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2 Joram Lindenstrauss 

CHAPTER I. INTRODUCTION 

The starting point of the extension theory for operators is the 

classical Hahn-Banach theorem. This theorem may be formulated as follows. 

Let X, Y and Z be Banach spaces with Z D Y. Let T be a 

bounded linear operator with a one-dimensional range from Y into X# 
/v 

Then there is a linear extension T of T from Z into X with 

1 1 * 1 1 - II Til • 

There arises, naturally, the question whether similar results hold 

for more general operators T. It is well known that the answer to this 

question is, in general, negative. Not only that a norm preserving exten­

sion T may fail to exist, but in general there does not exist even a 

bounded extension. Those spaces X for which the statement above remains 

valid if we drop the restriction that T has a one-dimensional range are 

called /P-* spaces. More generally if a space X has one (and hence all) 

of the three equivalent properties stated below it is called a (P^ space 

(X > 1, see Day [6, p. 943). 

(i) For every Banach space Z containing X there is a linear 

projection P from Z onto X with || P||< X. 

(ii) For every Banach space Z containing X and for every bound­

ed linear operator T from X to a Banach space Y there is a linear 

extension T of T from Z to Y with || ¥|| < x|| T || . 
T, 

(iii) For every bounded linear operator/from a Banach space Y to 

X and for every Z D Y there is a linear extension T of T from Z 

to X with ||T||< X|| T || . 

The ^, spaces were characterized by Nachbin [37], Goodner [11] 

and Kelley [25] who proved that X is a fi\ space iff it is isometric 

to the space C(K) of all the continuous functions on an extremally dis­

connected compact Hausdorff space K with the sup norm. (Iff means, as 
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Extension of compact operators 3 

usual, if and only if. A topological space is called extremaHy discon­

nected if the closure of every open set is open.) The problem of the 

characterization of the <r spaces for X > 1 is still open. In parti­

cular it is not known whether every ^\ space is isomorphic to a fi^ 

space. 

Our purpose in the present work is to study those Banach spaces X 

which have extension properties which are "between" the Hahn-Banach exten­

sion property (which is shared by all Banach spaces) and the extension 

properties (ii) and (iii) above which ensure the existence of an extension 

for all operators (from, resp. into X). We are interested in particular 

in extension properties for compact operators. 

The discussion of the extension properties is divided into two parts* 

In the first part, which consists of Chapters II and III, we are concerned 

just with the question of the existence of a bounded or compact extension 

for certain compact operators. The results we obtain are rather incom­

plete and our main reason for including them here is that they form the 

framework in which we present the much more detailed theory of norm 

preserving or almost norm preserving (cf. the explanation of this notion 

below) extensions of compact operators. Chapters IV-VII are devoted to 

various aspects of the theory of norm preserving extensions. 

We outline now briefly the contents of the various chapters. At the 

end of this chapter we give, besides the notations, also a list of the 

known results concerning P- spaces. In Chapter II we investigate the 

relation between various extension properties for compact or weakly com-
/V 

pact operators in which the extension T of the given operator T is 

assumed to satisfy the inequality ||T||< X||T|| for a certain X which 

is independent of T (cf. Theorem 2.1). It is observed next (Theorem 2.2) 

that if all operators of a certain class can always be extended then there 

is a finite X such that the extension T can be chosen so that || T||< 
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4 Joram Lindenstrauss 

X||T|| (the same X for all the operators T in the specific class). The 

proofs in Chapter II use rather standard compactness and embedding argu­

ments. In Chapter III we introduce a class of spaces called oYl spaces, 

These are Banach spaces which can be represented as the closure of the 

union of a directed set {B„J of finite-dimensional subspaces where each 

B^ is a/\ space (X does not depend on T). It is shown (Theorem 3,3) 

that these spaces have the extension properties treated in Chapter II. 

Conversely it is shown in Theorem 3.4 (under a certain assumption on X 

which is satisfied for example by every separable space with a basis) that 

if a Banach space X has extension properties which are even weaker 

(formally at least) than those considered in Chapter II then X is an 

*̂ V? space for some X. All C(K) spaces are «/r? spaces for every 

X > 1. 

Following Nachbirfs study of v-* spaces [37] our main tool for in­

vestigating norm preserving extensions of compact operators is the use of 

intersection properties of cells. In Chapter IV the relation between some 

intersection properties are investigated. This chapter is combinatorial 

in nature and does not depend on Chapters II and III. Our main interest 

is in intersection properties which are important in the study of the ex­

tension of operators. However, a few theorems which may be of some inde­

pendent interest are stated in a form which is stronger than actually 

needed in the subsequent chapters (for example Theorems 4*1 and 4*7)• 

In Chapter V the connection between extension and intersection prop­

erties is studied. Again, most of the results of Chapter V are used in 

Chapters VI and VII but some results, like the characterization of the 

Banach spaces whose cells have the finite intersection property (Theorem 

5.9), are stated only since they follow rather easily from the discussion 

and are, perhaps, of some interest in themselves. 

Chapters VI and VII contain the main results of the present work, 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 5 

Chapter VI begins with a theorem (Theorem 6.1) which gives a long list of 

properties of a Banach space X, each of which is equivalent to the as-

sumption that X - L-.(#) for some measure #. This theorem extends some 

previous results of Grothendieck [15]. In order to show the main direc­

tion of our discussion we state here some of the properties shown to be 

equivalent to the assumption that X - L,. The six properties of a 

Banach space X which are stated here consist of three pairs, (a-.) and 

(a2) are "from" extension properties, (b,) and (b2) are "into" exten­

sion properties and (c-,) and (c2) are intersection properties. In 

each pair the second property is (only formally of course) weaker than the 

first. 

(a-*) For every Banach space Y, every ZI)X, and every compact 

operator T from X to Y there is a compact norm preserving extension 

V of T from Z to Y. 

(a2) The same as (a-, ) but with the further assumptions that 

dim Y = 3 and dim Z/X = 1. 

(b-j) For any Banach spaces ZI)Y, every e > 0 and every com-

pact operator T from Y to X there is a compact extension T of T 

from Z to X with || T|| < (1+e) || T|| . 

(b2) The same as (b-, ) but with the further assumptions that 

dim Y = 3 and dim Z • 4* 

(c^) Every collection of mutually intersecting cells in X, whose 

set of centers is a compact subset of X, has a non empty intersection. 

(c2) Every collection of four mutually intersecting cells in X 

(all having radius 1) has a non empty intersection. 

Properties (b^) and (b2) ensure the existence of what we call 

almost norm preserving extensions. In case the unit cell of X has at 

least one extreme point it is possible to get somewhat stronger results by 
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6 Joram Lindenstrauss 

introducing a partial order in X and investigating order properties 

which are equivalent to the usual decomposition property in partially 

ordered vector spaces. 

In view of the results mentioned above the discussion in Chapter VI 

can be considered as the investigation of the properties of spaces X 

whose conjugates are abstract L spaces in the sense of Kakutani [23]# 

Theorem 6.6 gives a characterization of C(K) spaces in terms of the equi­

valent properties appearing in Theorem 6.1. A more general class of 

spaces than C(K) spaces which satisfy X » L-,(/0 is considered next. 

These spaces (called here G spaces) were introduced by Grothendieck. 

The chapter ends with a proof of the fact that a Banach space which is a 

1+e sP a c e ^ o r every e > 0 is already a ^ . space (Theorem 6.10). 

The results of Chapters IV-VI solve some problems raised by Aronszajn and 

Panitchpakdi [2], Grothendieck [15], Grunbaum [17], Nachbin [37,3^,39] and! 

Semadeni. Several examples and counterexamples are given to illustrate 

the theorems and to show that some of the results are in a sense the best 

possible. 

The question which spaces X have properties (b.) or (bp) with 

e = 0 and related questions are the subject of Chapter VII. These ques­

tions turn out to be rather delicate and are closely related to the follow­

ing problem. Given Banach spaces Z3)Y, when does there exist a mapping 

T from Y into Z such that Y is continuous (taking in Y and Z 
$ f 

the norm topologies) and such that for every y* £~Y f (y*) is a norm 

preserving extension of y* to Z. Theorem 7.3, Lemma 7.4 and the 

corollaries to Theorems 7.5 and 7.6 are results concerning this question. 

Another problem closely related to the existence of norm preserving exten­

sions is the characterization of finite-dimensional spaces whose unit cells 

are polyhedra (cf. Theorem 7.7 and the corollary to Theorem 7.5). The 
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Extension of compact operators 7 

extension theorems of Chapter VII deal not only with the extension of com­

pact operators but also with the extension of certain isometries (cf. 

Theorems 7.5 and 7.#). 

The problem of the lifting of compact operators, which is dual to 

the extension problem, is not discussed here. In [33] we gave some re­

sults concerning liftings which are the duals to some of the results in 

Chapters VI and VII. It turns out that the lifting problems are in many 

respects simpler than the corresponding extension problems which are dis­

cussed here. 

Many unsolved problems are stated throughout the paper, 

The present Memoir is a revised version of technical notes no. 2£, 

31 and 32 (the Hebrew University, Jerusalem, I962) entitled extension of 

compact operators I, II and III. These notes in turn were based on the 

author*s Ph.D. thesis prepared under the supervision of Professor A. 

Dvoretzky and Dr. B. Grunbaum of the Hebrew University. I wish to express 

my warm thanks to both for their valuable help and kind encouragement. I 

also wish to express my warm thanks to Professor S. Kakutani of Yale 

University for many helpful conversations concerning the subject of this 

paper. 

The main results of chaptersVI and VII were announced in [30] and 

[31]. Papers [32], [33], [34] and [35] are essentially results and exam­

ples which complement some parts of the present paper. The results of 

these papers are mentioned here in the proper context but only the results 

of Section 2 of [33] are reproduced here (in Chapter V). 

Notations. We consider only Banach spaces over the real field R 

(R will denote also the one-dimensional space). The terminology and no­

tions, from general topology and the theory of Banach spaces, used here 

are the standard onea So is also the notation of special Banach spaces as 
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3 Joram Lindenstrauss 

CQ, C, m » J, 9 J (1 < p < oo), LAfi) (where // is a measure and 1 < 

p < oo) and C(K), the Banach space of all bounded real-valued continuous 

functions on the topological space K with the sup norm. JL is the 

space of all n-tuples of real numbers x * (x,,x2,...,x ) with || x|| =* 

(£ x?)1'1* if 1 < p < oo and « max Jx±| if p - oo. If s is a Banach 

space of (finite or infinite) sequences of real numbers and X. are 

Banach spaces (whose number equals the number of the coordinates of the 

points of s) then 

( x 1 e x 2 © . . . © x i © ... ) s 

swill denote the space of the sequences x 3 (x-,,x2,...) with x. £ X , 

and (|j x-JI, || x2||f»*
#) £ s . || x|| will be the norm of the latter sequence 

in s. X © Y will mean the direct sum of X and Y as a vector space 

in which the exact norm is not yet specified. If we write that Z ^ Y we 

mean that Y is isometrically embedded in Z. If we consider X as a 

subspace of X we always assume that X is embedded canonically in X . 

The term operator will be used only for bounded linear operators. Let 

Z 3 Y be Banach spaces and let T be an operator defined on Z. The re­

striction of T to Y is denoted by Tiy. A similar notation will be 

used for restrictions of functionals and more general mappings. 

In a normed space X we denote by Sy(x0,r) the cell {x; x £ X , 

||x-x0|| < r]. If there can arise no confusion as to the space in which we 

take the cell we omit it from the notation and write simply S(xQ,r). The 

unit cell of X, 3^(0,1), is denoted also by 3^. The signs ™fP\9\J 

Iwill be used to denote set theoretical operations while the signs + and 

- will be used for algebraic operations on sets in a vector space (thus 

for example Sx(xQ,r) * xQ + rSx). Co(A) denotes the convex hull of a 

set A in a vector space and A denotes the closure of a set A in a 

topological space. 
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Extension of compact operators 9 

In order to simplify the statement of the extension properties we 

shall assume (unless stated otherwise) that X is a fixed space (whose 

properties we investigate) while Z and Y are any Banach spaces satis-

fying the requirements (if any) imposed on them. T, T~, T etc. will de­

note* operators. With this agreement the formulation of property (ii) 

above will be, for example: 

Every T from X to Y has an extension ~ from Z ( Z ^ X ) to 

Y with j| "H < M| T|| • 

Let X be a Banach space. By dim X we understand the smallest 

cardinality ?n. such that X is the closed linear span of a set {x } 

consisting of >n. elements. 

A Banach space X has the metric approximation property (M.A.P,) 

if for every compact subset K of X and for every e > 0 there is an 

operator T with a finite-dimensional range from X into itself such 

that (J T|| - 1 and || Tx-x|| < e for every x gTR. This notion was in­

troduced by Grothendieck [13]. Grothendieck has shown that the common 

Banach spaces have this property. It is an open question whether there 

exists a Banach space which does not have the M.A.P. 

Some further notions will be defined in the subsequent chapters* 

The most important of them are: */K^ a n d ^ spaces (cf. the beginning 

of Chapter III), the various intersection properties (cf. the beginning 

of Chapter IV), G spaces (cf. Chapter VI before Lemma 6.7) and the no­

tion of a continuous norm preserving extension (C.N.P.E.) map (cf. 

Chapter VII before Lemma 7.2). 

Preliminaries. We shall list now some known results concerning 

spaces. These results and those mentioned already in the beginning of 

this chapter (i.e. the equivalence of (i), (ii) and (iii) and the charac­

terization of spaces) will be used freely in the sequel without 
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10 Joram Lindenstrauss 

referring again to the literature, 

Every Banach space can be embedded isometrically in a P*> space 

(e.g. in the space of the bounded real-valued functions on a set of a 

large enough cardinality). An immediate and well known consequence of 

this fact is 

Lemma 1*1. Let T be an operator from a Banach space Y into a 

Banach space X and let Z ^ Y , Then there is a Banach space V 3 X 

with dim V/X < dim Z/Y such that T has a norm preserving extension T 

from Z to V. 

Let Z be a P+ space and let X be a subspace of Z on which 

there is a projection with norm ^, then X is a ^\y> space (cf. 

Day [6, p. 94]). Let X be a P* space then X is also a P+ 

space (for X = 1 this is a consequence of the characterization of ^i 

spaces. From this special case the general case follows immediately). 

Every infinite-dimensional P* space has a subspace isomorphic to c~ 

(Pelczynski [41, 42]). This result implies some earlier results of 

Grothendieck [12], that no separable infinite-dimensional space is a r 

space (i.e. a P^ space for some finite \) and that there is no in­

finite-dimensional weakly sequentially complete (and in particular no in­

finite-dimensional reflexive space. 

For every integer n there is a unique (up to isometry) n-

dimensional (r^ space. This is the space whose unit cell is the 

n-dimensional cube. Every finite-dimensional space X is a space. 

It is easily proved that if dim X » n then X is a P space and 

stronger results are also known (cf. Grunbaum [l£]). The projection con­

stants of some finite-dimensional spaces X (i.e. the inf of the X 

such that X is a P+ space) were computed by Grunbaum [IS] and 

Rutowitz[44]« In general the projection constant tends to infinity with 
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Extension of compact operators H 

the dimension (cf. [29]). 

The spaces of continuous functions which are r spaces were in­

vestigated recently by Amir [1] and Isbell and Semadeni [19]. The paper 

of Nachbin [3&] gives a recent survey of various extension problems and 

contains an extensive bibliography. 

CHAPTER II, GENERAL RESULTS 

We begin this chapter by investigating the relation between the fol­

lowing eight properties 

(1) X is a (r* space. 

(2) Every T from Y to X has an extension T from Z (Z D Y) 

to X** with || T||< X|| T|| . 

(3) Every compact T from Y to X has (for every e > 0) a 

compact extension ¥ from Z (Z D Y) to X with ||¥||< (X+e)||T||. 

(4) Every compact T from Y to X has (for every e > 0) an 

extension T from Z (Z D Y, dim Z/Y < 00) to X with ||#T||< (X+e)||T||. 

(5) Every T from X to a conjugate space Y has an extension 

? from Z (Z D X) to Y with || ¥||< x|| T ||. 

(6) Every compact T from X to Y has a compact extension T 

from Z (Z D X) to Y with || T ||< x|| T || • 

(7) Every weakly compact T from X to Y has a weakly compact 

extension ¥ from Z (Z D X) to Y with || ¥|| < X || T || . 

(£) Every compact T from X into itself has (for every e > 0) 

an extension *T from Z (Z D X, dim Z/X < 00) to X with ||T||< 

(X+e)||T||. 

Properties (2), (3) and (4) are "into" extension properties, (5), 

(6) and (7) are "from" extension properties and (£) is concerned with the 

extension of operators from X into itself. 

Theorem 2.1. Let X be a Banach space. Then 
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12 Joram L i n d e n s t r a u s s 

(3) " > (4) --> (l)<==> (2)<«-> (5) ^ j ^ 3 £ ( 3 > . 

For spaces X having the M.A.P. also ('£) »=> (3), i.e. all the proper­

ties (1) - {$) are equivalent. 

Proof. (3) «»> (4) is clear. In order to show that (4) mad> (1) 

we prove first that (4) =as> (9) where (9) is the following property 

(9) The identity operator of X has an extension T from Z 

( Z D X ) to X** with ||T||<X. 

Let Z D X , we define a partial order in the set of the pairs 

(B,e) where B ranges over the finite-dimensional subspaces of Z and 

1 > e > 0, by 

(B1,e1) >- (B2,e2) <»==> B1 D B2, ^ < e2 . 

(From (4) i t fo l lows t h a t f o r every p a i r (B,e) t h e r e i s an o p e r a t o r 

T(B e) f r o m B t 0 X s a t i s f y i n g : 

a- l | T ( B > £ ) | | < X + e . 

b. The restriction of T/g * to BHX is the identity operator 

of that subspace. 

For every r Sx##(0,r) is compact Hausdorff in the w topology 

hence, by Tychonofffs theorem, the same is true for 

TT - TT sx** (0, || s || (x+D) 

z€Z 

in the usual product topology. For t £ 7T w e shall denote its z 

"co-ordinate" (z £ Z) by t(z). To every operator T/g » (regarded as 

an operator from B to X ) we assign a point t/g \ in TT by 

t, >(.) =.fV e> Z if Z£B 

t ( B ' £ ) ( Z ) \o if .jfB . 

Let t be a limit point of the net t/g \. t has the following proper­

ties 
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Extension of compact operators 13 

(i) t(x) = x, ( x C D . 

(ii) t(az1+pz2) « atfz.̂ ) + pt(z2), (z,,z2 £ Z; a,p scalars). 

(iii) ||t(z)||< X||z|| ( « £ Z ) . 

(i) follows from the fact that t/g £\(x) * x for (B,e) >• ([x],l) ([x] 

denotes the subspace spanned by x). (ii) and (iii) follow similarly. 

The operator T from Z to X defined by Tz - t(z) has the required 

properties. 

In the proof of (9) " > (l) we shall use some well known facts 

concerning the duality in Banach spaces. We shall first list these facts. 

Let U D V be Banach space, let V be the annihilator of V in U and 

V the annihilator of Vx in U . V is isometric to V . If T 

is an operator from U into itself with TU C V then T*VX - 0 and 

T U G V . If T is an operator from U into itself with TV » 0 

then T U C V and T V - 0. In particular if Q is a projection in 

U with V - Q-1(0) then Q* is a projection from U* onto V"1". Let 

now W C V C U, then VT" C V C U (the x is taken with respect to 

U). For W we can take the -u also with respect to V. The two possible 

W thus obtained are connected by the fact that in the natural isometry 

from V^^ to V , the subspace W (the -L with respect to U) is 

mapped onto W (the JL with respect to V). 

We turn to the proof of (9) as*> (1) • Let Z be a /*, space con-

taining X , i.e. Z ^ X D X , From (9) follows the existence of an 

operator T from Z into itself such that TZ C X , T|X is the iden-

tity operator of X and ||T||< X. Hence T Z C X and the re-

striction of T to X is the identity. Dixmier L7J has remarked 

that there is a projection Q with norm 1 from X onto X . Q is 

the restriction map - every functional on X is mapped to its restric­

tion to X. Hence Q (0) « X (the -L here is taken with respect to 

the inclusion X C X ), and therefore Q is a projection of X 
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14 Joram Lindenstrauss 

onto X . Using the isometry between X and X we get a pro-

jection P with norm 1 from X onto X (the x are now with 

respect to the inclusion X C Z). It follows that PT is a projection 

with norm < X from Z onto its subspace X and hence X is a 

(P~ space. 

The implications (l) ==> (2) **> (9) and (5) *=> (9) are clear. 

Hence we have proved already that (l) <*«> (2) and that (5) •*> (l). 

We prove now that (9) (and hence (l)) implies (5). 

Let Y be a conjugate space and let T be an operator from X 

into Y. By (9) there is an operator TQ with norm < X from Z into 

X whose restriction to X is the identity. There is a projection with 

ro norm 1 (Q, say) from Y onto Y. T - QT Tn is an extension of T 

from Z into Y with || T ||< x|| T || . 

The proofs of (9) "**> (6) and (9) *=> (7) are similar to that of 

(9) msi> (5). We do not need here the existence of a projection from Y 

onto Y since for weakly compact T (and in particular for compact T) 

T already maps X into the canonical image of Y in Y (see [&, 

pp. 4S2-4S3]). The implications (6) ==> (8) and (7) " O (S) are im­

mediate. Actually, each of (6) and (7) implies a stronger extension prop­

erty for operators from X into itself (e.g. {$) with ea0). (3) was 

stated in a weak version since already this version implies property (3) 

for spaces having the M.A.P. 

Let us now assume that X has the M.A.P. and satisfies (&). Let 

Z 3 Y be Banach spaces, let T be a compact operator from Y into X 

and let e > 0. An easy and well known consequence of the assumption that 

X has the M.A.P. is that there exists an operator TQ with a finite-

dimensional range (B, say) from X into itself such that ||TQ||= 1 and 

|| T0T-T||< s. Let U be any Banach space satisfying Z D U D Y and 

dim U/Y < GO. By Lemma 1.1 there exist a Banach space V D X and an 
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Extension of compact operators 15 

extension l?1 of T from U into V such that || r?11| - ||T|| and 

dim V/X * dim U/Y. By (g) there exists an extension TQ of TQ from V 

into X with II TQ||< \ + e. Ty - TQTQ^ is an operator from U into B 

such that llTyiy - T||< 2e and 11 ̂ y 11 < (X+e)||T||. Since dim B< 00 we 

obt>ain by using a compactness argument similar to that used in the proof 

of (4) ms*> (9) that there is an operator T from Z into B satisfy­

ing ||T,y - T||< 2e and ||T||< (X+e)||T|| . We have thus shown that X 

satisfies 

(10) For every compact T from Y into X (and every e > 0) 

there is a compact ¥ from Z (Z 3 Y) into X such that ||T||< 

(X+e) || T || and ||f(Y - T||< e. 

To conclude the proof of the theorem we show that (10) *»> (3) 

(here we shall not use the assumption that X has the M.A.P.). Let 

Z 3 Y, e > 0, and a compact T from Y into X be given. By (10) 

there exists a sequence fTnln=i
 of compact operators from Z into X 

satisfying 

IITJH (X+e)||T||, ||*1|T-T||< e/2 

and for n = 2,3,••• 

II Tn||< (X+1) || T-lT^+.-.+T^) jT|| 

II Tn|Y - I M I ^ . . . ^ ] )T) ||< e/2* . 

