Practice Final
Algebra (Math 110B)

Name: _______________________________ U ID: _______________

<table>
<thead>
<tr>
<th>Question:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. [5 points] Prove that a group of order 351 must have a normal Sylow p-subgroup for some prime p dividing its order.
2. 5 points Let G be a finite group such that it has exactly 2 conjugacy classes. Then prove that $o(G) = 2$.
3. **5 points** Let \(p \) and \(q \) be two primes such that \(p < q \) and \(p \) does not divide \(q - 1 \). Then prove that every group of order \(pq \) is cyclic.
4. 5 points Let G be a **non-abelian** group of order p^3, where p is a prime. Then prove that $o(Z(G)) = p$, where $Z(G)$ is the center of G.
5. 5 points Let G be a group and N a normal subgroup of G such that every element of N and G/N has finite order. Then prove that every element in G has finite order.

(Warning: Do not assume that G is finite.)
6. Let G be a finite group and H, K, N are three subgroups of G.

(a) [5 points] If $K \subset H$, then prove that $[G : K] = [G : H][H : K]$.

(b) [5 points] If N is normal in G, then prove that $HN/N \cong H/(N \cap H)$.

(c) [5 points] If $o(H)$ and $[G : N]$ are relatively prime, then prove that $H \subset N$.

(Hint: For Part (2), define a homomorphism $\varphi : H \to HN/N$ by $\varphi(h) = hN$. Show that $\ker(\varphi) = N \cap H$. Then apply the First Isomorphism Theorem. For Part (3), note that $H \subset N \Leftrightarrow N \cap H = H \Leftrightarrow [H : (N \cap H)] = 1$. Then use Part (1) and (2) to get Part (3).)
7. 5 points If H and K are two subgroups of a finite group G such that $[G : H] = p$ and $[G : K] = q$, where p and q are distinct primes, then prove that pq divides $[G : (H \cap K)]$.
8. 5 points Let G be a finite abelian group containing two distinct elements of order 2. Then prove that $o(G)$ is a multiple of 4. Show that this statement is not true if G is non-abelian.