HOMEWORK 6
MATH 110B
(GROUP THEORY)

(A problem with a ‘*’ or ‘**’ mark means we will make references to these problems in the future and thus you should memorize their statements.)

Due Date: Friday, May 25.

*(1) Using Lagrange’s theorem prove the following results:
 (a) (Fermat’s Little Theorem) Let p be a prime number and a an integer such that p does not divide a. Then $a^{p-1} \equiv 1 \pmod{p}$.

 (b) (Euler’s Theorem) Let a and n be two positive integers such that $\gcd(a, n) = 1$. Then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$, where $\phi(n)$ is the Euler’s phi function.

 (Hint: For Part (a), consider the multiplicative group $(\mathbb{Z}_p \setminus \{0\}, \cdot)$ which has order $p - 1$. For the Part (b), consider the group U_n which has order $\phi(n)$. Recall that U_n is the group of all units in the ring $(\mathbb{Z}_n, +, \cdot)$.)

*(2) Let G be a group and H a normal subgroup of G.
 (a) If K is a subgroup of G such that $H \subseteq K \subseteq G$, then prove that K/H is a subgroup G/H.

 (b) Prove that every subgroup of G/H is equal to M/H for some subgroup M of G such that $H \subseteq M \subseteq G$.

 (Hint: For Part (b), let L be an arbitrary subgroup of G/H. Consider the map $\varphi : G \to G/H$ defined by $\varphi(a) = aH$ for all $a \in G$. First show that φ is a group homomorphism and also that φ is surjective. Then $\varphi^{-1}(L)$ is a subgroup of G, say $M = \varphi^{-1}(L)$. Then since φ is surjective, $\varphi(\varphi^{-1}(L)) = L$, i.e., $\varphi(M) = L \Rightarrow M/H = L$.)

(3) (a) Let G be a group and H a subgroup of index 2. Then show that $g^2 \in H$ for all $g \in G$.

(b) Show that A_4 does not have any subgroup of order 6. This example shows that the converse of the Lagrange’s theorem is false.

(Hint:) For Part (b), to the contrary assume that A_4 has a subgroup H of order 6. Then $[A_4 : H] = 12/6 = 2$. Then by Part (a) we know that $\sigma^2 \in H$ for all $\sigma \in A_4$. Now consider the set of all 3-cycles in A_4, there are total $\binom{4}{3} \cdot 2! = 8$ 3-cycles in A_4. Then get a contraction from this on the order of H.

(4) Let G be a group of order 8 and $x \in G$ such that $o(x) = 4$. Prove that $x^2 \in Z(G)$.

(Hint:) Use a similar idea as in the proof of the previous problem Part (a).

(5) Let H be a normal subgroup of a group G and $[G : H] = m$. Prove that $a^m \in H$ for all $a \in G$.

(6) Let H be a normal subgroup of a group G such that $o(H) = 3$ and $[G : H] = 10$. If $a \in G$ and $o(a) = 3$, then prove that $a \in H$.

(7) Let H be a normal subgroup of a group G. Then prove that the quotient group G/H is abelian if and only if $xyx^{-1}y^{-1} \in H$ for all $x, y \in G$.

(8) Let H be a subgroup of a group G such that $x^2 \in H$ for all $x \in G$. Then prove that H is normal in G and G/H is abelian.

(9) Let G be a group and H a normal subgroup of G. If K is a normal subgroup of G containing H, i.e., $H \subseteq K \subseteq G$, then prove that the quotient group K/H is normal in G/H.

(10) Prove that a non-abelian group of order 10 must have a trivial center.