1. **5 points** Let V be a subspace of \mathbb{R}^n of dimension 3. If $\beta = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of V, then is $\gamma = \{c\vec{v}_1, \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \vec{v}_2 + \vec{v}_3\}$ necessarily a basis of V for $c \neq 0$? Justify your answer.

(Remark: Only a ‘Yes’ or ‘No’ answer without any justification earns you a ‘0’ point. You must justify your answer.)

Ans. Yes.

Proof: Since dim $V = 3$ and there are 3 vectors in β, it is enough to prove that $c\vec{v}_1, \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \vec{v}_2 + \vec{v}_3$ are linearly independent.

$$c_1 (c\vec{v}_1) + c_2 (\vec{v}_1 + \vec{v}_2) + c_3 (\vec{v}_1 + \vec{v}_2 + \vec{v}_3) = \vec{0}.$$

$$\Rightarrow (c_1 c + c_2 + c_3) \vec{v}_1 + (c_2 + c_3) \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}.$$

Since $\beta = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis of V, $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent.

$$c_1 c + c_2 + c_3 = 0 \Rightarrow c_1 = 0 \Rightarrow c_1 = 0 \neq 0.$$

$$c_2 + c_3 = 0 \Rightarrow c_2 = 0.$$

$$c_3 = 0 \Rightarrow c_3 = 0.$$

$$c_1 = c_2 = c_3 = 0.$$

Hence, $c\vec{v}_1, \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \vec{v}_2 + \vec{v}_3$ are linearly independent. In particular, γ is a basis of V.

Page 2
2. **5 points** Let A be a $m \times n$ matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be linearly independent vectors in \mathbb{R}^n. If $\text{Ker}(A) = \{ \vec{0} \}$, then are the vectors $A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_k$ necessarily linearly independent? Justify your answer.

(Remark: Only a ‘Yes’ or ‘No’ answer without any justification earns you a ‘0’ point. You must justify your answer.)

\[\text{Ans. Yes} \]

\[\text{Proof:} \]
\[c_1(A\vec{v}_1) + c_2(A\vec{v}_2) + \cdots + c_k(A\vec{v}_k) = \vec{0} \quad \star \]
\[= A(c_1\vec{v}_1) + A(c_2\vec{v}_2) + \cdots + A(c_k\vec{v}_k) = \vec{0} \]
\[= A(c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_k\vec{v}_k) = \vec{0} \]
\[= (c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_k\vec{v}_k) \in \text{Ker}(A) = \{ \vec{0} \} \]
\[= c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_k\vec{v}_k = \vec{0} \]

Since $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are linearly independent, this implies that $c_1 = c_2 = \cdots = c_k = 0$

From the equation \star we conclude that $A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_k$ are linearly independent.
3. **5 points** Find an example of a 2×2 matrix A such that $(\text{Ker}(A))^\perp = \text{Im}(A)$.

Consider the line $L: y = x$.

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined as

$$T(x) = \text{Proj}_L(x)$$

Then it is clear that, $\text{Im}(T) = L$, and $\text{Ker}(T)$ is the line perpendicular to L and passing through the origin. In particular,

$$\text{Ker}(T) = \{ x \in \mathbb{R}^2 \mid \text{Proj}_L(x) = 0 \}$$

$$= \{ x \in \mathbb{R}^2 \mid y = -x \}$$

A = The matrix of $\text{Proj}_L(x)$

$\mathbf{u} = \frac{1}{\sqrt{2}} (1)$ is a unit vector along L.

Let $\mathbf{x} = (x_1, x_2)$.

Then $T(x) = \text{Proj}_L(x) = (\mathbf{u} \cdot \mathbf{x}) \mathbf{u}$

$$= \left[\frac{1}{\sqrt{2}} (1) \cdot \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \right] \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

$$= \frac{1}{2} \left(x_1 + x_2 \right) \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

$$= \left(\frac{x_1 + x_2}{2} \right) = \left(\frac{1}{2} \frac{1}{2} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right)$$

$$= A \mathbf{x}$$

where $A = \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right)$.
4. **10 points** For each of the following statements, determine whether it is true or false.

1. \(W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x \geq 0, y \geq 0 \right\} \) is a subspace of \(\mathbb{R}^2 \).

2. Let \(V \) and \(W \) be two subspaces of \(\mathbb{R}^n \). Then \(V \cup W \) is never a sub-space of \(\mathbb{R}^n \).

3. Let \(A \) and \(B \) be two square matrices of size \(m \times n \). Then \(\text{Ker}(A) \cap \text{Ker}(B) \) is always contained in \(\text{Ker}(A + B) \).

4. Let \(A \) be a \(n \times n \) matrix. If \(\text{rank}(A) < n \), then \(A \) is never invertible.

5. Let \(A \) and \(B \) be two \(n \times n \) matrices. If \(A = P^{-1}BP \) for every invertible matrix \(P \), then it necessarily follows that \(A = B \).

(Remark: Only a ‘True’ or ‘False’ answer without any justification earns you a ‘0’ point. You must justify your answer.)

1. **False**

 Since \((1) \in W \) but \((2) \) \(\neq \) \((3) \) \(\neq \) \(W \)

 \((1) \in W \), \((2) \in W \), \((3) \in W \), but \((1) + (2) = (1) \in W \).

 \(W \) is not stable under addition.

2. **False**

 Let consider \(\mathbb{R}^3 \), let \(V = xy \)-plane.

 Then \(V U W = xy \)-plane, \(w \)-axis is not a subspace of \(\mathbb{R}^3 \).

3. **True**

 Let \(x \in \text{Ker}(A) \cap \text{Ker}(B) \)

 \(x \in \text{Ker}(A) \cap \text{Ker}(B) \)

 \(\Rightarrow AX = 0 \) \(\ldots \) (1)

 \(\text{and} \quad BX = 0 \) \(\ldots \) (2)

 By \((1) + (2)\) we get

 \(AX + BX = 0 \)

 \(\Rightarrow (A + B)x = 0 \)

 \(\Rightarrow x \in \text{Ker}(A + B) \)

 Thus every vector of \(\text{Ker}(A) \cap \text{Ker}(B) \) is contained in \(\text{Ker}(A + B) \)
4.) True. If rank(A) < n, \(*\) since A is a m x n matrix, by the Rank-Nullity theorem, we get
\[\dim(\ker(A)) > 0. \]
\[\Rightarrow \ker(A) \neq \{0\} \]
\[\Rightarrow A \text{ is not invertible.} \]

5.) True. Since A = P^{-1}BP for all invertible matrix P, we may choose \(P = I_n \).
Thus, \[A = I_n^{-1}B I_n = I_n B = B. \]