(A problem with a ‘*’ or ‘**’ mark means we will make references to these problems in the future and thus you should memorize their statements.)

Due Date: Friday, May 11.

1. (a) Describe the elements of the group D_3, which is the group of all symmetries of an equilateral triangle on a plane.
 (b) Show that D_3 is the same group as S_3.
 (c) Describe D_3 as an abstract group using the elements r and s as it was done in the lecture. Describe what r and s each represents in D_3, what are their orders in D_3 and what is the relation between them.

2. Express the elements of S_3 as cycle decomposition and find all cyclic subgroups of S_3.

3. (a) Describe the elements of S_4 in terms of disjoint cycle decomposition.
 (b) Describe the elements of A_4 in terms of disjoint cycle decomposition.
 (c) How many distinct left cosets of A_4 are there in S_4?

4. Find all subgroups of A_4.

5. Let B_n be the set of all odd permutations of S_n. Define a function $f : A_n \rightarrow B_n$ by $f(\sigma) = (12)\sigma$ for all $\sigma \in A_n$, where A_n is the set of all even permutations of S_n known as the alternating subgroup of S_n.
 (a) Prove that f is injective.
 (b) Prove that f is surjective. Then f is bijective and thus A_n and B_n both have same number of elements.
(c) Prove that \(o(A_n) = \frac{n!}{2} \).

Hint: For Part (a), recall that every transposition has order 2, in particular, \((12)(12) = \text{Identity} \). For Part (b) recall the definition of even and odd permutation and the fact that \((12)(12) = \text{Identity} \). For Part (c), notice that every elements of \(S_n \) is either in \(A_n \) or in \(B_n \) and not in both of them at the same time.

(6) Describe the elements of \(D_2 \) and \(S_2 \). Show that \(D_2 \) and \(S_2 \) are the same group and they are both cyclic.

(7) Let \(G \) be a group such that the intersection of its subgroups which are different from \(\{e\} \) is again a subgroup different from \(\{e\} \). Then prove that every element in \(G \) has finite order.

(8) Let \(G \) be a group such that \(o(G) > 1 \) and it does not have any non-trivial proper subgroup. Then prove that \(G \) must be a cyclic group of prime order.

Warning: Note that \(o(G) > 1 \) does not mean that \(o(G) \) is finite, it is a possibility that \(o(G) = \infty \). So do not assume in this problem that \(G \) is a finite group.

(9) Let \(G \) be a group and \(H \) a subgroup of \(G \).

(a) Prove that \(gHg^{-1} \) is a subgroup of \(G \) for any \(g \in G \).

(b) Prove that \(N = \cap_{g \in G} gHg^{-1} \) is subgroup of \(G \). Furthermore, show that \(aNa^{-1} = N \) for all \(a \in G \).

(10) Prove that a group of order 9 must have a subgroup of order 3.

(11) Let \(G \) be a group of order \(2p \), where \(p \) is an odd prime. Prove that \(G \) must have an element of order \(p \).

(12) Let \(G \) be a group and \(H \) and \(K \) are two subgroups such that \(o(H) \) is relatively prime to \(o(K) \). Then prove that \(H \cap K = \{e\} \).

(13) Let \(G \) be a finite group of odd order. Then prove that for every element \(x \in G \) there is an element \(y \in G \) such that \(x = y^2 \).

(14) Prove the every abelian group of order 15 is cyclic.