Midterm 1
Linear Algebra and Applications
(Math 33A-001)

Show your work to receive partial credits. Use of calculator is NOT allowed for this exam.

Name: ___________________________ U ID: ______________

TA’s Name: ______________________ TA Meeting Day: ______________

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **5 points** Let T be a linear transformation from \mathbb{R}^3 to \mathbb{R}^3 such that

\[
T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix} \quad \text{and} \quad T \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}.
\]

Compute the matrix of T.

Solution: Since T is a linear transformation, $T \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} = T(3e_2) = 3T(e_2)$ and $T \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = T(2e_3) = 2T(e_3)$. Thus we have

\[
T(e_1) = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad T(e_2) = \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ 0 \end{pmatrix} \quad \text{and} \quad T(e_3) = \begin{pmatrix} -\frac{1}{2} \\ 0 \\ 2 \end{pmatrix}.
\]

Therefore the matrix of T is given by

\[
A = \begin{pmatrix} T(e_1) & T(e_2) & T(e_3) \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{2} \\ -1 & 0 & 0 \\ 0 & -2 & 2 \end{pmatrix}.
\]
2. 5 points Find a 3×3 matrix A such that $A\vec{x}$ is parallel to the vector $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ for all $\vec{x} \in \mathbb{R}^3$.

Solution: Let $\vec{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$. The unit vector \vec{u} parallel to \vec{v} is given by $\vec{u} = \frac{1}{\sqrt{3}} \vec{v}$.

The projection of the vector \vec{x} onto the line L passing through the origin in the direction of the vector \vec{u} is given by

$$\text{proj}_L(\vec{x}) = (\vec{x} \cdot \vec{u}) \vec{u} = \begin{pmatrix} \frac{x_1 - x_2 + x_3}{3} \\ \frac{-x_1 + x_2 - x_3}{3} \\ \frac{x_1 - x_2 + x_3}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Then $A = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$ is a matrix satisfying the given properties.

Remark: Note that this problem doesn’t have a unique solution, i.e., there are other matrices obtained via different methods which also satisfy the required properties and all of those are correct answers as well.
3. [5 points] Let A be a 4×4 matrix, \vec{b} is a non-zero vector in \mathbb{R}^4, and $\vec{0}$ is the zero vector in \mathbb{R}^4. We are told that the linear system $A\vec{x} = \vec{0}$ has \textit{infinitely} many solutions. What can you say about the number of solutions of the system $A\vec{x} = \vec{b}$? You must explain your answer.

\textbf{Solution:} Since A is a 4×4 matrix and $A\vec{x} = \vec{0}$ has infinitely many solutions, the reduced row-echelon form of the augmented matrix $[A \mid \vec{0}]$ contains a row which is identically equal to zero, i.e., a row of the from $(0, 0, \cdots, 0 \mid 0)$. Now for the system $A\vec{x} = \vec{b}$, the corresponding row of the reduced row-echelon form of the augmented matrix $[A, \mid \vec{b}]$ looks like $(0, 0, \cdots, 0 \mid b'_i)$, $1 \leq i \leq 4$. If $b'_i \neq 0$, then the system $A\vec{x} = \vec{b}$ is inconsistent, i.e., doesn’t have any solution. If $b'_i = 0$, then we will have 3 or less independent equations and 4 variables. Since the number of variables is more than the number of equations, there will be infinitely many solutions in this case.
4. Let T and S be two linear transformations from \mathbb{R}^2 to \mathbb{R}^2 such that T is defined by the matrix $A = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}$, i.e., $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^2$, and S is given by $S \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 2x_2 \end{pmatrix}$ for all vectors $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$.

(a) 2 points Compute the matrix of S.

(b) 3 points Compute the matrix of $S \circ T$, where $S \circ T$ means $(S \circ T)(\vec{x}) = S(T(\vec{x}))$ for all $\vec{x} \in \mathbb{R}^2$.

Solution: $S(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $S(e_2) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Therefore the matrix of S is given by

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

The matrix of $S \circ T$ is given by

$$BA = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}.$$