For n> 2 we have in particular that ||Tn||< (x+lje^
11"1 and hence the 

series £ T converges in the norm topology to a compact operator T 
n-1 n 

satisfying Tiy * T and 

II T ||< ||T,|| + 2 (X+l)e/2n-1< (X+e)||T|| + (X+l)c . 
1 n=2 

Hence X has property (3) and this concludes the proof of the theorenu 

Remark. For X a 1 some of the equivalencies of Theorem 2.1 were 
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16 Joram Lindenstrauss 

obtained by Grothendieck [13, 15] using his theory of tensor products. 

For that case (i.e. \sl) the theorem can be strengthened considerably. 

We shall discuss this case in detail in Chapter VI. 

Corollary 1. Let X be a Banach space satisfying (l) and let Y 

be a direct summand of a conjugate space. Then every operator T from X 

into Y has an extension T from Z (Z 3 X) into Y. 

Proof. Let Y be a complemented subspace of U * V . By (5) T 

can be extended to an operator TQ from Z into U. T » PTQ, where P 

is a projection from U onto Y, has the required properties. 

Remark. A Banach space Y is a direct summand of a conjugate space 

if and only if it is a direct summand of Y . Indeed, let U « V be a 

space containing Y and let P be a projection from U onto Y. Then, 

canonically ^ 

IT* D l . 
D U 

Let Q be a projection with norm 1 from U onto U. Then PQiy** 

is a projection from Y onto Y and || PQ|Y**II< II pll • 

Corollary 2. Suppose that X D Z D X and that Z is a r 

space. Then also X is a ^1 space. 

Proof. We proceed as in the proof of (9) ==> (1). Let P be a 

projection with norm 1 from X onto X . Since X D Z D 

X"1" , ^Iz-1"1 i s a Pr°Jecti°n from a r space on a space isometric to 

Corollary 3* Let X have property (1) and let B be a finite-

dimensional subspace of X on which there is a projection with norm >o. 

Then B is a ^\ space. 

Proof. Use (6) with B » Y, T a projection from X onto B and 

Z a /^ space containing X. 
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Extension of compact operators 17 

Corollary 4. Let X have property (l) and let K be the closure 

(in the w* topology) of the extreme points of the unit cell of X . 

Then any weakly compact T from X to Y can be represented as 

Tx - J <x,x*> d#(x*) 

K 

where fi is a measure on K with values in Y and <x,x*> = x*(x). The 

image under T of a w convergent sequence is convergent in the norm 

topology. If Y - X (i.e. if T maps X into itself) then T2 is com­

pact. 

Proof. K is compact Hausdorff and the mapping x — > <x,x*> is an 

isometry of X into C(K). By (7) T can be extended to C(K). The 

corollary follows now from known results about weakly compact operators 

defined on C(K) spaces (see [8, Chapter 6, Section 7]). 

In the extension properties listed before Theorem 2.1 it was always 

required that the norm of the extension T could be estimated by an in­

equality of the form || T||< >j|| T || . However it is easily seen that in 

some cases the mere existence of an extension implies the possibility of 

such an estimation. 

Theorem 2.2.(a) Let X be a Banach space such that every compact 

T from Y to X has a compact extension from Z (Z D Y) to X. Then 

there is a constant >? so that for every such Y, Z and T there is a 

compact extension T with || T ||< V\\\ T || . 

(b) Let X be a Banach space such that every compact T from X 

to Y has a compact extension from Z (Z D X) to Y. Then there exists 

a constant >J so that for every such Y, Z and T there is a compact ex­

tension T with ||T||< ij||T|| • 

Proof, (a) Suppose no such vo exists. Then for every n there 

are spaces Z D Y and a compact operator T from YR to X with 
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l£ Joram Lindenstrauss 

|| Tn|| « 1 such that any compact extension *¥ of T from Z to X 

satisfies || Tn||> n
3. Let Y - ( Y ^ - - ® Y n © • • • ) c and let T be 

the compact operator from Y to X defined by 

oo T y 
T(yi.---.yn,---> - E -SjS . 

n=l n 

Let T be a compact extension of T from (Z, © ••• © Zn ® ••• ) to 
l n cQ 

2 / v 

X. The restriction of n T to ZR (i.e. to the sequences 

(0,...,0,zn,0,...)) is an extension of T . This contradicts our assump­

tion (for n > || T|| ). 

(b) It is enough to prove that if Z is a (fixed) ^, space con­

taining X, then there is an vj such that every compact T from X to 

Y has a compact extension T from Z to Y with || T||< >̂|| T|| . Keep­

ing this in mind the proof proceeds now in the same manner as in part (a). 

Remark. (a) and (b) here correspond, respectively, to the exten­

sion properties (3) and (6). Similar results corresponding to the exten­

sion properties (2), (5) and (7) can be proved in the same manner. Ob­

viously no similar results can be obtained for (4) and (£). 

As remarked in the beginning of the introduction the "from" exten­

sion property for the class of all operators (property (ii) there) is 

equivalent to the "into" extension property (property (iii) there). We 

shall now investigate how far this symmetry between "from" and Mintow ex­

tension properties carries over to the case of compact or weakly compact 

operators. 

For spaces X having the M.A.P. it was shown in Theorem 2.1 that 

a "from" extension property for compact operators (property (6)) is equi­

valent to the "into" extension property (3). The formulation of these 

properties is, however, not completely symmetric. While in the "from" 

extension property the extension T satisfies ||T||< X||T|| the 
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Extension of compact operators 19 

"into" property only assures the existence, for every given e > 0, of a 

T with || T||< (x+e) || T ||. In Chapter VII it will be shown that (6) does 

not imply (3) with e « 0 even if dim Z/X < 00. 

For weakly compact operators the symmetry breaks down completely. 

Evea if X is a ^1 space it does not have an "into" property corres­

ponding to the "from" property (7) for weakly compact operators. The 

reason for this phenomenon lies in the special properties of weakly com­

pact operators appearing in Corollary 4 to Theorem 2,1. 

Let T be the formal identity operator from -/L to CQ, i.e. T 

maps the sequence (x-,,X2,...) in -t^ to the same sequence in CQ. 

*2 3-s reflexive and hence T is weakly compact. Let Z be any space 

containing -/2
 s u c n that Z is a Ir space (e.g. Z • C(0,1)) and 

Let X be any space containing CQ (in particular X can be any infi­

nite-dimensional C(K) space). T does not have a weakly compact exten­

sion from Z to X since the sequence f^ei}?«i does not converge in 

the norm topology while {e. 1?*=.̂  is w convergent to 0 H©*}?.! 

denotes the natural basis of X^) . Moreover, if X is not a P space 

(but still X n may be a a space) it is possible that T will not 

have even a bounded extension. This is the case for example if Z * m 

and X • CQ, since any operator from m to a separable space is neces­

sarily weakly compact (Grothendieck [12]). 

We conjecture that only finite-dimensional spaces X have the 

following extension property: 

Every weakly compact operator from Y to X has a weakly compact 

extension from Z (Z D Y) to X. 

From (4) -H> (1) of Theorem 2.1 and the proor of Theorem 2.2(a) 

it follows immediately that if X has this extension property then X 

is a (r space. Further, as we have seen above, such an X cannot 

contain a subspace isomorphic to CQ (the same remark shows that X has 
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20 Joram Lindenstrauss 

no infinite-dimensional reflexive subspace)• Hence our conjecture will be 

proved if it can be shown that every infinite-dimensional space X whose 

second conjugate is a r space has a subspace isomorphic to CQ. 

We pass now to the problem of extending compact operators between 

general spaces, when we allow the enlargement of the range space. The 

question is the following: suppose that the operator T appearing in the 

statement of Lemma 1.1 is compact [weakly compact], can T be chosen to 

be also compact [weakly compact]? For the case of weakly compact T the 

answer is negative even if we discard any restriction on ||T||. This 

follows from the preceding discussion. In Chapter VII we shall see that 

for compact T the answer is also in general negative if we require that 

|| T || * || T||. If however we allow even an arbitrarily small increase of 

the norm the situation is different. 

Theorem 2.3. Let T be a compact operator from a Banach space Y 

into a Banach space X. Then there exists a Banach space V D X such 

that 

(i) V/X is separable 

(ii) For every e > 0 and every 2 D Y there is a compact exten­

sion I of T from Z to V with || T||< ||T||+e. 

Proof. It is convenient (though not necessary) to use some results 

which will be proved in the next chapter. Let U be a space con­

taining X. The subspace T(Y) of X is separable, hence (Lemma 3.2) 

there exists a separable JfY space UQ with T(Y) C UQ C U. Th e sub-

space V of U spanned by X and UQ has the required property 

(Theorem 3.3). 

CHAPTER III. THE <A\ SPACES 

A. 

We begin with the definition of the */r? spaces. 

Definition. A Banach space X is called an Jfx space if there 
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Extension of compact operators 21 

exists a set {B,J of finite-dimensional subspaces of X, directed by 

inclusion, such that X « U B and such that every B is a space. 
f t L A . 

A Banach space is called an ^ T space if it is an <Sy? space for some X. 

The simplest example of an infinite-dimensional «^KC space is the 

space CQ. Indeed let (ei}^«x °e tne natural basis of this space and 

let B be the subspace spanned by {eili«i* Then clearly B C B
n+i> 

CQ » U B
n
 and every Bn is a v^ space. The spaces C(K) with K a 

n 

totally disconnected compact Hausdorff space, are also simple examples of 

^Y-. spaces. In particular every ^ 1 space is an w/rl space. 

Before beginning to investigate the properties of *̂ ff spaces it 

should be remarked that an t/rC space X - L/B^ is not fully determined 

by the spaces B ^ — it also depends on the nature of the embedding of B^ 
in B r (for ^ " ^ ^ 2 ' * F o r e x a mP l e* DOtn co and C(°A) can De 

represented as U B n where Bn+i D B and Bn is the (unique up to 
n 

isometry) n-dimensional v^ space. That CQ has such a representation 

was shown above; we shall prove that this holds also for C(0,1). Let 

{fi}?ssl be the Schauder basis [6, p. 69] of C(0,1). For every 

f £ C(0,1) the sum of the first n terms of the expansion of f with 

respect to f^i?T=i ( Pn^ ' s a^ ^s a ^ u n c t i ° n whose graph is a polygon 

with vertices belonging to the graph of f. Hence || Pn(f) ll< II f II $ and 

thus P is a projection with norm 1 from C(0,1) onto the subspace 

B n spanned by 1^1 J.]/ Bv Corollary 3 to Theorem 2,1 Bn is a tr^ 

space. From this the above assertion concerning C(0,l) follows. 

An «/r. space is defined as the closure of a union of v^ spaces. 

In the following lemma it is shown that we can dispense with the closure 

provided X is replaced by X + e with e > 0. 

Lemma 3.1. Let X be an i/rl space and let X > X. Then there 

exists a set {B ?} of finite-dimensional subspaces of X, directed by 
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22 Joram Lindenstrauss 

inclusion, so that X • l/B » and that every B ? is a ^\ f space. 

Proof. The statement of the lemma is clearly equivalent to the 

following: every finite set fxil?a-i of points of X is contained in a 

finite-dimensional (r^ t space. Without loss of generality we may assume 

that the {xil?»i are linearly independent. Hence there is a constant M 

such that for every choice of {V.}? n, £ |V. | < M || £ Y.x. || . Let 

1 1 i ± m l l ± m l I I 

e > 0. Since X is an ^4C space there exists a finite-dimensional sub-

space B of X which is a \̂. space and which contains points [y^}?an 

satisfying Hy^-X^ll^ e (i-l,...,n). If e is sufficiently small the 

{y. I?-,-! will also be linearly independent. Denote the subspace spanned 

by the fŷ }?:*} bY c anci let P be a projection from X onto C with 

II pll< **. We now choose points U-jl^ai with Pz . - 0 (j-l,...,m) such 

that the talis*! and ^i^-i form together a basis of B. Thus every 

b £ B admits a unique representation of the form 

m n 
b - £ a . z , + £ p .y . . 

j - 1 3 J i-1 x 1 

n 
By the choice of the z . we have that Pb • £ B . y . . By our assumption 

3 i = 1 i * on the y. 

n 
£ p .y . - £ p .x || < e £ | p J < e M | | £ p x. | 

i - 1 i 1 i-1 1 x i-1 x i-1 x x 

Hence, i f eM < 1, 

11 j x
 piyi - j x

 p i x i ^ * 'I £ M i Hi T * II b« > 

and therefore 

(* - lSl> 'I b Hi 'I | ajzj + . = • P±X±H< (1 + iSl) II bll • 

Thus if e is sufficiently small B will be "almost" isometric to 

the subspace B of X spanned by {z , } m , and {xil?ai (M and n 
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Extension of compact operators 23 

depend only on {xi}^=1 while B and B depend also on e). In parti­

cular e may be chosen so small that B will be a (P*i space. 

f 

Remark. Lemma 3.1 does not hold with X * X . As a counter example 

we take the space C(0,1). We already know that it is an *sVl space. 

Let B be a finite-dimensional subspace of C(0,l) whose unit cell is 

not a polyhedron. Since the unit cell of a finite-dimensional (r-i space 

is a polyhedron such a space cannot contain B as a subspace. Hence 

C(0,1) cannot be represented as the union of a set of ^% spaces 

directed by inclusion. In thit> connection we would like to remark that in 

Chapter VII it will be shown that every finite-dimensional subspace of an 

"V ^ space X (and even of a space which is an t//^1+e space for every 

e > 0) whose unit cell is a polyhedron is contained in a finite-

dimensional {r^ subspace of X. In particular, every i/K space all 

whose finite-dimensional subspaces have a polyhedron as their unit cell 

(for example CQ) can be represented as a union of a directed set of 

finite-dimensional v.\ spaces (for details see Theorem 7^9)• 

Lemma 3.2. (a) Let X be an t̂ /C space and Y a separable sub-

space of X. Then there exists a separable v/fC space Z with Y C ZCX* 

(b) Let X be a Banach space such that for every separable sub-

space Y of X there exists an space Z with Y C Z C X. Then X 

is an space. If for every such Y there exists a Z (with Y C Z 

C X) which is an i/V- space (X does not depend on Y) then X is an 

4 ' space for every X > X. 

Proof. (a) Let X » \J B where the B form a set, directed by 

inclusion, of subspaces of X which are /r~ spaces. Let ly-jlTa! be a 

dense sequence in Y. For every i let tx?Jn*l ^e a s e (l u e n c e such that 

II x^—y± |I — > 0 as n — > co and xn £ U B^ (i.e. for every i and n 

there is a t n with xn £ B n ). Since the B^ are directed by 
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24 Joram Lindenstrauss 

inclusion there exists a sequence TL such that 

Br D U B m U B 
S+l i,m<n+l ci cn 

(B.. * B^l ). The subspace Z • I i B^ has the required properties. 
Tl %1 n rn 

(b) Suppose that X is not an ^T space. Then for every n 

there is a finite-dimensional subspace B of X such that no finite-

dimensional subspace of X containing B is a /r space. By Lemma 3*1 

U B is not contained in an JIT space and this contradicts our assump-
n n 

tion. The second part of assertion (b) also follows immediately from 

Lemma 3»1» 

Lemma 3.2 shows that some problems concerning spaces can be re­

duced to the separable case. In this respect spaces differ from 

spaces, which are either finite-dimensional or non-separable. 

We show now that the ^V^ spaces have the extension properties 

which were listed in the beginning of Chapter II. By Theorem 2.1 it is 

sufficient to show that the «̂ rv spaces have property (3). This is done 

in 

Theorem 3.3. Let X be an ^ \ space. Then for every Z ^ Y , 

every e > 0, and every compact T from Y into X there is a compact 

extension T* of T from Z into X with || T|| < (\+e)|| T|| . 

Proof. By the proof of Theorem 2.1 it is enough to show that every 

Jvl space has property (10) (this property was defined at the end of the 

proof of Theorem 2.1). Let Z D Y, an e > 0 and a compact T f 0 from 

Y into X be given. Let K * T(3y) and let 8 > 0. By the compactness 

of T there exists a finite set l ^ l j ^ in X such that K C U s ^ ) . 

By Lemma 3.1 there is a finite-dimensional subspace B of X such that 

{x.}? ^ C B and B is a U\ + K space. Let P be a projection from X 
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Extension of compact operators 25 

onto B with || P|| < \+8 . For every y £ Y with || y|| < 1 there i s an 

x £ B with || Ty-x|| < 8. Hence 

It PTy-Ty|| < || PTy-Px|| + || x-Ty|| < 8(X+l+8) . 

Since B is a ^\+* space there is an extension T of PT from Z 

into B satisfying 

||T||< (X + 8)|| PT||< (X+8)(|| T||+ (X+l+S)8) . 

Thus if 8 is small enough we get that |( ̂ Tj| < (X+e) || T|| and 

|| T1 y—T|| < e, and this concludes the proof. 

We pass to the question of the validity of the converse of Theorem 

3.3. We shall first introduce the following notion. 

Definition. Let )j be a scalar > 1. A Banach space X has the 

Yi projection approximation property to - P.A.P.) if X * U B ^ where 

{B_} is a set, directed by inclusion, of finite-dimensional subspaces of 

X such that for every T there exists a projection P^ from X onto Br 

with || Pr| < >j. 

Examples. Evidently every *sVi space has the \ - P.A.P. As well 

known, every separable Banach space with a basis has the Vj - P.A.P. for 

some )0. The L (/*) spaces (1 < p < oo, fi an arbitrary measure) have 

the 1 - P.A.P. This follows from the fact that for every decomposition 

of the measure space XI into n disjoint sets lil*}!?,.! there is a pro­

jection with norm 1 from LAft) onto the subspace spanned by the char­

acteristic functions of the (for p < co only of those XI. with 

/t(Q.) < oo). We do not Know whether there exists a space which does not 

have the V7 -P.A.P. for any >j . 

Let X have the vi- P.A.P. and let X • U,8^ b© tn© representation 

of X ensured by this property. Suppose X is a ^ space. Then it 

follows immediately (see Corollary 3 to Theorem 2.1.) that every B̂ , is a 
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26 Joram Lindenstrauss 

ĵiyj space and hence X is an %^\Vi space. In the next theorem we shall 

show that for spaces having the Y) - P.A.P. much weaker extension proper­

ties than those listed before Theorem 2,1 or those appearing in Theorem 

2.2 imply that X is an space. 

Theorem 3.4. Let X be a Banach space which has the V) - P.A.P. 

for some V) but which is not an space. Then 

(a) There exists a compact operator T from X into itself which 

does not have even a bounded extension from some Z (containing X) to 

X**. 

(b) There exists a compact operator T from X into a separable 

reflexive space Y which does not have even a bounded extension from some 

Z (containing X) to Y. 

As Z one may take in (a) and (b) any space containing X such 

that Z is a r space. 

Proof, (a) Let X • \J B be the representation of X ensured by 

the V) - P.A.P., and let Ew be a projection from X onto B^ with 

|| P^H < >j. For every T Q X » \J B and hence, since X is not an J\f 
r>TQ 

space, there ex i s t s a sequence t \ with IT -, > X and \ - P(B^ ) —> 
cn n 

co. (P(Y) denotes the projection constant of the space Y, that is 

inf [\; Y is a ^ space}). 

We shall choose now, inductively, a sequence of integers n, and 

two sequences of positive numbers a, and (3, satisfying (among other 

requirements), 

(3.1) 0± > a±- + « i + 1 + ••• + aj, 1 < i < j . 

We take first n-̂  * 1, cc-̂  * 1 and p^ • 2. Suppose we have al­

ready chosen a., 0^ and n. for i < k so that (3.1) is satisfied for 

* 5 3 5 k# T h e operator 
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Extension of compact operators 37 

Q k " a l \ + *•• + «k PT 
n l nk 

maps X into its subspace B_. and hence has only a finite number of 
nk 

eigenvalues. We choose P^+i > 0 so that Qk + al (I is the identity 

operator of X) has an inverse for 0 < a < Pk+-i • We next choose av+i 

> 0 so that (3.1) holds for i < j < k+1, i.e- ak+T must satisfy the 

inequality 
k 

0 < ak+l < m i n ^k+1' pi ~ E ah> 0 < i < k) . 
h=*i 

Let 
(3.2) r k + 1 - sup ||(Qk + aD^II . 

« k + l < a < P k + 1 

That Y^.-, < 00 fo l lows from the choice of 0k+-i • F i n a l l y we choose 

n k+l s o t n a t 

( 3 . 3 ) XT » P(BT ) > k / k + 1 . 
n k+l n k+l 

In order to simplify the notation we put 

X k " N- » Bk " Br ' Pk " Pf„ • 
nk nk nk 

00 

Let T a E ai^i# T^e s e r i Q S converges absolutely since || P.|| <VJ, a. 
00 

> 0 and E a. < 8-, ̂  2. Hence T is a compact operator from X into 
i-1 x "" X 

itself. Suppose there exists a bounded extension T of T from Z to 
X (ZI)X and Z is a r^ space). P. is a projection from X 

onto B. and hence T. * P. T n 

B k + 1 CB j L for i > k+1 we have 

onto B. and hence T. * P. T maps Z i n t o B. ( i s » l , 2 , . . . ) # Since 

T u i l p " U i P i • • • • • *vK + («IM.I + # # # ) D | k + 1 l B k + i v a i r i V k ^ . , . k + 1 
4k+l T ' x ' B, 

or 

V l | B k + 1 M Q k + 8 k I ) | b k + i lBk 

where &k * a k + 1 + ak4^2 + • • • s a t i s f i e s a ^ ^ < 8k < 3 ^ ^ ( s e e ( 3 . 1 ) ) . 
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2g Jo ram Lindenstrauss 

Let Sk - (Qfc + 8 k I )~ 1 . By (3.2) | | Sk | | < Yk+r Since ( V S k I ) x e : B k + I 

i f and only i f x £ B k + 1 i t follows that SkTk + 1 i s a projection from Z 

onto B k + 1 . || S j J ^ J I < >?yk + 1 | | T|| and therefore (Corollary 3 to 

Theorem 2.1) P(Bk+1) < *•>? Vk+1ll T|| and t h i s contradicts (3.3) for k > 

1̂1 *|| • 
(b) From the assumptions on X it follows that there exists a 

sequence iBnin^l ojF f i n i t e- d i m e n s i o n a l subspaces of X such that P(Bn) 

> n and such that there exists a projection P with norm < VJ from 

X onto Bn (n =» 1,2,...). The operator T from X into (B^B,,©*.. ) ^ 

defined by 

Tx » {?1x9?2x/2,...,?nx/n,... ) 

has the required properties. We omit the easy details. 

We end this chapter with some remarks and open problems concerning 

^s* spaces. First some words on the relation between c/r and d^ spaces. 

By Theorems 2.1 and 3.3 an JV space is a T space if and only if it is 

complemented in a conjugate space. It is easily seen that if Y is a 

complemented subspace of an space and if Y has the YJ - P.A. P. for 

some vo then also Y is an space. Actually, by using an argument 

similar to that used in the proof of Lemma 3.2 it can be seen that for the 

validity of the statement in the preceding sentence, it is enough to as­

sume that every separable subspace of Y has the y\ - P.A.P. for some vi 

(which may depend on the subspace). In particular every (r space which 

has the n - P.A.P. for some y> (or all whose separable subspaces have 

the vj- P.A.P.) is an *^f* space. 

The question of a suitable functional representation of spaces 

remains open and seems to be difficult. In the beginning of the chapter 

we remarked that some C(K) spaces are */rl spaces. It is easy to show 

that every C(K) space is an */'\¥e space for every e > 0 (we do not 
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Extension of compact operators 2g 

know whether every C(K) space is an <A^ space). Indeed, let t^Jf:*! 

