and compact extension %b of T from V
into Z ( CV). This contradicts Theorem 7.9 (b).

This corollary shows that Theorem 2.3 does not hold with € = O,

Corollary 2. Let X satisfy (1) = (13) of Theorem 6.1, and let Y

be a finite-dimensional subspace of X whose unit cell is a polyhedron,
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Extension of compact operators 101

Then there is a finite-dimensional Aﬁi space Y, for which Y C:YO cXk.

Proof. This follows from Theorem 7.9 (a) and the proof of Theorem
7.9 (b).
A Banach space X is called polyhedral (Klee [28]) if every finite-

dimensional subspace of X has a polyhedron as its unit cell.

Corollary 3. Let X be a polyhedral Banach space. X satisfies
(1) = (13) of Theorem 6.1 iff it is an v@; space

Proof, This follows from Corollary 2 above and Corollary 1 to
Theorem 6,1

Theorem 7.10., Let X be a Banach space. The following three state=
ments are equivalent.

(1) X 4is polyhedral and satisfies (1) = (13) of Theorem 6.1,

(2) Every operator T from Y into X with a range of dimension
< 3 has a compact and norm preserving extension from Z (Z DY) to X,

(3) Every operator T from Y to X with a finite dimensional
range has a norm preserving extension $‘ from Z (2 D7Y) to X such

that the range of L is finite-dimensional.

Proof. (1) ==>(3). Let T be an operator from Y into X for
which T(Y) is finite-dimensional. By Corollary 2 to Theorem 7.9 there is
a finite-dimensional é%_ space YO with T(Y) C:Yo CX. There is a norm
preserving extension of T from Z into Y, and this proves (3). (3)
==> (2) 1is clear. We show next that (2) ==> (1), It is clear that if X
satisfies (2) of the present theorem it satisfies (1) - (13) of Theorem 6.1
(see property (4) there). By Theorem 7.9 (b) every 3-dimensional subspace
of X (assuming X satisfies (2)) has a polyhedron as its unit cell,

Klee [27] proved that this implies that X is polyhedral.

Remark., If we replace (2) (or (3)) by the weaker property which is
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102 Joram Lindenstrauss

obtained from it by requiring that dim Z/Y = 1 then the theorem will no
longer hold. Every éﬁi space X satisfies this weaker version of (2)

(or (3)), but an infinite-dimensional 5%_ space is not polyhedral (in

fact since c¢ is not polyhedral no infinite-dimensional C(K) space is

polyhedral),

Theorem 7.11. Let X be a Banach space such that SX* is W
sequentially compact. The following three statements are equivalent.

(1) X is polyhedral and satisfies (1) = (13) of Theorem 6.1,

(2) Every operator T from Y into X with range of dimension <3
has a norm preserving extension from 2 (Z DY, dim Z/Y = 1) to X.

(3) Every operator T from Y into X with a finite-dimensional

range has a norm preserving extension from Z (Z DY) into X.

Proof. By Theorem 7.10 (1) implies even a stronger version of (3)
(i.e. statement (3) of Theorem 7.10)., (3) ==> (2) is clear., By Theorem
7.8 if X satisfies (2) every 3-dimensional subspace of X has a poly-
hedron as unit cell, and hence X is polyhedral (Klee [27]).

We do not know whether a polyhedral space X for which x* is an
Ll space satisfies (3) of Theorem 6.1 with € = O, (Theorem 7.10 shows
that if X satisfies (3) of Theorem 6,1 with €& = 0 then X is poly=-
hedral and x* is an L1 space.) We shall now construct a class of
spaces which have property (3) of Theorem 6.1 with ¢ = 0, We first give a

sufficient condition for a space to be polyhedral.

Lemma 7.12. Let X be a Banach space such that for every point

: n

x # 0 there is a finite number of extreme points ix;}131 of Spx and a

number ©(x) < 1 such that |x*(x)l <-8(x)¢|| x|| for every extreme point
*

n
x of SX* which does not belong to {x:}ifl . Then X is polyhedral.

