Lecture 10

Cosets:

Def: Let \(G \) be a group and \(H \) a subgroup of \(G \). Let \(a \in G \), then set \(\text{left coset of } \ aH \) is called a left coset of \(H \) in \(G \).

- Similarly, a right coset \(Ha \) is defined as
\[
Ha := \{ ha : h \in H \}
\]

Example: (1) \(G = \mathbb{Z}^+ \) and \(H = 6 \mathbb{Z}^+ \).

\[
0 + H = \{ 0 + 3n : h \in \mathbb{Z} \} = 3\mathbb{Z} = H \\
1 + H = \{ 1 + 3n : h \in \mathbb{Z} \} = 3n + 1 : n \in \mathbb{Z} \\
2 + H = \{ 2n + 2 : n \in \mathbb{Z} \} \\
3 + H = 0 + H, \quad 4 + H = \{ 3n + 4 : n \in \mathbb{Z} \} \\
\quad = \{ 3(n+1) + 1 : n \in \mathbb{Z} \} = H + H
\]

\(H, \quad 6H \) and \(2 + H \) are all distinct left cosets of \(H \).

(2) \(G = S_3 \), \(H = A_3 = \{ (1), (123), (132) \} \)

(1) \(A_3 = \{ (1), (123), (132) \} \) \(= A_3 \) since \((1) \) is identity element in \(S_3 \).

(12) \(A_3 = \{ (12), (1)(23), (12)(132) \} \) \(= \{ (12), (23), (13) \} \)

(13) \(A_3 = \{ (13), (1)(123), (13)(123) \} \) \(= \{ (13), (12), (23) \} \)
\[(2 \, 3) A_3 = \{ (2 \, 3 \, 1), \ (2 \, 3 \, 1 \, 2 \, 3), \ (2 \, 3) \, (1 \, 3 \, 2) \} \]
\[= \{ (2, 3), \ (13), \ (12) \} \]

\[(1 \, 2 \, 3) A_3 = \{ (1 \, 2 \, 3 \, 1), \ (1 \, 2 \, 3 \, 1 \, 2 \, 3), \ (1 \, 2 \, 3) \, (1 \, 3 \, 2) \}\]
\[= \{ (1 \, 2 \, 3), \ (1 \, 3 \, 2), \ (1) \} = A_3 \]

\[(1 \, 3 \, 2) A_3 = \{ (1 \, 3 \, 2 \, 1), \ (1 \, 3 \, 2 \, 1 \, 2 \, 3), \ (1 \, 3 \, 2) \, (1 \, 2 \, 3) \}\]
\[= \{ (1 \, 2 \, 3), \ (1), \ (1 \, 2 \, 3) \} \]
\[= A_3 \]

\[(1) A_3 = (1 \, 2 \, 3) A_3 = (1 \, 3 \, 2) A_3 = A_3 \]

\[\text{As has 2 distinct left cosets: } 1, \ A_3 \]

Thus, let \(G \) be a group and \(H \) a subgroup of \(G \).
If \(x \in H \), then \(xH = H \), i.e., \(H \) is a left coset of itself.
- Similarly, \(\text{HH} = H \).

Proof: Since \(H \leq H \) and \(H \) is a subgroup, clearly
\[HH \leq H \leq \text{H.} \text{ Clearly} \]

but \(xH \), then \(x = h (h^{-1}x) \in hH \).

\[hH \leq H \leq hH \]

Since \(x \in H \) and \(H \) is a subgroup.

(1) and (ii) give \(hH = H \).
Theorem: Let G be a group and H a subgroup. Then any two left cosets of H have either equal or disjoint. i.e. for $a, b \in G$ either $aH = bH$ or $aH \cap bH = \emptyset$.

Proof: If $aH \cap bH = \emptyset$, then we are done.

Let $aH \cap bH \neq \emptyset$. Then $\exists x_0 \in aH \cap bH$.

$\Rightarrow x_0 = ah_1 = bh_2$ for some $h_1, h_2 \in H$.

$\Rightarrow a = x_0h_1^{-1}$, and $b = x_0h_2^{-1}$.

Let $x \in aH$. Then $x = ah$ for some $h \in H$.

$\Rightarrow x = (x_0h_1h)$

$\Rightarrow x = x_0(h_1h)$

$\Rightarrow x = bh_2(h_1h)$

$\Rightarrow x = b(h_2^{-1}h)$

$\Rightarrow x = bh_3$, where $h_3 = h_2^{-1}h \in H$.

$\therefore x \in bH$.

Hence $aH \subseteq bH$. \(\square\)
Similarly, we can show that $bH = aH$.
(i) and (ii) imply $aH = bH$.

Thus, let G be a group and H a subgroup of G. Let $a, b \in G$. Then $aH = bH \iff a^{-1}b \in H$.

Proof: Assume $aH = bH$.

Note that $a = ae \in aH$; $e \in H$.

\[a \in bH, \quad (\because aH = bH) \]

\[\Rightarrow a = bh \quad \text{for some } h \in H. \]

\[\Rightarrow b^{-1}a = h \]

\[\Rightarrow (b^{-1}a)^{-1} = h^{-1} \]

\[\Rightarrow a^{-1}b = h^{-1} \in H. \quad \text{(QED)} \]

Assume that $a^{-1}b \in H$.

Let $a^{-1}b = h$.

\[\Rightarrow b = ah \in aH \]

But $b = be \in bH$.

\[\text{i.e. } b \in aH, bH \quad \text{i.e. } aH = bH \text{ i.e. } aH \neq bH \]

\[\Rightarrow aH = bH \quad \text{by previous discussion} \]
Theorem: Let G be a group and H a subgroup of G. Then any two left cosets of H have the same cardinality.

Proof: Let aH and bH are two distinct left cosets of H. We need to prove that there is a bijection between them.

Define a function $f : aH \rightarrow bH$ as follows:

$$f(ah) = bh, \quad \forall h \in H.$$

Let $f(ah_i) = f(ah_j)$

$\Rightarrow bh_i = bh_j$

$\Rightarrow h_i = h_j$

$\Rightarrow a_{h_i} = a_{h_j}$

$\Rightarrow f$ is injective.

From the definition of f and bH it is clear that f is bijective.

f is bijective (Porn)