CC(K) and an e > 0 be given. Then there is a partition of the unity 

l^-l^ai such that the distance of each f. from the subspace (B, say) 

spanned by the {^-l^n is less than e. (By a partition of the unity we 

mean here a finite set (VjlJ.J CC(K) such that ¥. > 0, \\¥ A\ * * f o r 

every j and £ VUk) » 1 for every k.) B is isometric to */* and 
j J 

hence it is a (P^ space. Combining these remarks with the proof of 

Lemma 3.1 we get immediately that C(K) is an v4^ space for every X>1, 

Hence a Banach space which is isomorphic to a C(K) space is an space. 

We do not know whether conversely, every space is isomorphic to a 

C(K) space. From Theorems 2.1 and 3.3 and from known results concerning 

(P spaces it follows that the common Banach spaces which are not isomor­

phic to C(K) spaces are also not *^Y spaces. 

The question whether a Banach space is isomorphic to a C(K) space 

if (and only if) it is an space seems to be of interest not only from 

the point of view of the extension properties which we study here. An 

affirmative answer to this question would contribute much to the knowledge 

of the structure of C(K) spaces. There are some easily established 

facts concerning >SV spaces for which it seems to be an open question 

whether they hold also for spaces isomorphic to C(K) spaces. One such 

fact is Lemma 3.2 part (b), another is the following result. Let X ^ Y 

be Banach spaces such that Y and X/Y are spaces. Then also X 

is an space. (Indeed, it can be shown by first proving a similar 

result for ir spaces and then using Lemma 3.1 that if Y is an <SV\ 

space and if X/Y is an «-/A! space then X is an tslr* space for every 

p > A. + V) + Xtt.) 
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30 Joram Lindenstrauss 

CHAPTER IV. INTERSECTION PROPERTIES OF CELLS 

In this chapter we shall first discuss the relation between certain 

intersection properties of cells and then some other geometrical proper­

ties, which are closely related with a certain intersection property, will 

be investigated. The results obtained in the present chapter will 

be used in Chapters V, VI and VII for the study of problems concerning ex­

tension of operators. However, in the present chapter extension proper­

ties are not considered at all. 

We define now the main intersection properties which will concern us 

in this chapter. 

A normed space X has the n, k intersection property (n,k.I.P.), 

where n and k are integers with n > k > 2, if for every collection 

of n cells in X such that any k of them have a non void intersection, 

there is a point common to all the n cells. 

A normed space X has the finite k intersection property 

(F.k.I.P.) if it has the n,k.I.P. for every n > k. 

A normed space X has the restricted n,k intersection property 

(R.n,k.I.P.), where n > k > 2, if for every collection of n cells in 

X with a common radius such that any k of them have a non void inter­

section, there is a point common to all the n cells. 

Similarly we define the R.F.k.I.P. 

The definitions of the intersection properties remain meaningful for 

general metric spaces. However we shall study here these properties only 

in normed (linear) spaces. 

We begin with a theorem showing that for Banach spaces the n,k.I.P 

already implies the F.k.I.P if n is sufficiently large. 

Theorem 4»1» Let n and k be integers such that k > 2 and 

(4.D n >Vc-?+y/Wg(k-i)* 
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Extension of compact operators 31 

Then, for Banach spaces, the n,k.I.P implies the F.k.I.P. 

Proof. It is clearly enough to show that for a Banach space X and 

for n satisfying (4.1) the n,k.I.P. implies the (n+1), k.I.P. Let 

^Si^i=l be n+1 c e H s in x such that any k of them intersect. Let 

x be an arbitrary point in X and denote 

k-1 
6 = max d(x, C\ S. ) 

l<i1<i2<--<ik_1<n+l j»l 1j 

(d(x,K) denotes the distance of the point x from the set K). Let e 

be a positive number. From the definition of 8 it follows that if we 

add the cell S • S(x,6+e) to the given n+1 cells we shall still have a 

collection of cells in which any k intersect. Consider the set A • 

{l,2,...,n+l}. Let denote the set of all the subsets a of A con­

sisting of n-1 numbers. The number of elements of n is n(n+l)/2. 

For every a ell there is a y £ X such that 

ya£ r\ s^s . 
iea 

Let 

Since y_ € S for every a the same is true for y i.e. 

(4.2) || y - x||< 6 + e . 

r ik—1 

Let now li-iK-si De k-1 integers satisfying 1 < î  < i2 ••• 
k-1 

< i, T < n+1. We shall estimate d(y, /°\ S. ). The number of the a 

such that {i.jnlj[^-a is ec^ual to (n-k+2) (n-k+l)/2. Hence, since 
k-1 
f\ S. is convex, we have 
3-1 x5 
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= TOTn- E
 k 2

 d(y«' & V 

iTHTO' E
 k l <d(x- ( t V + l l y«- x | | ) 

1 Tn^ITn ( I l l l 7 l i l " ( n " ^ ^ ( n ' k + 1 ? )(26+e) - (6 • §) f(n,k) , 

where f(n,k) - 2((2k-2)n-k2+3k-2)/n(n+l). For n satisfying (4.1) i t i s 

eas i ly seen that f(n,k) < 1. Hence i f c sa t i s f i e s f(n,k) < c < 1 and 

i f e i s taken small enough we have 

k-1 
(4.3) c 6 > max d(y, (~\ S. ) . 

l< i 1 <i 2 - -< i k _ 1 <n+l j -1 \ i 

From (4-2) and (4-3) i t follows that there ex is ts a sequence z 

(with ZQ * x) satisfying 

H V l - z m " < 2 c m e 

k-1 
cm6 > max d(zm, fl S. ) . 

~ Ki1<i2--<ik-1<n+l
 m j-1 xj 

The sequence z is a Cauchy sequence and since X is complete it 
k-1 b- i 

converges to a point z. d(z, f\ S. ) « 0 for every (i,).", , i.e. 
n+1 J i 3 

z £ C\ S., and this concludes the proof of the theorem. 
i-1 x 

Remark. For k=2 we obtain that 4,2.I.Pa»> F.2.I.P. As we shall 

see later the 3,2.I.P. is a weaker property and does not imply the 

F.2.I.P. Hence for ^ 2 Theorem 4»1 gives the best possible n. We do 

not know whether this is the case also for k > 3. For the special case 

k=2 and X finite-dimensional the result of Theorem 4.1 was obtained, 

by different methods, by Hanner [20]. In Chapter VI we shall give an al­

ternative proof for the case k=2 which is valid also for non complete 
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Extension of compact operators 33 

normed spaces (assuming, however, that the unit cell has at least one 

extreme point). The case k=2 of Theorem 4*1 solves problem 1 in the 

paper of Aronszajn and Panitchpakdi [2]. 

From now on our interest will be focused on the n,k.I.P. with k«2 

i.e. on the 3,2.I.P. and the 4,2.I.P. 

Lemma 4.2. Suppose the Banach space X has (for some integer n > 3) 

the following property: 

Every collection of n cells {S(x., ^nlL-i in X, such that 

every two of them intersect, has for every e > 0 a point x a x £ X 

satisfying 

|| x - x̂ JI < r^ + e , i * l,2,...,n . 

Then X has the n,2.I.P. 

Proof. Let {Sfx^, ^ ) l̂ ai be a collection of n cells in X 

such that every two of them intersect (i.e. || x. - x.||< r. + r. for 

every i and j). We have to prove that there is a point common to all 

the n cells. Let e > 0, and let x be a point satisfying || x - x^H 

< r. + e, i » l,2,...,n. The cell S(x, e) intersects any of the n 

given cells. Hence, for every i, 1 < i < n, and every 6 > 0, there 

is a point yi - y.^6) satisfying 

II y± - x||< e + 6; || j ± - XjHl rj + 6 , i / j . 

Let 

1 n 

y n # E yi * n i»l 1 

Then || y - x||< e + 6 and 

lly-xjlliit.r. llTi-xjl* llyj-x.ll) 

< J ((n-l)(rj+6) + || yj - x| | + || x - X j | | ) < r^ + 6 + 2e/n. 

Since n > 3 we obtain for 6 < e/6 that 

(4.4) l l y - x | | < 2 e ; H y - x^]|< r^ + 5e/6, J - l , . . . , n . 
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34 Joram Lindenstrauss 

From (4.4) it follows that there exists a sequence zm (with zQ » x) 

satisfying 

n 
Let z » lim zm, then z £ /°| s(x., r.) and this concludes the proof 

m->co m j-1 3 3 

of the lemma. 

Remark. Aronszajn and Panitchpakdi [2] proved (Theorem 4 of section 

3 in their paper) that for general complete metric spaces the property ap­

pearing in the formulation of the lemma implies the (n-1), 2.I.P. They 

raised the problem (problem 4 in their paper) whether it also implies the 

n, 2.I.P. Lemma 4.2. solves this problem for Banach spaces. 

The following corollary is an immediate consequence of Lemma 4*2, 

Corollary. Let X be a normed space having the n, 2.I.P. (for 

some n > 3)• Then the completion of X also has the n, 2.I.P. 

It should be remarked that the converse statement is false. In 

Chapter VI we shall give an example of a normed space which does not have 

the 4,2.I.P., while its completion has this property. 

Lemma 4.2. will be used in the next two theorems. 

Theorem 4.3* Let X be a Banach space. Then for every n > 3 the 

R.n,2.I.P implies the n,2.I.P. 

Proof. Suppose X has the R.n,2.I.P. Let {S(xi,ri) }
n
3=1 be a 

collection of n cells in X such that every two of them intersect. 

From Lemma 4-2 it follows that it is enough to show that for every e > 0 

there is a point x £ X satisfying || x - XjJ|< r^+z for every i. Sup­

pose that there is an e > 0 for which no such x exists and let r be 

a number satisfying r > r. (1< i < n). We shall construct n cells 

S(y.,r) in X such that 

S(yi,r) D s(xi,ri) , i • l,...,n 
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Extension of compact operators 35 

and 

(4.5) C\ S(y., r) - 0 . 

i«l x 

This will contradict our assumption that X has the R.n,2.I.P. 

The y. will be chosen inductively. Suppose that we have already 

chosen y. for i < j {< n) such that 

(4.6) S(y., r) DS(x., r±) , i < j 

and 

(4.7) C\ S(y., r)n f\ sl*i> r, + c) - 0 . 
i-1 x i-j+1 1 x 

We shall choose ŷ +n (j may also be equal to 0, we adhere to the 

usual convention that an empty intersection is the whole space). 

Let 

i-1 x i-j+2 x x 

K is a closed convex set whose intersection with the cell S(x.+,, r.+1+e) 

is empty. Hence there exists a functional f £ X such that || f ||< 

l/(r,+1 + e) and such that for every x £ K we have f(x - x-?+i) > !• 

Let z £ X be a point satisfying || z|| - 1 and f (z) < - || f || + 6, 

where 6 is a positive number which will be fixed below. We claim that 

if 6 is small enough and if we set y^+i "
 x-,-+i + (r - ri+])z then 

(4.6) and (4-7) (with j replaced in both by j + 1) will be satisfied. 

Let x. £S(x. + 1,
 ri+i) then, 

II x - vj+lHl II x - xj+lH + r - r j + l ^ r 

and hence s(yj+i> r) D S l x ^ , rj+l^# L e t n o w x£S(y. + 1, r), then 

r|| f ||> f (x - yj+1) = f(x - xj+1) - (r - rj+1)f (a) 

or 

f(x - x.+1) < r||f||+ (r- rj+1)(-||f||+ 6) < 
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36 Joram Lindenstrauss 

+ 6(r - r . . J . J j i L 

Thus if 6 is small enough, f (x - x .+1) < 1 for every 

x £ S(y.+1, r) and hence Kf|S(y.+1, r) - 0, which is (4*7) for j + 1. 

Substituting j « n in (4.7) we obtain (4.5) and this concludes the 

proof of the theorem. 

Remark. Theorem 4.3 was proved by Hanner [20] for finite-

dimensional spaces. The basic idea of our proof is taken from the proof 

of Hanner. The difference between the infinite-dimensional case and the 

finite-dimensional one (i.e. the case treated by Hanner) is that for 

finite-dimensional spaces stronger separation theorems for convex sets are 

available. This fact necessitated the use of Lemma 4.2 in the proof given 

here (for finite-dimensional spaces Lemma 4*2 follows, of course, immedia­

tely from the local compactness). 

Theorem 4*4. Let X be a Banach space. 

(a) If X has the F.2.I.P. then for every separable subspace Y 

of X there exists a separable space Z having the F.2.I.P. with 

Y C Z C X. 

(b) If for every 3-dimensional subspace Y of X there exists a 

space Z having the F.2.I.P. with Y C Z C X, then X has the F.2.I.P. 

Proof, (a) Let {yj}".! be a d ense sequence in Y. Let be 

the set of all the collections of a finite number of cells with rational 

radii and with centers taken from the set fYi?!^! > such that any two 

cells in a collection intersect. is denumerable. For every collec­

tion a in 12, we choose a point x„ £ X belonging to the intersection 

of all the cells in a. Let Y2 be the subspace of X spanned by Y 

and the points x , a £ i/-,. Y2 is separable. Proceeding similarly 

we obtain an increasing sequence Y of separable subspaces of X and a 
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Extension of compact operators 37 

dense sequence fy™}".! i n Y
m
 s u c n that for every collection of a finite 

number of mutually intersecting cells with rational radii and with centers 

taken from the sequence fy?}?*! there is a point in Y +n common to all 

the cells in the collection. Let Z *• \J Y . Z is separable and 
m 

Y C 2 C X. We shall show that Z has the F.2.I.P. Let {S(z.., r±) } * m l 

be n mutually intersecting cells in Z and let e > 0. There exists an 

m and JT,#..,Jn such that 

II yj - ziN<. e/2 f i.'- 1,2,...,n . 

Let {Ri}i=i De rational numbers satisfying 

e/2 < R± - rd < e , i - 1,2,...,n . 

Any two of the n cells S(ym , R.) intersect and hence there is a point 
3± 1 

z £ Ym+i C Z common to all these cells. In particular || z - z.))^ 

ri + | e for every i. The desired result follows by using Lemma 4«2. 

(b) From Theorem 4.1 it follows that it is enough to prove that for 

every four cells in X such that any two of them intersect there is a 

point common to all the cells. This property is invariant with respect to 

translations, hence we can assume that the center of one of the four cells 

is the origin. The assertion is now immediate. 

Remark. It is clear that a result similar to Theorem 4-4 holds also 

for the 3,2.1.P. (for this property we can even replace 3 by 2 in (b)). 

It is likely that also Theorem 4.4 (b) itself holds when 3 is replaced 

by 2. We shall prove in chapter VI that this is indeed the case if We 

assume that the unit cell of X has at least one extreme point. 

The next result shows that the F.2.I.P. implies a (formally) strong­

er intersection property in which the set of centers of the cells is as­

sumed to be compact instead of finite. In the proof of the theorem we 

shall use some methods which were also used by Aronszajn and Panitchpakdi 
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38 Joram Lindenstrauss 

in [2]. 

Theorem 4.5. Let X be a Banach space having the F.2.I.P. Let 

(S(xa,ra)}a^A be a collection of cells in X such that any two of them 

intersect and such that the set of the centers {x} €A is conditionally 

compact. Then 

Oksi*- - • " ' • 
Proof. Since a compact set is separable there exists a sequence 

{a ,}°?asl C A such that 

We define inductively a sequence of numbers R. by 

Rl--£<llx a i-xJ|-r a) 

R, - max (sup ||x - x || - r ; || x - x || - R., 1 < k < j), j-2,3,... 
J a€A j u u uj wk 

Since ra + rg > || xa - Xg || for every a,p £ A it follows immedi­

ately that R.< r for every j. If for some j R.< 0 then xM £ 
3 " aj 3 ~ aj 

ns (x , r ) and there is nothing to prove. Thus we can assume that R. > 
a J 

0 for every j. The R. are such that if we replace the cells 

S(x , r ) in the given collection {S(x , r a^«6A ^y tne ce^^s 

s(x« * R-?) w e s n a H still have a collection of mutually intersecting 
j 

cells, but if we now replace any S(x„ , R.) by a cell S(x„ , R) with 
a j 3 a j 

R < R, the collection will no longer have this property. We can there­

fore assume without loss of generality that R. * r„ for every j and 
3 ai 

hence that for every j and e there is a p . £ A with 
e * J 

ra + r8 1 II xa " x6 H + e • 
Let now e be a positive number. From the compactness of fxalaeA 

it follows that there is an n * n(e) such that 
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Extension of compact operators 39 

X has the F.2.I.P. hence there is a point y £ X satisfying 

II y - x ll< ra , 1 < J< n . 

Let a £ A and l e t || xa - x a | |< e. We have 

\/''2ll\r"-" 
i.e. ra > ra - 2 e. Hence for every a £ A 

lly-xj|< II y - xa || + || xa -xj|< ra + 3e . 

Before proceeding in the proof we remark that y may be chosen so 

that it belongs not only to (i S(x„ , xv ) but also to any given finite 
i-1 *J aj 

number of cells which intersect each other and all the cells in the given 

collection. 

Let e, be a sequence of positive numbers tending to 0 and let 

n, » n(ek) be the integer corresponding to ek in the above argument. 

Let 

zx g H S(xa , ra ) . 
j-i i j 

The cell o^ • ̂ zi» 3ei' intersects any cell of the given collection. 

We continue inductively and choose a sequence z, satisfying 

nk k-1 
z k £ C\ S(xa , r )0 O ^ 

where 6\j » S(z., 3e.). In particular || zk -
 zhH — 3ek f o r n > k an(i 

hence the sequence zk converges to a point z £ X. Letting k tend to 

oo in || zk - xa||< 3ek + ra (a £ A) we obtain 

^ a Q A S ( x a . ra) , 
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and this concludes the proof of the theorem. 

Remarks. The theorem and its proof are valid in general complete 

(metric spaces. 

The requirement imposed in Theorem 4»5 on the set of the centers 

cannot, in general, be weakened. It is clear (from the result of Nachbin 

[37] cited after Lemma 5.3) that if all the centers belong to a subspace 

of X which is a <rl space (e.g. a one-dimensional space) then 

O S(x, r ) / 0 without any further assumption on the centers. However 
ot€A 

(see [32] and also Chapter VII) even if all the centers belong to a two-

dimensional subspace of X, f\ S(x„, r„) may be empty (we assume of 
ct€A a a 

course that X has the F.2.I.P. and that any two cells in the collec­

tion intersect). This shows that in the theorem compactness cannot be re­

placed by finite-dimensionality. Neither can it be replaced by weak com­

pactness. For example let {enln=l ^e ^ e usua^- D a s i s of tn© space CQ, 

and let SR »
 s(en» §)• CQ has the F.2.I.P., the sequence en con-

verges weakly to 0, S n*»S ^ 0 for every n and m but f\ S » 0. 
n=l 

Spaces having the 4,2.I.P. will be studied in detail in Chapter VI. 

It will be shown there, in particular,that a Banach space X has the 

4,2.1.P. if and only if X is (isometric to) an L, (#) space for some 

measure fi* Our purpose now is to study some properties of spaces having 

the 3,2.I.P. In [20] Hanner gave a geometrical characterization of the 

unit cells of finite-dimensional spaces having the 3,2.I.P. The methods 

of Hanner do not seem to apply to the infinite-dimensional case, and thus 

our methods are different from those he uses. 

We first give some methods for obtaining spaces having the 3,2.I.P. 

Theorem 4*6. Let l*n}n«i ^e a s e <l u e n c e of Banach spaces having 

the 3,2.I.P., then 
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(a) (X1@X2©... )c 

(b) (X1©X2® ••• ) m 

(c) ( X 1 @ X 2 ® ••• )jf 
1 

all have the 3,2.I.P. 

Proof, (a) Let x1 • (x^, Xg,...) be three sequences with x^ (E XR 

and || x^|| n.^g 0, Let r
1 be three positive numbers satisfying 

|| x* - xj[||< r1 + rJ (i, j = 1,2,3; n - 1,2,...). Since \ has the 

3,2.I.P for every n, there exists an xR £* X n with || x* - xn||< r
1, 

i = 1,2,3. Let IIQ be an integer such that n > nQ implies || xH|< 

min (r , r , r-*) for every i, and put 

x - (x1, x2,...,xn , 0, 0,...) . 

Then || x — x11| <̂  r for every i and this proves that the space (a) 

has the 3,2.1.P. The proof for (b) is similar and even simpler. 

We turn to the space (c). Let three mutually intersecting cells be 

given. We can assume without loss of generality that (at least) two pairs 

of the cells have no interior points in common (otherwise we replace the 

cells by cells with smaller radii). Furthermore we may assume that the 

cell which belongs to both pairs has the origin as center. Denote the 

centers of the other two cells by x and y and the radii of the cells 

by r1, i - 1,2,3. We have 

x - (xx, x 2 , . . . ) ; || x|| « Z || x || - r1 + r2 , 
1 * n»l n 

y - (Y19 y 2 , . . . ) ; I l y l l - ? II ynll - r 1 + P , 
1 * n» l n 

00 

II x - y | | - £ || x n - y | | < r 2
 + r3 . 

It follows that there are X > 1 (n « 1,2,...) such that 
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. "xnll+ H r J I - x J I ^ - y J I 
Q . - r • • • • • • ' • - L ' — 

n 2 
_ l l x j l - l l y n l l ^ n | | x n - y n | | 

kn 2 
^ - Hxn l |+ l l y n l l + X n | | x n - y n 
Y n 2 

For every n we have 

H x n | | - a n + P n , l l y n l l = « n + r n , H ^ - y n H < P n
+ V n • 

Since X has the 3,2.I.P. there is a z £ X satisfying 

!lznll^an> llzn-xnlll V » zn " rj± Vn • 

Let z ••(z^, z2,...) , then 

,| B | < S B . (^ r2) • (r1 * r3) - (r2 • r>) m rl . 
n-1 ^ 

Similarly 
00 2 " ll» - x||< E Pn - r*, || z - y||< r Vn - r̂  , 
n-1 n n-1 n 

and this concludes the proof of the theorem. 

Remarks, (i) The theorem holds also if we take only a finite num­

ber of summands or, on the other hand, a non-countable number of them. 

(ii) If the Xn have the 4,2.I.P. (or any other inter-1 

section property defined in this chapter) the same is true for the 

direct sums (a) and (b). This is not, however, the case for (c). For 

example if X is, for every n, the one-dimensional space the direct 

sum (c) will be the space -/̂  which does not have the 4,2.I.P. 

Corollary 1. Every L,(a) space, and more generally every L,(#,X) 

space (i.e. the space consisting of all X-valued Bochner integrable 

functions with the usual norm) with X having the 3,2.1.P., has the 
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3,2.I.P. 

Proof, It is enough to prove that a dense subspace of L, (#, X) 

has the 3,2.I.P. (Corollary to Lemma 4»2) • We shall prove this for the 

subspace consisting of the simple functions (• finite sums of functions 

of the form x<p with x £ X and <f a characteristic function of a set 

with finite measure). Let ^\>^2 and f^ be tnree s i mPl e functions, 

Then there is a subspace of Ln(it, X) which contains the f. and which 

is isometric to (X © X ® • • • © X ) ^ for some finite n. The desired 

result follows now from Theorem 4.6 (c). 

Corollary 2. Let X be a Banach space having the n,2.I.P. (n > 3) $ 

and let K be a compact Hausdorff topological space. Then the Banach 

space C(K, X) consisting of all the continuous functions from K to X 

(with the usual norm) has the n,2.I.P. 