Proof, The Lemma follows from the compactness of the unit cells of
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Extension of compact operators 103

finite-dimensional spaces and from the fact that for every finite set ()
of functionals in x* the set

{ x; x€X, sup |x(x)| <] x|}
x e L

is an open subset of X,

By using this lemma it is possible to give some examples of infinite-
dimensional spaces which satisfy (1) = (3) of Theorems 7,10 and 7.11l. Let
X bea G space, i.e. X is (isometric to) a subspace of C(K) consis=
ting of all the functions which satisfy (7.1l). If for every f & X there

isa finite subset }nf of K such that

38 Pt}

i
sup [f(k)| < | £Il,

kfky

then by Lemma 7.12 X is polyhedral and since X is a G space X* =
Ll(ﬂ). Moreover, for such X every compact operator T from Y to X
has, for every Z DY, a compact and norm preserving extension from 2 to

X, Indeed, let F be the function from K to Y corresponding by (7.2)

to T. From our assumptions on X and from the compactness of F(K) it

follows that there is a finite set {ki}g_l CK such that

a = max || F(k)|| < max || F(k)[| = [| T||
ke }2.q keK
By a selection theorem of Michael [36, Example 1.3 and Proposition
7.2] there is a norm c¢ontinuous function ﬂf from Y* to z* which

satisfies

(1) Vi) y=v, wrer,

(i) V(ayx) =a¥(y*), y* €Y, A scalar,
(111) |[W(F(k DIl = Il F(k) I, 1 =1,.e0,n,
(1) Wyl Tl iyl fa, v EY .
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104 Joram Lindenstrauss

The operator T which corresponds to the function VF from K to Z* is
an extension with the desired properties.

The simplest example of a space of the category considered above is
o (the fact that ¢y 1is polyhedral is due to Klee [287).

We conclude by giving a sufficient condition for a compact operator
T into a G space to have a norm preserving extension., Unlike the pre-
ceding theorems we do not consider here the extension problem for a general

class of operators but rather restrict ourselves to a single given operator

Theorem 7.13. Let T ©be a compact operator from Y into X (X a
G space), Let F Dbe the mapping from K to Y* corresponding to T by
(7.2)e Let Z DY and put

A=FK)N{y* 5 ||yl = IITII'} .

If every functional in A has a unique norm preserving extension to a
functional on Z then there is a norm preserving extension of T from 2
to X, If, in addition, one of the following two conditions holds
(a) dim 2/Y < @ ,
WX *
() 1= |lexli=|[z%ll, n=1,2...,and 2§ > 2% (zf,2 €2")
=> ||z - || —> 0,
then T has even a compact and norm preserving extension from Z to X.
Proof, Without loss of generality we may assume that || T|| = 1. The
sets F(K) and A are compact in the norm topology of Y*. Let B be
the set
B = {yx; y* =2 F(k)/|| F(k)|]|, ke&k, F(k)#01}.
Clearly B D AU=- A, To every y* € B we assign a number p(y*) by

..]_)

PIve) = min2 ik )

y*¥=iF

(The inner min, which is taken over all the k for which F(k)/|] F(k)]|
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Extension of compact operators 105

is equal either to y* or to - y*, exists since F(K) dis compact).
The function p satisfies
(i) 1 <ply*) g2
(i1) ply*) =l <==>yx AU = A
(iii) p 4is norm lower semi continuous (n.l.s.c) 1i.e.
Il yp = vl —>0 implies p(¥y") < lim p(y}) .
(i) and (ii) are clear, We prove {iii). We may assume that
lim p(yﬁ) exists and that p(yg) <2 forevery n (if 1lim p(yﬁ) = 2
there is nothing to prove). Let kn &« K and let €, be signs such that

F{k )
p( Y’S) Im'k—')'” s Y*n En Imﬂn ” o

Since F(X) is compact we may assume that

el =1, k€K,

s

€ F(kn) —> & F(k)

Hence also || F(k )| —> [| F(k)|| and therefore
v* = e F(k)/| F(x) ]| .