Proof. Let ^il?»i De continuous real valued functions on K 

satisfying <f± > 0, \\<f±\\ - 1 (i - 1,2, ...,n) and £ <f±(k) « 1 

(k £ K). Let B be the subspace of C(K, X) consisting of functions of 

the form Z± x±<f± with x̂ ^ & X. Then Bis isometric to (X © • • • © X h n 

and hence has the n,2.I.P. For every finite set ^ilTai in C(K> x) 

and every e > 0 there is a subspace B of the type described above 

such that the distance of each of the f. from B is less than e. This 

proves the corollary (use Lemma 4*2). 

We shall now characterize spaces having an intersection property 

which is weaker than the 3,2.I.P. This characterization shows the con­

nection between intersection properties and order properties and it will 

be the starting point for the discussion in Chapter VI of the decomposi­

tion property (in partially ordered vector spaces) . In Chapter VI we shall. 

consider also non complete normed spaces and therefore we shall not assume 
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here that the space is complete. 

Theorem 4.7. Let X be a normed space, then statements (1) - (6) 

are equivalent and imply (7). 

(1) Let {S.}?^, be three mutually intersecting cells in X such 

that S]/^S2 i s a sin6le point e. Then e £ S~. 

(2) The same as (l) for three cells with a common radius. 

(3) Let e be an extreme point of Sy and let a partial order be 

defined in X by x > 0 «=S> x « x(e + u), X > 0, || u||< 1. Then ||x|| 

,<, 1 <£=>" -e <. x <, e. 

(4) Let e be an extreme point of S^. Then X is isometric to a 

subspace of some C(K) (K compact Hausdorff), in such a manner that e 

corresponds to the function identically equal to 1. 

(5) Let e be an extreme point of Sy and x an extreme point 

of the unit cell of X*. Then |x*(e)( - 1. 

(6) Let e be an extreme point of S^ and let x £ X with ||x|| 

= 1. Then at least one of the two segments joining x with e and -e 

is contained in the boundary of Sy. 

(7) Let e^ / e2 be two extreme points of Sx. Then || e, - e2|| 

- 2. 

Proof. (1) => (2) is clear. We shall show first that (2) =*> (3). 

It is clear that the order defined in (3) is compatible with the 

linear structure of X. Since e is an extreme point of Sy x > 0 and 

x < 0 imply that x = 0. That ||x||< 1 implies -e < x < e is also 

obvious (for all these remarks we do not use the fact that X satisfies 

(2)). We assume now that X satisfies (2) and that x £ X satisfies 

-e < x <^ e, i.e. 

(4.3) x - -X^e + u^) + e, x - X2(e + u2) - e 

with ^,^2 ^ ° a r d " u<1 II » II U ? H ^ . 1 # S i n c © f o r every \,fi > 0 and u 
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with || u|| < 1 we have 

M - u ) M M ( e ^ ) , | | ^ » | | < l f 

we may replace \^_ a n d **2
 i n (̂ »̂ ) b v a n v larger number. Hence without 

loss of generality we may assume that X, * X2 > 2 (we denote the common 

value of the X. by X.). Consider the cells 

31 - S(x+(X-l)e,X-l), S2 - S(x-(X-l)e,X-l) 

3 3 - s(- p i x * ^ • 

Clearly all three cells have a common radius. All points of S-. are > x 

while all those of S2 are < x. Since x belongs to both we have that 

S^AS2 consists of the single point x. -u, £[S,nS-. Indeed, 

|| u x • x + ( X - l ) e | | - || - (X-DujJI < X- l 

|| U]L - ( ( X - 2 ) x ) / | | x|| | | < 1 + X - 2 = X - 1 . 

S imi lar ly u 2 £ S 2 A 3 3 . By (2) i t fo l lows that x f S . , That i s 

|| x | | + X - 2 - || x t ( ( X - 2 ) x ) / | | x | | | | < X - 1 . 

Hence || x|| < 1 and this concludes the proof of (2) •> (3). The proof of 

(3) =*>(!): Let 31§ S2, 33 and e be as in (1). We have to show that 

e £ S « , Without loss of generality we may assume that 3-̂  * Sx « S(0,1), 

and hence S2
 s S((l+X)e,X) with some X > 0. e is an extreme point of 

S-,. Indeed, suppose that there is a u f 0 with || e±u|| * 1. Since 

(1+X)e - (e+>ju) 3 X(e->ju/X) it follows that e + ^ u ^ S 1 O S 2 if |tt| < 

min(l,X) and this contradicts our assumptions. Let > be the (partial) 

order defined in X as in (3) corresponding to the extreme point e, and 

let S3 « S(x,>j). S 1OS 3 f <jf implies that x < (l+>|)e. S 2AS 3 f 0 

implies that x > (1+X)e - (X+>j)e. Hence -lie < x-e <">?e i.e. || x-e|| <rt 
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o r e  € L S ~ . 

(3) -> (4). Let X be ordered as in (3). Then if xR > 0 and 

x —-> xQ also x0 > 0. Indeed, let 2k > sup || x || ; then all the xn 

belong to the cell S(ke,k) * {x; 0 < x < 2ke}, and therefore also xQ 

belongs to this cell. In view of this remark (3) »> (4) is exactly a 

representation theorem of Kadison ([21], Theorem 2.1). 

(4) =*> (5) follows from the Hahn Banach theorem and the well known 

fact that any extreme point x of the unit cell of C(K) has the form 

x*(f) * i f(k) ( k £ K , f eC(K)). 

(5) =*> (6). From the Krein-Milman theorem it follows that there 

exists an extreme point x of the unit cell of X satisfying x (x) =* 1. 

Since x (e) « 8 with |8| * 1 we have x (Xx + (1-X)8e) » 1 for every 

X. Hence the segment joining x with 9e is contained in the boundary 

of Sx. 

(6) *> ( 3). As in the proof of {2) *> ( 3) we have only to prove 

that -e < x < e =»> || x|| < 1. Suppose that || x|| > 1 and put y • 

x/|| x|| • By (6) we may assume that the segment joining y with e be­

longs to the boundary of Sy (otherwise replace e by -e). Hence the 

intersection of Sy with the segment joining x with e is the point e 

alone and this contradicts the assumption that x < e. 

(5) s> (7). By the Krein-Milman theorem there is an extreme point 
sic sic sic . sic sAc 

x of the unit cell of X satisfying x (ê .) f x (e2). Since |x (en)| 
if. if. 

58 |x (e2)|
 s 1 we have |x (e-,-^)! = 2 and hence || ei-©21' 3 2# 

Remarks, (i) Many of the implications proved here are not essen­

tially new. Nachbin [37] proved that (1) =*> (3) and our proof here of 

(2) =»> (3) is a modification of the argument used by Nachbin. As men­

tioned already in the proof, the implication (3) => (4) (and some relat­

ed results) appear in Kadison [21]. A result closely related to the 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 47 

equivalence of (3) and (5) was proved by Fullerton ([93* Theorem 4.1). 

Concerning this theorem of Fullerton we remark that one step of its proof 

is not justified, since it is not true that a maximal convex subset of the 

boundary of the unit cell of a conjugate space is w closed. We do not 

know whether the theorem itself is true. 

( i i ) Our r e su l t tha t the 3 ,2 . I .P implies property (5) of Theorem 

4.7 reduces, in the finite-dimensional case, to the following resu l t of 

Hanner [20] : 

Let X be an n-dimensional space having the 3,2.I.P., then Sj is 

affinely equivalent to the convex hull of some of the vertices of an n-

dimensional cube. 

Indeed (we follow the reasoning of Hanner), let [x.|?3, be n 

linearly independent extreme points of Sx*. It follows from (5) that the 

extreme points of Sx are vertices of the parallelepiped |x.(x)| < 1, 

i - l,...,n. 

(iii) The properties appearing in Theorem 4.7 are strictly weaker 

than the 3,2.I.P., even if we restrict ourselves to spaces X in which 

the unit cells have enough extreme points. Hanner [20, Remark 3.6] gave 

an example of a 5-dimensional space which does not have the 3,2.I.P# though 

it satisfies (5) of Theorem 4.7. 

We conclude this chapter with a result concerning the connection be-

tween the 3,2.I.P. and the notion of CL spaces. This latter notion was 

introduced by Fullerton [9] and its definition is as follows: 

A Banach space X is called a CL space if for every maximal con­

vex subset F of the boundary of the unit cell Sx of X, Sx » Co(FU-F)« 

It is clear that this notion is closely connected with statement (5) 

of Theorem 4.7. Fullerton ([9] Theorem 4.1.) proved that every CL space 

has property (3) of Theorem 4.7* For finite-dimensional spaces the 
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converse also holds. In particular a finite-dimensional space having the 

3,2.I.P is a CL space. Hanner has shown that if a finite-dimensional 

space X has the 3,2.I.P the same is true for X # Hence if X is a 

finite-dimensional space having the 3,2.I#P both X and X are CL 

spaces• We prove now a result which reduces in the finite-dimensional 

case to the latter statement. 

Theorem 4.8. Let X « Y be a Banach space having the 3,2.I.P. 

Then 

(a) for every maximal convex subset F of the boundary of S^, 

SX * Co(F\J-F) (the closure in the w topology). 

(b) For every maximal convex subset F of the boundary of Sy, 

Sy * Go(FU-F) (the closure in the norm topology). 

Proof, (a) is a consequence of the Krein-Milman Theorem and 

(1) =»> (5) of Theorem 4.7. 

(b) Let F be a maximal convex subset of the boundary of 

Sy. From the separation theorems for convex sets it follows that there is 

an x ^ X satisfying x(y) « || x|| =» 1 for every y g^F. Let xQ £ X 

satisfy || XQ|| • 1, || x - XQ|| =» X < 2, and suppose that there is a 

v0 £ Y with x0(yQ) "• II y0H * !• Consider the following three cells 

S(xQ,\/2), S(x,\/2), S(0,l-X/2) . 

Clearly any two of them intersect and hence there is a point u g^X com­

mon to all the three, i.e. 

i i u i i < i - ? , i i u - * u < ! , i i u - x 0 n < | . 
We have 

1 - x0(y0) - (xQ - u)(y0) + u(yQ) < \\ xQ - u|| + || u|| < 1 , 

and hence u(yQ) =» || u|| . Similarly, from x(y) « 1 * || y|| it follows 
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Extension of compact operators 1*9 

that u(y) » || u|| . Hence yQ and F are included in the convex set of 

all the y £~Y satisfying || y|| « 1 and u(y) « || u|| . From the maxi-

mality of F we infer that yQ ̂ F . We have thus proved that 

II *0|| - II y0ll " *olY0) 3 1, II * - *QII < 2 '> v0 ̂ F-

Let us denote Co(FU-F) (the norm closure) by S. Clearly S C S y 

We have to show that also Sy C 3 . Suppose this were false. By the sepa­

ration theorems it would follow that there exists a u £ X with || u|| • 1 

and 

a - SUR, |u(y)| < 1 • 

yes 

We show first that this u satisfies || u - x|| * 2. We use the 

theorem of Bishop and Phelps [4] stating that in a conjugate space i 

those functionals which attain their supremum on Sy are dense in the 

norm topology. Suppose that || u - x|| < 2. From the theorem of Bishop 

and Phelps we infer that there exist XQ £ X and yQ £ Y satisfying 

*b(y0>  s II x ol l -lbr0H  = !* II xo ~  UH  < T T  * II xo - XH <  2 -

As we have shown above yQ £^F and hence 

1 « ^(JQ) < sup xQ(y) < sup u(y) + || XQ - u|| < a + k^ - ^ . 
y€F u y£F u c c 

This is a contradiction and thus ||u-x|| * 2. There is an x £^X sat­

isfying 2 - x*(u - x) - || x*|| || u - x|| , i.e. || x*|| - x*(u) - -x*(x). 

For every X > 0 we have therefore X+l « || Xu - x|| (=*x (Xu - x))* We 

have thus shown that the equation || Xv - x|| » X+l holds for every X 

and v satisfying || v|| * 1, sup |v(y)| < 1 and X > 0. In particular, 
y €F 

|| w - x| | - || w|| + || x| | f o r every w in the open cone | | w / | | w|| - u|| < 

1 - a . 
By using again the theorem of Bishop and Phelps it follows that 
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there exist XQ £ X and yQ C ? satisfying 

II y0ll - i . <x - x o ) ^ o ' = II x - "oi l - II XH + II x o l l ' 

|| x 0 - a|| < ^ . 

In p a r t i c u l a r x(yQ) =» || x| | » 1 and hence (by the maximality of F) 

Zy< \\*0\\ - l a b i a l ^ SUP lx0^)l 

< sup | u ( y ) | + || u - x 0 | | < i ^ 
y€F u 3 

and this is the desired contradiction, 

CHAPTER V. THE CONNECTION BETWEEN 

INTERSECTION AND EXTENSION PROPERTIES 

The connection between i n t e r s e c t i o n and extens ion propert ies i s 

based on the fo l l owing , w e l l known, three lemmas ( c f . f or example [ 3 7 ] , 

[ 2 ] and [ 1 7 ] ) . . 

Lemma 5*1* Let Y 3 X be Banach spaces and assume that there i s a 

projec t ion with norm 1 from Y onto X. Let [3v(x , r )} be a c o l l e c ­

t i o n of c e l l s in Y whose centers belong to X. Then 

n s Y ( x a , r a ) f t = > f ) S x ( x a , r a ) ff . 
a a 

Proof. Obvious. 

Corollary. Let Y 3 X be Banach spaces such that there is a projec­

tion with norm 1 from Y onto X. If Y has the n,k.I.P. (or the 

R.n,k.I.P.) for some n > k then the same is true for X. 

Lemma 5.2. Let T be an operator from a Banach space X into a 

Banach space Y. Let Z 3 X be a Banach space with dim Z/X * 1 and let 
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z f Z ^ X , Then T has a norm preserving extension to an operator from 

Z i n t o Y i f and only i f C\ SY(Tx, | | T|| || z -x | | ) f 0 . 

x €X x 

Proof. I f T i s a norm preserving extens ion of T then || Tz-Tx|| 

< jf T|| || z -x | | f o r every x £ X . Conversely i f || u-Tx|| < || T|| || z -x | | 

for every x g^X then T(x+\z) « Tx + Xu i s a norm preserving extens ion 

of T. Indeed, for \ f 0 we have 

|| Tx + Xu|| = |X| || T (xA)+u | | 

< |X| | | T | | || x/X • z| | - | | T | | | | x + Xz|| . 

Lemma 5.3* Let X be a Banach space and let ^j(x .r )1 ^e a 

collection of mutually intersecting cells in it. Then there is a Banach 

space Z D X with dim Z/X - 1 such that (̂  Sz(xa,ra) f 0 . 
a 

Proof. The original proof of Nachbin [37] was rather long. We give 

here two simple proofs. The second, which has the advantage that it shows 

what Sz is, is due to Gninbaum [17]. 

First proof. It is obvious that for every index set I every col­

lection of mutually intersecting cells in m(I) (- the Banach space of 

all bounded real-valued functions on I with the sup norm) has a non 

empty intersection. Embed X isometrically in some m(I). Then there is 

a z €~m(I) such that || z-x || < r for every a. The subspace Z of 

m(I) spanned by X and z has the required properties. (If z £^X then 

we can take as Z any Banach space satisfying dim Z/X • 1.) 

Second proof. If inf ra = 0 then it follows easily from the com­

pleteness of X that Os x(x a,r a) f 0, and hence any Z D X with 
OL 

dim Z/X * 1 will have the required property. Assume now that inf r > 0. 
a a 

In the vector space X © R let K be the set consisting of all the points; 

of the form zff » (xa/ra,l/ra). Let Sz be the closed convex hull of 
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S^UKU(-K) (in Z we take the product topology of the norm topology in 

X and the usual topology in R). It is easily checked that SgOx - S^ 

and hence if we introduce in Z a norm whose unit cell is S^ this norm 

will coincide on X with the given norm there (X is identified with the 

subspace of Z consisting of the points (x,0)). (0,-1) £ (~\ sz(xa,ra) 
a 

and hence Z has the required property. 

Before passing to our applications of the preceding lemmas we would 

like to mention some elegant (though straightforward) applications of them 

which appear in the literature. One consequence of Lemmas 5.1, 5.2 and 

5.3 is the result of Nachbin [37] that a Banach space is a (r-> space if 

and only if every collection of mutually intersecting cells in X has a 

common point. Another consequence of Lemmas 5.1 and 5.2 (together with 

Hellyfs theorem in the plane and Kakutanifs well known characterization of 

a Hilbert space) is the following observation, due to Comfort and Gordon 

[5]: 

A Banach space is isometric to a Hilbert space if and only if for 

every collection of three cells [S(x.,r.)}? , in X for which 

C\ S(x. ,r.) f 0 also f \ S(x. ,r.)AL / 0 where L is the plane deter-
i-1 x x i-1 x x 

mined by the x.. (In case the x. lie on a line *the condition is satis­

fied in every Banach space X and for every plane L containing the x.). 

The importance of the connection between intersection and extension 

properties goes far beyond the possibility of just getting elegant charac­

terizations like those described above. This connection can be applied to 

establish relations between certain extension properties by proving the 

corresponding results for intersection properties and conversely. We hope 

the results proved here and in the next chapters will illustrate this 

point. Another use of the connection between extension and intersection 

(properties is in obtaining a functional representation for Banach spaces 
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having certain extension properties. Nachbin, for example, obtained the 

functional representation of ^% spaces X as C(K) spaces with 

extremally disconnected K by using his result that in such X every col­

lection of mutually intersecting cells has a common point. (He assumed 

that Sx has at least one extreme point and applied (1) *> (3) of 

Theorem 4.7.) In the next chapter we shall give further applications of 

this kind to the connection between extension and intersection properties. 

Unfortunately, the method of using intersection properties for study­

ing extension properties applies here only to the study of immediate ex­

tensions, that is to extending operators defined on a space Y to opera­

tors defined on Z where Z 3 Y and dim Z/Y • 1. It is possible to use 

some more complicated intersection properties for studying nonimmediate 

extensions. However, generalizations of this kind seem to contribute only 

little to the problem discussed here. (Such generalizations are useful 

for considering some extension problems concerning non linear mappings, 

and we shall discuss these generalizations elsewhere.) In some problems 

the possibility of finding always an immediate extension implies easily 

the possibility of extending operators defined on Y to operators defined 

on Z 3 Y without any restriction on Z/Y. This is the case, for example, 

in the proof of the Hahn-Banach theorem or in the results of Nachbin and 

Comfort and Gordon mentioned above. In general the passage from exten­

sions to Z with dim Z/Y • 1 to extensions to an arbitrary Z D Y is 

not easy if at all possible. In [34] we give some results and counter­

examples concerning this question. Most of the unsolved problems mention­

ed in this chapter are npthing but the question whether it is possible to 

discard the requirement dim Z/Y « 1 in the statement of certain exten­

sion properties without changing the properties themselves. 

We now give some applications of Lemmas 5*1, 5.2 and 5.3 to the 

characterization of certain "into" extension properties. 
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54 Joram Lindenstrauss 

Theorem 5.4. Let X be a Banach space. The following three state­

ments are equivalent. 

(a) X has the F.2.I.P. 

(b) Every compact operator T from Y to X has (for every e > 0) 

and extension T from Z(Z D Y with dim Z/Y * 1) to X with ||T||< 

(l+e)||T||. 

(c) Every operator T from Y to X with a range of dimension 

< 3 has (for every e > 0) an extension T from Z(Z D Y with 

dim Z/Y = 1) to X with || T||< (1+e) || T|| . 

Proof. (a) =0 (b). Let T (with ||T||- 1) , Y, Z and e be given, 

and let z £ Z */ Y with || z|| » 1. In order to show the existence of an 

extension T of T from Z into X with ||T||< 1 + e we have to show 

the existence of a point u £ X satisfying 

(5.1) || u-Ty||< (1+e) || z-y|| for every y £ Y 

(cf. the proof of Lemma 5.2). Let M be a positive number and consider 

the collection of cells {S^(Ty, || y-z ||)} u v n < M* Any two of these cells 

intersect since 

l!T7i-Ty2 | |< II y ^ 1 1 1 l l y i - * H + l ly 2- z l l • 

By the compactness of T and Theorem 4«5 there ex i s t s a point u^ £ X 

sat isfying 

l|Ty-uM | |< | | y - z | | , for every y £ Y with | | y | | < M . 

Taking in pa r t i cu l a r y « 0 we obtain tha t || uM | |< || z || -. 1. Let y £ Y 

be a point with || y | | > M. Then 

HTy-uM|| < | |Ty | | + || U | | | |< || yII • 1 

and 

II y - »ll > l l y l l - 11*11- l l y l l - 1 , 

hence 
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" T y - U M» < | | T | | + 1 < M_LA 
II y - z | | " || ar|| — 1 " M - i ' 

Therefore, for large enough M the point u» will satisfy (5.1) and this 

shows that (a) =C> (b). 

(b) =*> (c) is clear. 

(c) => (a). It is enough to show that if X satisfies (c) then 

for every collection of four mutually intersecting cells {Sfx^,r^)}\m-\ 

in X and for every e > 0 there is a point x £ X satisfying 

|| x-XjJI^ r^l+e) for every i (cf. Theorem 4.1 and Lemma 4.2). Without 

loss of generality we may assume that x-, • 0 (otherwise we translate the 

cells) and hence there is a 3-dimensional subspace B of X containing 

[xiJ^s>1. By Lemma 5.3 there exists a space C D B with dim C/B • 1 and 

a point z £ C satisfying || z-xi||< r., i - 1,2,3,4. Let T be an 

operator from C into X whose restriction to B is the identity and 

for which ||¥||< 1+e. x - Tz satisfies (1 < i < 4) 

|| x-xjl = || ~(z-x±) ||< (1-fe) || z-Xi||< (1+e)^ 

as required. 

Remarks. In Chapter VII we shall show that (a) does not imply (b) 

or even (c) with e « 0 (cf. also [32]). The use of Theorem 4.5 in the 

proof of (a) *> (b) can be avoided by slightly modifying the argument 

given here. 

The proof of the following two results is similar to (and even 

simpler than) the proof of Theorem 5.4. 

Corollary 1. Let X be a Banach space. The following two state­

ments are equivalent 

(d) For every finite collection of mutually intersecting cells 

{S(x.,r.)} in X whose centers form a 2-dimensional subspace of X, and 
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for every e > 0, C) S(x±,r±+e) / $. 

(e) Every operator T from Y into X with a 2-dimensional range 

has, for every e > 0, an extension T from Z (Z D Y with dim Z/Y-l) 

into X with ||tf||< (1+e) || T|| . 

Remark, We conjecture that (d) and (e) are also equivalent to state­

ments (a), (b) and (c) in Theorem 5.4* In Chapter VI we shall prove that 

this is indeed the case if we assume that S^ has at least one extreme 

point. 

Corollary 2. Let X be a Banach space and let 7*1 be a (finite 

or infinite) cardinal number. The following two statements are equivalent. 

(i) Every collection of mutually intersecting cells in X whose 

centers span a subspace of dimension < % has a non empty intersection, 

(ii) Every operator T from Y (with Y of dimension <7%) 

into X has a norm preserving extension from Z (Z D Y, dim Z/Y «• 1) 

into X. 

Remark• In the next chapter we shall show that spaces having the 

F.2.I.P. also have the property obtained from statement (b) of Theorem 5.4 

(and hence also from statement (c)) if we discard any requirement on Z/Y. 

Concerning the properties appearing in Corollary 2 it is not hard to see 

that if we assume the generalized continuum hypothesis then property (ii) 

(for an infinite cardinal #£ ) implies the property obtained from it by 

discarding any requirement on Z/Y (cf. [32]). For finite 7*1 we were 

able to show that the same is true in some special cases, for instance for 

C(K) spaces (cf. Chapter VII and [32]). 

Theorem 5.5. Let X be a Banach space. The following three state­

ments are equivalent 

(i) X has the F.2.I.P. 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 57 

(ii) Every operator (not necessarily compact) T from Y into X 

has an extension T?' from Z (Z D Y with dim Z/Y • 1 and the unit cell 

Sz of Z is the convex hull of Sv and a finite set of points 

it z±}lml) into X with ||T||- ||T||. 

(iii) Every operator T from Y into X with a range of dimen­

sion < 3 has an extension T from Z (Z D Y with dim Z/Y » 1 and 

S z * Co(SyU{i zi}^1)) into X with ||T||-||T||. 

Proof, (i) => (ii). Let Z, Y and T with ||T||- 1 be given, 

and let z £ Z *> Y. Then zi » \±z + yi 9 i»l,...,n, where y ^ Y and 

the \. are scalars. We may assume without loss of generality that \. 

^ 0 for every i. ||T|| will be equal to 1 if ||Tzi||< 1 for every 

i, i.e. if u - ̂ z is chosen so that || u + Ty±/\±\\<. l/\\±\. 

II T y ^ - Tyj/XjH < || y ^ - yj/xj II 

- II^Ai - «.JAJII < i / |x± | + 1/1x̂ 1 , 

and since X has the F.2.I.P. such a choice of u is possible. 

(ii) **> (iii) is clear and (iii) **> (i) follows as in -Theorem 5.4 

if we use the second proof of Lemma 5.3. 

For the 3,2.I.P. we obtain similarly 

Corollary. A Banach space X has the 3,2.I.P. if and only if for 

every Z D Y with dim Z/Y - 1 and Sz - Co(SYU{i
 z

±}±9l), every 

operator from Y to X has a norm preserving extension from Z into X. 

Remark. If Z D T and Sz - Co(SYU(i
 zili»i) then it is easily 

seen that there is a projection of norm 1 from Z onto Y. Hence for 

every Banach space X and every operator from Y into X there is a 

norm preserving extension from Z to X# 

We pass now to wfromn extension properties. We shall use the fol­

lowing result of Klee [26]. 
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5 3 Joram Lindenstrauss 

Lemma 5*6. Let X be a Banach space and let {C. }?"- be convex 
n+1 1 1 1 

open sets in X such that f*\ C, « 0. Then there is a closed subspace 
i-1 1 

V of X with dim X/V < n so that no translate of V meets all the Ci# 

Corollary. Let tsx^xi'ri^i»l be n cells in x sucn tnat 

n 
r\ SY(x4,r.+£) - 0 for some e > 0. Then there is a quotient space Y 
i - i i * 
of X with dim Y < n-1 such that f\ Sv(Tx. ,r.) - 0 where T denotes 

i-1 X 1 x 

the quotient map from X onto Y. 

Proof. Let V be a closed subspace of X with dim X/V < n-1 

such that no translate of V meets all the cells S^(x,fr^+e/2) i -

l,2,...,n (apply the lemma to corresponding open cells with slightly-

bigger radii). Let Y » X/V and let T be the quotient map. Then for 

every x £ X and positive r and 6 

TSx(x,r) C Sy(Tx,r) C TSx(x,r+6) 

-he choi< 

0 

n n 
By the choice of V C\ TSY(x.,r.+e/2) - 0 and hence f\ Sv(Tx. ,r.) 

i-1 A * 1 i-1 1 1 x 

Theorem 5.7» Let X be a Banach space and let n > 3. The follow­

ing statements are equivalent 

(i) X has the n,2.I.P. 

(ii) Every operator from X to Y (with Y having a dimension 

< n-1) has a norm preserving extension T from Z (Z D X with 

dim Z/X - 1) into Y. 

Proof, (i) =0 (ii). Let Y, Z and T be given with ||T||- 1 and 

let z £ Z *> X. By Lemma 5.2 we have only to show that 

r \ Sv(Tx,||x-z|| ) / 0. By Helly
fs theorem it is enough to show that, 

x € „ 

for every {^l^ai in x> ^\ SyfTx^H z ~ x ± II ) is not empty. But since 

X has the n,2.I.P. and the cells S x(x., || x.-z || ) are mutually 
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n 
intersecting we get that (~\ SY(x., || x.-z || ) 4 0. This concludes the 

i-1 A 1 x 

proof* 

(ii) =*> (i) follows from Lemma 4«2, Lemma 5*3 and the corollary to 

Lemma 5.6. We omit the details (cf. [33]). 

Remark. In the next chapter we shall show that for n > 4 we can 

discard in (ii) the requirement that dim Z/X * 1 and still get a proper­

ty which is equivalent to (i). In [333 w© have proved that the most im­

portant class of spaces which have the 3,2.I.P. but not the 4,2.I.P, that 

is the LA ft) spaces, have the property obtained from (ii) (for n • 3) 

by discarding any requirement on Z/X. 

Lemma 5.3. Let X be a Banach space and let (S^(x. ,r.) }?.n be a 

finite number of cells in X. Then 

A SY**(x.,rJ / 0 <»**> n SY(x..,r,+e) / 0 for every e > 0. 
i«l * x x i=l A x 1 

n 
Proof. If r\ SY(x. ,r.+e) / 0 for every e> 0 then clearly 

n iml 

(~\ SY#*(x. ,r. +e) / 0 for every e > 0 and hence by the w* compactness 
i«l 
of cells in X also f\ SY**(x.,r.) f 0* Conversely, suppose that for 

some e> 0 f\ SY(x. ,r.+e) « 0. Then by the corollary to Lemma 5.6 
i-1 x x 

there is a finite-dimensional quotient space Y of X such that 

n 
C\ Sy(Tx.,r.) • 0 where T is the quotient map from X onto Y. Sup-
i-1 l x x 

pose there is an x** which belongs to all the cells Sx*jjc(x.,ri) f i • 

l,...,n. Then || T x** - Tx. ||< r. for every i and this is a contra-
n i — i 

diction. Hence f\ S^^fx. , r.) • 0 and this establishes the lemma, 
i«l 

Corollary. Let X have the n,2.I.P. for some n > 3. Then 

also X has the n,2.I.P. 

We say that the cells in a Banach space X have the finite 

intersection property if for every collection f^lg^A o f c e l l s i n * 
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n 
such that f\ s« / 0 f o r every finite subset {a. } n , of A also 
^ i-1 ai x 1~1 

a£ A 

Theorem 5*9* Let X be a Banach space. The cells in X have the 
$$ 

finite intersection property if and only if for every Y with X 3 Y D 

X and dim Y/X. < 1 there is a projection of norm 1 from Y onto X# 

Proof. Let 5Sx^xa,ra^a€ A be a collection of cells in X such 

that any finite subcollection has a non void intersection. Then clearly 

C\ S Y**(x„ , r ) / 0. Let x** be a point in this intersection and let 
a£A A a a 

## 
Y be the subspace of X spanned by X and x**. Suppose that there 

is a projection P of norm 1 from Y onto X • then Px** belongs to 

all the cells Sx(xa,ra). Conversely, suppose that the cells of X have 

tne finite intersection property and let X C Y C X with dim Y/X » 1» 

Let x** £ Y ~ X. By Lemma 5.2 it is enough to show that C) Sx(x, 
x€X 

|| x**-x|| ) / 0. By Lemma 5.3 we have, for every e > 0 and every finite 
n 

set txi}?SBl in X, that O S ^ x ^ || x**-^ ||+e) / $. Hence, since tlie 

cells in X have the finite intersection property, 

n sx(x, ii x**-xii) = n r \ sxu, n x**-xii ̂ j / 0 
xeX A e>0 x€X A 

and this concludes the proof of the theorem. 

Remarks. 1. It is well known that if X » L, (#) there is always 

a projection of norm 1 from X onto X. Since the unit cell of 

L, (0,1) has no extreme points we thus get an example of a Banach space 

whose cells have the finite intersection property though they have no 

extreme points. This solves a problem of Nachbin ([393,cf. also [3S 

problem 1]). 

2. We do not know whether for every Banach space X whose cells 

have the finite intersection property there is a projection of norm 1 

from X onto X. 
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To end this chapter we would like to give an example which shows 

that the corollary to Lemma 5.6 as well as Lemma 5.3 do not hold if e is 

allowed to be 0. This example shows also the role of Lemma 4*2 in the 

discussions in this chapter and in the preceding one. 

Example. There is a Banach space Z and three cells in it such 

3 3 
that f\ Sz(zi,rjL+e) / 0 for every e > 0 but f\ S^z^i^) - 0. 

i=*l i=l 
Proof. Introduce in Y * R © m the following norm 

||y||= max (|x|, sup |xj + ( X (x^n)2)1/2) 
n nsl 

where y - (\,x) with \ £ R and x - (x1,x2,... ) (E m. Let Z be the 

subspace of Y consisting of all the vectors (\,x) such that lim x ^ 
n>co 

and lim x2n+i exist and satisfy 
n4>oo 

2X - 3 limx 2 n + 1 - lim x 2 n . 
n̂ >oo n«̂ oo 

Take z1 « (0,0) and z2 • (0,x) where x a (1,0,0,.,. ). These points 

belong to Z, satisfy || z^—z2 II " 2 and as easily seen zQ • (z,+z2)/2 

is the only point in Z for which || ZQ-Z-, || = || ZQ-Z2|| = 1. However, if 

un ~ (V 2*^/ 2) where xR * (1,0,0,... ,0,1,1,... ) (in the places from 

2 to n we have 0 otherwise 1) then llun""
zill—> 1 and Hun""

z2H 

— > 1 as n — > oo. Let kQ be an even integer such that 

3/8 + ( E 1/k2)1/2 < 7/16 , 
ie>k0 

and put z - (1/2,v) where v - (1/2,0,0,...,0,3/8,1/8,3/8,... ) (the 

first coordinate is 1/2, the coordinates from 2 to kQ are 0 and 

the rest are alternately 3/8 and l/8). Then z~ <E Z, || z3-un||< 7/16 

for n > kQ while || Z~-ZQ|| * 1/2. Hence 

S(z1,l)nS(z2,l)OS(z3,7/l6) - 0 

while for every e > 0 
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S(Zl,l+e)riS(z2,l4.e)ns(z3,7/l6) ?0 . 

(Actually even Sfz^l+e)/! $(z2,l)f\ S(z3,7/l6) / 0 .) 

CHAPTER VI. THE EXTENSION 

THEOREM FOR X * 1 AND ITS APPLICATIONS 

We begin this chapter with the statement of a theorem which is, in a 

sense, the central result of this paper. This theorem is in part the 

special case X » 1 of Theorem 2.1. However the information available in 

this case is much more precise and complete than in the general case which 

was treated in Chapter II. Theorem 6.1 summarizes many results which //ere 

proved in the preceding chapters but it contains also some new assertions 

which will be proved here. The equivalences (1) <==> (2) <»»> (3) <«*> (5) 

are due to Grothendieck [14,15]. We recall the convention made in the 

introduction that in the statement of the extension properties Y and Z 

are arbitrary Banach spaces satisfying the requirements (if any) imposed 

on them. 

Theorem 6.1. Let X be a Banach space. The following statements 

are equivalent. 

(1) Xv is a P^ space. 

(2) X is an L, (#) space (for some measure /i). 

(3) Every compact operator T from Y to X has (for every e > 0) 

a compact extension ? from Z (Z D T) to X with -||?||< (l+e)||T||. 

(4) Every operator T from Y (dim Y < 3) to X has (for every 

e > 0) an extension T from Z (Z 3 Y and dim Z/Y » l) to X with 

l|T||< (l+e)||T|| . 

(5) Every operator T from Y to X has an extension T from 

Z (ZD Y) to X** with ||T|| - || T|| . 

(6) Every operator T from Y to X has an extension T from 
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Z (Z D Y) to X with ||T|| - || T || provided that Sz is the convex hull 

of Sy and a finite set of points. 

(7) Every operator T from X to a conjugate space Y has an ex­

tension T from Z (Z D X) to Y with ||T||- ||T||. 

(3) Every compact operator T from X to Y has a compact exten­

sion T* from Z (Z D X) to Y with ||T|| - ||T||. 

(9) Every weakly compact operator T from X to Y has a weakly 

compact extension TT from Z (Z D X) to Y with || T'll =» || T || . 

(10) Every operator T from X to Y (dim Y < 3) has an exten­

sion T from Z (Z 3 X and dim Z/X - 1) to Y with ||?|| = || T|| . 

(11) X has the M.A.P. and every compact operator T from X into 

itself has an extension ¥ from Z (Z D X with dim Z/X - 1) to X 

with ||T|| * ||T|| . 

(12) X has the R.4,2.I.P. 

(13) Every collection of mutually intersecting cells fs(x
a#

r
an

 i n 

X such that the set of centers (x } is conditionally (norm) compact, 

has a non empty intersection. 

If Sy has at least one extreme point the following statements are 

also equivalent to the preceding ones. 

(14) X is isometric to a subspace X, of some C(K) (K compact 

Hausdorff) having the following properties: 

(a) 1K, the function identically equal to 1 on K, belongs to 

x r 

(b) The decomposition property, f,g,h £ X^, f,g,h > 0 and 

f + g > h " O there are fQ,g0 £ \ such that f > fQ > 0, g > gQ > 0 

and f 0 + gQ = h. 

(15) Every collection of four mutually intersecting cells 

fS(x. ,r.) }jf„n in X such that the ^iltai sPan a 2-dimensional sub-

space of X has a non empty intersection. 
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(16) Every operator T from Y (dim Y - 2) to X has (for every 

e > 0) an extension ? from Z ( Z D Y and dim Z 3 3) to X with 

l|T||<(l+e)||T|| . 

Proof. The equivalence of (1) - (13) (except (2)) follows from 

Theorems 2.1, 4.1, 4.3, 4.5, 5.4, 5.5, 5.7 and the following remarks. 

(i) By Theorem 5.4 (13) implies (3) for spaces Z with dim Z/Y • 1 

and hence for Z with dim Z/Y < oo. Therefore by (4) »> (1) of Theorem 

2.1 we get here the implication (13) a> (1). 

(ii) It is easily seen that (6) is equivalent to the property ob­

tained from it by adding the requirement that dim Z/Y « 1. Hence by 

Theorem 5.5 property (6) is equivalent to the F.2.I.P. 

(iii) (11) -> (12). Let {S(xi,ri)}*ml be a finite collection of 

mutually intersecting cells in X and let e > 0. By the M.A.P. there 

is a compact T from X into itself such that || T|| - 1 and || Tx^x.JI 

< e for every i. By Lemma 5.3 there is a space Z 3 X with dim Z/X «1 

and a point z £~Z such that |f z-xi|j < r^ i«l,...fn . Let T be a 

norm preserving extension of T from Z into X. || Tz-x.|| < r. + e for 

every i and (12) follows now by Lemma 4.2. It should be remarked that 

unlike the cases treated in (i) and (ii) it does not seem to be immediate 

that (11) implies that X has a similar property for all Z with 

dim Z/X < oo. 

(iv) A Banach space X whdc h has the F.2.I.P. also has the M.A.P. 

Indeed, let B be a finite-dimensional subspace of X and let e > 0. 

By approximating B by a space B- whose unit cell is a polyhedron and 

embedding B-̂  in an J1^ space for some n it follows that there is a 

finite-dimensional space U 3 B which is a ^ T . £ space. By Theorem 5.4 

the identity operator from B into X has an extension TQ from U 

into X with II T0II < 1 + e. Since U is a ^T + E space there is an 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 65 

operator T, from X into U such that T^.g is the identity and 

II Till< 1 + e. The operator T - T ^ from X into itself satisfies 

|| T||< (1+e)2 and its restriction to B is the identity. Hence X has 

the M.A.P. It follows now (use Theorem 5.7) that also (10) implies the 

M.A.P. Since clearly (8) -> (10) and (9) •> (10) it follows from 

Theorem 2.1 that any one of the properties (1) - (10) implies the M.A.P, 

The equivalence of (1) and (2) (in which the non obvious implica­

tion is (1) •> (2)) was proved by Grothendieck [15]. 

We turn now to spaces X for which Sx has at least one extreme 

point, and show that for such X (14) is equivalent to (1) - (13). It is 

easy to prove that (14)-> (12). We prefer, however, to prove that (14) *$> 

(2) and thus to obtain a new proof to the equivalence of (1) and (2) 

(valid of course only for spaces X in which 3X has an extreme point). 

Let X1 satisfy (a) and (b) of (14). We order X* by 

x* > 0 < « > x*(f) > 0 for every f > 0 in X1# 

Clearly x* > 0 iff x*(lR) - || x*|| . F. Riesz [43] has shown that (b) 

implies that in the order defined above X-. is a lattice (cf. also 

Kadison [21, Lemma 5.1] or Day [6, p. 9#] and the references there). It is 

immediate that x*,y* > 0 «=> || x*+y*|| - || x*|| + || y*|| (- x*(lK) + y*dK» 

and that x A y " 0 (A is the lattice operation) implies || x +y || « 

|| x -y ||. Hence X1 is an L space in the terminology of Kakutani [23]. 

(14) *=> (2) follows now from the representation theorem of Kakutani [23]. 

We prove now that (12) •«> (14). From (2) =»»> (4) of Theorem 4.7 

it follows that X is isometric to a subspace X, of some C(K) satis­

fying (a) of (14). We shall show that if Xx has the R.4,3.I.P. (and in 

particular if it has the R.4,2.I.P.) then it also has the decomposition 

property. Let f,g,h £;X]L f,g,h > 0 and f+g > h. Without loss of 

generality we may assume that || f || , || g|| , || h|| < 1. Consider the four 
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Joram Lindenstrauss 

31 - S(1K,1) , S2 - 3(f-lK,l) , 

S3 - S(h-1K,1) , S4 - S(lK+h-g,l) . 

Every three of them intersect. Indeed 0 ^LS^nSgHS^ (° £ 3 ^ is clear, 

0 £ S 2 follows from 0 < f < 1R, 0 £ 3 3 follows from 0 < h < 1K) and 

similarly h C S ^ S . A S , , h-g €r32f \S3ns, and f C S ^ S ^ S , . Hence 

by the R.4,3.I.P. there i s an fQ CS-j^nSg A33H S^. Put ^ * h-fQ. We 

have f 0 e s 1 «> f0 >o, f0 e s 2 ««> f > fQ, f Q e s 3 «> go >o, f0 e 
S, ••> g > gQ and this proves (b) of (14). 

It should be mentioned that as K in (14) we may take the w clo­

sure of the positive extreme points of Sx#. (X is ordered by taking any 

extreme point e of Sx and letting x > 0 <«> x - \(e+u), \ > 0 and 

II ull < !• x* i s ordered as in the proof of (14) stsx> (2)# ) The mapping 

of X into C(K) is then the canonical one x(k) * k(x), k £ K, x£[X 

(cf• Kadison [21, Theorem 5*2]). It is possible, and will be convenient 

sometimes, to take as K the set of positive extreme points itself (this 

K, however, will not in general be compact). 

The equivalence of (15) and (16) with (1) - (14), under the 

assumption that 3y has an extreme point, will be shown later on in this 

chapter (cf. Lemma 6.5). 

We give some corollaries of Theorem 6.1. 

Corollary 1. Let X be an Jf^ space for every X > 1. Then X 

satisfies (1) - (13) of Theorem 6.1. 

Proof. Use Theorem 3.3. 

We do not know whether the converse of Corollary 1 is true. At the 

end of Chapter III we showed that every C(K) space is an ^V? space for 

every \ > 1. A similar argument (however technically more complicated) 

can be used to show that certain other special classes of spaces which 
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Extension of compact operators 67 

satisfy (1) - (13) (for example C ^ K ) spaces, cf. Day [6,p. £9] for 

their definition) are V ^ spaces for every \ > 1. In this connection 

see also Corollary 3 to Theorem 7.9* 

Corollary 2. Let X satisfy (1) - (13) of Theorem 6.1 and let 

Y be a separable subspace of X. Then there is a separable subspace Z 

of X containing Y which satisfies (1) - (13)« 

Proof. Use Theorem 4.4. 

Corollary 3. Let X be a conjugate space satisfying (1) - (16) of 

Theorem 6.1. Then X is a P^ space. 

$$ 
Proof. There exists a projection with norm 1 from X onto X 

(Dixmier [7]). Or, alternatively, the fact that every collection of 

mutually intersecting cells in X has a common point follows from the 

F.2.I.P. and the w compactness of the cells. 

Corollary 4. Let X be a conjugate CL space (in the sense of 

Fullerton [93#cf. also the discussion preceding Theorem 4.S). Then X is 

a C(K) space <»> X has the R.4,3.1.P. 

Proof. aa> is clear. <»•* follows from Corollary 3, from the 

proof of (12) *•> (14) in Theorem 6.1 and from the fact that CL spaces 

have the properties appearing in Theorem 4#7. 

Another property characterizing C(K) spaces among the conjugate 

CL spaces was given by Fullerton [9]. 

Corollary 5. Let X satisfy (1) - (13) of Theorem 6.1 and let F 

be a maximal convex subset of the boundary of S^. Then Sx is the (noxra) 

closed convex hull of FU -F. 

Proof. Use Theorem 4.6(b) and Corollary 1 to Theorem 4.6. 

We shall now study some questions related to the decomposition 
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6g Joram Lindenstrauss 

property (property (14) (b) of Theorem 6.1). 

Lemma 6.2. Let X be a linear space of functions on a set K. 

X has the decomposition property iff it satisfies 

( + ) For every n + m functions in X 1^1?=!, [gj}m
sl, such 

that f. < g. f i •» l,...,n , j
 a 1, . ..,m there is an h ̂ X satisfying 

£± < h < g. $ i * l,...,n , i - l,...,m . 

Proof. We observe first that the decomposition property is equiva­

lent to (+) for m - n - 2. Indeed, put f^ « 0, f2 - h - g, g^ * f, 
« o o 

g2 • h; then the requirements of ( ) on t^jl^x* ^gi^i»l are satis-

fied iff f,g,h > 0 and f+g > h. The fact that ( + ) with n - m - 2 

implies that ( ) holds for every n and m follows easily by induction 

(first on m for n • 2 and then on n for a fixed m). 

This simple lemma enables us to give a new proof to the fact that 

the R.4,2.I.P. implies the F.2.I.P. 

Theorem 6.3* Let X be a normed space whose unit cell has at least 

one extreme point. X has the F.2.I.P. if it has the following two 

properties: 

(i) The R.4,3.I.P. 

(ii) Let ISjlisi be a collection of 3 mutually intersecting 

cells in X with a common radius and such that S-̂ fi S2 is a single point 

e. Then e €IS~. 

Proof. From Theorem 4.7 and the proof of Theorem 6.1 ((12) « > 

(14)) it follows that X is (isometric to) a subspace of some G(K) con­

taining the function 1R and satisfying ( ) of Lemma 6.2. Let 

{S(x.,r. )}?an be n mutually intersecting cells in X. Put f. =• x. -

^ K * % * xi + ^ K ' * * 1»***#n • T n e n fi S Si 9 i»3 m !#•••#» and 

hence by ( ) there is an h £ X such that f. < h < g. 
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Extension of compact operators 69 

( i . e . || h - x±\\ < r±) for every i # 

From the proof of Theorem 6.3 it follows that a (not necessarily 

closed) subspace of C(K) containing 1R has the F.2.I.P. iff it has 

the decomposition property. We shall now prove that for closed subspaces 

the decomposition property is equivalent to its special case where f + g 

Lemma 6.4# Let X be a closed subspace of some C(K) containing 

the function 1R. Then X has the F.2.I.P. iff it has the following 

property 

(++) f,g,h e x , f,g,h > 0, 1K » f + g > h »»> there are 

f0,g0 e x satisfying 0 < fQ < f, 0 < gQ < g, fQ + g^ - h . 