Thus p{y*) < HF(k)H"1 = lim p(y%) and this proves (iii). Consider

now the function s defined on B by
s(y#) = 1+ 2d(yk, AU= A) + (p(y*) - 1) ,

where d(y*, AU~ A) denotes the distance of y* from AU- A, s has
the following properties

(i), 1<slyx) <ply¥) <2,
(i), s(y*) = 1 <==>y¥x € AU=- 4,

(iii)0 s{y*) is n.l.s.c. ,

(iv)o s{y*) 1is norm continuous at all the points of AU- A,
(i)o, (ii)o and (iii)o follow immediately from the corresponding

properties of p. (iv), holds since | y% - y*||—>0 , y*x € AU~ A
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106 Joram Lindenstrauss

implies that d(y%, AU- A) —> O and hence s(yx) = 1= s(y*) . Let
By = B~ (AU~ A). To every y*(E B, We correspond the closed and convex
subset of z* consisting of all the extensions of y* to functionals on
Z. By a selection theorem of Michael [36, Lemma 7.1] there is a norm con-

tinuous function 6 from By into z* which satisfies
llety=) lI< s(y*) , o(y*¥) |y = y*, y*€B;.

We extend © to a function defined on B (not necessarily norm continuous)
by taking as 6(y*) for y*E AU~ A the (unique) norm preserving exten-
sion of y* to a functional on Z. Finally we define the following func-
tion on F(K)U - F(K):

b g - oG L e so

o, if y* = 0 and O E F(K)

Viy*) =
We shall prove that ‘\V has the following properties:
(v Y=<,
(2)  Viy) )y = y*,
(3)  Yiay*) =aViy*) , A a scalar,
() lyx - y*ll—> 0 == [[V(yx) [|—> Wy ||, and
Viys) > Yiys) .
(We shall prove that these properties hold whenever all the terms appearing
in them are defined i.e. whenever all the arguments of '\V belong to
F(K)U - F(K).)
Properties (2) and (3) are immediate. We show first that (1) holds.
If y* =0, (1) is clear. For y* ¥ 0 let y§ = y*/lly*]l. y§€B and
p(yd) < lly*Il 71, hence
Hy*ll- ety < s(y@) Il y*Il< p(y@ Il y*lI< 1

Similarly || y*|l- |l 6(-yg) l|< 1 and hence 1¥(y*) |I< 1.

Licensed to Penn St Univ, University Park. Prepared on Wed Sep 4 10:25:26 EDT 2013 for download from IP 146.186.177.69.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 107

We turn to the proof of (4). We consider first the case when y* =0,

We may assume that y%* # 0 for every n and we have
W 1< 211yl (160, B, )11+ 11 80,8 ) 11) < 21l yxll —> o
v i< gllvg i ryzn 1D < 2lvgl = o.

For y* # 0 we consider v% = v¥/|l y*|l and assume first that y§ € B

(and hence also -y§ € By). In this case we have even Il}l/(yg) ~y’(y*) i

—> 0, since © 1is norm continuous on Bo (Bo is relatively open in B).
There remains only the case where yg (and hence also -yg) belongs

*
to AU- A, Let Yﬁ,o = yn/llyﬁﬂ ,n=1,2,.., . From (1v)° we infer
that

helyg o ll—>1 = [lelygll, llel-ys dll—>1=lle-yp)ll,
and hence
Im Wyl < Ilyxll= Iy= Il .
On the other hand
IR iz 1V gl = Isgll— iy,
and thus  [[V(y%) || = [[V(y) | .

We have also to show that YV(yﬁ) —ﬂ:> ]y(y*) . This will follow
once e(yﬁ,o) —E:> 8(y%) 1is proved (since by symmetry the same holds for
-yﬁ’o and -yﬁ). Since Sgx 1is wk compact we have only to prove that
every limiting point of the sequence e(Yﬁ’o) coincides with ©(y%). Let
z*¥ be a wt limiting point of the sequence e(yg’o). Then ]Iz*ll's
1iml! e(yg'o) | =1, and z*'Y = 1lim e(yg,o) Y = y*, Since we assumed that
y* has a unique norm preserving extension 2z* = e(yg) and this concludes
the proof of (4).

Having established the properties of Y/ the existence of a suitable
extension T follows immediately. We may take as T the operator corres-
ponding to the function ? -'VT from K to Z* (continuous in the w*
topology) .

Licensed to Penn St Univ, University Park. Prepared on Wed Sep 4 10:25:26 EDT 2013 for download from IP 146.186.177.69.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



108 Joram Lindenstrauss

The second part of the theorem follows also easily. If (a) is satis-
fied then any bounded extension of a compact operator is necessarily com-
pact. If (b) is satisfied then the function \V' constructed above will be
continuous in the norm topologies of Y* ana Zz* (this is a consequence

of property (4) of V). Hence the operator corresponding to \VF will be

compact.
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