Proof. By extending the argument of Riesz [43] we shall prove that 

( ) implies that X is a lattice in its natural order. Then (as in 

the proof of (14) 3SS> (2) in Theorem 6.1) it will follows that X* is an 

L space and this will conclude the proof of the lemma. 

Let x* £X*. For every f £ X , f > 0 , we define 

x*+(f) » sup x*(h) . 
0<h<f 

It is clear that 

(6.1) x*4*(\f) » x*+(f) $ \ > 0, f > 0, 

(6.2) x*+(f) + x*+(g) < x**(f + g), f,g > 0. 

We intend to show that (6.2) is actually an equality, i.e. that 

(6.3) x*+(f) + x*+(g) - x ^ f + g), f,g > 0. 

If f + g - 1R then by (++) every h < f + g is of the form 

f0 + So* w i t h ° - f0 - f and ° < % - 6* and hence in this case (6*3) 

is clear. In order to show that (6.3) holds for every positive f and g 

we may assume (by (6.1)) that f,g < 1R. 

We have 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



70 Joram Lindenstrauss 

x*+(f) + x* +(l K- f) - x*
+(lK) , 

x*+(g) + x*+(lK- g) - x**(lK) , 

x*+(f+g) + x*+(2.1K - f - g) - 2x*+(lK) . 

These equalities, (6.2) and the inequality 

x*+(lK - f) + x*
+(lR - g) < x*+(2.1K - f - g) 

imply (6.3). From (6.3) it follows that x can be extended to a con­

tinuous linear functional on X by defining x**(f) - x*^"(f1) - x
 +(^2)» 

where f - f 1 - f2 and f1#f2 > °» It is now clear that X becomes a 

lattice if we define x*Vy* * y* + (x*-y*)**\ 

Every algebra of functions (with the usual pointwise multiplication) 

which contains 1K satisfies ( ). Indeed, if f + g » l K > h > 0 then 

fQ • fh and g^ m gh have the required properties. We remark that the 

same is true if the multiplication in the algebra is not the usual (point-

wise) one, provided it is distributive and satisfies IK«
f * f.lR " f and 

f > 0» g > 0 -*>.fg > 0. (Commutativity and associativity are not re­

quired; these are exactly the same requirements as those appearing in 

Kadison [21, Section 3].) We shall now give an example of an algebra of 

continuous functions containing 1„ which does not have the decomposition 

property. If we take in this algebra the sup norm we obtain an example 

of a normed space which does not have the F.2.I.P. though it satisfies 

( ) and its completion has the F.2.I.P. (it follows, in particular, 

that Lemma 6.4 does not hold for non closed subspaces X). 

Example. Let r,(x) and s^(x) be two continuous functions on 

[0,*] such that x#r^(x),s..(x) are algebraically independent and 

rx(x) < x < S]L(x) (0 < x < | ) , r^l) » s^i) - \ . Similarly let 

r2(x) and s2(x) be two continuous functions on [-,1] such that 

x,r2(x), s2(x) are algebraically independent and r2(x) < x < s2(x) 

(o — x ~ *^' r2^2^ * s 2 ^ ' * 3 # W e d e f i n e f o u r continuous functions on 
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[0 ,1] as follows: 
1 ' x 0 < x < | (V,(x) 0 < x < i f 

f l ( x ) = 1 1 • f2<x> " 1 1 
(^x i < x < l * L r 2 ( x ) ^ S x 5 1 

f s , (x ) 0 < x < i (- x 
1 - - ° s * < i 

2 ^ - - — v - 2 v x ) | < x < l 

Let A be the subalgebra of C(0,1) generated by l r 0 1- . , f̂ , f2, g ^ 

g2» The function x does not belong to A. Indeed, suppose that 

x • E "llt±2l5lti2
 f l ( x ) l 1 f2{x)H S X (x ) J l g 2 ( x ) J 2 . 

For 0 < x < - we obtain 

0 - x - £ a. . . . r.(x) x Sl(x)
 x x 

n - • J-o. Ji . Jo J- ' 

Since x, r, and s^ are algebraically independent the homogeneous part 

of degree 1 is 0 i.e. 

x • an ^ ̂  ̂  r.,(x) + a^ ̂  1 ^ ST(X) + (a^ n ̂  ̂  + a^ ̂  ̂  n )x l,o,o,o lx ' o,o,l,o lx ' x o,l,o,o o,o,o,l7 

o r ai ^ ̂  o * a« « n « = °t a« I « « + a« « « i " !• Similarly by tak-i,o,o,o o,o,l,o * o,l,o,o o,o,o,l * * 

ing 1 < x < 1 we obtain a^ ^ ̂ ^ ' a ^ ^ ^ T « 0 and this is a eontra-2 - - o,l,o,o o,o,o,l 

diction. We have shown that x £ A . But x * max(f,,f2)
 a min(glfg2) an4 

hence A does not have the decomposition property (Lemma 6.2). 

We are now ready to prove that each of the properties (15) and (16) 

of Theorem 6.1 is equivalent to (1) - (13) if Sx has at least one 

extreme point. By Corollary 1 to Theorem 5.4 it is enough to prove the 

following 

Lemma 6.5. Let X be a Banach space such that Sy has at least 

one extreme point and such that X has the following property 

(15)Q For every collection of four mutually intersecting cells 

{SfXj.,^)]^^ in X, such that the [x.Ka, span a 2-dimensional 
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72 Joram Lindenstrauss 

4 
subspace of X, and f o r every e > 0 Pi S(x . , r . + e) f 0 . 

i»l 1 

Then X is an L-Afi) space. 

Proof. (15)Q implies the 3f2#I.P. (cf. Lemma 4.2) and hence by 

Theorem 4»7 X is isometric to a subspace of some C(K) containing 1R. 

We take in X the order induced on it by C(K) and define for every x 

in X and every f > 0 in X 

(6.4) x*+(f) » lira sup x*(h) . 
e->0 0<h<f+e*lK 

It is clear that the limit always exists. If f > 5#1K for some 

8 > 0 then f < f+e-lR < (l+s/8)f and it follows that x**(f) -

sup x (h). It is easily seen that (6.1) and (6.2) hold and that 
0<h<f 

(6.5) lim x*+(f+cg) - x*+(f) , f,g > 0 . 
e->0 

As in the proof of Lemma 6.4 the present lemma will be proved once 

(6.3) is established. We prove first the following special case of(6.3) 

(6.6) x*+(lK+f) + x*+(f) - x*+(lK+2f), 0 < f < 1K . 

Let h satisfy 0 < h < 1„ + 2f and consider the following four cells 

S(1K,1) , S(f-1K,1) , 

S(h-2.1K,2) , S(h-f,l) . 

It is easily checked that these cells are mutually intersecting. If we 

translate all the centers of the cells by -1 K we get the four points 0, 

f-2*lK, h-3*lK and h-f-lR « (h-3*lK) - (f-2*lK), which lie in a 2-

dimensional subspace of X. Hence by (15)0 there is for every e > 0 an 

element u in X such that 

II iru
ell ^ 1 + s . II V ^ J I ^ x + e » 

|| a^l^h+UgH < 2 + e , || b -u e - f | | < 1 + e , 
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Extension of compact operators 73 

and thus 

-e•1K < u£ < f + e•1K - S - 1K 1 h" ue 1 f + < 1 + e ) # 1K • 

Hence 

x*+(f+2e-lK) + x**(f+(l+2e)-lK) 

> x (u£+e-lK) + x (h-ue+c»lK) - x (h) + 2ex (1R) . 

Since e > 0 was arbitrary and h had only to satisfy 0 < h < 1K + 2f 

we get by (6.5) that 

x**(lK+f) + x*
+(f) > x*f(lK+2f) , 

and this together with (6.2) prove (6.6). By (6.6) we have for every inte­

ger n > 0 and 0 < f < 1R 

x*+(lK+f) - (2-
1+2-2+...+2-n)xSSef(f) + x ^ l ^ ^ f ) , 

and hence, by (6.5), 

(6.7) x*f(lK+f) .- x*
4"^) + x*+(f) 0 < f < 1K . 

Let now g £ X with 0 < g <̂  1R, let x £ X and let n > 1 be 

an integer. We take an h £ X such that 0 < h < 1K and 

(6.3) |x*+(lK) - x*(h)| < 1/n
2 . 

Consider the four cells 

S((2n2-1)-1K, 2n
2-l) , S(-n-lK+g,n) , 

.S(-n-lK+(n+l)h, n) , S((n-1)-1K + ^T £+h' n> • 

It is easily checked that the cells are mutually intersecting and that if 

we translate the centers by -(2n -1)ml„ we get four points which lie in a 

2-dimensional subspace of X. Hence by (15)Q we get that for every e > 0 

there is an element u in X satisfying 

-e-lK < (n+l)h-ue < nh - |=i g + (1+c)-1K < (n+l+e)«1K - ̂  g . 
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Hence 

and 

ex*(lR) + x*(u£) < x*
+(g + 2e*lK) 

(n+l)x*(h) - x*(u£) + ex*(lK) < x*
+(fe+l+2e)-1K - ^ g ) . 

It follows from these inequalities, (6.7) and (6.3) that 

nx*+(lK) + x*
+((l+2e) -1K - g j g) 

- x*+((n+l+2e)-lK - 2$ g) > (n+l)x*(h) - x*+(g+2e.lK) + 2x*(e-lK) 

> ( n + D x * 4 ^ ) - x*+(g+2e.lK) - (n+l)/n
2 - 2e||x*|| . 

Hence 

x*+K(l+2e)-lK - f=i g) • x*
+(g+2e-lK) 

> x*f(lK) - (n+l)/n
2 - 2E||X*||. 

Letting £ — > 0 and n — > oo we obtain that x (lK-g) + x
 r(g) > 

x (lg) and from this (6.3) follows (cf. Lemma 6.4). This concludes the 

proof of Lemma 6.5 and thus of Theorem 6.1. 

Before we leave the discussion of the decomposition property we would 

like to give some examples of (in general not closed) subspaces of C(K) 

which have the decomposition property. Every subspace of C(K) which is a 

lattice in the usual order for functions (but not necessarily a sublattice 

of C(K)) has the decomposition property (such spaces were considered by 

Geba and Semadeni [10]). Another category of examples (cf. [43]) are the 

spaces of continuous rational functions on [0,1], real analytic functions 

on [0,1], and functions having derivatives up to order n everywhere in 

[0,1] (for some integer n). For all these spaces the decomposition prop­

erty is established by taking (given f,g,h > 0, f+g > h) , 

(rll̂ gfx) 'Wsw/o m%h fwgw* 
0 L 0 f (x )=g(x )=0 ° I 0 f ( x ) - g ( x ) - 0 
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We omit the straightforward verification that if f ,g and h have n 

derivatives the same is true for fg and gQ. Less immediate is the fact 

that also the space of all the polynomials (with the norm ||f|| * max |f(x)|) 
GO<l 

has the F.2.I.P. (the proof of this fact was shown to us by M. Perles) . 

Let fi and gi $ i * 1,2 be four polynomials satisfying fi(x) < g-.(x)^ 

i,j • 1,2 , 0 < x < 1, Excluding the trivial case where at least two of 

the polynomials coincide, there is only a finite (perhaps empty) set of 

points x in [0,1] for which max f.(x) s min g.(x). We denote this 
i-1,2 x i-1,2 x 

set by t^l^l an<* a s s u m e **or the moment that it does not contain 0 or 

1. Let x be one such point then 

(6.9) f^Xp) - gj(xp) 

for some i and j. Since g. - f^ has a minimum at the point x • x 

there is an integer m such that 

*i (V) <V ' g j ( V ) ( V ' V < 2m- f l 2 m ) ( V < g j ( 2 m ) ( V • 
We call this m the order of contact of the pair (f. ,g.) at x . There 

may be more than one pair of i and j for which (6.9) is satisfied. The 

maximal of the (at most four) orders of contact thus assigned to x will 

be denoted by m . Let r(x) be a polynomial which satisfies for every p 

and for every pair (f.,g.) whose order of contact at x is m 

r<V> (xp) -f^]Up) =gj
(V)(xp) , V < 2 B p 

and 
(2mJ (2m ) (2m) 

t± P (xp) < r P (Xp) < g j
 P (xp) . 

Let s(x) be the non negative polynomial 

n 2rn 
s(x) - TT U - xJ P • 

p-1 P 

Put now Fi(x) - (f±(x) - r(x))/s(x), G±(x) « (g±(x) - r(x))/s(x) $ 
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is 1,2. The F± or G.̂  need not be finite at x - x (1 < p< n) . How­

ever, the following facts are evident 

(i) Fi(x) < G.(x) , i,j -1,2 , x / xp , (1 < p < n). 

(ii) F
i(x ) (1< p < n) is either -co or finite and negative 

(F. (xj is defined by lim F. (x)). G. (x ) is either +oo or finite and 
1 p x ^ > x 1 x p 

positive. p 

(iii) For every p at least one of the F.(x ) and one of the 

G±(x ) is finite. 

Hence, F(x) » maxfF^x), F2(x)) and G(x) - min(G1(x) ,G2(x)) are 

finite and continuous functions which satisfy G(x) > F(x) for every x 

in [0,1]. By the Weierstrass approximation theorem there is a polynomial 

H(x) for which G(x) > H(x) > F(x), 0 < x < 1. The polynomial h(x) » 

H(x)s(x) + r(x) satisfies f^x) < h(x) < g±(x), i - 1,2, 0< x < 1 . 

Suppose now that x • 0 for some p (the case x • 1 is similar). 
p r P 

We cannot claim in this case that g. - f^ has a zero of an even order at 

x =* 0. But since x is non negative in [0,1] for every V, we may 

take as a factor in s(x) (corresponding to x • 0) also x^ with an 

uneven V. With this slight modification the proof proceeds as in the case 

treated above. 

The C(K) spaces have properties (l) - (13) of Theorem 6.1. In 

fact these properties "almost" characterize C(K) spaces. We have 

Theorem 6.6. A Banach space X is isometric to a C(K) space 

(K compact Hausdorff) iff it has the following properties: 

(i) X has one (and hence all) of the properties (l) - (13) of 

Theorem 1.1. 

or (1Q) X is an </Yl space for every X > 1. 

(ii) S^ has at least one extreme point. 

(iii) The set of extreme points of Sx# is w closed. 

Licensed to Penn St Univ, University Park.  Prepared on Wed Sep  4 10:25:26 EDT 2013 for download from IP 146.186.177.69.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



Extension of compact operators 77 

Proof, That a C(K) space satisfies (i),(ii) and (iii) is well 

known, and that it satisfies (iQ) was proved in Chapter III. We only-

have to prove the converse . (iQ)
 3a,> (i) by Corollary 1 to Theorem 6.1. 

From (i) and (ii) it follows that X satisfies (14) of Theorem 6.1 (we 

identify X with X,). As remarked at the end of the proof of Theorem 

* 

6.1 we may assume that K is the w closure of the set of positive ex­

treme points of Sx*. The set of positive extreme points of S-̂ * is the 

intersection of the set of extreme points with the w closed hyperplane 

x (1K) » 1. Hence, by (iii), every point of K is an extreme point of 

S^*. Kadison [21, the proof of Theorem 4-1] has shown that if X is a 

separating subspace of C(K) containing 1R and if the functional <# 

corresponding to a point k £ K (<f\ (f) « f (k)), is an extreme point of 

Sx* then for every h £ C(K) 

(6.10) sup (f (k); f < h, f £ X} » h(k) - inf {g(k) j g > h , g £ X ) , 

Hence in our case (6.10) holds for every k £ K. 

Let h £ C(K) and let e > 0. For every k £ K there are functions 

fk' gk G X satisfying 

f
k 1

 h 1 gk> fk ( k ) + e > h(k) > gk ( k ) " e • 

Put Gk - (p£ K; fk(p) + e > h(p) > gk(p) - e}. Gk is an open set which 

contains k. By the compactness of K there are f̂ ,}!?., such that K • 
n *» 
\J G, , By Lemma 6.2 there is an h £ X which satisfies 
i-1 Ki 

f
k < h < gk , i - 1,2,...,n . 
ki ki 

A/ 

It is clear from the construction that || h - h||< 2e. Hence X is 

dense in C(K) and since it is complete it coincides with C(K). 

No one of the properties (i), (ii) and (iii) is implied by the other 

two. Clearly (ii) and (iii) do not imply (i). The subspace of C(0,1) 

consisting of all the functions for which f(0) + f(l) - 0 satisfies (i). 
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7# Joram Lindenstrauss 

(By using the Schauder basis of C(0,1) as in chapter III it can be even 

proved that it is an *̂ l/̂  space.) This space satisfies also (iii), since 

the set of extreme points of the unit cell of its conjugate (with the w 

topology) is homeomorphic to the circle, but it does not satisfy (ii). 

Let X be the space of all the sequences x « (x-.,x2,...) for 

which lim x^ = (x1 + x2)/2, with || x|| - max |xi|. X satisfies (ii) 

(the sequence (1,1,,..) is an extreme point of S^), but not (iii) since 

the functionals <f\ (fP̂ fx) = i x i , i ® 1,2,...) are extreme points of S^* 

and converge in the w topology to the functional ftp- + y2)/2 which is 

not extremal. We shall show that X is an i>r- space (and hence it 

satisfies (i)). X has the following basis 

el " ^ > ° > \ > \ > * - ] 

e2 * (°*1#2#2>*** ) 

e3 = (0,0,1,0,... ) 

and in general for j > 3 

ej - (0,0,0,...,0,1,0...) 

(all the coordinates are zero except the j-th which is 1). Let B, be 

the subspace of X spanned by leJl,. In B, we take the following 

basis 

el a el " 2e3 "" "• "" 2ek " ̂ 1*°' 0» # # #'°*5'2 , # , # ' 

2 - e2 - je3 - ... - lek - (0,1,0,...,0,|,|,... ) e 

e j s e j 3 < j < k • 

For every t^-jl.-jai w e h a v e 

k t h+X2 
|| £ X , e J | » max ( | x , | , | x 2 | , . . . , | X k | , I * I) " max | x j . 

Thus Bt_ i s a and hence X • \J B, i s an space. 
k l k - 1 k l 
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Extension of compact operators 79 

This example solves a problem raised by Nachbin [37], C3&]. The same 

problem was mentioned also by Aronszajn and Panitchpakdi [2] in connection 

with their characterization of C(K) spaces having the following inter­

section property: Let TYL be a cardinal number. A normed space X has 

the *2tf.2.1.P. if for every collection of Ht mutually intersecting cells in 

X there is a point common to all the cells. We remark that for every 

cardinal number 7*1 there is a Banach space X which has the 7*J?2.I.P# 

and whose unit cell has an extreme point but which does not satisfy (iii) 

of Theorem 6.6. Indeed, let -12- be a set of cardinality 2 and let &A 

and ^ ^e two el©ments of XI. The space of all the bounded functions on 

SJL satisfying f[co) • g except for a set of *J whose cardi­

nality is < 7ft, with the sup norm, has the properties described above. 

Grothendieck [15] conjectured that a Banach space X satisfies (1) 

in Theorem 6.1 iff X is isometric to a subspace of some C(K) consisting 

of all the functions satisfying a set of conditions of the form 

(6.11) f(k*) -X af(k^), k£, k a
2£K, Xa a scalar, a f H . 

We shall call a Banach space which admits such a functional representation 
a Cr space. Every M space in the sense of Kakutani [22] and every 
C0- 00 space (cf. Day [6, p. 39]) is a G space. 

Lemma 6.7. Let X be a subspace of C(K) consisting of all the 

functions satisfying a set of conditions of the form (6.11). Then 

(6 .12) {f. } n , C X " > g s max f, + min f. £ X. 

i l l ± 1 ± I 

(the max and min are the usual pointwise ones). 

Proof. Clearly g f C(K). We have to show that if all the f± 

satisfy (6.11) the same is true for g. Suppose first that \a > 0, and 
l e t f. (k^) = max f , ( k f ) . By (6 .11) a l s o f. (k*) » max f 4 (k*) and hence i 0 < x i i a i Q a i i a 
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SO Joram Lindenstrauss 

also max f. satisfies (6.11). The same holds for min f. and hence for 
i i i i 

g. Suppose now that x < 0 and let f. (k^) * max f.(k^), f. (k^) » 

min f±(k^). By (6.11) f± (k£) - max f^k*) and f± (kj) - min f^kj) 

and hence also in this case g satisfies (6.11). 

Lemma 6.3. Let X be a subspace of C(K) such that L £ X and 

{fi}|=1 C X ==> max f± + min f± £ X. 

Then X is a sublattice of C(K). 

Proof. Let f £ X and put 

g - max (1K, -1 R, f) + min (lK, - 1R, f). 

g £ X and we have 

(l if f (k) > 1 

f(k) - g(k) --jf(k) if |f(k) | < 1 

\-l if f (k) < -1 . 

In particular, if f > 0 then min(lK, f) £ X. By translating and multi­

plying by a scalar we infer that for every f £ X also min (0, f) £ X 

and hence X is a sublattice of C(K). 

Theorem 6.9* Let X be a G space. Then 

(a) X satisfies (l) - (13) of Theorem 6.1. 

(b) If Sy has an extreme point then X is isometric to a C(K) 

space. 

Proof. We assume, as we may, that X is a subspace of some C(K) 

consisting of all the functions which satisfy (6.11) (and not only iso­

metric to such a subspace). 

(a) We show that X satisfies (12) of Theorem 6.1. Let 

{S(f,, 1) }j . be four mutually intersecting cells in X, i.e. || f^-f J|< 

2, i,j * 1,2,3,4. We have fi - 1K < f . + 1K for every i and j and hence 
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Extension of compact operators Si 

1K + min f . - min(lK + f J > f± - 1K i » 1,2,3,4. 

-1 K + max f . - max(-lK+f .) > f± - 1K i - 1,2,3,4. 
j J 

Adding, we obtain 

g » (max f j + min f J/2 > fi - 1R i * 1,2,3,4. 
J j 

Similarly g < f^ + 1K for every i and thus 

4 
g ^ H S(f., 1) . 

i-1 x 

(b) We first extend the functions of X to functions on K U - K 

(the disjoint union of K and a set -K homeomorphic to K by the map­

ping k —5> - k) , by defining f (-k) • -f (k) , k £ K . These are also con­

ditions of the form (6.11). Hence X is (isometric to) a subspace of 

C(KU- K) satisfying (6.12), and further every extreme point of S^* is 

of the form <P p £ K U - K (<f (f) « f(p)). Let e be an'extreme point 

of Sx and order X by the relation x > 0 <=«> x • X(e + u), X > 0, 

II u||< 1. From part (a) and Theorem 6.1 (see the remark at the end of its 

proof) it follows that X is isometric to a subspace X of C(KQ) con­

taining ljr , where KQ is the set of positive extreme points of S^# 

and the mapping from X onto X is the canonical one x(kQ) - kgfx), 

kQ £ KQ. Since as remarked above every kg £ KQ can be identified with 

(at least) one point of K U - K it follows that also X satisfies (6.12). 

Thus by Lemma 6.£ X is a sublattice of C(KQ) and hence an M space 

with a unit. By a representation theorem of Kakutani [22] (Day [6, p. 

103]), X is isometric to C(K,) for some compact Hausdorff K,. 

Corollary. The sequence space defined after the proof of Theorem 

6.6 is not a G space though it satisfies (l) - (13) of Theorem 6.1. 

This disproves the conjecture of Grothendieck [15] mentioned above. 

We shall now apply Theorem 6.1 to prove that a Banach space which is 
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#2 Joram Lindenstrauss 

a *]+ e space for every e > 0 is already a ^ space. Actually 

we shall prove a somewhat stronger assertion. For the statement of this 

assertion we need the following notion which was introduced by Griinbaum 

[17] (in a slightly different notation). 

A Banach space X is called an E. space (X > 1) if for every 

collection of mutually intersecting cells ls(x
a>

r
an in x w© have 

H S(xa,\ra) / 0 . 
a 

By Lemmas 5.2 and 5-3 it follows easily that X is an E. space iff 

for every Z 3 X with dim Z/X * 1 there is a projection P from Z on­

to X with || P||< X (cf. [17]). It is clear therefore that every (P^ 

space is an E. space. The converse assertion holds only for X * 1. 

Theorem 6.10. A Banach space X which is an E, space for every 

6 > 0 is already an E.. space (i.e. a v* space). 

Proof. Let X be an E, space for every e > 0. As remarked by 

Griinbaum [17], it follows from Theorem 4 in Section 3 of Aronszajn and 

Panitchpakdi [2] that every collection of mutually intersecting cells in 

X with uniformly bounded radii has a non empty intersection. Inspecting 

the proof given by Aronszjan and Panitchpakdi [2] to the fact that the unit 

cell of a (P. space has an extreme point we see that they used only the 

fact that spaces have the intersection property stated in the pre­

vious sentence. Hence Sx has an extreme point. Since it is clear that 

X has the F.2.I.P we infer from Theorem 6.1 that X is (isometric to) 

a subspace of some C(K) which contains 1R. We show now that in its 

natural order (induced by C(K)) X is a lattice (not necessarily a sub-

lattice of C(K)). Let f,, f2 £ X, we have to show that there is a 

g £ X satisfying 

(6.13) g > fx, g > f2»
 a n d h > fi» h > f2> h ^ X ""^ h ^ S • 
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Extension of compact operators #3 

Without loss of generality we may assume that ||f-,|| , II f2 II 1 !• ^
e re~ 

mark first that if P is a projection from a subspace Y of C(K), con­

taining X, onto X with ||P|| < 1 + e then 

y £ Y , y > 0 -^ Py> -e||y||-lK . 

Indeed, 

7 > 0 ««> || 1K - | rffl ||< 1 «^> II P(1K - i p ^ ) ||< 1 + e « > 

a = > 11 XK - ir^o 11 1 x + e m"> Pv £ - £ H yii • % • 

Let F - max(f1, f2) £ C(K). If F £ X then g » F satisfies (6.13). 

Otherwise let Y be the subspace of C(K) spanned by F and X, and let 

1 > e > 0, Since X is an E T + E space there is a projection P from 

Y onto X with ||.Pell< 1 + e. Put g£ - P£F. We have 

(i) llg ell<2 

(ii) 2e-lR + g£ > F 

(iii) h £ X , h > F « > h + e( || h|| + 1)«1K > g£ • 

Indeed, || F||< max( || fjl , || f2|| ) < 1 and (i) follows. 

F > fx and hence P£(F - f^ > -e|| F - ^ll'lj or g£ > f 1 - 2e*lK. Simi­

larly g8 > f2 - 2e«lR and (ii) follows, (iii) holds since h - F > 0 

implies h - gg > -e|| h - F||-1K. 

Let now en be the sequence l/n(n+3), and put gn • g£ • 2e
n^K* 

n 
We have 

(1) g n £ * (2) l | g n l l < 3 

(3) g n > F (4) h £ X , h > F, || h||< n «-> h + i - l K > gR . 

Taking in (4) h - gm we obtain ^ + i*lR > gn (n > 3). Similarly 

gn + ra#1K ̂  gm (ra - 3) and hence " gn " ̂ n" - m a x ( H ' m' f o r every 

n, m > 3, The function g - lim gn satisfies (6.I3). 
n ->oo 

We have thus proved that X is a lattice. It follows that it is 
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#4 Joram Lindenstrauss 

isometric to a C(K1) space for some compact Hausdorff K, (see e.g. 

Kadison [21, Theorem 4.1]). Amir [1] has proved that if a C(K) space 

is an E space for some X < 2 then it is already a ^, space. This 

concludes the proof of the theorem. 

Theorem 6.10 solves a problem raised by Grunbaum [17] and Semadeni. 

Grunbaum [17] gave an example of a space which is an Ep+e space for 

every e > 0 but not an E2 space. Isbell and Semadeni [19] gave an 

example of a ^ o+e space for every e > 0 which is not a ^1 space. 

In [35] we gave an example of two Banach spaces Z D X with dim Z/X * 2 

such that there is no projection of norm 1 from Z onto X but for 

every e > 0 there is a projection of norm < 1 + e from Z onto X and 

for every Y with Z D Y D X such that dim Y/X « 1 there is a projec­

tion of norm 1 from Y onto X. (Simpler examples of this type can be 

given by using the methods of Section 2 of [34]). 

CHAPTER VII. NORM PRESERVING EXTENSIONS 

In this -chapter we shall treat the following question (as well as 

some variants of it): Given a compact operator T from a Banach space Y 

to a Banach space X which has properties (1) - (13) of Theorem 6.1; 

under what conditions is it possible to extend T in a norm preserving 

manner to an operator T from Z(Z 3 Y) to X? We shall consider es­

pecially the case where X is a G space. For such X it is convenient 

to use the explicit form of the general bounded (or compact) operator hav­

ing X as range space. 

Lemma 7.1. Let X be a closed subspace of C(K) consisting of all 

the functions satisfying a set of conditions 

(7.D f(kj) - \af(k^), k£, ka
2£Kj \a real; cc£jQ. 

Let T be a bounded operator from a Banach space Y into X. Then there 
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such t h a t 

(7 .2 ) 

(7-3) 

Ty(k) = F(k) 

l | T | | - sup 
k € K 

Extension of compact operators #5 

is a continuous function F from K to Y (with the w topology) 

k £ K , y £ Y, 

F ( k ) | | , 
k € K 

and 

(7 .4) F(k^) = XaF(k^) k*, k* £ K, \ a r e a l , a £ X I . 

Conversely, to every continuous function F from K into Y (with 

the w topology) which satisfies (7«4) there corresponds by (7.2) a 

bounded operator T from Y into X, and (7-3) holds. T is compact 

[weakly compact] iff the corresponding F is continuous with the norm 

[resp. w] topology in Y . 

Proof. The Lemma is an immediate consequence of the similar and 

well known result for operators which map into C(K) spaces (cf. Dunford-

Schwartz [g] pp. 490-491). 

The extension problem for operators into G spaces reduces thus to 

the following: Let Z 3 Y be Banach spaces and let K be a compact 

Hausdorff space. Let F be a continuous function from K to Y (with 

one of its three standard topologies) which satisfies (7.4). Does there 

exist a continuous function F from K to Z which satisfies (7.4) and 

for which F(k)iy • F(k) for every k £ K? If we are interested in norm 

preserving extensions we have to add the requirement that sup || F(k) || • 
k£ K 

sup || P(k) || . 
k€K 

The fact that a G space satisfies (3) of Theorem 6.1 (and hence 

(1) - (13), see also Theorem 6.9) can now be proved directly by using the 

following result of Bartle and Graves [3] (cf. also Michael [36]): 

Let U D UQ be Banach spaces and let V be the quotient space 

U/UQ with the usual norm. Let <p be the canonical map from U onto V. 
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£6 Joram Lindenstrauss 

Then for every e > 0 there is a continuous function f from V into 

U satisfying 

(i) »"fc(v) - v , v £ V 

(ii) ||t£(v)||< (l+e)||v||., v £ V 

(iii) Tfe(\v) - xfgfv) , X scalar and v £ V. 

In general (if UQ is not complemented in U) "l/f will not be additive. 

Let now Z J Y be Banach spaces. The restriction map *f from Z 
• # # 

onto Y is the canonical map from Z onto its quotient space Y . Let 

F be a norm continuous function from K to Y corresponding to a com­

pact operator T from Y into the G space X. Let y be a function 

from Y to Z , corresponding to a given e > 0 and to the restriction 

map <f, whose existence is ensured by the theorem of Bartle-Graves. The 

function F • f¥ from K to Z corresponds to a compact extension T 

of T from Z to X for which || ?||< (l+e) || T || . 

In view of the importance of continuous norm preserving extension of 

functionals for our discussion we find it convenient to use the following 
i $ $ 

terminology. Let Z D Y be Banach spaces. A map y from Y to Z 
is called a continuous norm preserving extension (C.N.P.E.) map if it is 

continuous (taking in Y and Z the norm topologies) and satisfies 

(7.5) Y(y*) |Y - y* and ||Y(y*) || - || y*|| , y* <= Y* . 

If Z 3 Y are Banach spaces and if each functional on Y has a 

unique norm preserving extension to Z we say that Y is a U subspace 

of Z (this is tfoe terminology of Phelps [40]). 

With these notations we state now an easy consequence of Lemma 7*1 

concerning the existence of norm preserving extensions of operators, 

Lemma 7.2 (a) Let Z D Y be Banach spaces such that there is a 

C.N.P.E. map from Y to Z . Then every compact operator from Y t 

a G space X has a compact norm preserving extension from Z to X. 
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Extension of compact operators 3? 

(b) Let Y be a U subspace of a Banach space Z. If every com­

pact operator from Y to the space of convergent sequences c has a com­

pact norm preserving extension from Z to c then there exists a C.N.P.E. 

map from Y to Z . 

Proof, (a) Use Lemma 7.1 and the fact that if "f is a C.N.P.E. 

map then the map *ty defined by 

rc /L-r"^" '^! ! ' -^^! !" " ?*<° 
L 0 if y* » 0 

is also a C.N.P.E. map and satisfies *y(\y*) - xY(y*), y * £ Y * and X 

real. 

(b) We have to prove that if r is the (uniquely determined) map 

which satisfies (7.5) and if ||y*-y*il—> 0 then H^ly*) -Y(y*)||-> 0. 

This is obvious if y - 0, and hence we may assume that || y || * 1 for 

every n. The operator T from Y to c defined by 

Ty - (yj(y), yjty), ... ) , y £ Y 

is compact and of norm 1. Let T be a norm preserving compact extension 

of T from Z to c. Then 

Tz - (z*(z), z*(z), ... ) , z £ Z 

very n and || z -z || — > 0 for some 

° r(y*) and this concludes the proof 

Remark. It is easy to construct examples of spaces Z 3 Y such 

that Y is a U subspace of Z and such that the uniquely determined 

map which satisfies (7.5) is not continuous (in the norm topologies 

of Z and I ). Take for example Z - C(0,1) and Y the 2-dimensional 

subspace of Z spanned by the functions f^(x) - x and f2^x) " x (we 

omit the simple details) If Z is locally uniformly convex 

where 

z * e z < 
of the 

II 
• 
O*1' 

Hence 

lemma. 

» ' 

z n 

!n|Y " yn 

-flT*n) 

for 

and 

e 

z 
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(cf. Day [6, p. 113] for this and related properties) then for every sub-

space Y of Z there is a C.N.P.E. map from Y into Z . Indeed, Y 

is a U subspace of Z and if Y is the (uniquely determined) map satis­

fying (7.5) then || y* - y*|| — > 0 ==> || y* + y*|| — > 2|| y*|| and hence 

H^fy*) •Y'ty*) II — > 2 H ^ y * ) || - 2 || y*|| and therefore by our assumption on 

Z*, \m7l) -7fty*)||-> 0. 
We next give examples of Banach spaces X such that for every Z 3 X 

there is a C.N.P.E. map from X into Z . 

Theorem 7.3. (a). Let X satisfy (1) - (13) of Theorem 6.1. Then 

for every Z 3 X there is a C.N.P.E. map from X^ to Z"\ 

(b) Let X be a finite-dimensional Banach space whose unit cell is 

a polyhedron. Then for every Z 3 X there is a C.N.P.E. map from X to 

z*. 

(c) Let l^n}nssi b e a sequence of Banach spaces such that for 

every n and every Z 3 X there is a C.N.P.E. map from X to Z . 

Then for every Z 3 X » (X1 © X 2 © • • • ) c there is a C.N.P.E. map from X* 

to Z . 

Proof. (a) For every Banach space X the canonical embedding of 

X in X is a C.N.P.E. map from X to (X ) . Another observation 

we need is that if Z 3 Y are Banach spaces and if there is a projection 

P of norm 1 from Z onto Y then ^(y*) - P*(yV) is a C.N.P.E. map 

from Y* to Z*. Hence if X** is a fi^ space and if Z 3 X** 3 X 

then by the preceding remarks there is a C.N.P.E. map from X to Z . 

Let now W be an arbitrary Banach space containing X. Let Y - (W@X ) 2 

and let V be the subspace of Y consisting of all the vectors of the 

form (x,-x), x £ X. Let Z be the quotient space Y/V and denote by 

T the quotient map from Y to Z. The restrictions of T to the sub-

spaces (W,0) and (0,X**) of Y are isometries and T(x,0) * T(0,x), 
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Extension of compact operators £9 

x £ X , Hence (with obvious identifications) Z D X**, Z D W and X*V\W 

= X. As remarked above there is a C.N.P.E. map from X to Z , Apply-

ing the restriction map from Z to W we get a C.N.P.E. map from X 

to W*. 

(b) Let filial b e t n e extreme points of Sx*. There exist con-

tinuous real-valued functions X. (x ), 1 < i <̂  n, defined on S-̂ * such 

that 

x = E X. (x )x. , x (E X ; 
i=l 1 * 

n ** E X. (x ) - l; X. (x ) > 0, 1 < i < n . 
i-1 x 1 " " 

This is an assertion on convex polyhedra which is easily proved by indue-

tion on the dimension (cf. also [24])« Let z. (1 < i <_ n) be norm pre-

serving extensions of x. to Z. Then 

,ir, *% l M * * H ^ X±(xVll x*(l) < if x* / 0 y (x ) - ./ 4»n i-1 

is a C.N.P.E. map from X* to Z*. 

if x* = 0 

(c) Observe that if Y D X f n « 1,2,... , then by the assumptions 

of part (c) there is a C.N.P.E. map from X to Y where Y s 

(Y 1® Y2 © ••• )c . If all the Yn are ^ spaces then also Y is a . ^ 

space. The proof of (c) is now concluded by using the same argument as 

at the end of the proof of part (a). 

The question of the existence of C.N.P.E. maps is dual to the ques­

tion of the existence of continuous best approximations. We have 

Lemma 7.4. Let Z D Y be Banach spaces. There is a C.N.P.E. map 

from Y to Z iff there exists a norm continuous function *f from Z 

to Y (the annihilator of Y in Z ) satisfying 

min 
u*€Y 

<f(z*)|| - mint || a* - u* | 
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90 Joram Lindenstrauss 

Proof. Let T be a mapping of Z into itself and let "^ be a 

mapping from Y into Z so that 

ft**) " z* -Y7«* H1 

It is easily checked that if this relation holds f̂(z ) is a nearest point 

to z in Y iff Y"(Z iy) is a norm preserving extension of z jv t o 

Z. Hence if a C.N.P.E. map Y exists the formula above gives a suitable <f • 

The converse follows similarly by using the fact that a norm continuous 

r & ^ it # %• 

from Y to Z such tha t r ( y ) iy * y always ex is t s (by 
the theorem of Bartle and Graves). Hence 

Y(y*) -Y(y*> -<f(t(y*)) , y* <E Y* 

is a C.N.P.E. map from Y to Z if *f is a norm continuous nearest 

point map into Y . 

We return now to the study of norm preserving extension of operators. 

Our next result is obviously related to the characterization of P^ 

spaces, 

Theorem 7.5« Let X be a Banach space and let K be the w clo­

sure of the extreme points of Ŝ .̂ - The following statements are equiva­

lent. 

(1) K is extremally disconnected. 

(2) For every Y D X there is an operator T with || T|| - 1 from 

Y into C(K) such that Tx(k) - k(x) , k £ K , x £ X. 

(3) The same as (2) but only for Y D X with dim Y/X - 1. 

Proof. (1) »»> (2) follows from the fact that if (1) holds C(K) 

is a u-> space and hence from every Y D X there is a norm preserving 

extension of the canonical embedding of X in C(K) (x(k) - k(x), x £ X, 

k £ K ) . (2) ==> (3) is also obvious. We show that (3) m*> (1). Let G 
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Extension of compact operators 91 

be an open subset of K for which GH(-G) » 0. Let S be the w closed 

convex hull of K *> G and let E be those points of G which are extreme 

points of Sy#. Since K ~ G is w compact it follows from a theorem of 

Milman (cf. Day [6, p. go]) that every point of S which is an extreme 

point of Ŝsjc belongs to K ~ G# Hence 

(7*6) %C\ E - 0 . 

Since GA(-G) - 0 it follows that 

(7.7) Sx* - Cb(SU(-S)) . 

In X © R let SQ be the symmetric (with respect to the origin) convex 

hull of {(x*,l); x * £ S ) . SQ is compact, taking in X* © R the product 

of the w topology in X with the usual topology of R. By (7.7) 

|| x|| - sup (x*(x) + \*0) x £ X . 
(x*,\)£S0 

It follows that there is a Banach space Y 3 X with dim Y/X « 1 

such that the mapping (x ,X) — > x from X ® R (with SQ as unit 

cell) onto X is exactly the restriction map from Y onto X . Let 

x (E E , then by (7.6) the only point of the form (x ,X) which belongs 

to SQ is the point .(x ,-1). In other words (x ,-l) is the unique 

norm preserving extension of x to Y. Similarly (x , 1) is the 

unique norm preserving extension of x to Y if x £ -E# Hence, since 

by (3) and Lemma 7.1 there is a mapping F from K to Y continuous 

in the w* topology of Y* and satisfying || F(k) ||< 1, F(k) |X - k, 

k £ K, it follows that E r\ (-E) - 0 (closures are taken in K, that 

is in the w topology which is used as the topology of K). Since 

G - E we get that GA(-G) » 0. Taking in particular G to be a 

maximal open subset for which GA(-G) - 0 holds we get that K • 

G U - G where GA-G - 0. In order to show that (1) holds we have to prove 
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that G is extremally disconnected. Let G, and G2 be disjoint open 

subsets of G. Put GQ -
 G i ^ ( - G 2 ^ T h e n G o ^ ̂ "G0^ * ̂  a n d h e n c e b v 

what we have proved above G^A (-GQ) - 0. It follows that G i ^ G2 " 0 

and this concludes the proof of the theorem, 

Corollary. Let X be a finite-dimensional Banach space. The follow­

ing statements are equivalent 

(1) S-£ is a polyhedron. 

(2) For every Z D X there is a C.N.P.E. map from X* into Z*. 

(3) For every Z D X with dim Z/X « 1 there is a C.N.P.E. map 

from X* into Z*. 

Proof. (1) *=0 (2) is assertion (b) of Theorem 7.3- (2) -•> (3) 

is obvious. We show that (3) « > (l). Let X be a finite-dimensional 

space which satisfies (3). By Lemma 7.2 (a) X has also property (3) of 

Theorem 7.5. The w closure of the extreme points of S„# is compact 

metric (this is true for every separable X) and extremally disconnected 

by Theorem 7.5 (1). Hence S x* has only a finite number of extreme points 

and therefore S^ is a polyhedron. 

We next use the same idea as in the proof of Theorem 7.5 to prove a 

similar result for compact operators. For finite-dimensional spaces X 

Theorem 7.6 will give the same information as Theorem 7*5. This is the 

case also with some theorems we are going to prove later on (Theorems7.3 

and 7.9)• All these results reduce in the finite-dimensional case to an 

assertion which is essentially the implication (3) •«<> (1) (or (2) »*£> 

(1)) of the Corollary to Theorem 7.5. However in the infinite-dimensional 

case each of the theorems gives some information which cannot be deduced 

from the other theorems. 

Theorem 7.6. Let X be a Banach space and assume that the extreme 

points of Sx# are not isolated in the norm topology of X . Then there 
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Extension of compact operators 93 

exist a compact operator T from X to c and a Banach space Y D X 

with dim Y/X « 1 such that T has no norm preserving extension from Y 

to c. 

Proof, Let {xnJn*l ^
e a s e 3 u e n c e °^ extreme points of S^* such 

that || xn-u || — > 0 for some u £ X . We may assume that u / ! x 

for every n and every choice of signs. We choose now inductively a sub­

sequence ini!<iS=i °^ t n e integers, elements x. £ X and positive numbers 

X. as follows. We take n, « 1 and choose x, and X, so that 

|u (x1) I < X-̂  and xn (x1) > X,. We next choose n2 > n, so that 

' xn *xl^ I < x l # The set 

Co (It u*}U{x*; ||x*||<l, |x"(x1)| > X1}) 

is w compact and does not contain x (since x is an extreme point 

of S ^ ) . Hence by the separation theorem there is an x2 £ X and a X2 > 

0 so that xn (x2) > X2, |u (x2) | < X2 and 

sx*0{x*; |x*(Xl)| > x x}n {x*; |x*(x2)| > x2} - 0 . 

We continue in a similar manner and get that 

xn. *xi* > Xi i " 1» 2»"-

and 

Put 

l 

sx* n [x*; |x*(Xi)| > x1} A U*» |x*(Xj)I > Xj} - 0 , i / i . 

s » sx* r\ [x ; x (x2i) > x2il n ix ; x (x2i+1) < -^i+i^ • 

With this choice of S (7.7) holds. We continue as in the proof of 

Theorem 7«5« In X © R we introduce a norm whose unit cell is the sym­

metric convex hull of {(x*,l); x* £ S}. Then X* © R - Y* where Y D X, 

dim Y/X « 1 and the map (x ,X) — > x is exactly the restriction map 
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from Y* to X*. Since 

K }?.i H (-S) - 0 n2i 1 -1 

and the x„ are extreme points of SY# we get that (xM ,1) is the n A n2i 

unique norm preserving extension of x„ to Y, i - 1,2,... . Similarly 
n2i 

(xn ,-1) is the unique norm preserving extension of xM to Y, 
n2i+l n2i+l 

i*l,2,... . It follows (use Lemma 7»1) that the compact operator T from 

X to c defined by Tx - (x,(x) ,x2(x) ,... ) does not have a norm pre­

serving extension from Y to c. 

Corollary. If a Banach space X has the property that for every 

Z'JX there is a C.N.P.E. map from X to Z then the extreme points 

of S^* are isolated (in the norm topology of X ), 

For our next result on the extension of operators we need first a 

characterization of finite-dimensional spaces whose unit cell is a poly­

hedron. 

Theorem 7*7. Let X be a Banach space. X is finite-dimensional 

and its unit cell is a polyhedron iff there does not exist a sequence 

(x.)?B, in X such that for every choice of signs 

(7.8) II x± t XjlH.llxjH* llxjH- 1 , i / J . 

Proof. If X is finite-dimensional and S-̂  has n faces then 

clearly any set of vectors {x.} for which (7«#) holds has at most n 

elements. This proves the "only iftt part of the theorem. To prove the 

other part assume first that X is finite-dimensional and its unit cell 

is not a polyhedron. X has a 2-dimensional subspace whose unit cell is 

not a polyhedron (cf. Klee [27]), and hence we may assume that dim X • 2. 

It is easily seen that there is a sequence {Yi^-i *n * such that 

llyjf-yll — > ° fo r some y £ X, ||yiH" 1 for every i and 
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Extension of compact operators 95 

llx^H88 |x (y.)| * 1 implies sup |x (y.) | < 1. Hence there exist 6n. > 0 
1 j/i 3 X 

such that the sets 

sx*r\{x*; |x*(y±) I > i - 6±} , i - i,2#... 

are mutually disjoint. Put x, * y^/Si, 1 < i <, co. For every choice of 

signs, every x £ S^# and every i / j 

x*(x±ixJ) < 1/6j + l/6± - 1 « II xi|| + || xj|| - 1 . 

Hence these fxil^=i satisfy (7.S) . 

Let now X be an infinite-dimensional Banach space. If X has a 

finite-dimensional subspace whose unit cell is not a polyhedron the exis­

tence of a sequence satisfying (7.3) follows from what we have already 

proved. Hence it remains to prove that if X is infinite-dimensional and 

if the unit cells of all its finite-dimensional subspaces are polyhedra then 

there is a sequence {xil?ai i n x which satisfies (7.3). We have not 

found, however, a simple argument which applies to this special class of 

spaces X. We give therefore a (rather complicated) proof which holds for 

every infinite-dimensional Banach space X. 

From the well known theorem of Borsuk on antipodal mappings of 

spheres it follows that if B is an (n+1)-dimensional Banach space and 

if {ui}i»i a r e n points in B then there is a u £ B such that || u|| 

« 1 and || u-u. || • || u+u. || for every i. Hence in the infinite-

dimensional space X we can choose inductively a sequence {y.}?.i such 

that || y. || =* 1 for every i and 

(7.9) l le1y1
+e2y2 + . . .+ekyk-yk + 1 | |» lle1y1+e2y2+...+ekyk+yk+1|| 

for every k and every choice of 6., allowing each 0. to take one of 

the three values 0, +1 and -1. Having chosen such a sequence {vilj[«i 

we have to consider separately two cases 
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96 Joram Lindenstrauss 

(i) There is an increasing sequence fan^n-l °^ integers and a 

sequence ferJnW °^ s i & n s sucn that 

II e^i +z2y± + •'• + *kY± ll> k - 1/2, k » 1,2... . 

(ii) There are no such sequences {i J and U nl-

Suppose that (i) holds and let {i } and {e } be suitable se­

quences. Put 

xk - ^ ± ^ 2 ^ — + £
k y i k - £ k ^ i k + 1 • k m 1 > 2 *-- - • 

By (7.9) and (i) || xk( |> k + 1/2 for every k. Hence for h > k 

k h 
H V - x J f - II 2 £ e.y. • £ e .y. - e.^y^ || n K j -1 3 1 j j«k+2 J x j n + i xh+l 

< 2k • (h-k-1) • 1 < | | x k | | + l | x h | | - 1 . 

Similarly 

II x k -x h | |< h-k+2< H x j l + l | x h | | - l . 

This concludes the proof if (i) holds. 

We assume now that (ii) holds. In this case there are i-, < i2 ••• 

< iffi, with i, » 1 and m > 1, and signs i6-?}1?.! such that 

II v i , + e2y i ?
 + ••• + v i J i > m - !/2 

i & m 
and such tha t for every i > i and every sign e 

H - V i + c2*i + *•• + emy± + e y i | | < (m+1) - 1/2 . 
1 2 m 

Put 
nl 

nx - m, zx « Z
 ejY±. > c\m H z l " " nl + x/2 • 

J •*• «J 

Clearly l/2 > o^ > 0. By the assumption that (ii) holds it follows that 

there are i ., < i .0 < ... < i„ , with i ., - i + 1 and n~ > 
n-,+1 n,+4 n2 * n-.+± n-, d. — 

n, + 1, and signs en +^,-**,en such that 
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II £ e.y, || > n, - n, - G\/2 
j-i^+1 3 1 j -5 1 1 

and such that for every i > i and every sign e 
2 

II £ s i v i + e v i Hi n2 " nl + 1 - q/2 
J-n^+l J i j * * l X 

Put 
"2 

'2 " j = n
r

+ 1 ^ i , » °2 " II Z2H - n2 + n l + V2 

Continuing in t h i s manner we get sequences f i . } , (e . } , lnir}» ^zk^ a n d 

{or} such that for every k > 1 

(7.10) i . < i 1 + l , e . i s e i t h e r +1 or - 1 
nk 

(7.11) z, » r e .y . 
J - » k - l + 1 J ' J 

(7 .12) | | « k | | - nk - n k ^ > er k - 1 /2 • <rk 

(7.13) 1/2 > ( T k - 1 > 2(Tk > 0 

(7.14) II V e y i ' l ^ nk " nk-l - ^k-l /2 * X ' i > ^ > e - i 1. 

Let now k < h. By ( 7 . 1 0 ) , (7 .11) and (7.14) 

II * k i z h | | < ( n k - n k - 1 • 1 - a j ^ / 2 ) • (n h - n ^ - 1) . 

Hence by (7.12) and (7.13) 

| | « k ± z h | | < | | « k | | + | | Z h | | - c r k / 2 . 

F i n a l l y , put x k * 2 z k / < r k # T h e n f o r k < h 

II x k i x h | | < 2 | | « h | | ( o - 1 - <rk~h • 2 | | z k i z h | | a - 1 

< 21| zh | | (ejf1- of1) * 2( || «k | | + || zh | | - ^ A ) ^ " 1 

- Ilxh||+ ||xk||- 1 . 

Hence the sequence lxk)k»i satlsfl©s (7«&) and this concludes the proof 
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of the theorem. 

Remarks. In general the sequence £xi}j[»-| which satisfies (7.5) 

cannot be chosen to be bounded. This is clearly the case if X is finite-

dimensional (even if S-̂  is not a polyhedron). There are also infinite-

dimensional spaces X in which there is no bounded sequence which satis­

fies (7.5). X * <^ is such a space (the verification of this fact is 

quite simple but somewhat long and therefore we omit it). It is easily 

seen that in an infinite-dimensional uniformly convex space there is always 

a bounded sequence for which (7.5) holds. If a bounded sequence satisfying 

(7.5) exists in a Banach space X then clearly || xi 1 x.||< 

X( || xi||+ ||x.|| ) for i / j and some X < 1. This observation can be 

used for proving a stronger version of Theorem 7.5 for such spaces X. 

Theorem 7.5. Let Z 3 X be Banach spaces and assume that S^* is 

w sequentially compact. If for every Y D X with dim Y/X • 1 there is 

an operator with norm 1 from Y into Z whose restriction to X is the 

identity then X is finite-dimensional and its unit cell is a polyhedron. 

Proof. The assumptions in the statement of the theorem imply that 

every collection of mutually intersecting cells in Z whose centers be­

long to X has a non empty intersection (use Lemma 5.3)• If X is not a 

finite-dimensional space with S-̂  a polyhedron there exists, by Theorem 

7.7, a sequence ^il?-! i n x f o r which (7.5) holds. We may assume that 

II x i H ^ 1 ?or e v e ry i- L e t e«(e,,e2,».«) be a sequence of signs and 

consider the sequence of cells 

Sz[e±x±, || xA ||-1/2) i - 1,2,... . 

By (7.5) they are mutually intersecting and hence there is a z£ £ Z such 

that 

(7.15) || SB - e ^ H l ||xi||- 1/2, e - (e-^e,,,... ), i - 1,2,... . 
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Extension of compact operators 99 

Let z * e z * satisfy z*(x±) » |j x±|| and || z*|| - 1 for every i . By 

(7.15) z*(ze) ̂  Xl2 i f ei * + 1 a n d "i^e' - ~1/2 i f ei " " 1 # X t 

follows that the z. cannot have a w convergent subsequence and this 

contradicts our assumption on Z . 

Remarks. The assumption that Z is w sequentially compact is 

satisfied, in particular, if Z is separable or reflexive or a direct sum 

of such spaces. If we drop the assumption that Z is w sequentially 

compact Theorem ?•# will no longer hold — take for example the case in 

which Z is an infinite dimensional ^ space and X any subspace of 

Z. It should be remarked perhaps that if 2 D X are such that every col­

lection of mutually intersecting cells in Z whose centers belong to X 

has a non empty intersection it does not follow that there is a tr^ space 

ZQ with X C Z Q C Z . Take for example Z - (m© Y)y2 where Y is a sep­

arable non reflexive subspace of m (denote the embedding map from Y in­

to m by T). Let X be the subspace of Z consisting of the points 

(Ty, y/3), y€IY. Every space ZQ satisfying X C Z Q C Z has Y as a 

quotient space and hence ZQ cannot be a space. However it is easily 

seen that any collection of cells in Z whose centers belong to X has a 

non empty intersection (cf. [34, Section 2]). 

Our next three theorems give characterizations of some classes of 

spaces which have properties (3) or (4) of Theorem 6.1 (or related proper­

ties) with e * 0. Another theorem of this kind in which the C(K) spaces 

are treated is given in [32], 

Theorem 7.9. Let X be a Banach space which satisfies (1) - (13) 

of Theorem 6.1, and let Y be a finite-dimensional Banach space. 

(a) If Sy i s a polyhedron then for every Z 3 Y every operator 

from Y to X has a compact norm preserving extension from Z to X. 

(b) If Y is a subspace of X and if Sy is not a polyhedron then 
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100 Joram Lindenstrauss 

the identity operator from Y to X does not have a compact norm pre­

serving extension from X into itself. 

Proof, (a) Since Sy is a polyhedron we may consider Y as a sub-

space of -^^ for some n. Let T be an operator from Y into X. Since 

X has property (6) of Theorem 6.1 there is a norm preserving extension TQ 

of T from ./£ into X. /J is a (P^ space and hence the identity 

operator from Y into -̂ ** has an extension T, from Z to with 
00 JL 00 

|| T, || =» 1. The operator T * TQT, has the desired properties. 

(b) Suppose there is a compact operator T from X into itself 

with norm 1 whose restriction to Y is the identity. By the ergodic 

theorem (Dunford-Schwartz [g, p. 711]) the sequence (I + T + T2+»»«+ Tn>4i 

converges to a projection P from X onto the subspace YQ of X con­

sisting of all the points x for which Tx * x. || P|| • 1 and YQ is 

finite-dimensional. Hence YQ is a &\ space (Corollary 3 to Theorem 

2.1). Since YQ 3
 Y Sy is a polyhedron and this contradicts our 

assumptions. 

Corollary 1. Let X satisfy (1) - (13) of Theorem 6.1, and let Y 

be a finite-dimensional subspace of X such that Sy is not a polyhedron. 

Let also Z ^ X , Then the identity operator from Y to X does not have 

a compact norm preserving extension from X into Z. 

Proof. Suppose there exists such an extension and denote it by T. 

Let V be a ^ space such that V ^ Z ^ X , By property (£) of Theorem 

6.1 there is a norm preserving and compact extension TQ of T from V 

into Z ( C V ) . This contradicts Theorem 7.9 (b). 

This corollary shows that Theorem 2.3 does not hold with e • 0. 

Corollary 2. Let X satisfy (1) - (13) of Theorem 6.1, and let Y 

be a finite-dimensional subspace of X whose unit cell is a polyhedron. 
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Extension of compact operators 101 

Then there i s a f i n i t e - d i m e n s i o n a l ^ space YQ f o r which Y C I Q C X » 

Proof. This fo l l ows from Theorem 7.9 (a) and the proof of Theorem 

7 .9 ( b ) . 

A Banach space X is called polyhedral (Klee [2g]) if every finite-

dimensional subspace of X has a polyhedron as its unit cell. 

Corollary 3. Let X be a polyhedral Banach space. X satisfies 

(1) - (13) of Theorem 6.1 iff it is an J/^ space 

Proof. This follows from Corollary 2 above and Corollary 1 to 

Theorem 6.1 

Theorem 7.10. Let X be a Banach space. The following three state­

ments are equivalent. 

(1) X is polyhedral and satisfies (1) - (13) of Theorem 6.1. 

(2) Every operator T from Y into X with a range of dimension 

< 3 has a compact and norm preserving extension from Z ( Z D Y ) to X# 

(3) Every operator T from Y to X with a finite dimensional 

range has a norm preserving extension T from Z ( Z 3 I ) to X such 

that the range of T is finite-dimensional. 

Proof. (1) »=»> (3). Let T be an operator from Y into X for 

which T(Y) is finite-dimensional. By Corollary 2 to Theorem 7.9 there is 

a finite-dimensional u^ space YQ with T(Y) C Y Q C x * There is a norm 

preserving extension of T from Z into YQ and this proves (3). (3) 

" > (2) is clear. We show next that (2) "> (1). It is clear that if X 

satisfies (2) of the present theorem it satisfies (1) - (13) of Theorem 6.1 

(see property (4) there). By Theorem 7.9 (b) every 3-dimensional subspace 

of X (assuming X satisfies (2)) has a polyhedron as its unit cell* 

Klee [27] proved that this implies that X is polyhedral. 

Remark. If we replace (2) (or (3)) by the weaker property which is 
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102 Joram Lindenstrauss 

obtained from it by requiring that dim Z/Y • 1 then the theorem will no 

longer hold. Every /^ space X satisfies this weaker version of (2) 

(or (3))# out an infinite-dimensional ^ space is not polyhedral (in 

fact since c is not polyhedral no infinite-dimensional C(K) space is 

polyhedral). 

Theorem 7.11* Let X be a Banach space such that Sx* is w 

sequentially compact. The following three statements are equivalent. 

(1) X is polyhedral and satisfies (1) - (13) of Theorem 6.1. 

(2) Every operator T from Y into X with range of dimension < 3 

has a norm preserving extension from Z (Z^Y, dim Z/Y * 1) to X. 

(3) Every operator T from Y into X with a finite-dimensional 

range has a norm preserving extension from Z ( Z 3 Y ) into X. 

Proof. By Theorem 7.10 (1) implies even a stronger version of (3) 

(i.e. statement (3) of Theorem 7#10). (3) mst> (2) is clear. By Theorem 

7.g if X satisfies (2) every 3-dimensional subspace of X has a poly­

hedron as unit cell, and hence X is polyhedral (Klee [27]). 

We do not know whether a polyhedral space X for which X is an 

L1 space satisfies (3) of Theorem 6.1 with e - 0. (Theorem 7.10 shows 

that if X satisfies (3) of Theorem 6.1 with e • 0 then X is poly-

hedral and X is an L^ space.) We shall now construct a class of 

spaces which have property (3) of Theorem 6.1 with e * 0. We first give a 

sufficient condition for a space to be polyhedral. 

Lemma 7.12. Let X be a Banach space such that for every point 

x f 0 there is a finite number of extreme points fx*]11* 0f s * and 

number 6(x) < 1 such that |x (x)| < 0(x)»|| x|| for every extreme point 

x* of Sx* which does not belong to t j * } ^ # T h ( m x ±3 p o l y h e d r a l. 

Proof. The Lemma follows from the compactness of the unit cells of 
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Extension of compact operators 103 

finite-dimensional spaces and from the fact that for every finite set _Q-. 

of functionals in X the set 

{ x ; x e x , sup |x*(x)| < || x|| } 
x*ell 

is an open subset of X. 

By using this lemma it is possible to give some examples of infinite-

dimensional spaces which satisfy (1) - (3) of Theorems 7.10 and 7.11* Let 

X be a G space, i.e. X is (isometric to) a subspace of C(K) consis­

ting of all the functions which satisfy (7.1). If for every f £ X there 

is a finite subset r, ,nf of K such that 
1*1*1-1 

sup |f(k)| < || f || , 
k/k± 

then by Lemma 7.12 X is polyhedral and since X is a G space X * 

L-Ap). Moreover, for such X every compact operator T from Y to X 

has, for every Z Z) Y, a compact and norm preserving extension from Z to 

X. Indeed, let F be the function from K to Y corresponding by (7#2) 

to T. From our assumptions on X and from the compactness of F(K) it 

follows that there is a finite set {k.}? ^ C K such that 

a - max || F(k)||<max || F(k)|| - || T|| 

By a selection theorem of Michael [36, Example 1.3 and Proposition 

7.2] there is a norm continuous function r from Y to Z which 

satisfies 

„ • * ( i ) f ( y * ) | Y - y*. y * e f , 

( i i ) -f(\y*) - \Y(y*), y * e i * . X scalar, 

( i i i ) HflFd^))!!- HFd^JH, i - l , . . . , n , 

(lv) ||-f(y*)ll< ||T|| ||y*|| /« , y*eY* . 
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104 Joram Lindenstrauss 

The operator T which corresponds to the function YF from K to Z is 

an extension with the desired properties. 

The simplest example of a space of the category considered above is 

CQ (the fact that cQ is polyhedral is due to Klee [28]). 

We conclude by giving a sufficient condition for a compact operator 

T into a G space to have a norm preserving extension. Unlike the pre­

ceding theorems we do not consider here the extension problem for a general 

class of operators but rather restrict ourselves to a single given operator. 

Theorem 7.13* Let T be a compact operator from Y into X (X a 

G space). Let F be the mapping from K to Y corresponding to T by 

(7.2). Let Z D Y and put 

A - F(K)nly* ; li y*|| - || T|| } . 

If every functional in A has a unique norm preserving extension to a 

functional on Z then there is a norm preserving extension of T from Z 

to X. If, in addition, one of the following two conditions holds 

( a ) dim Z/Y < co , 
W 5 ^ sic 

(b) 1 - || z*|| - || z*|| , n * 1 ,2 , . . . , and z* —> z* (z*,z* £ Z ) 

« > || z* - z*| |—>0 , 

then T has even a compact and norm preserving extension from Z to X. 

Proof. Without loss of generality we may assume that || T|| = 1. The 

sets F( K) and A are compact in the norm topology of Y . Let B be 

the set 

B - {y*; y* - 1 F(k)/|| F(k)|| , k £ K , F(k) f 0 } . 

Clearly B 3 A U - A. To every y* £ B we assign a number p(y*) by 

y*=±F('k)/||F(k)| 
p(y*) - min(2, min|| F(,k)_|| ~x

t ) 

(The inner min, which is taken over all the k for which F(k)/|| F(k)|| 
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Extension of compact operators 105 

is equal either to y* or to - y#, exists since F(K) is compact). 

The function p satisfies 

(i) 1 < p(y*) < 2 

(ii) p(y*) = 1 < « > y * £ A U - A 

(iii) p is norm lower semi continuous (n.l.s.c) i.e. 

II Yn - y*ll — > ° implies p(y*) < lim p(y*) . 

(i) and (ii) are clear. We prove (iii). We may assume that 

lim p(y*) exists and that p(y*) < 2 for every n (if lim p(y*) = 2 

there is nothing to prove). Let k £ K and let e be signs such that 

1 F(V 
p(yn> = irrn^TII ' y n a en IHTI^TI! • 

Since F(K) is compact we may assume that 

en F ( k n ) —> e F ( k ) > l £ l " X' k £ K • 

Hence a l s o || F(k ) | | —> || F ( k ) | | and t h e r e f o r e 

y* - e F ( k ) / | | F ( k ) | | . 

Thus p(y*) < || F(k)|| ~ 1 = lim p(y*) and this proves (iii). Consider 

now the function s defined on B by 

s(y*) - 1 + ĵ d(y*, AU- A) • (p(y*) - 1) , 

where d(y*, AU- A) denotes the distance of y* from AU- A. s has 

the following properties 

( i ) Q
 x 5 sty*) < p(y*) < 2 * 

(ii)o s(y*) - 1 <"> y* £ A U - A , 

(iii) s(y*) is n.l.s.c. , 

(iv) s(y*) is norm continuous at all the points of AU- A. 

(i) , (ii)0
 a n d (iii'o f,°llow immediately from the corresponding 

properties of p. (iv)Q holds since || y* - y*|| — > 0 y y* £TAU- A 
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106 Joram Lindenstrauss 

f(y*) -

implies that d(y*, A\J- A) — > 0 and hence s(y*) — > 1 - s(y*) . Let 

B« » B ~ (AU- A) . To every y* (E B Q we correspond the closed and convex 

subset of Z consisting of all the extensions of y* to functionals on 

Z. By a selection theorem of Michael [36, Lemma 7.1] there is a norm con-

tinuous function 6 from B Q into Z which satisfies 

II 6(y*) ||< s(y*) , 0(y*) (Y - y* , y* £ BQ . 

We extend 0 to a function defined on B (not necessarily norm continuous) 

by taking as 0(y*) for y* £ A U - A the (unique) norm preserving exten­

sion of y* to a functional on Z. Finally we define the following func­

tion on F(K)U- F(K): 

«< 
^ 0 , if y* * 0 and 0 £ F(K) 

We shall prove that r has the following properties: 

(1) lir(y*)||< l , 

(2) ^(y*) |T - y* , 

(3) "^(Xy*) - xV(y*> , X a scalar, 

(4) II y* - y*ll—> 0 « > ||f(y*) II—> infty*) || , and 

Y(y*) — > "f (y*) . 

(We shall prove that these properties hold whenever all the terms appearing 

in them are defined i.e. whenever all the arguments of y" belong to 

F(K)U- F(K>. ) 

Properties (2) and (3) are immediate. We show first that (1) holds. 

If y* - 0, (1) is clear. For y* / 0 let yg - y*/|| y*|| . yg £ B and 

p(yo> < II y*!!"1. hence 

lly*H- l le (yg) | |< s (y*) | |y* | |< p(y*) | |y* | |< 1 . 

Similarly || y*|| • || 0 ( - y $ ||< 1 and hence ||^(y*) || < 1. 
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Extension of compact operators 107 

We turn to the proof of (4). We consider first the case when y* • 0. 

We may assume that y* / 0 for every n and we have 

lit(y*> 111 |ll y*ll (II ©( i j^H ) II + II e ( ^ ) II ) < 2|| y*|| - > o. 

For y* f 0 we consider yg • y*/lly*ll a^d assume first that yg £ BQ 

(and hence also -yg £ BQ) . In this case we have even ||*̂ (y*) -"^(v*)!! 

— > 0, since 6 is norm continuous on BQ (BQ is relatively open in B). 

There remains only the case where yg (and hence also -yg) belongs 

to AU- A. Let y*^Q - y*/|| y*|| , n - 1,2,... . From (iv)Q we inf^r 

that 

II e(yn^0) || —> i - || e(yg) || , || e ( - y ^ 0 ) II —> i - || e(-yg) || , 

and hence 

I S | |r(y*)| | < | | y* | | - |tfly*>ll. 

On the other hand 

nt(y*) i i> nYtyx>|Yii " HySil—> «y*n> 
and thua ||f(y*)||—> \\t(y*)\\ . 

We have also to show that "^(y*) - ^ Vfy*) . This will follow 

once 6(y* Q) -^-> B(yg) is proved (since by symmetry the same holds for 

-y* Q and -yg). Since Sg* is w* compact we have only to prove that 

every limiting point of the sequence 6(y£ Q) coincides with $(y§). Let 

z* be a w* limiting point of the sequence 9(y* Q) . Then || z || < 

limH 8(y* Q) || - 1, and z*iY - lim 6(y* Q) - y*. Since we assumed that 

y* has a unique norm preserving extension z* - 9(y£) and this concludes 

the proof of (4)• 

Having established the properties of y the existence of a suitable 

extension T follows immediately. We may take as T the operator corres-

ponding to the function F « Y F from K to Z (continuous in the w* 

topology). 
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103 Joram Lindenstrauss 

The second part of the theorem follows also easily. If (a) is satis­

fied then any bounded extension of a compact operator is necessarily com­

pact. If (b) is satisfied then the function r constructed above will be 

continuous in the norm topologies of Y and Z (this is a consequence 

of property (4) of "*/0 . Hence the operator corresponding to f F will be 

compact. 
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